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ABSTRACT

Fairness has emerged as a critical consideration in the landscape of machine learn-
ing algorithms, particularly as AI continues to transform decision-making across
societal domains. To ensure that these algorithms are free from bias and do not
discriminate against individuals based on sensitive attributes such as gender and
race, the field of algorithmic bias has introduced various fairness concepts, in-
cluding demographic parity and equalized odds, along with methodologies to
achieve these notions in different contexts. Despite the rapid advancement in this
field, not all sectors have embraced these fairness principles to the same extent.
One specific sector that merits attention in this regard is insurance. Within the
realm of insurance pricing, fairness is defined through a distinct and specialized
framework. Consequently, achieving fairness according to established notions does
not automatically ensure fair pricing. In particular, regulatory bodies are increas-
ingly emphasizing transparency in pricing algorithms and imposing constraints
on insurance companies on the collection and utilization of sensitive consumer
attributes. These factors present additional challenges in the implementation of
fairness in pricing algorithms. To address these complexities and comply with
regulatory demands, we propose a straightforward method for constructing fair
models that align with the specific fairness criteria unique to the insurance pricing
domain. Notably, our approach only relies on privatized sensitive attributes and
offers statistical guarantees. Further, it does not require insurers to have direct
access to sensitive attributes, and it can be tailored to accommodate varying levels
of transparency as required. This methodology seeks to meet the growing demands
for privacy and transparency set forth by regulators while ensuring fairness in
insurance pricing practices.

1 INTRODUCTION

Fairness has emerged as a critical consideration in the landscape of machine learning algorithms.
Various concepts of algorithmic fairness have been established in this burgeoning field including
demographic parity, equalized odds, predictive parity, among others Calders et al. (2009); Dwork
et al. (2011); Feldman (2015); Hardt et al. (2016); Zafar et al. (2017b); Kusner et al. (2018). Each
fairness concept bears its own merits that align with specific contextual applications. For instance,
equalized odds is commonly considered as a preferred fairness metric in credit lending predictions. In
addition to the theoretical underpinnings of these fairness notations, the literature has also witnessed
a substantial development of methodologies aimed at implementing fairness criteria Zemel et al.
(2013); Zafar et al. (2017a); Calmon et al. (2017); Dwork et al. (2018); Williamson & Menon (2019).

In contrast to algorithmic fairness, the insurance industry employs a unique and specialized framework,
known as actuarial fairness. This well-established concept serves as a fundamental principle in pricing
insurance contracts Frees & Huang (2023). The premium is considered actuarially fair if it accurately
reflects the expected cost of the coverage provided to the policyholder. Given the stringent regulatory
environment, insurers are mandated to demonstrate actuarial fairness in their premiums. As machine
learning algorithms become more prevalent in insurance company operations, regulatory bodies
in recent years have begun to reassess the concept of fairness, in particular, questioning whether
an actuarial fair premium should discriminate against policyholders based on sensitive attributes,
such as gender and ethnicity. For instance, Directive 2004/113/EC (“Gender Directive”) issued by
the Council of the European Union (the legislature) prohibits insurance companies in the UE from
using gender as a risk-rating factor for pricing insurance products Xin & Huang (2023). Due to such
regulatory constraints, insurance companies are either prohibited from directly accessing sensitive
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attributes or are limited to accessing only a noised version of the sensitive attributes. Under this
backdrop, our research aims to develop a method enabling insurers to integrate machine learning
algorithms in the context of insurance pricing while adhering to the regulatory mandates regarding
fairness, transparency, and privacy. As underscored by Lindholm et al. (2022b) the actuarial fairness
and algorithm fairness may not coexist simultaneously under certain conditions. Consequently,
our focus is on the discrimination-free premium, a conceptual frame of actuarially fair premium
recently introduced in the actuarial science literature. This discrimination-free premium, aligned
with the notion of fairness from a causal inference perspective, is free from both direct and indirect
discrimination linked to sensitive attributes Lindholm et al. (2020).

We consider a multi-party training framework, where the insurer possesses direct access to non-
sensitive attributes of policyholders but lacks access to the true sensitive attributes. Instead, a noised
or privatized version of sensitive attributes is securely stored with a trusted third party. The central
premise of our method is that the insurer forwards transformed non-sensitive attributes and the
response variable to the trusted third party. Subsequently, the third party combines the privatized
sensitive attributes and information provided by the insurer to train a machine learning model.
The resulting actuarial fair premium is then transmitted back to the insurer. In our method, the
noise in sensitive attributes can arise in various scenarios including but not limited to: 1) Data
collection mechanisms: In the data collection, whether conducted by the insurer or a third party,
privacy mechanisms are employed as filters to encourage consumers to provide relevant information.
These mechanisms introduce a degree of distortion to protect individual privacy. 2) Measurement
errors: Sensitive attributes contain errors stemming from inaccuracies in the information provided
by policyholders. This includes instances where policyholders furnish inaccurate information in
sensitive attributes, intentionally or unintentionally. 3) Privatization for data transmission security:
Sensitive attributes undergo privatization to ensure data transmission security. This may happen
during transmissions from third parties to insurers or vice versa. The privatization process adds a
layer of security but introduces noise in the sensitive attributes. It is crucial to emphasize that the
multi-party training framework we consider is general and includes two scenarios as trivial cases.
First, the insurer is able to obtain the privatized sensitive attributes from a third party and apply
the proposed algorithm directly. Second, the insurer collects information on both non-sensitive and
sensitive attributes and sends this information to a third-party vendor to execute the pricing algorithm.
Furthermore, the proposed algorithm is readily applicable when non-sensitive attributes originate
from third-party sources. However, its practical value becomes less evident, as it is common practice
for insurers to acquire additional policyholder information through third parties such as credit reports.
In our study, we consider two practical scenarios:

1. Known noise rate: the trusted third party has full information regarding the privatized
sensitive attributes, including both the privacy mechanism and the noise rate.

2. Unknown noise rate: the trusted third party has access to the privatized sensitive attributes,
with knowledge limited to the privacy mechanism and no information about the noise rate.

The proposed method enjoys several advantages: 1) The insurer need not have direct access to
sensitive attributes for implementation of the method; 2) The method solely relies on the privatized
sensitive attributes, irrespective of the entity responsible for gathering such information; 3) The
method is straightforward to implement and provides desired statistical assurance. In the pursuit of
the actuarial fairness proposed by Lindholm et al. (2020), our contributions are threefold:

1. We introduce a straightforward method for training actuarially fair models that are
transparency-adaptive. Notably, the method only requires access to privatized sensitive
attributes as outlined in Lemma 4.2.

2. We provide statistical assurances in scenarios where the noise rate for the privacy mechanism
is known (Theorem 4.3), and extend our guarantees to situations where the noise rate is
unknown (Theorem 4.5).

3. We demonstrate the empirical effectiveness of our method in practical scenarios, encom-
passing both cases mentioned above.

2 BACKGROUND AND RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

In algorithmic fairness literature, researchers are mainly concerned about two kinds of fairness: 1)
individual fairness Dwork et al. (2011); Barocas et al. (2019), 2) group fairness Kamishima et al.
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(2012); Feldman (2015); Friedler et al. (2018). In individual fairness, similar individuals are expected
to be treated similarly. For example, under some similarity measure, two similar loan applicants
are expected to have a similar likelihood of loan approval. In group fairness, two loan applicants
with the same profile but differ only by gender (suppose enforcing group fairness on gender) are
expected to have the same likelihood of loan approval under equalized odds. Although, there are
conditions under which individual fairness implies group fairness Dwork et al. (2011), two kinds
of fairness are often studied separately. Our work falls into the group fairness category. Methods
and algorithms to train a fair model that satisfies certain fairness notion can be divided into three
categories: 1) pre-processing is one enforces fairness on the training data itself before using the
data to train machine learning models Adebayo & Kagal (2016); Calmon et al. (2017); Plečko &
Meinshausen (2019), 2) in-processing is to achieve a pre-specified fairness notion during training
Agarwal et al. (2018; 2019); Donini et al. (2020), 3) post-processing is to enforce fairness on a trained
model (possibly an unfair model) during inference Hardt et al. (2016); Woodworth et al. (2017).
For post-processing method, it is essentially solving a constraint optimization problem. Although
fairness is defined differently in insurance pricing, our proposed two-step procedure resembles more
of a post-processing procedure but with some subtle differences due to the fact that achieving the
fairness notion proposed by Lindholm et al. (2020) is not viewed as a constraint optimization problem.
Therefore, one should not necessarily expect techniques in post-processing to work appropriately
under insurance pricing setting. However, we still borrow some ideas from the algorithmic fairness
literature: the work of Mozannar et al. (2020) inspired us the idea to recover population statistics
w.r.t. true sensitive attributes using only the noisy sensitive attributes. Further, when the noise rates
are not known, we modified techniques in Patrini et al. (2017) to estimate the noise rate of the
privatized sensitive attributes. We would like to point out that our method is also related to learning
under corrupted features. The most relevant existing works are Li et al. (2016); Al-Rubaie & Chang
(2019). Al-Rubaie & Chang (2019) derived the marginalized corrupted feature (MCF) framework,
but under logistic loss, one needs to minimize a surrogate loss. Li et al. (2016) proposed a regularized
marginalized cross-view (RMCV) model, but restricted to the square loss. Hence, a merit of our
method is that it is compatible with any valid loss function.

2.2 FAIRNESS IN INSURANCE PRICING

It was not until recent years that regulators started to question whether an actuarial fair premium
should discriminate against policyholders based on sensitive attributes such as gender and ethnicity.
This motivates the study of the reconceptualization of actuarial fairness in the actuarial science
literature. Particular, on the qualitative side, Lindholm et al. (2020); Shimao & Huang (2022); Xin &
Huang (2023); Frees & Huang (2023) comprehensively discussed various aspects of the concept of
fairness under the context of insurance. Specifically, discrimination in insurance pricing is divided
into two categories: 1) direct discrimination refers to directly using the sensitive attributes as a
risk-rating factor, 2) indirect discrimination (proxy discrimination) refers to the scenario where the
sensitive attributes are not used in the rating algorithm, but the price/classification is unfair due to the
fact that there are proxy variables in the set of non-sensitive attributes or the sensitive attributes can
be well-inferred by variables in the set of non-sensitive attributes. On the quantitative side, There
are mainly three approaches to train fair pricing models: 1) counterfactual approach from causal
statistics Iturria et al. (2022), 2) group fairness approach similar to that of in algorithmic fairness
Grari et al. (2022), 3) probabilistic approach Lindholm et al. (2022a). We’d like to point out that all
mentioned works rely on direct access to true sensitive attributes which seems to be not aligned with
the increasingly stringent regulatory environment. Hence, ours is the first work that considers the
real-world challenges in training discrimination-free insurance pricing models in the actuarial science
literature, that is the need of direct access to true sensitive attributes is relaxed to only a noisy version
of true sensitive attributes. We’d also like to point out that the work of Lindholm et al. (2022a) is
similar to ours, but their framework requires the insurer to have access to the true sensitive attributes
and is limited to neural networks. As mentioned in Section 1, Lindholm et al. (2022b) points out
that under conditions, a discrimination-free price satisfies none of the group fairness axioms defined
in algorithmic fairness (i.e. demographic parity, equalized odds, and predictive parity). Hence, this
motivates studies on discrimination-free pricing algorithms that comply with regulations.

3 PRELIMINARIES & PROBLEM FORMULATION

Consider for now, n i.i.d triplets {Xi, Yi, Di}ni=1 drawn from an unknown distribution (Xi, Yi, Di) ∼
P (X,Y,D), where Xi ∈ X are the input variables (non-sensitive attributes), Yi ∈ Y are the output
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(response) variable (can be continuous or discrete), and Di ∈ D are the true sensitive attribute
(discrete, e.g. gender, race, etc.). Then, according to Lindholm et al. (2020).
Definition 3.1. Best-estimated Price: the best-estimated price for Y w.r.t. (X,D) is defined as:

µ(X,D) := E[Y |X,D].
µ(X,D) is a price with direct discrimination since D is explicitly used in the calculation.
Definition 3.2. Unawareness Price: the unawareness price for Y w.r.t. X is defined as:

µ(X) := E[Y |X].

Although µ(X) does not explicitly depend on D, but as

µ(X) =

∫
d

µ(X, d)dP(d|X).

Therefore, µ(X) is a price with indirect discrimination since one can potentially infer D from X
if they are highly correlated. µ(X) is discrimination-free w.r.t. D if and only if X ⊥ D. To break
the chain between X and D in Definition 3.2, Lindholm et al. (2020) proposed an alternative price
h∗(X) that is discrimination-free w.r.t. D.
Definition 3.3. Discrimination-free Price: A discrimination-free price for Y w.r.t. X is defined as:

h∗(X) :=

∫
d

µ(X, d)dP∗(d),

where P∗(d) is defined on the same range as the marginal distribution of the sensitive attributes D.
Then our ultimate goal is to train a model that outputs h∗(X) in Definition 3.3.

4 DISCRIMINATION-FREE PRICING

4.1 DISCRIMINATION-FREE PRICING UNDER TRUE SENSITIVE ATTRIBUTION

There are two components in h∗(X), namely µ(X,D) and P∗(d). Although a go-to choice for P∗(d)
is the empirical marginal of D, it can rather be viewed as a tuning parameter to satisfy desired
statistical properties (e.g. unbiasedness). Therefore, µ(X,D) is considered a much more important
component in h∗(X). In the following discussion, we first introduce how the multi-party training
method estimates µ(X,D) and outputs h∗(X) in general, and then provide a concrete example.

There are two parties participating in the process, namely the insurer and a trusted third party
(TTP). n i.i.d. triplets {Xi, Yi, Di}ni=1 are drawn from the unknown population P (X,Y,D), but the
insurer only observes {Xi, Yi}ni=1, and TTP observes {Di}ni=1. The insurer’s task is to provide some
transformation T on Xi and passes the transformed data {T (Xi), Yi}ni=1 to TTP, this completes the
first step. Now comes the second step, TTP observes {T (Xi), Yi, Di}ni=1, but TTP does not know
the transformation T . TTP’s task consists of two components: 1) learn µ(T (X), D), 2) output the
discrimination-free price h∗(T (X)) using µ(T (X), D) following Definition 3.3.

Let fk ∈ F ,∀k ∈ [|D|], where F is a hypothesis class and fk : T (X )→ R+,∀k ∈ [|D|] is a score
function. Then TTP learns µ(T (X), D) by minimizing the following expected risk:

R(f1, . . . , f|D|) =

|D|∑
k=1

EY,T (X)|D=k

[
L
(
fk(T (X)), Y

)]
, (1)

then for a pre-specified P ∗(d), TTP computes h∗(T (X)) by

h∗(T (X)) =

|D|∑
k=1

fk(T (X)) · P∗(D = k). (2)

Then, TTP sends back µ(T (X), D), h∗(T (X)) and other information to the insurer upon request.

Remarks: This framework is quite general as the only special thing is that we learned group-specific
score function f1, . . . , fk,∀k ∈ [|D|]. The advantage of using group-specific score functions will
be obvious when we derive the population equivalence risk using the privatized sensitive attributes
(see Lemma 4.2). As one should expect, there are no restrictions on the transformation T and the
hypothesis class F in general. However, similar to the trade-off between out-of-sample performance
and model complexity in general, there are intrinsic trade-offs between the model transparency
and the complexity of T and F . The intuition here is that the simpler T and F , the higher model
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transparency. For example, when T is the identity transformation and F is the class of linear models,
we achieve the highest model transparency as it reduces to a linear regression w.r.t. X itself. Notice
that compared to T , F plays a more crucial role in determining the model transparency when F is
the class of linear models, TTP’s task essentially reduces to fitting a linear regression or a logistic
regression w.r.t. T (X) depending on the task. Finally, notice that the group membership information
D is not needed in the calculation of h∗(T (X)). We summarize the above procedure (MPTP-D) in
an algorithmic manner (see Appendix B.1).

Now, we provide a concrete example that specifies the choice of T and F .

Example 1: Suppose in a regression setting, let h ∈ HwhereH is a hypothesis class and h : X → R+

is a score function. Let L : R× R→ R+ be a loss function, then in step one, the insurer’s goal is to
first minimize the following empirical risk:

R̂(h) =
n∑
i=1

L(h(Xi), Yi) (3)

using a feed-forward neural network. Suppose the neural network consists of m layers, and there are
qm hidden nodes in the mth layer. Suppose X ∈ Rq0 , let z(j) : Rqj−1 → Rqj ,∀j ∈ [m]. Then denote
the composition z(m:1) : Rq0 → Rqm , and T (Xi) = z(m:1)(Xi). The insurer obtains {T (Xi)}ni=1,
which is an n× qm matrix and passes it to TTP along with {Yi}ni=1. This completes step one.

Let fk ∈ F ,∀k ∈ [|D|], where F is the class of linear models and fk : T (X )→ R+,∀k ∈ [|D|] is a
score function. Then TTP minimizes the following empirical risk:

R̂(f1, . . . , fk) =
n∑
i=1

|D|∑
k=1

L(fk(T (Xi)), Yi) · 1{Di = k}, (4)

by fitting a linear regression w.r.t. T (X). Then TTP calculates the discrimination-free price following
Definition 3.3:

ĥ∗(T (X)) =

|D|∑
k=1

f̂k(T (X)) · P̂(D = k), (5)

then return µ̂(T (X), D), ĥ∗(T (X)) to the insurer. This completes step two.

Remark: for binary classification task, simply modify L : R × {0, 1} → R+, and everything
else follows through. In the above example, the insurer obtains T via supervised learning, but as
mentioned, there is no restriction on T nor on the way the insurer obtains T . The reason we limited
F to linear models is to preserve some interpretability with a complex T . This can essentially be
viewed as a trade-off between out-of-sample performance and model transparency. This is one of
the reasons that GLM and GAM-based models are still the main approaches in property & casualty
insurance pricing since they not only preserve transparency but also provide decent predictive power.

4.2 DISCRIMINATION-FREE PRICING/CLASSIFICATION UNDER NOISY SENSITIVE
ATTRIBUTION WITH KNOWN NOISE PARAMETERS

We first introduce some basic knowledge about local differential privacy (LDP) and then discuss how
we modify the multi-party training process to train a fair pricing model when LDP is incorporated
into the data collection or data transmission referring to the interpretation of noise in Section 1. The
benefit of using LDP is that the data collector does not know for certain what the true sensitive
attributes are regardless the information provided is accurate or not for any observation in the data
Mozannar et al. (2020). So, any model trained with this dataset is differentially private w.r.t. the
sensitive attributes. The ϵ-LDP mechanism Q is defined as:
Definition 4.1.

max
s,d,d′

Q(S = d|d)
Q(S = s|d′)

≤ eϵ,

and use the randomized response mechanism in Warner (1965); Kairouz et al. (2015):

Q(s|d) =

{
eϵ

|D|−1+eϵ := π, if s = d
1

|D|−1+eϵ := π̄, if s ̸= d,

where |D| denotes the cardinality of D and s is sampled from Q(·|d) independently from X and Y .
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Now, we consider the first practical scenario. Similar to the setup in Section 4.1, the insurer
still observes {Xi, Yi}ni=1, provides a transformation T , and passes {T (Xi), Yi}ni=1 to TTP. The
difference is that now, TTP only observes the privatized sensitive attributes S instead, but it knows
the true conditional probabilities in the given privacy mechanism Psi|di , where Si is the privatized
sensitive attributes (see Definition 4.1). So the problem now becomes how TTP minimizes Eq. (1):

R(f1, . . . , fk) =
|D|∑
k=1

EY,T (X)|D=k

[
L
(
fk(T (Xi)), Yi

)]
, (6)

with access to only S and then follow the same procedure in Definition 3.3 to output a fair price.
Lemma 4.2. Given the privacy parameter ϵ, minimizing the following risk (Risk-LDP) Eq. (7) under
ϵ-LDP w.r.t. privatized sensitive attributes S is equivalent of minimizing Eq. (1) w.r.t. true sensitive
attributes D at the population level:

RLDP (f1, . . . , fk) =
|D|∑
k=1

|D|∑
j=1

Π−1
kj EY,T (X)|S=j

[
L
(
Y, fk(T (X))

)]
. (7)

The merit of using group-specific score functions is that with access to only S, a population equivalent
risk Eq. (7) can be easily derived from Eq. (1). But this cannot be easily done if we replace fk(T (X))
with f(T (X), D). As mentioned in Section 2, existing methods that do a similar job either give
a surrogate risk or are restricted to some specific loss function (see Li et al. (2016); Al-Rubaie &
Chang (2019)). Empirically, TTP computes ĥ∗(T (X)) using the learned f̂1, . . . , f̂|D| and returns
ĥ∗(T (X)), µ̂(T (X), D) and other information to the insurer upon request. We also summarize the
above procedure (MPTP-S) in an algorithmic manner (see Appendix B.2). Next, we present some
statistical guarantees for Risk-LDP (Eq. 7).

Theorem 4.3. For any δ ∈ (0, 1
2 ), C1 = π+|D|−2

|D|π−1 , denote V C(F) as the VC-dimension of
the hypothesis class F , and K be some constant that depends on V C(F), then under a given
loss function L : Y × Y → R+, and for f = {fk}|D|

k=1 where fk ∈ F ,∀k ∈ [|D|] with
fk : T (X ) → R+ s.t. sup

X∈X
|fk(T (X))| ≤ M ∈ R+,∀k ∈ [|D|] derived from Lemma 4.2,

consequently, L(fk(T (X), Y )) ≤ ϕ(M) ∈ R+,∀k ∈ [|D|], X ∈ X , Y ∈ Y , where ϕ is some

function of M , denote k∗ ← argmax
k
|R̂LDP (fk) − RLDP (fk)|, if n ≥ 8 ln (

|D|
δ )

mink P(S=k) then with

probability 1− 2δ:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2C1ϕ(M)|D|
P(S = k∗)

.

Remark: In Theorem 4.3, for a fixed sample size n, adding more noise will result in a larger C1,
hence resulting in a larger generalization gap as one should expect. We introduced some boundedness
on the loss, this is essentially assuming ∥T (X)∥ <∞,∀X ∈ X and the parameters of f ∈ F is also
finite for any f ∈ F . We’d like to argue that these are reasonable assumptions. For the boundedness
of T (X), this assumption has been widely made in proofs of generalization error bound (see Kakade
et al. (2008)). Since the merit of our method is model interpretability, hence, assuming the finiteness
of parameters gives more informative model interpretations. Notice that under 0− 1 loss, we do not
need the above assumptions since ϕ(M) = 1,∀M ∈ R̄, where R̄ denotes the extended real line.

4.3 DISCRIMINATION-FREE PRICING/CLASSIFICATION UNDER NOISY SENSITIVE
ATTRIBUTION WITH UNKNOWN NOISE PARAMETER

One might have observed that, to derive from Eq. (1) to Eq. (7) under the LDP setting, it requires
knowledge about π, π̄. However, this information might not always be accessible in practice. There-
fore, we now consider the second practical scenario where the noise rates π, π̄ are not known. The
setup is the same as in Section 4.2, the only difference is that TTP does not know the true conditional
probabilities π, π̄ for the given privacy mechanism Psi|di . The general idea is that TTP needs to first
estimate π, π̄ and then plug them in to compute Π̂−1. For the remainder of this section, we introduce
how TTP obtains a point estimator π̂ from the data (Lemma 4.4) and state the necessary assumptions
needed to establish statistical guarantees under the second practical scenario (Theorem 4.5).
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Lemma 4.4. Under ϵ-LDP setting, with π ∈ ( 1
|D| , 1], π̄ ∈ [0, 1

|D| ), assuming that there exists an

anchor points T̃ (X)∗ s.t. P(D = j∗|T̃ (X)∗) = 1 for some j∗ ∈ [|D|], then π = P(S = j∗|T̃ (X)∗).
Empirically, denote the n-dimension vector ηs(T̃ (X)∗) =

(
P̂(S = j∗|T̃ (X1)), . . . , P̂(S =

j∗|T̃ (Xn))
)
, then π̂ = ∥ηs(T̃ (X)∗)∥∞ and {P̂ (S = j∗|T̃ (Xi))}ni=1 can be obtained by speci-

fying a hypothesis class G and minimize R̂(g) =
∑n
i=1 L

(
g(T̃ (Xi)), Si

)
.

Besides Lemma 4.4, we also need some additional assumptions to establish Theorem 4.5. Specifically,
we use the following procedure to construct estimators for C1 and π:
Step 1: Grouping: Given the observed data {T̃ (Xi), Si}ni=1, we evenly divide the data into n1

groups, with m = n
n1

samples each.

Step 2: Estimating within groups: for any k ∈ [n1], within every group {T̃ (Xk,j), Sk,j}mj=1, we can
derive an m-dimension vector ηs,k(T̃ (Xk,·)

∗) =
(
P̂k(S = j∗|T̃ (Xk,1)), . . . , P̂k(S = j∗|T̃ (Xk,m))

)
and π̂k = ∥ηs,k(T̃ (X)∗)∥∞, as defined in Lemma 4.4. Then, by a simple plug in Ĉ1,k = π̂k+|D|−2

|D|π̂k−1 .

Step 3:Averaging: Finally, our estimator for C1, denoted by Ĉ1 = 1
n1

∑n1

k=1 Ĉ1,k, can be derived by
averaging Ĉ1,k, k ∈ [n1].
Next, we state two assumptions that we use to derive the generalization error bound for Risk-LDP
(Eq. (7)) when the noise rate is estimated from the data.
Assumption A: (Sub-exponentiality) For all k ∈ [n1], define ĝk(T̃ (X)) = P̂k(S = j∗|T̃ (X)) There

exists a constant Mg > 0, such that ∥Ĉ1,k∥ψ1
= ∥mini∈[m]

ĝk(T̃ (Xk,i))+|D|−2

|D|ĝk(T̃ (Xk,i))−1
∥ψ1
≤ Mg for all

k ∈ [n1], where ∥ · ∥ψ1 is the sub-exponential norm: ∥X∥ψ1 = inf{t > 0|E[eX/t] ≤ 2}.
Assumption B: (Nearly Unbiasedness) For all k ∈ [n1], Ĉ1,k is a ’nearly’ unbiased estimator of C1,

namely
∣∣∣E[Ĉ1,k]− C1

∣∣∣ < θ for all k ∈ [m], where θ > 0.

Remark: According to the form of Ĉ1,k, the tail of this estimator is equivalent to the distribution
of π̂k = maxi∈[m] ĝk(T̃ (Xk,i)) near 1

|D| . If ĝk is a good estimator as well as m is large enough, π̂k
will be concentrated near π > 1

|D| , which is guaranteed by Lemma 4.4. Especially when π − 1
|D| is

relatively large, it is reasonable to expect that π̂k has a sparse distribution near 1
|D| , which implies

that Ĉ1,k has a sub-exponential tail (or even bounded). For Assumption B 4.3, notice that within
every group k ∈ [n1], π̂k are estimators for π, and thus Ĉ1,k are plug-in estimator for C1. Since Ĉ1,k

are identically and independently distributed, it is reasonable to assume Ĉ1,k are ’nearly’ unbiased. A
more detailed discussion can be found in Appendix C. With the aforementioned assumptions, we
derive the following theorem:

Theorem 4.5. For any δ ∈ (0, 1
3 ), C1 = π+|D|−2

|D|π−1 > 0, Ĉ1 = 1
n1

∑n1

k=1 Ĉ1,k, where Ĉ1,k is
defined in Lemma 4.4, denote V C(F) as the VC-dimension of the hypothesis class F , and K
be some constant that depends on V C(F), if Assumption A (4.3),B (4.3), and Lemma 4.4 hold,
given a loss function L : Y × Y → R+, Mg + C1+θ

ln 2 > ϵ̃ > θ, and for f = {fk}|D|
k=1 where

fk ∈ F ,∀k ∈ [|D|] with fk : T (X ) → R+ s.t. sup
X∈X

|fk(T (X))| ≤ M ∈ R+,∀k ∈ [|D|] derived

from Lemma 4.2, consequently, L(fk(T (X), Y )) ≤ ϕ(M) ∈ R+,∀k ∈ [|D|], X ∈ X , Y ∈ Y ,

where ϕ is some function of M , denote k∗ ← argmax
k
|R̂LDP (fk)−RLDP (fk)|, if n ≥ 8 ln (

|D|
δ )

mink P(S=k) ,

n1 ≥ 1
c(ϵ̃−θ)2 (Mg +

C1+θ
ln 2 )2 ln( 2δ ) where c is an absolute constant, then with probability 1− 3δ:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2(C1 + ϵ̃)ϕ(M)|D|
P(S = k∗)

.

Remark 1: Notices that as n1 increases Ĉ1 is more accurate since it is the average of n1 independent
variables, hence resulting a tighter bound. However, blindly choosing a large n1 is not recommended,
since Assumption A 4.3 will not hold if m = n

n1
is not large enough. Some light tuning might be

helpful in the selection of n1 in practice.
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Remark 2: Generally speaking, the derived bound suffers more from the underestimation of π.
Notice that the parameter that genuinely participates in the error bound is 1

π−1/|D| . Hence, when π is
close to 1

|D| , an underestimation of π can much be destructive than overestimation (especially for
π̂ ≤ 1

|D| ). Further, an empirical study on the effect of estimation error is given in Section 5.

5 EXPERIMENTS & RESULTS

We evaluate the performance of our proposed methods (MPTP-S) on two data sets and show that the
experiment results are in support of our theories. We tested our method in a regression task (MSE
loss) using the US Health Insurance data set. Further, we tested our method in a classification task
(Cross-Entropy loss) using the Adult dataset (Becker & Kohavi (1996)), which is a commonly used
data set in algorithmic fairness literature. For conciseness, we only present the results for regression
task (Insurance) in this section, however, all results for classification task (Adult) can be found in
Appendix F.

5.1 DATA & EXPERIMENTS

The US Health Insurance data set contains 1338 observations, 6 features, and 1 response. In our
experiment, we choose D = sex to be the sensitive attribute taking values ”Male” and ”Female”.
privatized sensitive attribute S is generated under different privacy levels using a set of ϵ’s by
Definition 4.1. D was used to set the performance benchmark and is masked under any other settings.

We conduct experiments 1) when the noise rate π, π̄ are known (scenario 1) and 2) when the noise
rates are unknown (scenario 2). For both scenarios, while we limited the hypothesis class F to the
class of linear models, the insurer obtains two transformations T1, T2 for the main task and one
transformation T̃ for noise rate estimation, where T1 is obtained via supervised learning (same as
example 4.1), T2, T̃ are simply the identity. The reason that we choose such T1, T2 is to showcase
the relationship between the complexity of T , model transparency, and performance on unseen data
under the same F . Further, under scenario 2, we set n1 = 1, 2, 4 and conduct experiments for each n1

respectively. With F being the class of linear models under both scenarios, TTP is essentially fitting
a linear regression w.r.t. T1(X) and T2(X) to obtain µ(T1(X), D), and µ(T2(X), D) respectively.
For the calculation of h∗(T (X)), we choose the empirical marginal of D (estimated using S).

5.2 RESULTS

For each noise level, we generated S using 5 different seeds, hence each figure below (Figure 1, 2, 3)
shows the mean values across all 5 different seeds. For both scenarios, we run experiments over 7
different privacy levels for π = (0.9, 0.8, 0.7, 0.6, 0.55, 0.525, 0.5175). As the focus is to estimate
µ(X,D), for conciseness, plots for test loss of h∗(X) are deferred to Appendix F.

(a) µ(X,D) test loss for T1(X) (b) µ(X,D) test loss for T2(X)

Figure 1: Test Loss for Scenario 1

From Figure 1, we observe that the T1 is slightly more robust against noise compared to T2, and
T1 converges much faster and has a better out-of-sample performance. Notice that as π → 1

|D| , it

8
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requires a larger sample size to achieve the same loss approximation. Hence, for a fixed sample size,
the larger the noise, the worse Eq. (7) approximates Eq. (1) which is in support of the result we obtain
from Theorem 4.3. Although in terms of both accuracy and loss, there is a gap between Eq. (1), the
trade-off comes from the ease of implementation (use of group-specific models) and transparency
w.r.t. T (X) in that we have limited F to be the class of linear models. Next, we present the test loss
(see Figure 2, 3) for µ(X,D) estimation using T1, T2 under scenario 2 with n1 = 1, 2, 4 respectively.

(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 2: µ(X,D) test loss with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 3: µ(X,D) test loss with T2(X) for scenario 2 with n1 = 1, 2, 4

From Figure 2, 3, the loss behavior w.r.t. T1, T2 is similar to that under scenario 1 in general. However,
as n1 increases, we observe a better approximation of Risk-LDP (Eq. (7)) to Eq. (1) (more obvious
under T2). As n1 increases, a smaller ϵ̃ is achievable, hence resulting in a tighter bound as Theorem
4.5 suggests. Therefore, the experiment results under both scenarios align with our theoretical results.

5.3 EMPIRICAL STUDY ON THE EFFECT OF ESTIMATION ERROR OF NOISE RATE

We investigate the effect of underestimation and overestimation of π when the distribution of sensitive
attributes is imbalanced or balanced using the US Health Insurance data set by setting a group of
pre-specified error of estimation ({±0.01,±0.02,±0.03}) for each privacy level and examined the
behavior of Risk-LDP (Eq. 7) for overestimation and underestimation on three manually created
imbalanced subsets each with the ratio Female

Male = 4
1 ,

2
1 , and 1

1 respectively. Due to the page limit, we
defer our investigation results in Appendix E.

6 DISCUSSION & CONCLUSION

In this paper, we proposed a simple method to build predictors to achieve the fairness notion defined
in insurance pricing that is compatible with the multi-party training framework by having a trusted
third party hold information about sensitive attributes when an insurer does not have access to such
information. We derived a population equivalent risk that can be optimized with access to only
privatized sensitive attributes when the privatization noise rate is known and we also generalized
to the setting where the noise rate is unknown. We quantified the amount of difficulty, in sample
complexity that the privatization of sensitive attributes adds to the estimation of the best-estimate
price. We would like to end by highlighting that future work should focus on algorithms that output
discrimination-free prices w.r.t. privatized continuous variables. Further, a generalization to other
kinds of privacy mechanisms is also desired.
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A SUMMARY OF UPDATES

We highlighted all revisions in blue.

A.1 UPDATE IN SECTION 1

We rearticulated some portion of the introduction section to make our work easier to follow since we
believe adding more actuarial science related background to the introduction will make the audience
understand better the motivation and the focus of the work. Specifically, we give definition for
actuarial fair (see 1), interpretation of noise, and the generalization of the proposed method on
non-sensitive attributes (see 1) (as Reviewer BixT, m8tn suggested).

A.2 UPDATE IN SECTION 2

We further reviewed existing work on algorithms that train discrimination-free models in the actuarial
science literature (see 2.2) and pointed out the value and novelty of our work (as Reviewer m8tn,
BixT suggested).

A.3 UPDATE IN SECTION 4.1

We slightly modified the example (Example 4.1) we presented to show how the choice of T and F
relates to model transparency and performance so that both regression and classification tasks are
included (as Reviewer rqKi suggested).

A.4 UPDATE IN SECTION 4.2

We relate the motivation of using LDP to the interpretation of noise to clarify that LDP is only
used under two scenarios. 1) in data collection of vendors as an incentive for consumers to provide
information about their sensitive attributes. 2) in data transmission for security purposes, note that
2) is not needed if the information the insurer collected is already privatized (as Reviewer m8tn
suggested).

A.5 UPDATE IN SECTION 4.3

First, we added a more technical discussion (see 4.3) on assumptions A and B (especially on the
relaxation of assumption B) but deferred the presentation to Appendix C and Appendix G.4 due to
the page limit (as Reviewer BixT, rqKi suggested).

Second, We added a high-level description of the impact of the estimation error of π on the behavior
of Risk-LDP (Eq. 7) (as Reviewer rqKi suggested).

A.6 UPDATE IN SECTION 5

First, we added another empirical experiment on regression task using an insurance data set (see 5.1)
to show that our method is not limited to logistic loss but is compatible with other losses as well. The
results we obtained are also in support of the theoretical guarantees we derived (as Reviewer rqKi
suggested).

Second, we added an empirical study on the effect of the estimation error of noise rate on both evenly
and unevenly distributed scenarios. The results and observations are presented in Appendix E due to
page limit (as Reviewer rqKi suggested).
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B DEFERRED ALGORITHMS

B.1 MPTP-D

Algorithm 1 Multi-party Training Process w.r.t. D (MPTP-D)
Insurer Input: data: {Xi, Yi}ni=1, hypothesis class: H (if obtain T via supervised learning)
Insurer Output: {T (Xi)}ni=1
TTP Input: data: {T (Xi), Yi, Di}, hypothesis class: F , risk function: R(f1, . . . , f|D|) (Eq. (1))

repeat
train f1, . . . , f|D| by minimizing Eq. (1)

until Convergence
compute h∗(T (X)) using Eq. (2)
return f∗

1 , . . . , f
∗
|D|, h

∗(X)

TTP Output: f∗
1 , . . . , f

∗
|D|, h

∗(T (X))

B.2 MPTP-S

Algorithm 2 Multi-party Training Process w.r.t. S (MPTP-S)
Insurer Input: data: {Xi, Yi}ni=1, hypothesis class: H (if obtain T via supervised learning), hypoth-
esis class: K (if obtain T̃ via supervised learning)
Insurer Output: {T (Xi)}ni=1, {T̃ (Xi)}ni=1

TTP Input: data: {T (Xi), Yi, Si}ni=1, {T̃ (Xi), Si}ni=1, hypothesis class G, risk function: ∀k ∈
[n1], R(gk) =

∑m
j=1 L(gk(T̃k,j , Sk,j)) (see Lemma 4.4), hypothesis class: F , risk function:

R(f1, . . . , f|D|) (Eq. (7)),
if Scenario 2 (π, π̄ unknown) then

compute π̂k, ˆ̄πk, k ∈ [n1] (by applying Lemma 4.4)
compute Ĉ1 using π̂k, ˆ̄πk, k ∈ [n1] (by C1 estimation procedure 4.3)
compute π̂, ˆ̄π using Ĉ1

compute Π̂−1 using π̂, ˆ̄π
else

compute Π̂−1 using π, π̄
end if
repeat

train f1, . . . , f|D| by minimizing Eq. (7)
until convergence
compute h∗(T (X)) using Eq. (2)
return f∗

1 , . . . , f
∗
|D|, h

∗(X)

TTP Output: f∗
1 , . . . , f

∗
|D|, h

∗(T (X))
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C DEFERRED DISCUSSION ON ASSUMPTIONS

C.1 RESTRICTIONS ON ASSUMPTION A

The restriction of Assumption A relies on the type of generator (which will influence the tail
distribution of π̂) and the number of data within each group (which will influence the accuracy of π̂).
The condition in Assumption A is equivalent to:

P


(
1− 1

|D|

)2
t

>

∣∣∣∣π̂ − 1

|D|

∣∣∣∣
 ≤ exp(

−t
K

),

when K > 0 is a constant.

Generally speaking, this assumption holds if π̂ is inverse exponential distributed with a translation of
1

|D| , or having a lighter tail than the inverse exponential distribution that is

fπ̂(t) ≤
1

K(t− |D|)2
exp(− 1

K|t− 1
D |

),

when t is close to 1
|D| , where fπ̂(t) is the pdf of π̂. Especially, since a bounded distribution is also

sub-exponential, if |π̂ − 1
|D| | > ϵ, for some ϵ > 0 condition is also satisfied. This will happen when

the number of data within groups (m) is sufficiently large and π − 1
|D| is large enough.

C.2 RESTRICTIONS ON ASSUMPTION B

For Assumption B, the condition is equivalent to E[ 1
π̂−1/|D| ]. Therefore, the closer π and 1

|D| is the
more accuracy of π̂ is needed to suffice this assumption.

C.3 RELAXATION OF ASSUMPTION B

We do not acquire Ĉ1,k to be strictly unbiased estimators of C1– some perturbations can be allowed
with some small modification to Theorem 4.5, but the general result still holds. Please see Section
4.3 and Appendix G.4 for a detailed discussion.
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D DEFERRED EXPERIMENT RESULTS

D.1 DATA

The Adult dataset contains 48842 observations, 14 features, and 1 target variable (income). In
our experiment, we delete observations with missing values which results in a subset of 45222
observations. Further, we delete ”fnlwgt”, ”education num” where the former has no clear description
and the latter is a duplicate of ”education”. We choose D = sex to be our sensitive attribute which
takes values of ”male” and ”female”. The privatized sensitive attribute S is generated under different
privacy levels using a set of ϵ’s by Definition 4.1. D was only used to set the benchmark for
performance and is masked under any other settings.

We conduct experiments 1) when the noise rate π, π̄ are known (scenario 1) and 2) when the noise
rates are unknown (scenario 2). For both scenarios, while we limited the hypothesis class F to the
class of linear models, the insurer obtains two transformations T1, T2 for the main task and one
transformation T̃ for noise rate estimation, where T1 is obtained via supervised learning (same as
example 4.1), T2, T̃ are simply the identity. The reason that we choose such T1, T2 is to showcase
the relationship between the complexity of T , model transparency, and performance on unseen data
under the same F . Further, under scenario 2, we set n1 = 1, 2, 4 and conduct experiments for each n1

respectively. With F being the class of linear models under both scenarios, TTP is essentially fitting
a logistic regression w.r.t. T1(X) and T2(X) to obtain µ(T1(X), D), and µ(T2(X), D) respectively.
For the calculation of h∗(T (X)), we choose the empirical marginal of D (estimated using S).

D.2 RESULTS

For each noise level, we generated S using 5 different seeds, hence each figure below (Figure 4, 5, 6)
shows the mean values across all 5 different seeds. For both scenarios, we run experiments over 7
different privacy levels for π = (0.9, 0.8, 0.7, 0.6, 0.55, 0.525, 0.5175). As the focus is to estimate
µ(X,D), for conciseness, plots for test loss of h∗(X) are deferred to Appendix F.

(a) µ(X,D) test loss for T1(X) (b) µ(X,D) test loss for T2(X)

Figure 4: Test Loss for Scenario 1

From Figure 4, we observe that the T1 is more robust against noise compared to T2, and T1 converges
faster and has a better out-of-sample performance. Notice that as π → 1

|D| , it requires a larger sample
size to achieve the same loss approximation. Hence, for a fixed sample size, the larger the noise, the
worse Eq. (7) approximates Eq. (1) which is in support of the result we obtain from Theorem 4.3.
Although in terms of both accuracy and loss, there is a gap between Eq. (1), the trade-off comes from
the ease of implementation (use of group-specific models) and transparency w.r.t. T (X) in that we
have limited F to be the class of linear models. Next, we present the test loss (see Figure 5, 6) for
µ(X,D) estimation using T1, T2 under scenario 2 with n1 = 1, 2, 4 respectively.
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(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 5: µ(X,D) test loss with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 6: µ(X,D) test loss with T2(X) for scenario 2 with n1 = 1, 2, 4

From Figure 5, 6, the loss behavior w.r.t. T1, T2 is similar to that under scenario 1 in general. However,
as n1 increases, we observe a better approximation of Risk-LDP (Eq. (7)) to Eq. (1) (more obvious
under T2). As n1 increases, a smaller ϵ̃ is achievable, hence resulting in a tighter bound as Theorem
4.5 suggests. Therefore, the experiment results under both scenarios align with our theoretical results.
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E DEFERRED INVESTIGATION OF NOISE RATE ESTIMATION ERROR

We manually set the error of estimation to be {±0.01,±0.02,±0.03}, and our estimated noise rate
is manually adjusted for each privacy level. Further, we created three subsets of the original data
where the ratio between ”Female” and ”Male” observation is 4

1 ,
2
1 and 1

1 to study the impact of the
estimation error of Risk-LDP (Eq. 7) when the privatized sensitive attributes are unevenly distributed.
We conduct experiments using T1, T2 with the manually adjusted erroneous noise rate on each subset
respectively and compare the performance. We first present the results using T1 below.

(a) µ(X,D) test loss for F
M

= 4
1

(b) µ(X,D) test loss for F
M

= 2
1

(c) µ(X,D) test loss for F
M

= 1
1

Figure 7: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.9

(a) µ(X,D) test loss for F
M

= 4
1

(b) µ(X,D) test loss for F
M

= 2
1

(c) µ(X,D) test loss for F
M

= 1
1

Figure 8: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.8

(a) µ(X,D) test loss for F
M

= 4
1

(b) µ(X,D) test loss for F
M

= 2
1

(c) µ(X,D) test loss for F
M

= 1
1

Figure 9: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.7
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(a) µ(X,D) test loss for F
M

= 4
1

(b) µ(X,D) test loss for F
M

= 2
1

(c) µ(X,D) test loss for F
M

= 1
1

Figure 10: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.6

(a) µ(X,D) test loss for F
M

= 4
1

(b) µ(X,D) test loss for F
M

= 2
1

(c) µ(X,D) test loss for F
M

= 1
1

Figure 11: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.55
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Figure 12: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.525
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Figure 13: µ(X,D) Test Loss with T1(X) for Erroneous π̂ when π = 0.5175
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Next, we present the results using T2(X)

(a) µ(X,D) test loss for F
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= 4
1

(b) µ(X,D) test loss for F
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(c) µ(X,D) test loss for F
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Figure 14: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.9
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Figure 15: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.8
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Figure 16: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.7
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Figure 17: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.6
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Figure 18: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.55
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Figure 19: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.525
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Figure 20: µ(X,D) Test Loss with T2(X) for Erroneous π̂ when π = 0.5175
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Observations: From the above figures we can see that T1 converges much faster and is also more
robust against estimation error on the noise rate than T2 regardless of the distribution of sensitive
attributes in general, combining the similar observation under scenario 1, we tend to conclude that
the convergence rate regardless of the noise rate is known or unknown is considered closely related to
the transformation chosen, further the robustness of Risk-LDP (Eq. 7) against noise rate estimation
error is also impacted by the choice of transformation and this impact becomes more obvious as π
gets closer to 1

|D| .

We also observe that when π is far away from 1
|D| (in this case 0.5), regardless of the transformation

chosen and the distribution of sensitive attribute, Risk-LDP (Eq. 7) is very robust against the
estimation error (even when the error is large regardless overestimation or underestimation). However,
as π becomes very close to 1

|D| (Figure 11, 12, 13), we can see that underestimation of π is much
more destructive than overestimation especially when the underestimation error is large.

As one should expect that different transformations should yield different behaviors of Risk-LDP.
Fixing the transformation, we also noted that the distribution of the sensitive attributes does not have
too much impact on the convergence behavior of Risk-LDP (Eq. 7). However, as the distribution
becomes more imbalanced, Risk-LDP tends to give a higher loss than that of the less imbalanced
scenario.
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F DEFERRED FIGURES

F.1 INSURANCE

We now present the test loss for the estimation of h∗(X) using T1, T2 under scenario 1 respectively:

(a) h∗(X) test loss for T1(X) (b) h∗(X) test loss for T2(X)

Figure 21: h∗(X) test loss for scenario 1

Below is the test loss for h∗(X) using T1, T2 with estimated π with n1 = 1, 2, 4 under scenario 2
respectively:

(a) h∗(X) test loss with n1 = 1 (b) h∗(X) test loss with n1 = 2 (c) h∗(X) test loss with n1 = 4

Figure 22: h∗(X) test loss with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) h∗(X) test acc with n1 = 1 (b) h∗(X) test acc with n1 = 2 (c) h∗(X) test acc with n1 = 4

Figure 23: h∗(X) test loss with T2(X) for scenario 2 with n1 = 1, 2, 4
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F.2 ADULT

We first present test accuracy for the estimation of µ(X,D) and h∗(X) using T1, T2 under scenario 1
respectively:

(a) µ(X,D) test acc for T1(X) (b) µ(X,D) test acc for T2(X)

Figure 24: µ(X,D) test accuracy for scenario 1

Below is the test accuracy for the estimation of µ(X,D) and h∗(X) using T1, T2 with n1 = 1, 2, 4
under scenario 2 respectively:

(a) µ(X,D) test acc with n1 = 1 (b) µ(X,D) test acc with n1 = 2 (c) µ(X,D) test acc with n1 = 4

Figure 25: µ(X,D) test accuracy with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) µ(X,D) test acc with n1 = 1 (b) µ(X,D) test acc with n1 = 2 (c) µ(X,D) test acc with n1 = 4

Figure 26: µ(X,D) test accuracy with T2(X) for scenario 2 with n1 = 1, 2, 4

Next, we present the test accuracy for the estimation of h∗(X) using T1, T2 with n1 = 1, 2, 4 under
scenario 2 respectively:
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(a) h∗(X) test acc with n1 = 1 (b) h∗(X) test acc with n1 = 2 (c) h∗(X) test acc with n1 = 4

Figure 27: h∗(X) test accuracy with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) h∗(X) test acc with n1 = 1 (b) h∗(X) test acc with n1 = 2 (c) h∗(X) test acc with n1 = 4

Figure 28: h∗(X) test accuracy with T2(X) for scenario 2 with n1 = 1, 2, 4
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G DEFERRED PROOFS

G.1 LEMMA 4.2 PROOF

Lemma 4.2 Given the privacy parameter ϵ, minimizing the following risk (Risk-LDP) Eq. (7) under
ϵ-LDP w.r.t. privatized sensitive attributes S is equivalent of minimizing Eq. (1) w.r.t. true sensitive
attributes D at the population level:

RLDP (f1, . . . , fk) =
|D|∑
k=1

|D|∑
j=1

Π−1
kj EY,T (X)|S=j

[
L
(
Y, fk(T (X))

)]
, (8)

Proof. Step 1:

Since the ϵ-LDP randomization mechanism is independent of X,Y , therefore, the distribution of S is
fully characterized by the privacy parameter ϵ and the distribution of D. Therefore, the distribution
of S is deterministic once the privacy parameter ϵ and the distribution of D is given.

Step 2: Recover distributions w.r.t. D

Inspired by proposition 1 in Mozannar et al. (2020). Let E1, E2 be two probability events defined with
respect to (T (X), Y, Ŷ ), then consider the following probability:

P(E1, E2 | S = d)

=
∑
d′∈D

P(E1, E2 | S = d,D = d′)P(D = d′ | S = d)

=
∑
d′∈D

P(E1, E2 | D = d′)P(D = d′ | S = d)

=
∑
d′∈D

P(E1, E2 | D = d′)
P(S = d | D = d′)P(D = d′)∑

d′′∈D P(S = d | D = d′′)P(D = d′′)

=P (E1, E2 | D = d)
πP(D = d)

πP(D = d) +
∑
d′′\d

π̄P(D = d′′)
+
∑
d′\d

P (E1, E2 | D = d′)
π̄P(D = d′)

πP(D = d) +
∑
d′′\d

π̄P(D = d′′)
.

Then, let E1 = Y, E2 = T (X), we obtain the following:

P(Y, T (X) | S = d)

=
∑
d′∈D

P(Y, T (X) | S = d,D = d′)P(D = d′ | S = d)

=
∑
d′∈D

P(Y, T (X) | D = d′)P(D = d′ | S = d)

=
∑
d′∈D

P(Y, T (X) | D = d′)
P(S = d | D = d′)P(D = d′)∑

d′′∈D P(S = d | D = d′′)P(D = d′′)

=P (Y, T (X) | D = d)
πP(D = d)

πP(D = d) +
∑
d′′\d

π̄P(D = d′′)
+
∑
d′\d

P (Y, T (X) | D = d′)
π̄P(D = d′)

πP(D = d) +
∑
d′′\d

π̄P(D = d′′)
.

Denote pd = P(D = d), then let Π be the following |D| × |D| matrix with the following entries:
Πi,i =

πpi
πpi+

∑
d′′\i

π̄pd′′
, for i ∈ D

Πi,j =
π̄pj

πpi+
∑

d′′\i
π̄pd′′

, for i, j ∈ D s.t.,i ̸= j
,
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then we have the following system of linear equations:
P(Y, T (X) | S = 1)

.

.

.
P(Y, T (X) | S = |D|)

 = Π


P(Y, T (X) | D = 1)

.

.

.
P(Y, T (X) | D = |D|)

 ,

denote as s1 = Πd1, where s1 = P(Y, T (X) | S), d1 = P(Y, T (X) | D).

Since Π is row-stochastic and invertible, we show that the entries of Π−1 take the following forms:Π−1
i,i = π+|D|−2

|D|π−1

πpi+
∑

d′′\i π̄pd′′

pi
, for i ∈ D

Π−1
i,j = π−1

|D|π−1

π̄pi+
∑

d′′\i πpd′′

pi
, for i, j ∈ D s.t.,i ̸= j

,

multiplying Π−1 on both side, we recovered

P(Y, T (X) | D = k) =

|D|∑
j=1

Π−1
kj P(Y, T (X) | S = j)

= Π−1
k· P(Y, T (X) | S)

where Π−1
k· denotes the kth row of Π−1.

However, there is still one component that we do need to estimate in order to recover the population
distribution of P(Y,X | D). We need to further estimate P(D = d). Using the same technique, to
estimate P(D = d), first write P (S = d) in terms of the conditional probability of S given D as:

P(S = d) =
∑
d′∈D

P(S = d | D = d′)P(D = d′)

= P(S = d | D = d)P(D = d) +
∑
d′\d

P(S = d | D = d′)P(D = d′)

= πpd +
∑
d′\d

π̄pd′ .

Then we write the above expression in terms of a system of linear equations. Let T be an |D| × |D|
matrix with the following entries:{

Ti,i = π, for i ∈ D

Ti,j = π̄, for i, j ∈ D s.t.,i ̸= j
,

then we have the following system of linear equations:
P(S = 1)

.

.

.
P(S = |D|)

 = T


P(D = 1)

.

.

.
P(D = |D|)

 ,

denote as s2 = Td2, where s2 = P(S) and d2 = P(D).

It follows the same argument that T is row-stochastic and invertible and it is easy to verify that T−1

takes the following form: {
T−1
i,i = π+|D|−2

|D|π−1 , for i ∈ D

T−1
i,j = π−1

|D|π−1 , for i, j ∈ D s.t.,i ̸= j
,

by multiplying T−1 on both side, we obtain:

P(D = k) =

|D|∑
j=1

TkjP(S = j)

= T−1
k· P(S).
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Step 3: Recover the loss w.r.t. D

At the population level, we have recovered that:

P(Y, T (X) | D = k) = Π−1
k· P(Y, T (X) | S),

where P(D = k) = T−1
k· P(S) is used in calculation of Π−1

k· .

Hence, we recover the population equivalent of Eq. (1):

|D|∑
k=1

EY,T (X)|D=k

[
L
(
Y, fk(T (X))

)]
=

|D|∑
k=1

∫
Y

∫
T (X)

P(Y, T (X) | D = k)L
(
Y, fk(T (X))

)
dT (X)dY

=

|D|∑
k=1

∫
Y

∫
T (X)

|D|∑
j=1

Π−1
kj P(Y, T (X) | S = j)L

(
Y, fk(T (X))

)
dT (X)dY

=

|D|∑
k=1

|D|∑
j=1

∫
Y

∫
T (X)

Π−1
kj P(Y, T (X) | S = j)L

(
Y, fk(T (X))

)
dT (X)dY

=

|D|∑
k=1

|D|∑
j=1

Π−1
kj EY,T (X)|S=j

[
L
(
Y, fk(T (X))

)]
.

Therefore, we conclude that it is equivalent to minimizing:

(f1∗ , . . . , fk∗)← argmin
f1,...,fk

|D|∑
k=1

|D|∑
j=1

Π−1
kj EY,T (X)|S=j

[
L
(
Y, fk(T (X))

)]
This completes the proof.

G.2 LEMMA 4.4 PROOF

Lemma 4.4 Under ϵ-LDP setting, with π ∈ ( 1
|D| , 1], π̄ ∈ [0, 1

|D| ), assuming that there exists an anchor

points T̃ (X)∗ s.t. P(D = j∗|T̃ (X)∗) = 1 for some j∗ ∈ [|D|], then π = P(S = j∗|T̃ (X)∗). Em-
pirically, denote the n-dimension vector ηs(T̃ (X)∗) =

(
P̂(S = j∗|T̃ (X1)), . . . , P̂(S = j∗|T̃ (Xn))

)
,

then π̂ = ∥ηs(T̃ (X)∗)∥∞ and {P̂ (S = j∗|T̃ (Xi))}ni=1 can be obtained by specifying a hypothesis
class G and minimize the following empirical risk:

R̂(k) =
n∑
i=1

L
(
k(T̃ (Xi)), Si

)
.

Proof. Notice that π ∈ ( 1
|D| , 1], π̄ ∈ [0, 1

|D| ) and consequently we have π > π̄. Hence, by Theorem 5
of Zhang et al. (2021), we are in a good position to apply the noise rate estimation method (Theorem
3) in Patrini et al. (2017) to estimate π, π̄. Our ϵ-LDP setting can be considered as a special case of
CCN (class conditional noise) where the flip probability is the same across all groups in D. Consider

P(S = j∗|T̃ (X)∗) =

|D|∑
k=1

P(S = j∗|D = k) · P(D = k|T̃ (X)∗)

(a)
=

|D|∑
k=1

P(S = j∗|D = k) · 1{j∗ = k}

= π,

(a) is by followed by the definition of anchor point

P(D = j∗|T̃ (X)∗) = 1 =⇒ P(D = k|T̃ (X)∗) = 0,∀k ̸= j∗, k, j∗ ∈ [|D|].
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Then one can easily see that P(S = j∗|T̃ (Xi)) attains its maximum when P(D = j∗|T̃ (Xi)) = 1,
since we know {

P(S = j∗|D = k) = π, if j∗ = k

P(S = j∗|D = k) = π̄, if j∗ ̸= k,

hence we know P(S = j∗|T̃ (Xi)) is actually a weighted sum of π and π̄, where the weights are simply
{P(D = k|T̃ (Xi))}|D|

k=1. But we also know that π > π̄. Hence, for empirical estimation, denote the

n-dimension probability vector ηs(T̃ (X)∗) =
(
P̂(S = j∗|T̃ (X1)), . . . , P̂(S = j∗|T̃ (Xn))

)
π̂ = ∥ηs(T̃ (X)∗)∥∞.

Where {P̂ (S = j∗|T̃ (Xi))}ni=1 can be obtained by specifying a hypothesis class K and minimize
the following empirical risk:

R̂(k) =
n∑
i=1

L
(
k(T̃ (Xi)), Si

)
.

This completes the proof

G.3 THEOREM 4.3 PROOF

Theorem 4.3 For any δ ∈ (0, 1
2 ), C1 = π+|D|−2

|D|π−1 , denote V C(F) as the VC-dimension of
the hypothesis class F , and K be some constant that depends on V C(F), then under a given
loss function L : Y × Y → R+, and for f = {fk}|D|

k=1 where fk ∈ F ,∀k ∈ [|D|] with
fk : T (X ) → R+ s.t. sup

X∈X
|fk(T (X))| ≤ M ∈ R+,∀k ∈ [|D|] derived from Lemma 4.2,

consequently, L(fk(T (X), Y )) ≤ ϕ(M) ∈ R+,∀k ∈ [|D|], X ∈ X , Y ∈ Y , where ϕ is some

function of M , denote k∗ ← argmax
k
|R̂LDP (fk) − RLDP (fk)|, if n ≥ 8 ln (

|D|
δ )

mink P(S=k) then with

probability 1− 2δ:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2C1ϕ(M)|D|
P(S = k∗)

.

Proof. For better presentation, denote X = T (X) and X̃ = T̃ (X) in the proof.

Step 1: simplify the objective

DenoteR(fk) as the expected risk of fk, and R̂(fk) as the empirical risk of fk that depends on the
data set given, then we start with

P(|R̂LDP (f)−R(f)| > ϵ)

=P(|R̂LDP (f) +RLDP (f)−RLDP (f)−R(f)| > ϵ)

≤P(|R̂LDP (f)−RLDP (f)|+ |RLDP (f)−R(f)| > ϵ)

(a)
=P(|R̂LDP (f)−RLDP (f)| ≥ ϵ)

=P
(
|
|D|∑
k=1

R̂LDP (fk)−
D∑
k=1

RLDP (fk)| > ϵ
)

≤P
( D∑
k=1

|R̂LDP (fk)−RLDP (fk)| > ϵ
)

(b)

≤P
(
max
k
|R̂LDP (fk)−RLDP (fk)| >

ϵ

|D|

)
(c)
=P
(∣∣∣∣ |D|∑

j=1

Π̂−1
k∗j

1

nj

∑
i:Si=j

L
(
Yi, fk∗(T (Xi))

)
−Π−1

k∗·EY,X|S

[
L
(
Y, fk∗(X)

)]∣∣∣∣ > ϵ

|D|

)
,
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where (a) is obtained from the population equivalence of two losses from Lemma 4.2.

(b) is followed by for two events A,B, if A implies B then P (A) < P (B), also denote that
k∗ ← argmax

k
|R̂LDP (fk)−RLDP (fk)|.

(c) is obtained by expanding the expression for R̂LDP (fk∗) andRLDP (fk∗) respectively.

Step 2: concentration of the empirical risk under Risk-LDP

Denote nNyxs =
∑
i 1(yi = y, xi = x, si = s),Qyxs = P(Y = y,X = x, S = j), and define the

random variable Nyxs = {i | yi = y, xi = x, si = s}. We can deduce nNs =
∑
x∈X,y∈Y 1(yi =

y, xi = x, si = s). Then, we have E[R̂LDP (fk∗) | NY XS ] = RLDP (fk∗), where NY XS denotes
all possible Nyxs. Using similar approach of Lemma 2 in Mozannar et al. (2020), we can write:

P(R̂LDP (fk)N −RLDP (fk∗) >
ϵ

|D|
)

(a)
=
∑
NY XS

P
(
R̂LDP (fk∗)N −RLDP (fk∗) >

ϵ

|D|
∣∣NY XS

)
· P(NY XS)

(b)

≤P
( ⋃
x∈X,y∈Y,s∈S

{
nNs <

n
∑
x∈X,y∈Y Qyxs

2

})
+

∑
∀x,y,Nyxs:nN

s ≥
n

∑
x∈X,y∈Y Qyxs

2

P
(
R̂LDP (fk∗)N −RLDP (fk∗) >

ϵ

|D|

∣∣∣NY XS

)
· P(NY XS)

(c)

≤|D| exp
{
−

mins n
∑
x∈X,y∈Y Qyxs

8

}
+

∑
∀x,y,Nyxs:nN

s ≥
n

∑
x∈X,y∈Y Qyxs

2

P
(
R̂LDP (fk∗)N −RLDP (fk∗) >

ϵ

|D|

∣∣∣NY XS

)
· P(NY XS),

where (a) follows by conditioning over all 2n|X|n|D|n possible configurations of Nyxs ⊂ [n].

(b) is obtained by splitting the configurations where ∀x, y,Nyxs : nNs ≥
n
∑

x∈X,y∈Y Qyxs

2 and
the complement of the event and upper bound the complement of the event by the probability
that ∃s s.t. nNs <

n
∑

x∈X,y∈Y Qyxs

2 . (c) is obtained by the union bound and we know nNs ∼
Binomial

(
n,
∑
x∈X,y∈Y Qyxs

)
and apply the Chernoff bound on nNyxj .

Now, we will apply the McDiarmid Inequality McDiarmid (1989). Let Xn = (X1, . . . , Xn) ∈ Xn

be n independent random variables and let g : Xn → R, if there exists constants c1, . . . , cn s.t.

sup
x1,...,xi,x′

i,...,xn

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x
′
i, . . . , xn)| ≤ ci, i = 1, . . . , n,

then ∀ϵ > 0:

P(g(x1, . . . , xi, . . . , xn)− E[g(x1, . . . , xi, . . . , xn)]) ≤ 2 exp

(
2ϵ2∑n
i=1 c

2
i

)
.

Since by conditioning on NY XS , then for R̂LDP (fk∗), everything else is now deterministic except
for fk∗ , in other words, by conditioning on NY XS , the value of R̂LDP (fk∗) only depends on fk∗ .
Then, for two datasets N,N ′ where they only differ by one value of fk∗(Xi), we try to bound how
much fk∗ can change.

Recall from Lemma 4.2, we computed the entries of Π−1 takes the following form:Π−1
i,i = π+|D|−2

|D|π−1

πpi+
∑

d′′\i π̄pd′′

pi
, for i ∈ D

Π−1
i,j = π−1

|D|π−1

π̄pi+
∑

d′′\i πpd′′

pi
, for i, j ∈ D s.t.,i ̸= j

.
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For simplicity, let C1 = π+|D|−2
|D|π−1 , C2 = π−1

|D|π−1 , since we do not have access to D, therefore we can
not directly observe pd, hence we write Π−1 in terms of Ps where Ps = P(S):

Π−1
i,i = C1

πT−1
i· Ps+

∑
l\i π̄T

−1
l· Ps

T−1
i· Ps

, for i ∈ D

Π−1
i,j = C2

π̄T−1
i· Ps+

∑
l\i πT

−1
l· Ps

T−1
i· Ps

, for i, j ∈ D s.t.,i ̸= j
,

we also computed T−1 as: {
T−1
i,i = π+|D|−2

|D|π−1 , for i ∈ D

T−1
i,j = π−1

|D|π−1 , for i, j ∈ D s.t.,i ̸= j
,

then we have

sup
N,N ′
|R̂LDP (fk∗)N − R̂LDP (fk∗)N

′
|

=

∣∣∣∣C1

πT−1
k∗·P

N
s +

∑
l\k π̄T

−1
l· PN

s

T−1
k∗·P

N
s

R̂LDP (fk∗)N +
∑
j\k

C2

π̄T−1
k∗·P

N
s +

∑
l\k πT

−1
l· PN

s

T−1
k∗·P

N
s

R̂LDP (fk∗)N

− C1

πT−1
k∗·P

N
s +

∑
l\k π̄T

−1
l· PN

s

T−1
k∗·P

N
s

R̂LDP (fk∗)N
′
+
∑
j\k

C2

π̄T−1
k∗·P

N
s +

∑
l\k πT

−1
l· PN

s

T−1
k∗·P

N
s

R̂LDP (fk∗)N
′
∣∣∣∣

=

∣∣∣∣C1

πT−1
k∗·P

N
s +

∑
l\k π̄T

−1
l· PN

s

T−1
k∗·P

N
s

(∑
i∈N,x∈X,y∈Y,S=k L

(
yi, fk∗(xi)

)
nk∗

−
∑
i∈N ′,x∈X,y∈Y,S=k L

(
yi, fk∗(xi)

)
nk∗

)
+
∑
j\k

C2

π̄T−1
k∗·P

N
s +

∑
l\k πT

−1
l· PN

s

T−1
k∗·P

N
s

(∑
i∈N,x∈X,y∈Y,S=j L

(
yi, fk∗(xi)

)
nk∗

−
∑
i∈N ′,x∈X,y∈Y,S=j L

(
yi, fk∗(xi)

)
nk∗

)∣∣∣∣
(a)

≤
∣∣∣∣C1

π max
m∈[|D|]

T−1
m· P

N
s + (|D| − 1)π̄ max

m∈[|D|]
T−1
m· P

N
s

T−1
k∗·P

N
s

· ϕ(M)

nk∗

∣∣∣∣
=

∣∣∣∣C1

(
π + π̄(|D| − 1)

)
· ϕ(M)

nk∗

∣∣∣∣
(b)
=

∣∣∣∣C1ϕ(M)

nk∗

∣∣∣∣,
where (a) is obtained by C2 ≤ 0,∀π ∈ ( 1

|D| , 1]. (b) is followed by the fact that π + π̄(|D| − 1) = 1.

Now, we are ready to apply the McDiarmid Inequality:∑
∀x,y,Nyxs:nN

s ≥
n

∑
x∈X,y∈Y Qyxs

2

P
(
R̂LDP (fk∗)N −RLDP (fk∗) >

ϵ

|D|

∣∣∣NY XS

)
· P(NY XS)

≤
∑

∀x,y,Nyxs:nN
s ≥

n
∑

x∈X,y∈Y Qyxs

2

2 exp

{
−

2ϵ2

|D|2

n·
(C1ϕ(M)

nk∗

)2
}
· P(NY XS)

(a)

≤2 exp

{
− 2nϵ2

( P(S = k)

2C1ϕ(M)|D|

)2}
,

where (a) is obtained since when nk∗ =
n
∑

x∈X,y∈Y Qyxk

2 = nP(S=k)
2 , the quantity is maximized.

Now, we have:

P(
∣∣R̂LDP (f)−R(f)∣∣ > ϵ) ≤ |D| exp

{
− mink P(S = k)

8

}
+2 exp

{
− 2nϵ2

( P(S = k∗)

2C1ϕ(M)|D|

)2}
,
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solve for δ, we now have, for any δ ∈ (0, 1
2 ), ϵ ≥

√
ln ( δ

2 )

2n
2C1ϕ(M)|D|
P(S=k∗) , if n ≥ 8 ln (

|D|
δ )

mink P(S=k) , then

P
(
|R̂LDP (f)−R(f)| > ϵ

)
≤ 2δ

Step 3: Obtain the final result

Recall that one can easily show

R̂LDP (f)−R(f∗) ≤ 2 sup
f∈F

∣∣RLDP (f)− R̂LDP (f)∣∣,
but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any δ ∈ (0, 1
2 ), if n ≥ 8 ln (

|D|
δ )

mink P(S=k) , we have:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2C1ϕ(M)|D|
P(S = k∗)

.

This completes the proof.

G.4 THEOREM 4.5 PROOF

Theorem 4.5 For any δ ∈ (0, 1
3 ), C1 = π+|D|−2

|D|π−1 > 0, Ĉ1 = 1
n1

∑n1

k=1 Ĉ1,k, where Ĉ1,k is
defined in Lemma 4.4, denote V C(F) as the VC-dimension of the hypothesis class F , and K
be some constant that depends on V C(F), if Assumption A (4.3),B (4.3), and Lemma 4.4 hold,
given a loss function L : Y × Y → R+, Mg + C1+θ

ln 2 > ϵ̃ > θ, and for f = {fk}|D|
k=1 where

fk ∈ F ,∀k ∈ [|D|] with fk : T (X ) → R+ s.t. sup
X∈X

|fk(T (X))| ≤ M ∈ R+,∀k ∈ [|D|] derived

from Lemma 4.2, consequently, L(fk(T (X), Y )) ≤ ϕ(M) ∈ R+,∀k ∈ [|D|], X ∈ X , Y ∈ Y ,

where ϕ is some function of M , denote k∗ ← argmax
k
|R̂LDP (fk)−RLDP (fk)|, if n ≥ 8 ln (

|D|
δ )

mink P(S=k) ,

n1 ≥ 1
c(ϵ̃−θ)2 (Mg +

C1+θ
ln 2 )2 ln( 2δ ) where c is an absolute constant, then with probability 1− 3δ:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2(C1 + ϵ̃)ϕ(M)|D|
P(S = k∗)

.

Proof. We will first introduce some preliminaries that will be used in the proof. We will first introduce
how we obtain Ĉ1 and then state the assumptions used for the proof.

Step 1: Grouping: Given the observed data {T (Xi), Si}ni=1, we evenly divide them into n1 groups,
with m = n

n1
samples each.

Step 2: Estimating within groups: for any k ∈ [n1], within every group {T (Xk,j), Sk,j}mj=1, we can
derive an m-dimension vector ηs,k(T̃ (Xk,·)

∗) =
(
P̂k(S = j∗|T̃ (Xk,1)), . . . , P̂k(S = j∗|T̃ (Xk,m))

)
and π̂k = ∥ηs,k(T (X)∗)∥∞, which is defined in Lemma 4.4. Then, applying a straight-forward plug
in Ĉ1,k = π̂k+|D|−2

|D|π̂k−1 .

Step 3:Averaging: Finally, our estimator for C1, denoted by Ĉ1 = 1
n1

∑n1

k=1 Ĉ1,k, can be derived by
averaging Ĉ1,k, k ∈ [n1].

Next, we state two assumptions that we used to derive the generalization error bound for Risk-LDP
(Eq. (7)) when the noise rate is estimated from the data.

Assumption A: (Sub-exponentiality) For all k ∈ [n1], define ĝk(T̃ (X)) = P̂k(S = j∗|T̃ (X)) There

exists a constant Mg > 0, such that ∥Ĉ1,k∥ψ1 = ∥mini∈[m]
ĝk(T̃ (Xk,i))+|D|−2

|D|ĝk(T̃ (Xk,i))−1
∥ψ1 ≤ Mg for all
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k ∈ [n1], where ∥ · ∥ψ1
is the sub-exponential norm:

∥X∥ψ1
= inf{t > 0|E[eX/t] ≤ 2}.

Assumption B: (Nearly Unbiasedness) For all k ∈ [n1], Ĉ1,k is a ’nearly’ unbiased estimator of C1,

namely
∣∣∣E[Ĉ1,k]− C1

∣∣∣ < θ for all k ∈ [m], where θ > 0.

Now, we begin the proof.

First, we will prove a concentration inequality with regard to Ĉ1 and C1.

Since for any constant L, we have

∥L∥ψ1 = inf{t > 0|E[e|L|/t] ≤ 2}
= inf{t > 0|e|L|/t ≤ 2}

=
|L|
ln 2

,

and ∥ · ∥ψ1
is a norm, we can conclude that the standardized statistic C̃1,k = Ĉ1,k − E[Ĉ1,k] is also

sub-exponential:

∥C̃1,k∥ψ1
≤ ∥Ĉ1,k∥ψ1

+ ∥E[Ĉ1,k]∥ψ1

≤Mq +
|E[Ĉ1,k|]

ln 2
(a)
= Mq +

C1 + θ

ln 2
,

where (a) is obtained by Assumption B.

Among different groups, the data are mutually independent, then we know that {C̃1,k}n1

k=1 are
independent random variables with mean 0.

Therefore, we can apply Bernstein inequality(R.Vershynin (2018)):

P

(∣∣∣∣∣ 1n1

n1∑
k=1

C̃1,k

∣∣∣∣∣ > ϵ̃+ θ

)
≤ 2 exp

[
−cmin

(
(ϵ̃+ θ)2

(Mg + C1/ ln 2)2
,

ϵ̃+ θ

Mg + C1/ ln 2

)
n1

]
,

where c > 0 is an absolute constant.

Since we have Mg+
C1+θ
ln 2 > ϵ̃ > θ, which implies ϵ̃

Mg+C1/ ln 2 < 1, we can transform the inequality
above into

P
(∣∣∣Ĉ1 − C1

∣∣∣ > ϵ̃
)
= P

(∣∣∣∣∣ 1n1

n1∑
k=1

C̃1,k

∣∣∣∣∣ > ϵ̃− θ

)

≤ 2 exp

[
−c (ϵ̃− θ)2

(Mg + (C1 + θ)/ ln 2)2
n1

]
(a)

≤ δ,

where (a) is obtained by n1 ≥ 1
c(ϵ̃−θ)2 (Mg +

C1+θ
ln 2 )2 ln( 2δ ).

Second, we can apply Theorem 4.3 to the case when using π̂ instead of π. Therefore, by the end of
Step 2 in the proof of Theorem 4.3, we will derive the following conclusion:

For any δ ∈ (0, 1
3 ), ϵ ≥

√
ln ( δ

2 )

2n
2Ĉ1ϕ(M)|D|
P(S=k∗) , if n ≥ 8 ln (

|D|
δ )

mink P(S=k) , then

P
(
|R̂LDP (f)−R(f)| > ϵ

)
≤ 2δ.
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Third, Assume the events

A1 =
{∣∣∣Ĉ1 − C1

∣∣∣ ≤ ϵ̃
}
,

A2 =

|R̂LDP (f)−R(f)| ≤ ϵ, ϵ ≥

√
ln ( δ2 )

2n

2Ĉ1ϕ(M)|D|
P(S = k∗)

, n ≥
8 ln ( |D|

δ )

mink P(S = k)

 ,

A3 =

|R̂LDP (f)−R(f)| ≤ ϵ, ϵ ≥

√
ln ( δ2 )

2n

2(C1 + ϵ̃)ϕ(M)|D|
P(S = k∗)

, n ≥
8 ln ( |D|

δ )

mink P(S = k)

 ,

then we have A1 ∩A2 ⊆ A3.

From the First part and Second part of the proof, we have P(AC1 ) ≤ δ,P(AC2 ) ≤ 2δ, then

P(A3) ≥ P(A1 ∩A2) ≥ 1− P(AC1 )− P(AC2 ) ≥ 1− 3δ,

which is equivalent to the following statement: For any δ ∈ (0, 1
3 ), ϵ ≥

√
ln ( δ

2 )

2n
(2(C1+ϵ̃)ϕ(M)|D|

P(S=k∗) , if

n ≥ 8 ln (
|D|
δ )

mink P(S=k) , then

P
(
|R̂LDP (f)−R(f)| > ϵ

)
≤ 3δ.

Finally, similar to Step 3 in the proof of Theorem 4.3, recall that one can easily show

R̂LDP (f)−R(f∗) ≤ 2 sup
f∈F

∣∣RLDP (f)− R̂LDP (f)∣∣,
but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any δ ∈ (0, 1
3 ), if n ≥ 8 ln (

|D|
δ )

mink P(S=k) , then with
probability 1− 3δ we have:

R̂LDP (f) ≤ R(f∗) +K

√
V C(F) + ln ( δ2 )

2n

2(C1 + ϵ̃)ϕ(M)|D|
P(S = k∗)

.

This completes the proof.
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