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Figure 1: Accuracy of six LMMs on two types of specialized questions in medical diagnoses, with and without
adversarial pairs. The significant drop in accuracy with adversarial pairs highlights the models’ unreliability in
handling medical diagnoses with our probing method.

Abstract001

Large Multimodal Models (LMMs) have002
demonstrated impressive performance on exist-003
ing medical Visual Question Answering (Med-004
VQA) benchmarks. However, high reported005
accuracy does not necessarily reflect their true006
diagnostic reliability in clinical settings. This007
study reveals that state-of-the-art models per-008
form worse than random guessing on medi-009
cal diagnosis questions when subjected to sim-010
ple Probing Evaluation for Medical Diagno-011
sis (ProbMed). ProbMed challenges models012
through probing evaluation and procedural di-013
agnosis. Particularly, probing evaluation fea-014
tures pairing ground-truth questions with adver-015
sarial counterparts that feature negated and hal-016
lucinated attributes, while procedural diagnosis017
requires reasoning across various dimensions018
for each image, including modality recognition,019
organ identification, clinical findings, abnor-020
malities, and positional grounding. Our evalu-021
ation reveals that even top-performing models022
like GPT-4o, GPT-4V, and Gemini Pro perform023
worse than random guessing on specialized di-024
agnostic questions, indicating significant limita-025
tions in handling fine-grained medical inquiries.026
Furthermore, our ablation study on open-source027
models (e.g., LLaVA, LLaVA-Med, and Med-028
Flamingo) identifies poor visual understanding029
as a primary bottleneck—a limitation that can030
be partially mitigated by incorporating visual031

descriptions generated by GPT-4o, resulting in 032
an average performance improvement of 9.44%. 033
These findings underscore the urgent need for 034
more robust evaluation methods and domain- 035
specific expertise to ensure the reliability of 036
LMMs in high-stakes medical applications. 037

1 Introduction 038

Foundation models, such as large language models 039

(LLMs) (Achiam et al., 2023; Touvron et al., 2023; 040

Jiang et al., 2023; Anil et al., 2023; Chung et al., 041

2024) and large multimodal models (LMMs) (Ope- 042

nAI, 2024, 2023; Reid et al., 2024; Li et al., 2023; 043

Liu et al., 2023a; Chen et al., 2023), have demon- 044

strated impressive capabilities in understanding 045

complex visual and text inputs, generating human- 046

like language, and achieving high accuracy on var- 047

ious benchmarks. The integration of these foun- 048

dation models into real-life medical practice holds 049

immense potential given their advanced computa- 050

tional capabilities (Wu et al., 2023a; Yang et al., 051

2023) and promising progress on existing medical 052

Visual Question Answering (Med-VQA) bench- 053

marks (Lau et al., 2018; Liu et al., 2021; He et al., 054

2020; Zhang et al., 2023). As we stand on the 055

precipice of integrating these models into critical 056

decision-making domains, one natural question ap- 057

pears: how much can we trust these models in real- 058
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Caption: Chest X-ray
showing bilateral
pleural thickening in the
upper and middle lung
fields.

Existing Evaluation Evaluation with
Adversarial Pair 

GT: no

Is bilateral
pleural
thickening in 
the upper and
middle lung
fields in
this chest X-ray?

Is bilateral pleural thickening in 
the upper and middle lung fields
in this chest X-ray?

yes. GT: yes

GT: yesyes.

Is bilateral pleural thickening in 
the lower lung fields in this 
chest X-ray?

yes.

Figure 2: An example illustrating the potential for mis-
leading accuracy in existing evaluations. While the
model correctly identifies the position of an existing
finding in the standard evaluation, it fails to differen-
tiate between actual and hallucinated positions when
subjected to an adversarial evaluation.

world scenarios, such as medicine and healthcare,059

where the stakes are high?060

Before discussing the reliability of LMMs in061

critical domains like Med-VQA, we must first ad-062

dress a fundamental question: Are we evaluating063

LMMs correctly? To address this question, we in-064

troduce a simple yet effective probing evaluation065

method that exposes the weaknesses of LMMs by066

creating binary questions with hallucination pairs067

over existing benchmarks. An example is shown068

in Figure 2. Despite the high accuracy reported on069

current Med-VQA tasks, our study reveals a signifi-070

cant vulnerability in LMMs when faced with adver-071

sarial questioning, as illustrated in Figure 1. The072

observed performance drops are alarming: even073

advanced models like GPT-4o, GPT-4V, and Gem-074

ini Pro perform worse than random guessing, with075

an average decrease of 27.78% across the tested076

models.077

Based on this, we further analyze a critical ques-078

tion: How reliable are LMMs in medical diag-079

nosis, ranging from general questions to special-080

ized diagnostic questions? To address this ques-081

tion, we introduce ProbMed, which features pro-082

cedural diagnosis designed to rigorously evaluate083

model performance across multiple diagnostic di-084

mensions. We curated ProbMed from 6,303 im-085

ages sourced from two widely-used biomedical086

datasets, MedICaT (Subramanian et al., 2020) and087

ChestX-ray14 (Wang et al., 2017). These images088

cover various modalities, including X-ray, MRI,089

and CT scans, and span multiple organs such as090

the abdomen, brain, chest, and spine. Using GPT-4091

and a positional reasoning module, we generated092

metadata for each image, extracting information093

about abnormalities, condition names, and their094

corresponding locations. This metadata facilitated095

the automatic generation of 57,132 high-quality 096

question-answer pairs, covering dimensions like 097

modality recognition, organ identification, abnor- 098

malities, clinical findings, and positional reasoning. 099

Our systematic evaluation of twelve state-of-the- 100

art LMMs on ProbMed revealed several critical 101

insights. First, even the best-performing models, 102

such as GPT-4V and Gemini Pro, performed close 103

to random guessing on specialized diagnostic cat- 104

egories like Condition/Finding and Position, high- 105

lighting their limitations in handling fine-grained 106

medical inquiries. Second, introducing adversarial 107

pairs significantly reduced the accuracy of all mod- 108

els, with LLaVA-Med-v1.5’s performance drop- 109

ping by up to 29.22% and GPT-4o’s accuracy de- 110

creasing by 20.71% in ProbMed. These findings 111

emphasize the importance of adversarial testing in 112

Med-VQA to uncover model weaknesses. Third, 113

by incorporating chain-of-thought reasoning and 114

adding visual descriptions generated by GPT-4o, 115

we observe substantial improvements in model per- 116

formance, suggesting that poor visual understand- 117

ing is a critical bottleneck. The results indicate that 118

augmenting these models with more accurate vi- 119

sual information could significantly improve their 120

ability to handle complex medical tasks. More- 121

over, the CheXagent model, which was exclusively 122

trained on chest X-rays, demonstrated that special- 123

ized domain knowledge is crucial. It showed that 124

expertise gained on one particular organ could be 125

transferable to another modality of the same or- 126

gan in a zero-shot manner, highlighting the value 127

of domain-specific training for improving model 128

performance. 129

In summary, our work highlights significant gaps 130

in the reliability of LMMs for medical diagnosis 131

despite their impressive performance on current 132

existing general domain benchmarks. The insights 133

from ProbMed underscore the urgent need for ro- 134

bust evaluation methodologies to ensure the accu- 135

racy and reliability of LMMs in real-world medical 136

applications. Our findings also suggest that poor 137

visual understanding is a key limitation for open- 138

source models, which can be mitigated by incorpo- 139

rating chain-of-thought reasoning and accurate vi- 140

sual descriptions, as demonstrated by performance 141

improvements with GPT-4o. This research inspires 142

the development of more trustworthy AI systems 143

in healthcare and beyond, ultimately contributing 144

to better diagnostic outcomes and patient care. 145
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2 Related Work146

Large Multimodal Models in the Medical Do-147

main The advancements in Large Multimodal148

Models (LMMs) have significantly enhanced the149

understanding and generation of medical content150

that integrates both visual and linguistic elements.151

Notable models include GPT-4o (OpenAI, 2024),152

GPT-4V (OpenAI, 2023), Gemini Pro (Reid et al.,153

2024), LLaVA (Liu et al., 2023a, 2024), and154

MiniGPT-v2 (Chen et al., 2023). The scalability155

and exceptional performance of these large foun-156

dation models have driven their application in the157

biomedical field.158

Further progress has been made in fine-159

tuning general-domain LMMs for the biomed-160

ical field, resulting in specialized models like161

BiomedGPT (Zhang et al., 2024), LLaVA-Med (Li162

et al., 2024), Med-Flamingo (Moor et al., 2023),163

MedBLIP (Chen and Hong, 2024), RadFM (Wu164

et al., 2023b) and MedVInT (Zhang et al., 2023).165

Despite the promising results from these domain-166

specific LMMs, ongoing exploration exists into167

training smaller multimodal models to address spe-168

cific clinical needs. For instance, models like169

LLaVA-RAD (Chaves et al., 2024) and CheXa-170

gent (Chen et al., 2024) have been developed for171

chest X-ray interpretation, aiming to bridge com-172

petency gaps in radiology tasks.173

Comprehensive surveys of LLMs for health-174

care highlight the progress, applications, and chal-175

lenges in deploying LLMs in clinical settings (He176

et al., 2023; Zhou et al., 2024; Peng et al., 2023).177

Task-specific evaluations (Yan et al., 2023; Liu178

et al., 2023b) underline the potential and chal-179

lenges of LMMs in the medical domain. As we180

move towards integrating these models into critical181

decision-making processes, it becomes imperative182

to assess their reliability in high-stakes environ-183

ments like healthcare and medicine.184

Medical Visual Question Answering Medical185

Visual Question Answering (Med-VQA) plays a186

crucial role in assessing the capabilities of mod-187

els in interpreting and responding to queries about188

medical images. Some benchmarks, like VQA-189

RAD (Lau et al., 2018) and SLAKE (Liu et al.,190

2021), are manually constructed with categorical191

question types. While this method ensures high-192

quality question-answer pairs, it is labor-intensive193

and results in limited dataset scales.194

Automated curation methods have been de-195

veloped to address scalability. PathVQA (He196

et al., 2020) uses CoreNLP1 tools, and PMC- 197

VQA (Zhang et al., 2023) employs generative mod- 198

els to create larger datasets. However, these meth- 199

ods often sacrifice fine-grained question categories, 200

and some require additionally trained models for 201

question filtering. 202

Different evaluation methods are employed for 203

assessing LMMs, including closed-ended VQA, 204

multiple choice VQA, and open-ended generation 205

tasks such as captioning and report generation. 206

Open-ended VQA and report generation are typi- 207

cally considered more challenging and harder to 208

evaluate, often requiring human or model evalua- 209

tion alongside automated lexical similarity metrics 210

like ROUGE-L and BLEU-4. Recent works (Wang 211

et al., 2024; Zheng et al., 2024; Zong et al., 2024) 212

argue that multiple-choice questions may not be 213

ideal due to inherent selection bias and permuta- 214

tion sensitivity. In our work, we choose a relatively 215

easy-to-evaluate method: closed-ended VQA aug- 216

mented with adversarial evaluation methods featur- 217

ing hallucinated attributes. By requiring the model 218

to accurately distinguish relevant features, we en- 219

hance the reliability of the evaluation process. This 220

method allows for clear and definitive assessments, 221

improving the overall robustness of our findings in 222

medical contexts. 223

3 Probing Evaluation for Medical 224

Diagnosis 225

In this section, we introduce two complementary 226

evaluation strategies that rigorously assess state- 227

of-the-art LMMs for Med-VQA. Our approach is 228

designed to answer the following research ques- 229

tions: 230

1. Is the current evaluation of LMMs for Med- 231

VQA reliable? 232

2. How reliable are LMMs on medical diagnosis, 233

ranging from general questions to specialized 234

diagnostic questions? 235

Despite current high accuracy, we find that the 236

models struggle with simple probing evaluation 237

on existing benchmarks. Our evaluation frame- 238

work, ProbMed (Probing Evaluation for Medical 239

Diagnosis), is built on adversarial testing and multi- 240

faceted diagnostic reasoning to further expose these 241

vulnerabilities and provide a thorough analysis of 242

1https://stanfordnlp.github.io/CoreNLP
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brain showing an expansive
lesion envolving the right
temporal lobe.
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{ 
"id": 4,
"image_type": "ct scan_brain",
"image_path": "*.png", 
"caption": "Figure 2. CT scan of

the brain showing an expansive lesion
envolving the right temporal lobe.", 

"abnormality": "1", 
"condition": { 

"expansive lesion": "right
temporal lobe" } 
},
...
{
        "id": 69867,
        "image_type": "x-ray_chest",
        "image_path": "*.png",
        "abnormality": "1",
        "condition": {
            "atelectasis": "N/A",
            "infiltration": "N/A",
            "pneumonia": "lower left"
        }
    },

MedICaT

Is this a CT Scan?   Ans: yes
Is this an MRI?      Ans: no

Modality

Does this show a Brain?     Ans: yes
Does this show an Abdomen? Ans: no

Organ

Does this CT scan show any abnormality
of the brain?   

Abnormality

Is an expansive lesion present in the given brain
CT scan?   Ans: yes
Is leptomeningeal and gyral calcification
present in the given brain CT scan? Ans: no

Condition / Finding

In the given brain CT scan, is an expansive lesion
present in the right temporal lobe?  Ans: yes
In the given brain CT scan, is an expansive lesion
present in the right thalamus?  Ans: no

Position

Figure 3: Flow diagram of the ProbMed data curation process. Two comprehensive biomedical datasets were
utilized to collect source data and construct a metadata file, enabling the automatic generation of high-quality
question-answer pairs for the ProbMed dataset.

model performance. We also explore enhance-243

ments through chain-of-thought reasoning and the244

incorporation of external visual descriptions (e.g.,245

from GPT-4o) to address the noted limitations of246

open-sourced models.247

3.1 Probing Evaluation with Adversarial248

Pairs249

A core element of our framework is the use of ad-250

versarial pairs to test model robustness. For each251

image, we generate pairs of: ground-truth ques-252

tions that query the presence of a specific entity253

(e.g., a particular clinical finding) with correspond-254

ing adversarial questions that introduce a negated255

or hallucinated attribute (e.g., a non-existent find-256

ing or an alternative organ). This pairing challenges257

the model to discern between actual diagnostic fea-258

tures and spurious details, thereby revealing its abil-259

ity—or inability—to filter out irrelevant or mislead-260

ing information. The performance drop observed261

under adversarial conditions highlights the fragility262

of current evaluation protocols and motivates the263

need for more robust assessment methods.264

3.2 Procedural Diagnosis265

Beyond binary question-answering, ProbMed in-266

corporates procedural diagnosis to evaluate the267

models’ diagnostic reasoning. Each image is as-268

sociated with questions spanning multiple diag- 269

nostic dimensions, including Modality Recogni- 270

tion: Identifying the imaging technique (e.g., X- 271

ray, MRI, CT). Organ Identification: Determining 272

the anatomical region under investigation. Clinical 273

Findings and Abnormalities: Detecting abnormal 274

conditions. Positional Reasoning: Localizing find- 275

ings spatially within the image. This multifaceted 276

evaluation framework requires models to integrate 277

diverse pieces of information for each test sample, 278

thereby providing a more comprehensive measure 279

of their diagnostic capabilities. 280

3.3 Data Filtering and Curation 281

ProbMed is curated from two widely recognized 282

biomedical datasets: MedICaT and ChestX-ray14. 283

The data curation process, summarized in Figure 3, 284

involves the following steps: 285

Image Selection: From MedICaT (Subramanian 286

et al., 2020), we extracted 4,543 image-caption 287

pairs that focus on a single organ and modality 288

with clear indications of normal or abnormal condi- 289

tions. From ChestX-ray14 (Wang et al., 2017), we 290

selected 1,760 frontal-view X-ray images balanced 291

between healthy and abnormal cases, including 292

those with bounding box annotations for abnormal- 293

ities. 294
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Metadata Generation: For each image, we gen-
erate a unified metadata record:

Di = {modi, organi, {conditionj , posj}
ni
j }

where modi and organi denote the imaging modal-295

ity and anatomical region, respectively, and each296

{conditionj , posj} pair represents a detected297

clinical finding and its positional description. For298

MedICaT, GPT-4 is leveraged via few-shot prompt-299

ing to extract abnormality details and positional300

cues from captions. For ChestX-ray14, a dedicated301

positional reasoning module generates descriptive302

text based on bounding box coordinates.303

3.4 Evaluation Protocol304

For each diagnostic entity in the metadata, we au-305

tomatically generate A ground-truth question Qi,306

asking the model to confirm the presence of that307

specific entity. An adversarial question Q′
i, con-308

structed by randomly selecting an alternative or309

hallucinated entity (e.g., an incorrect organ or false310

condition) and expecting a “no” response.311

Crucially, our accuracy metric is defined in a312

strict manner: an entity is considered correctly313

predicted only if the model provides the correct314

answer for both Qi and Q′
i. In other words, if a315

model answers “yes” to both questions for a given316

entity, it is deemed incorrect rather than receiving317

partial credit. For images containing more than318

one {conditionj , posj} pair, the accuracy un-319

der the Condition/Finding and Position category320

is computed as the average accuracy over all ni321

pairs—there is no bonus for partial correctness.322

This evaluation setup ensures that only unambigu-323

ous, fully correct responses are counted as hits,324

highlighting the models’ true diagnostic reliabil-325

ity. (See Appendix B for detailed statistics on the326

number of questions in each category.)327

3.5 Expert Study328

To validate the reliability of our metadata and329

the corresponding question-answer pairs, we con-330

ducted an expert verification study. Two medical331

experts independently reviewed 100 randomly sam-332

pled metadata entries out of 6,303 from ProbMed,333

as well as the 1,090 QA pairs corresponding to334

those metadata. The review process yielded an335

average accuracy of 94.00% for the metadata and336

97.79% for the QA pairs. This rigorous validation337

underscores the quality and thorough curation of338

the ProbMed dataset. As reported in Table 17, our339

data curation process produced a total of 57,132 340

question-answer pairs (averaging 9 pairs per im- 341

age) that span a comprehensive set of diagnostic 342

dimensions. These high-quality, balanced pairs 343

provide a robust foundation for evaluating model 344

performance. 345

4 Experiments and Analysis 346

We conducted a systematic evaluation and compre- 347

hensive analysis using ProbMed on twelve state-of- 348

the-art LMMs to identify their strengths and weak- 349

nesses in imaging diagnostics. Apart from propri- 350

etary GPT-4o (OpenAI, 2024), GPT-4V (OpenAI, 351

2023) and Gemini Pro (Reid et al., 2024), we se- 352

lected nine open-source models spanning across 353

general models including LLaVA-v1 (Liu et al., 354

2024), LLaVA-v1.6 (Liu et al., 2023a), MiniGPT- 355

v2 (Chen et al., 2023) and specialized models in- 356

cluding LLaVA-Med-v1, LLaVA-Med-v1.5 (Li 357

et al., 2024), Med-Flamingo (Moor et al., 2023), 358

BiomedGPT (Zhang et al., 2024), RadFM (Wu 359

et al., 2023b) and CheXagent (Chen et al., 2024). 360

These models were chosen based on their computa- 361

tional cost, efficiency, and inference speed, making 362

them practical for integration into medical practice. 363

4.1 RQ1: Reliability of Current Med-VQA 364

Evaluation 365

Adversarial Evaluation in VQA-RAD. To as- 366

sess whether current Med-VQA evaluations capture 367

model vulnerabilities, we first introduce adversarial 368

pairs on the VQA-RAD test set (Lau et al., 2018). 369

Because VQA-RAD provides finalized QA pairs 370

without detailed metadata, adversarial pairs were 371

manually constructed by medical experts for 118 372

“yes” instances (yielding 236 QA pairs total). As 373

shown in Table 1, despite being based on limited 374

information and scale, these adversarial questions 375

lead to drastic accuracy drops. For example, mod- 376

els such as GPT-4o show a reduction from 69.91% 377

to 55.08% (a 14.83% decrease), highlighting the 378

need for robust evaluation protocols. 379

Adversarial Evaluation in ProbMed. In con- 380

trast, the ProbMed dataset systematically incorpo- 381

rates adversarial pairs for all 57k QA pairs. Here, 382

each diagnostic entity is paired with a ground-truth 383

question and a corresponding adversarial question. 384

Table 1 demonstrates a similar significant impact: 385

even the best-performing models experience a min- 386

imum 20.00% drop in accuracy (with an average 387

decrease of 27.78% across models) when evaluated 388
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Table 1: Model accuracy on the VQA-RAD test subset and ProbMed with adversarial pairs. Accuracy is reported in
two ways: (1) averaged across individual questions in a pair and (2) requiring both the ground truth and adversarial
questions for the same image to be answered correctly. The drop in accuracy across models demonstrates their
vulnerability to adversarial questions, with percentage decreases shown in parentheses.

Models

VQA-RAD ProbMed

Averaged
Accuracy (%)

Accuracy (%) with
Adversarial Pairs

Averaged
Accuracy (%)

Accuracy (%) with
Adversarial Pairs

LLaVA-v1 62.28 25.42 (-36.84) 55.82 19.30 (-36.51)
LLaVA-v1.6 44.06 8.47 (-35.59) 56.02 24.96 (-31.06)
MiniGPT-v2 66.10 46.61 (-19.49) 59.82 27.67 (-32.14)

LLaVA-Med-v1 43.22 3.38 (-39.83) 52.26 17.90 (-34.35)
LLaVA-Med-v1.5 48.30 15.25 (-33.05) 68.41 40.19 (-28.22)
CheXagent 55.50 21.18 (-34.32) 58.70 30.61 (-28.08)
BiomedGPT 56.35 17.79 (-38.55) 60.14 33.34 (-26.79)
Med-Flamingo 61.01 25.42 (-35.59) 64.13 35.66 (-28.47)
RadFM 67.79 38.98 (-28.81) 67.70 41.00 (-26.70)

Gemini Pro 63.13 44.91 (-18.22) 75.08 55.08 (-20.00)
GPT-4V 58.47 33.89 (-24.57) 75.70 55.28 (-20.42)
GPT-4o 69.91 55.08 (-14.83) 76.31 55.60 (-20.71)

under this rigorous scheme. This result emphasizes389

that high accuracy on standard benchmarks can be390

misleading, and adversarial evaluation is essential391

for uncovering model weaknesses.392

4.2 How Reliable Are LMMs in Medical393

Diagnosis?394

After "correcting" inflated model accuracy by in-395

troducing adversarial pairs, we continue to address396

the second research question. We conducted diag-397

nostic probing ranging from general to specialized398

diagnostic questions using the ProbMed dataset.399

Performance across Diagnostic Questions Ta-400

ble 2 shows the categorical accuracy of different401

models aggregated among all image types. While402

GPT-4o, GPT-4V, and Gemini Pro outperform other403

models and excel in general tasks such as rec-404

ognizing image modality and organs, their low405

performance in specialized tasks like determining406

the existence of abnormalities and answering fine-407

grained questions about condition/finding and posi-408

tion highlights a significant gap in their ability to409

aid in real-life diagnosis.410

On more specialized diagnostic questions, even411

top-performing models like GPT-4o, GPT-4V, and412

Gemini Pro performed close to random guessing.413

Their accuracy in identifying conditions and posi-414

tions was alarmingly low, underscoring their limi-415

tations in handling fine-grained medical inquiries.416

RadFM, LLaVA-Med-v1.5 and Med-Flamingo out-417

perform other specialized models in general ques-418

tions yet still struggle with specialized questions.419

LLaVA-Med-v1.5 achieves much higher accuracy 420

among open-sourced models in identifying condi- 421

tions/finding and their positions but still performs 422

around 10% worse than the proprietary models. 423

Among the open-sourced general-purpose mod- 424

els, MiniGPT-v2 performs the best, surpass- 425

ing domain-specific models LLaVA-Med-v1 and 426

CheXagent in determining positions of condi- 427

tion/finding without domain-specific training. A 428

more detailed breakdown of the performance of 429

different models on different image types across 430

each question type is available in Appendix A. Dis- 431

tribution plots of ground-truth answers and model 432

responses within each question category is avail- 433

able in Appendix E. 434

Error Analysis in Procedural Diagnosis An 435

error analysis was conducted on two top models 436

(GPT-4V and Gemini Pro) across three special- 437

ized diagnostic question types: Abnormality, Con- 438

dition/Finding, and Position. As shown in Table 3, 439

both models show vulnerabilities to hallucination 440

errors, particularly in the later stages of the diagnos- 441

tic procedure. For questions under the Abnormal- 442

ity category (conditioned on correctly identifying 443

modality and organ), errors arise either from in- 444

correct responses or a tendency to over-reject chal- 445

lenging questions. In Condition/Finding and Po- 446

sition categories—conditioned on successful prior 447

steps—errors are largely due to the acceptance of 448

hallucinated entities. Notably, Gemini Pro is more 449

prone to accepting false conditions and positions, 450

which significantly lowers its strict accuracy in 451
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Table 2: Categorical and overall accuracy (%) of different models aggregated among all image types in ProbMed
(averaging over three runs). The overall accuracy is weighted by the number of questions in each type. The best
result in each question category is in-bold, and the second best is underlined.

Models
General Question Specialized Question

Overall
Modality Organ Abnormality Condition/Finding Position

Random Choice 25.00 25.00 50.00 35.67 36.48 32.13

LLaVA-v1 25.30±1.18 41.92±1.21 50.00±2.01 0.35±0.03 0.14±0.06 19.30±0.18

LLaVA-v1.6 6.95±0.24 80.33±0.34 45.89±0.24 3.67±0.10 1.37±0.17 24.96±0.11

MiniGPT-v2 3.25±0.13 76.95±0.59 50.08±0.84 15.23±0.76 7.96±0.79 27.67±0.25

LLaVA-Med-v1 5.72±0.21 34.36±1.21 38.30±2.83 20.79±0.47 5.22±1.10 17.90±0.38

LLaVA-Med-v1.5 56.14±0.90 67.96±0.08 49.12±0.05 21.91±0.06 11.65±0.03 40.19±0.13

CheXagent 37.25±0.50 33.75±0.17 73.31±0.01 28.52±0.08 7.48±0.06 30.61±0.02

BiomedGPT 60.25±0.27 46.81±0.62 50.31±0.24 14.13±0.90 6.11±0.23 33.34±0.17

Med-Flamingo 44.38±0.20 62.02±0.54 50.00±0.01 26.17±0.13 5.72±0.06 35.66±0.14

RadFM 83.72±0.26 41.04±0.33 60.83±0.32 23.05±0.14 9.10±0.29 41.00±0.19

Gemini Pro 96.47±0.88 75.69±1.89 60.29±1.99 27.93±1.82 18.44±0.77 55.08±0.93

GPT-4V 92.51±1.10 71.73±2.45 53.30±1.90 35.19±1.16 22.40±1.89 55.28±0.98

GPT-4o 97.03±0.34 68.13±1.15 61.79±2.28 29.30±2.55 24.06±1.80 55.60±1.05

these areas.452

Table 3: Error Analysis of GPT-4V and Gemini Pro on
ProbMed. The table shows the accuracy and types of
errors for three specialized question types: Abnormality,
Condition/Finding, and Position. Errors are categorized
into wrong answers, rejection to answer, denying ground
truth, and accepting hallucinations, providing a detailed
breakdown of model performance and failure modes.

Question Type Accuracy and Error Type
Models

GPT-4V Gemini Pro

Abnormality
Accuracy 66.06 67.05

E_wrong_answer 67.47 100.00
E_reject_to_answer 32.52 0.00

Condition/Finding

Accuracy 36.90 39.97
E_deny_ground-truth 51.69 39.04

E_accept_hallucination 42.12 59.69
E_reject_to_answer 6.18 1.26

Position

Accuracy 39.97 26.40
E_deny_ground-truth 39.04 23.31

E_accept_hallucination 59.69 76.68
E_reject_to_answer 1.26 0.00

4.3 Exploring Model Limitations and453

Potential Improvements454

Impact of Chain-of-Thought Prompting and Vi-455

sual Understanding To further investigate the456

underperformance of open-source models, we con-457

ducted an extensive ablation study on LLaVA-v1,458

LLaVA-v1.6, LLaVA-Med-v1, LLaVA-Med-v1.5,459

Med-Flamingo, and GPT-4o. In this study, we ex-460

amined two additional experimental settings: (1)461

applying a chain-of-thought (CoT) approach where462

models first generate visual descriptions from the463

image, which are then used to augment the prompt464

along with the question, (2) enhancing the models 465

by providing external visual descriptions generated 466

by GPT-4o in addition to the question. 467

As shown in Figure 4, employing the chain-of- 468

thought approach alone - without external visual 469

descriptions - resulted in an average accuracy in- 470

crease of 6.51%. In particular, LLaVA-Med-v1.5’s 471

accuracy improved from 40.19% to 54.55%, clos- 472

ing the gap to within 1.05% of the vanilla GPT-4o 473

model. Interestingly, GPT-4o’s performance de- 474

creased by 3.55% when the CoT mechanism was 475

applied, potentially indicating that the model al- 476

ready internally employs its own chain-of-thought 477

process. 478

Notably, all open-source models exhibited im- 479

proved performance when augmented with visual 480

descriptions generated by GPT-4o, suggesting that 481

their baseline limitations stem primarily from poor 482

visual comprehension. On average, these models 483

showed an accuracy improvement of 9.44% across 484

all question categories. This observation suggests 485

that poor visual understanding is a major limitation 486

of existing models, and augmenting them with ex- 487

ternal visual reasoning can lead to notable gains. 488

Detailed performance changes of each model, or- 489

ganized by question category, can be found in Ap- 490

pendix C. 491

Transferability of Domain Expertise We con- 492

ducted a finer-grained analysis to explore whether 493

the model’s expertise in identifying features of a 494

particular organ can be transferred to other imaging 495

7
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Figure 4: Accuracy comparison of LLaVA-v1, LLaVA-v1.6, LLaVA-Med-v1, LLaVA-Med-v1.5, Med-Flamingo,
and GPT-4o under three different settings: vanilla (baseline performance), chain-of-thought (CoT) reasoning, and
CoT with GPT-4o-generated visual descriptions. All models demonstrate significant performance improvement
when visual descriptions from GPT-4o are included, indicating that poor visual understanding is a key factor limiting
baseline performance. Chain-of-thought reasoning alone also leads to notable gains in accuracy, particularly in
general-purpose models.
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Figure 5: Accuracy comparison of CheXagent in iden-
tifying organs and conditions/findings across different
modalities. The model demonstrates significantly higher
accuracy in identifying organs on chest images com-
pared to images of other organs for both MRI and CT
scans. Additionally, CheXagent shows improved accu-
racy in identifying conditions/findings on chest images,
indicating the transferability of its specialized knowl-
edge from chest X-ray training to other imaging modali-
ties.

modalities. As shown in Table 13, CheXagent, a496

model trained exclusively on chest X-rays images,497

performs best in detecting abnormalities and iden-498

tifying conditions/findings among all models when499

tested on chest X-ray images. We analyzed its per-500

formance to explore the transferability of expertise501

across the rest modalities. 502

As illustrated in Figure 5, CheXagent achieves 503

significantly higher accuracy in identifying chest- 504

related features compared to other organs, confirm- 505

ing our assumption that the model’s pre-training 506

on chest X-rays enhances its performance on rec- 507

ognizing chest images across different modalities. 508

Interestingly, CheXagent also demonstrated higher 509

accuracy in identifying conditions and findings in 510

CT scans and MRIs of the chest, achieving a 3% 511

increase in accuracy for MRIs and a 4% increase 512

for CT scans compared with other organs within 513

the same unseen modality. This indicates that spe- 514

cialized knowledge gained on chest X-rays can be 515

transferred to other imaging modalities of the same 516

organ in a zero-shot manner, highlighting the poten- 517

tial for cross-modality expertise transfer in real-life 518

medical imaging diagnostics. 519

5 Conclusion 520

Evaluating the reliability of LMMs in the medi- 521

cal domain requires robust methods, and ProbMed, 522

our newly introduced , addresses this by incorpo- 523

rating probing evaluation and procedural diagnosis. 524

Our study reveals significant limitations in models 525

like GPT-4o and Gemini Pro, which perform worse 526

than random guessing on specialized diagnostic 527

questions, while CheXagent’s results highlight the 528

critical importance of domain-specific knowledge. 529

Furthermore, our additional experiments, which in- 530

troduced chain-of-thought reasoning and external 531

visual descriptions generated by GPT-4o, suggested 532

that poor visual understanding is a major limitation 533

of existing models and augmenting them with ex- 534

ternal visual reasoning can lead to notable gains. 535
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6 Limitations536

Despite the contributions, limitations such as the537

imbalanced image distribution favoring Chest X-538

rays (see Table 17) and the absence of open-ended539

evaluations, such as report generation, remain. The540

broader impact of our work includes the potential541

for improved diagnostic accuracy and better patient542

care, but it also highlights the risks of deploying543

unreliable models in healthcare. We recommend544

rigorous testing, continuous performance monitor-545

ing, and the incorporation of domain-specific ex-546

pertise to mitigate these risks. Ultimately, our work547

aims to contribute to the development of trustwor-548

thy AI systems in healthcare, advancing diagnostic549

outcomes and patient safety.550
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A Breakdown Results on Different Image Modality and Organ. 956

A.1 Brain CT Scan 957

Table 4: Results of different models on Brain CT scan in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 35.28 35.01

LLaVA-v1
Acc. with adv. pairs 25.18 52.59 50 0 0

Avg. acc. 62.59 72.22 / 46.57 49.60

LLaVA-v1.6
Acc. with adv. pairs 10.74 72.22 23.52 0 0.52

Avg. acc. 55.37 84.44 / 30.79 41.91

MiniGPT-v2
Acc. with adv. pairs 1.11 92.59 50 17.77 8.42

Avg. acc. 50.55 96.29 / 51.20 54.25

LLaVA-Med-v1
Acc. with adv. pairs 4.81 10.74 8.82 11.85 3.15

Avg. acc. 50.18 33.88 / 40.71 49.78

LLaVA-Med-v1.5
Acc. with adv. pairs 50.37 80.37 44.11 11.85 15.26

Avg. acc. 74.81 89.62 / 52.98 54.83

BiomedGPT
Acc. with adv. pairs 24.44 5.18 58.82 14.44 2.63

Avg. acc. 62.03 52.59 / 53.88 35.84

Med-Flamingo
Acc. with adv. pairs 3.70 9.62 50 18.14 5.26

Avg. acc. 51.85 47.03 / 50.16 47.85

CheXagent
Acc. with adv. pairs 11.85 0 47.05 12.96 5.26

Avg. acc. 40.55 23.88 / 53.00 51.46

GPT-4o
Acc. with adv. pairs 94.81 93.70 61.76 35.92 26.31

Avg. acc. 97.22 96.66 / 68.76 64.83

GPT-4V
Acc. with adv. pairs 94.07 84.07 61.76 37.03 31.05

Avg. acc. 96.85 91.48 / 67.01 65.00

Gemini Pro
Acc. with adv. pairs 84.44 85.18 70.58 34.81 21.05

Avg. acc. 92.03 92.40 / 68.01 60.16

num 270 270 34 270 270
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A.2 Chest CT Scan958

Table 5: Results of different models on Chest CT Scan in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 32.69 33.76

LLaVA-v1
Acc. with adv. pairs 27.55 46.35 50 0.36 0.23

Avg. acc. 63.77 73.08 / 48.54 50.11

LLaVA-v1.6
Acc. with adv. pairs 2.73 76.82 50 0.54 0.46

Avg. acc. 51.18 86.58 / 41.42 45.75

MiniGPT-v2
Acc. with adv. pairs 0.54 53.28 50 10.21 3.22

Avg. acc. 50.27 75.82 / 51.11 51.49

LLaVA-Med-v1
Acc. with adv. pairs 5.47 39.78 29.41 14.41 4.37

Avg. acc. 51.18 68.06 / 45.50 51.72

LLaVA-Med-v1.5
Acc. with adv. pairs 51.09 61.86 41.17 14.78 9.21

Avg. acc. 75.54 80.10 / 52.60 54.64

BiomedGPT
Acc. with adv. pairs 15.51 2.91 52.94 7.11 2.30

Avg. acc. 56.93 50.63 / 50.93 34.65

Med-Flamingo
Acc. with adv. pairs 22.26 70.98 50 19.16 7.14

Avg. acc. 60.31 85.49 / 51.11 48.89

CheXagent
Acc. with adv. pairs 6.75 72.99 50 18.61 7.83

Avg. acc. 32.93 86.49 / 56.80 51.55

GPT-4o
Acc. with adv. pairs 97.62 65.99 67.64 27.60 19.58

Avg. acc. 98.72 81.90 / 63.54 61.67

GPT-4V
Acc. with adv. pairs 97.07 72.94 67.64 32.9 20.78

Avg. acc. 98.44 85.74 / 65.01 59.54

Gemini Pro
Acc. with adv. pairs 95.62 58.21 82.35 34.48 14.28

Avg. acc. 97.71 78.37 / 65.62 56.84

num 548 548 34 548 548

14



A.3 Spine CT Scan 959

Table 6: Results of different models on Spine CT Scan in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 30.85 31.06

LLaVA-v1
Acc. with adv. pairs 22.98 44.82 50 0 0

Avg. acc. 61.49 70.68 / 49.47 50.00

LLaVA-v1.6
Acc. with adv. pairs 4.59 72.41 0 0 1.28

Avg. acc. 52.29 83.90 / 37.66 41.07

MiniGPT-v2
Acc. with adv. pairs 1.14 41.37 0 12.64 5.12

Avg. acc. 50.57 58.62 / 54.41 51.21

LLaVA-Med-v1
Acc. with adv. pairs 2.29 11.49 50 11.49 6.41

Avg. acc. 48.27 30.45 / 46.37 48.77

LLaVA-Med-v1.5
Acc. with adv. pairs 32.18 67.81 50.0 9.19 14.10

Avg. acc. 65.51 83.33 / 55.23 51.27

BiomedGPT
Acc. with adv. pairs 28.73 8.04 0 6.89 2.56

Avg. acc. 63.79 53.44 / 50.00 33.27

Med-Flamingo
Acc. with adv. pairs 6.89 39.08 50 14.94 8.97

Avg. acc. 53.44 68.39 / 53.92 52.22

CheXagent
Acc. with adv. pairs 4.59 27.58 50 10.34 2.56

Avg. acc. 34.48 58.04 / 49.45 50.20

GPT-4o
Acc. with adv. pairs 87.35 76.74 0 30.23 20.77

Avg. acc. 93.10 88.37 / 66.01 60.08

GPT-4V
Acc. with adv. pairs 81.39 69.76 0 33.73 25.97

Avg. acc. 89.53 84.30 / 65.77 63.13

Gemini Pro
Acc. with adv. pairs 87.2 77.9 50 22.09 25.97

Avg. acc. 92.44 88.95 / 61.64 64.94

num 86 86 2 86 86
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A.4 Abdominal CT Scan960

Table 7: Results of different models on Abdominal CT Scan in ProbMed. The best-performing model in each
question category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 35.53 37.03

LLaVA-v1
Acc. with adv. pairs 26.49 54.19 50 0.53 0

Avg. acc. 63.24 77.09 / 47.70 50.00

LLaVA-v1.6
Acc. with adv. pairs 1.86 82.82 41.42 1.06 0.66

Avg. acc. 50.93 91.07 / 38.36 45.82

MiniGPT-v2
Acc. with adv. pairs 0 37.15 48.57 6.12 2.14

Avg. acc. 50.00 66.97 / 48.49 50.22

LLaVA-Med-v1
Acc. with adv. pairs 5.05 45 30 15.44 5.28

Avg. acc. 51.53 70.90 / 45.13 49.24

LLaVA-Med-v1.5
Acc. with adv. pairs 51.93 67.64 48.57 11.31 16.03

Avg. acc. 75.96 83.42 / 52.86 65.61

BiomedGPT
Acc. with adv. pairs 67.77 12.38 57.14 15.31 4.62

Avg. acc. 83.75 55.52 / 54.49 45.06

Med-Flamingo
Acc. with adv. pairs 1.73 35.55 50 20.37 8.26

Avg. acc. 50.86 67.57 / 51.03 49.46

CheXagent
Acc. with adv. pairs 25.03 38.21 52.85 15.57 6.61

Avg. acc. 51.46 65.71 / 51.08 50.19

GPT-4o
Acc. with adv. pairs 97.99 65.28 51.42 23.12 28.23

Avg. acc. 98.93 81.50 / 58.24 64.59

GPT-4V
Acc. with adv. pairs 95.72 72.72 45.71 27 23.25

Avg. acc. 97.72 85.56 / 58.92 60.02

Gemini Pro
Acc. with adv. pairs 98.31 69.19 65.71 28.79 20.39

Avg. acc. 99.00 84.20 / 61.03 59.27

num 750 750 70 750 750
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A.5 Brain MRI 961

Table 8: Results of different models on Brain MRI in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 36.7 36.64

LLaVA-v1
Acc. with adv. pairs 1.23 32.86 50 0.53 0

Avg. acc. 49.29 65.37 / 47.85 49.87

LLaVA-v1.6
Acc. with adv. pairs 17.49 88.51 28.57 0.53 0.48

Avg. acc. 58.74 93.10 / 31.73 37.46

MiniGPT-v2
Acc. with adv. pairs 1.94 96.64 50 15.72 4.37

Avg. acc. 50.88 98.32 / 52.16 50.51

LLaVA-Med-v1
Acc. with adv. pairs 3 8.12 23.21 14.66 2.91

Avg. acc. 47.08 32.50 / 47.72 48.35

LLaVA-Med-v1.5
Acc. with adv. pairs 75.61 84.98 42.85 13.78 13.62

Avg. acc. 87.80 92.40 / 53.37 53.52

BiomedGPT
Acc. with adv. pairs 15.37 12.36 44.64 11.48 2.67

Avg. acc. 54.41 56.00 / 51.26 42.06

Med-Flamingo
Acc. with adv. pairs 0.35 13.60 50 10.77 3.16

Avg. acc. 47.61 51.32 / 48.27 50.01

CheXagent
Acc. with adv. pairs 0 0 50 10.77 6.81

Avg. acc. 20.40 21.99 / 50.37 51.87

GPT-4o
Acc. with adv. pairs 97.69 97.34 66.07 25.84 30.24

Avg. acc. 98.58 98.67 / 61.05 66.13

GPT-4V
Acc. with adv. pairs 96.99 94.33 58.92 36.1 27.8

Avg. acc. 98.40 97.07 / 65.89 62.38

Gemini Pro
Acc. with adv. pairs 95.22 94.87 78.57 35.51 19.7

Avg. acc. 97.26 97.34 / 65.59 59.67

num 566 566 56 566 566
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A.6 Chest MRI962

Table 9: Results of different models on Chest MRI in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 34.18 34.11

LLaVA-v1
Acc. with adv. pairs 0 35 50 0 0

Avg. acc. 41.25 66.25 / 45.00 50.00

LLaVA-v1.6
Acc. with adv. pairs 5 32.5 37.5 0 0

Avg. acc. 51.24 56.25 / 31.35 43.01

MiniGPT-v2
Acc. with adv. pairs 0 35 50 10 8.82

Avg. acc. 47.50 62.50 / 47.91 49.50

LLaVA-Med-v1
Acc. with adv. pairs 5 45 12.5 12.5 5.88

Avg. acc. 43.75 68.75 / 49.06 46.32

LLaVA-Med-v1.5
Acc. with adv. pairs 50.00 35.00 50.00 12.5 11.76

Avg. acc. 72.5 62.5 / 53.75 53.92

BiomedGPT
Acc. with adv. pairs 0.00 5.00 50.00 10.00 2.94

Avg. acc. 40.00 51.24 / 51.04 49.01

Med-Flamingo
Acc. with adv. pairs 2.50 45.00 50 10.00 8.82

Avg. acc. 43.75 72.50 / 48.75 47.79

CheXagent
Acc. with adv. pairs 0 75 50 15 0

Avg. acc. 17.50 87.50 / 44.58 47.05

GPT-4o
Acc. with adv. pairs 90.00 35.89 62.50 17.94 24.24

Avg. acc. 93.75 65.38 / 54.80 61.36

GPT-4V
Acc. with adv. pairs 76.92 51.28 37.5 25.64 18.18

Avg. acc. 86.25 71.79 / 58.11 61.74

Gemini Pro
Acc. with adv. pairs 87.5 62.5 37.5 17.5 11.76

Avg. acc. 91.25 77.50 / 54.89 56.86

num 40 40 8 40 40
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A.7 Spine MRI 963

Table 10: Results of different models on Spine MRI in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 31.51 31.52

LLaVA-v1
Acc. with adv. pairs 0 32.09 50 50 0.3

Avg. acc. 49.22 65.58 / 47.15 49.88

LLaVA-v1.6
Acc. with adv. pairs 3.08 86.72 27.77 0.30 0

Avg. acc. 51.54 92.74 / 30.59 34.37

MiniGPT-v2
Acc. with adv. pairs 0.3 49.69 52.77 6.79 2.02

Avg. acc. 50.15 70.52 / 48.97 50.01

LLaVA-Med-v1
Acc. with adv. pairs 1.54 5.24 36.11 12.96 5.4

Avg. acc. 45.06 24.07 / 48.52 48.04

LLaVA-Med-v1.5
Acc. with adv. pairs 70.67 84.56 50.00 11.11 11.14

Avg. acc. 84.72 91.97 / 52.40 51.89

BiomedGPT
Acc. with adv. pairs 0.30 5.86 50.00 7.71 3.04

Avg. acc. 45.06 52.77 / 51.31 44.04

Med-Flamingo
Acc. with adv. pairs 0.30 29.93 50 “ 17.90 5.40

Avg. acc. 50.00 64.50 / 50.54 50.14

CheXagent
Acc. with adv. pairs 0 13.58 47.22 15.43 2.7

Avg. acc. 22.53 44.44 / 51.28 48.54

GPT-4o
Acc. with adv. pairs 98.44 84.52 63.88 19.50 24.40

Avg. acc. 98.91 91.95 / 55.46 63.70

GPT-4V
Acc. with adv. pairs 96.28 90.71 55.55 22.6 15.59

Avg. acc. 97.51 94.73 / 58.89 57.52

Gemini Pro
Acc. with adv. pairs 98.13 88.81 57.14 24.53 14.91

Avg. acc. 98.75 94.09 / 59.19 58.20

num 332 332 35 332 332
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A.8 Abdominal MRI964

Table 11: Results of different models on Abdominal MRI in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 37.13 38.26

LLaVA-v1
Acc. with adv. pairs 0 39.28 50.00 2.38 0

Avg. acc. 48.22 69.64 / 46.42 50.00

LLaVA-v1.6
Acc. with adv. pairs 2.38 73.8 35.71 1.19 0

Avg. acc. 51.19 85.11 / 35.46 44.06

MiniGPT-v2
Acc. with adv. pairs 0 36.9 50 8.33 4.54

Avg. acc. 50.00 67.26 / 47.51 51.70

LLaVA-Med-v1
Acc. with adv. pairs 2.38 47.61 50.00 14.28 9.09

Avg. acc. 41.66 72.61 / 47.42 46.46

LLaVA-Med-v1.5
Acc. with adv. pairs 51.19 65.47 50.00 13.09 16.66

Avg. acc. 75.59 81.54 / 54.31 56.37

BiomedGPT
Acc. with adv. pairs 1.19 3.57 50.00 14.28 1.51

Avg. acc. 38.69 50.00 / 51.33 46.46

Med-Flamingo
Acc. with adv. pairs 2.38 27.38 50.00 20.23 3.03

Avg. acc. 50.59 62.50 / 49.55 50.50

CheXagent
Acc. with adv. pairs 0 26.19 50.00 11.9 10.6

Avg. acc. 19.04 56.54 / 49.20 49.62

GPT-4o
Acc. with adv. pairs 91.66 67.85 64.28 21.42 39.39

Avg. acc. 95.83 81.54 / 55.30 70.51

GPT-4V
Acc. with adv. pairs 86.9 75 50 27.38 25.75

Avg. acc. 92.26 85.71 / 58.58 58.77

Gemini Pro
Acc. with adv. pairs 89.28 72.61 85.71 28.57 25.75

Avg. acc. 94.04 86.30 / 63.39 60.98

num 84 84 14 84 84
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A.9 Brain X-ray 965

Table 12: Results of different models on Brain X-ray in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 44.77 47.08

LLaVA-v1
Acc. with adv. pairs 45.56 26.58 50 0 0

Avg. acc. 72.78 51.89 / 48.10 50.00

LLaVA-v1.6
Acc. with adv. pairs 11.39 13.92 16.66 8.86 4.44

Avg. acc. 55.06 48.10 / 45.04 48.88

MiniGPT-v2
Acc. with adv. pairs 18.98 83.54 50 18.98 17.77

Avg. acc. 59.49 89.87 / 51.37 52.22

LLaVA-Med-v1
Acc. with adv. pairs 8.86 8.86 0 20.25 4.44

Avg. acc. 54.43 31.01 / 51.16 48.33

LLaVA-Med-v1.5
Acc. with adv. pairs 49.36 31.64 50.00 8.86 13.33

Avg. acc. 73.41 56.96 / 53.16 55.55

BiomedGPT
Acc. with adv. pairs 12.65 6.32 50.00 11.39 2.22

Avg. acc. 53.16 49.36 / 52.95 43.33

Med-Flamingo
Acc. with adv. pairs 8.86 0 50 22.78 8.88

Avg. acc. 54.43 15.18 / 50.73 48.33

CheXagent
Acc. with adv. pairs 84.81 0 50 12.65 8.88

Avg. acc. 92.40 29.74 / 51.16 55.00

GPT-4o
Acc. with adv. pairs 94.93 52.56 66.66 37.17 40.90

Avg. acc. 96.20 73.71 / 62.07 69.31

GPT-4V
Acc. with adv. pairs 82.05 8.97 33.33 43.58 22.72

Avg. acc. 90.38 47.43 / 68.48 59.09

Gemini Pro
Acc. with adv. pairs 89.87 51.89 50 31.64 31.11

Avg. acc. 93.03 74.05 / 61.81 63.88

num 79 79 6 79 79
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A.10 Chest X-ray966

Table 13: Results of different models on Chest X-ray in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 37.59 37.08

LLaVA-v1
Acc. with adv. pairs 28.75 36.57 50 0.12 0.11

Avg. acc. 64.37 68.25 / 34.41 50.05

LLaVA-v1.6
Acc. with adv. pairs 7.11 83.97 47.94 5.89 1.52

Avg. acc. 53.49 91.61 / 34.52 48.85

MiniGPT-v2
Acc. with adv. pairs 4.93 94.07 50.05 18.78 11.94

Avg. acc. 52.46 96.98 / 46.09 53.15

LLaVA-Med-v1
Acc. with adv. pairs 6.25 39.77 40.24 26.28 6.14

Avg. acc. 52.62 67.19 / 50.78 51.34

LLaVA-Med-v1.5
Acc. with adv. pairs 55.44 65.48 49.53 31.82 9.78

Avg. acc. 77.67 82.69 / 62.70 54.22

BiomedGPT
Acc. with adv. pairs 91.34 86.05 50.00 16.92 9.08

Avg. acc. 95.46 92.93 / 43.00 41.46

Med-Flamingo
Acc. with adv. pairs 80.92 90.00 50 35.83 5.24

Avg. acc. 90.46 95.00 / 63.47 48.00

CheXagent
Acc. with adv. pairs 53.68 39.64 76.59 42.75 9.38

Avg. acc. 76.84 69.82 / 70.80 54.00

GPT-4o
Acc. with adv. pairs 97.97 62.98 62.01 32.13 21.81

Avg. acc. 98.81 81.39 / 59.35 59.95

GPT-4V
Acc. with adv. pairs 91.53 67.51 53.18 39.35 21.35

Avg. acc. 95.62 83.37 / 64.69 55.64

Gemini Pro
Acc. with adv. pairs 98.07 76.74 61.29 25.83 15.31

Avg. acc. 98.94 88.32 / 52.22 54.97

num 3120 3120 1948 3120 3120
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A.11 Spine X-ray 967

Table 14: Results of different models on Spine X-ray in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 30.95 30.99

LLaVA-v1
Acc. with adv. pairs 44.55 45.04 50 0.49 0

Avg. acc. 72.27 71.78 / 47.32 49.42

LLaVA-v1.6
Acc. with adv. pairs 4.45 82.67 33.33 1.48 0.57

Avg. acc. 52.22 90.84 / 35.87 42.02

MiniGPT-v2
Acc. with adv. pairs 2.97 52.47 58.33 16.33 4.02

Avg. acc. 51.48 71.78 / 53.84 51.07

LLaVA-Med-v1
Acc. with adv. pairs 8.41 7.92 33.33 17.82 5.74

Avg. acc. 52.72 28.96 / 52.82 47.58

LLaVA-Med-v1.5
Acc. with adv. pairs 46.53 71.78 50.00 14.85 13.32

Avg. acc. 73.01 85.89 / 55.78 54.79

BiomedGPT
Acc. with adv. pairs 40.09 16.83 58.33 12.37 2.87

Avg. acc. 68.06 55.19 / 50.27 40.77

Med-Flamingo
Acc. with adv. pairs 14.35 25.24 50 14.85 5.17

Avg. acc. 57.17 62.12 / 51.09 48.38

CheXagent
Acc. with adv. pairs 82.17 20.29 62.5 16.83 0.57

Avg. acc. 91.08 50.74 / 52.70 48.70

GPT-4o
Acc. with adv. pairs 95.54 79.70 47.82 34.15 25.86

Avg. acc. 97.02 89.60 / 68.99 66.03

GPT-4V
Acc. with adv. pairs 85.57 72.13 47.82 29.85 18.49

Avg. acc. 92.03 85.32 / 65.20 57.18

Gemini Pro
Acc. with adv. pairs 95.02 70.14 70.83 17.91 19.07

Avg. acc. 96.76 84.82 / 58.04 61.72

num 201 201 24 201 201
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A.12 Abdominal X-ray968

Table 15: Results of different models on Abdominal X-ray in ProbMed. The best-performing model in each question
category is in-bold, and the second best is underlined.

General Question Specialized Question

Modality Organ Abnormality Condition/Finding Position

Random Choice Acc. with adv. pairs 25 25 50 36.55 37.46

LLaVA-v1
Acc. with adv. pairs 53.87 53.01 50 2.15 0.56

Avg. acc. 76.93 76.50 / 49.14 50.00

LLaVA-v1.6
Acc. with adv. pairs 5.17 56.46 46 6.46 1.12

Avg. acc. 52.15 75.64 / 47.63 48.16

MiniGPT-v2
Acc. with adv. pairs 4.74 38.79 50 18.53 5.64

Avg. acc. 52.37 67.24 / 53.65 50.23

LLaVA-Med-v1
Acc. with adv. pairs 7.75 42.24 60 14.65 4.51

Avg. acc. 53.23 68.96 / 47.47 50.87

LLaVA-Med-v1.5
Acc. with adv. pairs 52.58 50.86 50.00 6.46 14.68

Avg. acc. 76.07 73.49 / 52.02 54.75

BiomedGPT
Acc. with adv. pairs 35.77 1.29 50.00 10.34 4.51

Avg. acc. 65.30 37.50 / 52.94 46.79

Med-Flamingo
Acc. with adv. pairs 28.01 34.48 50 14.65 4.51

Avg. acc. 64.00 66.37 / 52.52 46.25

CheXagent
Acc. with adv. pairs 77.15 23.70 70 12.93 2.25

Avg. acc. 88.57 52.80 / 51.30 49.64

GPT-4o
Acc. with adv. pairs 98.26 61.47 70 27.27 21.46

Avg. acc. 99.13 79.22 / 61.83 59.81

GPT-4V
Acc. with adv. pairs 84.84 50.21 60 31.16 23.16

Avg. acc. 92.42 71.42 / 59.63 57.03

Gemini Pro
Acc. with adv. pairs 97.14 63.36 85 27.15 19.2

Avg. acc. 98.70 80.81 / 59.97 58.80

num 232 232 20 232 232

B Dataset Statistics969

C Impact of Chain-of-Thought Prompts and Visual Descriptions on Model Performance970
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Table 16: Number of questions across each question type for each image. Ground-truth questions were created
based on available metadata, with "yes" answers. For each ground-truth question, we also created a corresponding
adversarial question by selecting random adversarial entities and assigning "no" answers. For an image showing a
normal organ without abnormality, since there is no ground-truth information on the existence of the condition and
position, we only construct hallucinated questions for the condition/finding question type. For an image showing
abnormality, the number of question pairs per category equals the number of existing conditions or positions.

Question type
Image with
Normal Organ

Image with
Abnormality

Modality 2 2
Organ 2 2
Abnormality 1 1
Condition/Finding 1 2 x number of existing conditions
Position 0 2 x number of existing positions

Table 17: Dataset Statistics of ProbMed. There are 6.3k images and 57k VQA pairs in total. The dataset is balanced
within each question type and image type.

Organ, Modality Image Question Question with
Answer "yes" Unique Condition Unique Positional

Description

Abdomen MRI 84 757 375 107 75
Brain MRI 566 5,046 2,509 697 446
Chest MRI 40 382 189 52 38
Spine MRI 324 3,346 1,664 461 336
Abdomen CT scan 751 6,855 3,410 909 552
Brain CT scan 270 2,417 1,200 335 209
Chest CT scan 548 5,161 2,572 727 353
Spine CT scan 87 941 470 149 93
Abdomen X-ray 232 2,046 1,018 277 160
Brain X-ray 79 599 298 84 44
Chest X-ray 3,178 27,530 13,278 1,418 694
Spine X-ray 202 2,052 1,020 300 172

Total 6,303 57,132 28,003 / /
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Figure 6: Accuracy of the LLaVA-v1 model across five diagnostic categories under three settings: vanilla (blue),
chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 7: Accuracy of the LLaVA-v1.6 model across five diagnostic categories under three settings: vanilla (blue),
chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 8: Accuracy of the LLaVA-Med-v1 model across five diagnostic categories under three settings: vanilla
(blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 9: Accuracy of the LLaVA-Med-v1.5 model across five diagnostic categories under three settings: vanilla
(blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 10: Accuracy of the Med-Flamingo model across five diagnostic categories under three settings: vanilla
(blue), chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).
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Figure 11: Accuracy of the GPT-4o model across five diagnostic categories under three settings: vanilla (blue),
chain-of-thought (CoT, red), and CoT with GPT-4o Visual Understanding (green).

D Prompt Details971

The following is the prompt used for extracting medical conditions and their locations from image972

captions:973

974
1 You are a helpful assistant and you are given a caption describing a975

medical image. Extract medical conditions and diseases , along with976

their locations , if specified. Do not include any information977

that cannot be directly inferred from the image , for example ,978

patient status or patient history. Outputs should be in the format979

: "<condition/disease1 > : <location1 >, <condition/disease2 > : <980

location2 >...". The term "<location >" should include at least one981

positional descriptor and should be explicit in the original982

caption along with the condition/disease. Otherwise , it should be983

replaced with "None".984

2985

3 For example , consider the caption: "Fig. 1. MRI abdomen and pelvis986

showing the cervical mass." The output should be "<cervical mass >987

: None". For the caption: "Chest radiograph shows enlargement of988

the hilar mass with spread into the left lower lobe." The output989

should be "<enlargement of the hilar mass > : <left lower lobe >".990

Similarly , for the caption: "Abdominal CT scan reveals an991

enhancing rounded pseudo -aneurysm in the cystic artery , alongside992

high -density material within the gallbladder 's lumen and near the993

gastrohepatic ligament." The correct output is "<enhancing rounded994

pseudo -aneurysm > : <cystic artery >, <high -density material > : <995

lumen of the gallbladder and region of the gastrohepatic ligament >996

".997

4998

5 Make sure that the response contains only the information in the999

original caption without adding extra details.10001001
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E Response Distribution Visualization within each Category 1002
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Figure 12: Distribution plot of "yes and "no" ground-truth answers and model responses within the Modality
category.
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Figure 13: Distribution plot of "yes and "no" ground-truth answers and model responses within the Organ category.
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Figure 14: Distribution plot of "yes and "no" ground-truth answers and model responses within the Abnormality
category.
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Figure 15: Distribution plot of "yes and "no" ground-truth answers and model responses within the Condition/Finding
category.
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Figure 16: Distribution plot of "yes and "no" ground-truth answers and model responses within the Position category.
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