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Abstract
In this paper, we propose a new algorithm, termed Predicting Clipping Asynchronous Stochastic
Gradient Descent (aka, PC-ASGD) to address the issue of staleness and time delay in asynchronous
distributed learning settings. Specifically, PC-ASGD has two steps - the predicting step leverages
the gradient prediction using Taylor expansion to reduce the staleness of the outdated weights while
the clipping step selectively drops the outdated weights to alleviate their negative effects. A tradeoff
parameter is introduced to balance the effects between these two steps. We theoretically present
the convergence rate considering the effects of delay of the proposed algorithm with constant step
size when the smooth objective functions are nonconvex. For empirical validation, we demonstrate
the performance of the algorithm with two deep neural network architectures on two benchmark
datasets.

1. Introduction

The availability of large datasets and powerful computing led to the emergence of deep learning
that is revolutionizing many application sectors from the internet industry and healthcare to trans-
portation and energy [7, 8, 13, 20]. As the applications are scaling up, the learning process of large
deep learning models is looking to leverage emerging resources such as edge computing and dis-
tributed data centers privacy preserving. In this regard, distributed deep learning algorithms are be-
ing explored by the community, which leverage synchronous and asynchronous computations with
multiple computing agents that exchange information over communication networks [3, 11, 16].
While the computing resources within a local cluster can operate in a (loosely) synchronous man-
ner, multiple (geographically distributed) clusters may need to operate in an asynchronous manner.
Furthermore, communications among the computing resources may not be reliable and prone to
delay.

c⃝ H. Wang, Z. Jiang, C. Liu, S. Sarkar, D. Jiang & Y.M. Lee.
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To address the aforementioned issue, Asynchronous Stochastic Gradient Descent (ASGD) algo-
rithm in the master-slave manner has been proposed [4], which could tolerate the delay in commu-
nication. Later works [1, 6, 17, 25] extend ASGD to more realistic scenarios and implement the al-
gorithms with a central server and other parallel workers. Typically, since asynchronous algorithms
suffer from stale gradients, researchers have proposed algorithms such as DC-ASGD [24], adopting
the concept of delay compensation to reduce the impact of staleness and improve the performance
of ASGD. While for peer-to-peer architecture, [11] proposes an algorithm termed AD-PSGD (de-
centralized ASGD algorithm, aka D-ASGD) that deals with the problem of the stale parameter
exchange and presents theoretical analysis under bounded delay. More recently, [18] proposes the
DC-s3gd algorithm to enable large-scale decentralized neural network training with the considera-
tion of delay. Asynchronous version of stochastic gradient push (AGP) [2] is developed and shown
to be more robust to failing or stalling agents, though only applicable to the strongly convex objec-
tives. To further advance this area, the most recent schemes such as Praque [14] adopting a partial
all-reduce communication primitive, DSGD-AAU [22] utilizing an adaptive asynchronous updates,
and DGD-ATC [21] using the Adapt-then-Combine technique, are presented, but most of them are
limited to only (strongly) convex cases.

The contributions of this work are specifically as follows. PC-ASGD is proposed to tackle the
convergence issues due to the varying communication delays, consisting of the predicting and clip-
ping steps with an introduced tradeoff parameter. We show that with a proper constant step size,
PC-ASGD converges to the neighborhood of the optimal solution at a sublinear rate for noncon-
vex functions (See Table 1 for comparison). PC-ASGD is deployed on distributed GPUs with two
datasets CIFAR-10 and CIFAR-100 by using PreResNet110 and DenseNet architectures for valida-
tion.

Table 1: Comparisons between asynchronous algorithms
Methods f ∇f Delay Ass. Rate G.C. A.S.
D-ASGD [11] Non-convex Lip.&Bou. Bou. O( 1√

T
) 7 7

DC-ASGD [24] Non-convex Lip. Bou. O( 1√
T
) 3 7

DC-s3dg [18] Non-convex Lip. Unbou. N/A 3 7

AGP [2] Strongly-convex Lip. Bou. O( 1
T
+ 1

Tζ + 1
T1−ζ ) 7 7

DSGD-AAU [22] Non-convex Lip. Bou. O( 1√
T
) 7 7

DGD-ATC [21] Strongly-convex Lip. Unbou. O(ρT ) 7 7

PC-ASGD (This paper) Non-convex Lip. Bou. O( 1√
T
) 3 3

Lip.& Bou.: Lipschitz continuous and bounded. Delay Ass.: Delay Assumption. Unbou.: Unbounded. T : Total iterations. G.C.:
Gradient Compensation. A.S.: Alternant Step, ρ ∈ (0, 1) is a positive constant. ζ ∈ (0, 1).

2. Formulation and Preliminaries

Consider N agents in a networked system such that their interactions are driven by a graph G,
where G = {V, E}, where V = {1, 2, .., N} indicates the node or agent set, E ⊆ V × V is the
edge set. Throughout the paper, we assume that the graph is undirected and connected. If agent
j is in the neighborhood of agent i, they can communicate with each other. Thus, we define the
neighborhood for any agent i as Nb(i) := {j ∈ V|(i, j) ∈ E or j = i}. Rather than considering
synchronization and asynchronization separately, this paper considers both scenarios together by
defining the following terminology.

2



PC-ASGD IN DISTRIBUTED LEARNING

Definition 1 At a time step t, an agent j is called a reliable neighbor of the agent i if agent i has
the state information (the model parameters in this study) of agent j up to t− 1. Similarly, an agent
j is called an unreliable neighbor of the agent i if agent i has the state information of agent j only
up to t− τ , where τ is the so-called delay and 1 < τ < ∞.

Denote by x the state information. Thus, inside the neighborhood of an agent, there are reliable
and unreliable neighbors respectively. This work aims at studying how to effectively tackle issues
such as negative impacts that delays may bring on the performance. We define a set for reliable
neighbors of agent i as: R := {j ∈ Nb(i) | Pr(xj = xjt−1|t) = 1}, implying that agent j has
the state information x up to the time t − 1, i.e., xjt−1. We can directly have the set for unreliable
neighbors such that Rc = Nb \ R 1.

We consider the decentralized empirical risk minimization problems as follows:

min F (x) :=

N∑
i=1

∑
s∈Di

fi(x
i; s) (1)

where x = [x1;x2; ...;xN ], xi ∈ Rd is the local model parameters, Di is a local data set uniquely
known by agent i, fi : Rd → R is the incurred local loss of agent i given a sample s (we will
drop this for simplicity). Based on the above formulation, we then assume everywhere that our
objective function is bounded from below and denote the minimum by F ∗ := F (x∗) where x∗ :=
argmin F (x). Hence F ∗ > −∞. Moreover, all vector norms refer to the Euclidean norm. Some
necessary assumptions are defined in the sequel.

Assumption 1 1) Each objective function fi is assumed to satisfy the following conditions: fi is
γi − smooth and proper (not everywhere infinite) and coercive; 2) A mixing matrix W ∈ RN×N

satisfies a) 1⊤W = 1⊤,W1⊤ = 1⊤; b) Null{I − W} = Span{1} and I ⪰ W ≻ 0; 3) The
stochastic gradient of F at any x is denoted by g(x), such that a) g(x) is the unbiased estimate of
gradient ∇F (x); b) The variance is uniformly bounded by σ2, i.e.,E[∥g(x) −∇F (x)∥2] ≤ σ2; c)
The second moment of g(x) is bounded, i.e., E[∥g(x)∥2] ≤ G2.

3. Algorithm and Main Result

We present the specific update law for our proposed method, PC-ASGD. In Algorithm 1, for the
predicting step (line 6), any agent k that is unreliable has delay when communicating its weights
with agent i. To compensate for the delay, we adopt the Taylor expansion to approximate the
gradient for each time step. The predicted gradient (or delay compensated gradient) is denoted by
gdc,rk (xkt−τ ) (See Appendix for its detailed derivation). For agent k, at t-th time step, since it did
not get updated over the past τ time steps, it is known that xkt := xkt−τ . By abuse of notation, we
use gdc,rk (xkt−τ ) instead of gdc,rk (xkt ) for the predicted gradient. Additionally, the term (xit−τ+r −
xit−τ ) is from agent i due to the outdated information of agent k, which intuitively implies that the
compensation is driven by the agent i when agent k is in its neighborhood and deemed an unreliable
one. On the contrary, when the clipping step is taken, intuitively, we have to clip the agents that

1. Note that the delay varies in the asynchronous learning scheme, and there are two types of asynchronization, (i) fixed
value of delays [18, 24] and (ii) time-varying delays [4, 11] along the learning process. We follow the first setting in
this work to implement the experiments.
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possess outdated information, resulting in the change of the mixing matrix W . Essentially, we can
manipulate the corresponding weight values wij , j ∈ Rc in W such that at this step, wij = 0, j ∈
Rc. For the convenience of analysis, we introduce W̃ to represent the mixing matrix, which follows
the same properties in Assumption 1 (See Appendix for more detail).

Algorithm 1 PC-ASGD

Input: number of agents N , learning rate η > 0, agent interaction matrices W , W̃ , number of
epochs T , the tradeoff parameter 0 ≤ θt ≤ 1, t ∈ {0, 1, ..., T − 1}

Output: the models’ parameters in agents xiT ,i = 1, 2, ...N
1: Initialize all the agents’ parameters xi0, i = 1, 2, ...N
2: Do broadcast to identify the clusters of reliable agents and the delay τ
3: t = 0
4: while epoch t < T do
5: for each agent i do
6: Predicting Step: xit+1,pre =

∑
j∈Rwijx

j
t − ηgi(x

i
t) +

∑
k∈Rc wik(x

k
t − ηgdc,rk (xkt−τ ))

7: Clipping Step: xit+1,cli =
∑

j∈Nb(i) w̃ijx
j
t − ηgi(x

i
t)

8: xit+1 = θtx
i
t+1,pre + (1− θt)x

i
t+1,cli

9: t = t+ 1

We next investigate the convergence for the non-convex objectives. For PC-ASGD, we show
that it converges to a first-order stationary point in a sublinear rate.

Theorem 2 Let Assumption 1 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a a scalar B > 0 such that for all T ≥ 1 ∥gdc,r(xt)∥ ≤ B, ∀t ≥
0 and 0 ≤ r ≤ τ − 1, and there exists M , E[∥gdc,r(xt)∥2] ≤ M. For the iterations generated by
PC-ASGD, there exists 0 < η < 1

γm
, γm := max{γ1, γ2, ..., γN}, such that

1

T

T∑
t=1

E[∥∇F (xt)∥2] ≤
2(F (x1)− F ∗)

Tη
+

R

η
, (2)

where, R = 2Gη2C1 +
τ2η2γmM

2 + ησ2

2 + ηστB + 2η2γm(τB +G)C1, C1 =
G+(τ−1)Bθm

1−δ2
.

Remark 3 Theorem 2 states that with a properly chosen constant step size, PC-ASGD is able to
converge the iterates {xT } to the noisy neighborhood of a stationary point x∗ in a rate of O( 1√

T
),

whose radius is determined by σ2

2 +στB, if we define η = O( 1√
T
). Additionally, based on σ2

2 +στB,
we can know that the error bound is mainly caused by the variance of stochastic gradients and the
time delay.

4. Experiments

We have analyzed theoretically in detail how the proposed PC-ASGD converges with some mild
assumptions. In practical implementation, we need to choose a suitable θt to enable synergy between
clipping and predicting steps. In this context, we develop a heuristic practical variant with a criterion
for determining the tradeoff parameter value. Intuitively, if the delay messages from the unreliable
neighbors do not influence the training negatively, they should be included in the prediction. This

4



PC-ASGD IN DISTRIBUTED LEARNING

can be determined by the comparison within the algorithm. The criterion is shown as follows by
using the cosine distance:

xt+1
i =

 xit+1,pre
⟨xi

t+1,pre−xi
t,gi(x

i
t)⟩

∥xi
t+1,pre−xi

t∥
≥ ⟨xi

t+1,cli−xi
t,gi(x

i
t)⟩

∥xi
t+1,cli−xi

t∥
xit+1,cli o.w.

(3)

The prediction step is selected if it has the larger cosine distance, which implies that the update due
to the predicting step yields the larger loss descent. Otherwise, the clipping step should be chosen
by only trusting reliable neighbors. Please see Algorithm 2 in Appendix for detail.
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(a) DenseNet CIFAR-10
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(b) DenseNet CIFAR-100
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(c) PreResNet110 CIFAR-10
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Figure 1: Testing accuracy on CIFAR-10 and CIFAR-100 with distributed network 1.

The testing accuracies on the CIFAR-10 and CIFAR-100 data sets with models in distributed
network 1 are shown in Fig. 1. It shows that the proposed PC-ASGD outperforms the other single
variants and it presents an accuracy increment greater than 2.3% (nearly 4% for DenseNet with
CIFAR-10) compared to the baseline algorithm (D-ASGD). For other variants P-ASGD or C-ASGD
(variants from PC-ASGD), the testing accuracies are also higher than that of the baseline algorithm.
Moreover, PC-ASGD shows faster convergence than P-ASGD as the updating rule overcomes the
staleness, and achieves better accuracy than the C-ASGD as it includes the messages from the
unreliable neighbors. This is consistent with the analysis in this work. We also show the detailed
results of both distributed network 1 (8 agents) and distributed network 2 (20 agents) in Table 2. We
then compare our proposed algorithm with other delay-tolerant algorithms, including the baseline
algorithm D-ASGD (aka AD-PSGD), DC-s3gd [18], D-ASGD with IS [5], and Adaptive Braking
[19]. The distributed network 1 is applied for the comparisons. From the Table 3, the proposed
PC-ASGD obtains the best results in the four cases.
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Table 2: Performance evaluation of PC-ASGD on CIFAR-10 and CIFAR-100
8 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
Pre110, CIFAR-10 87.3± 1.1 3.3± 1.1 84.9± 0.9 0.9± 0.9 86.0± 1.0 2.0± 1.0 84.0± 0.3

Pre110, CIFAR-100 67.4± 1.4 3.1± 1.9 64.8± 1.3 1.3± 1.5 66.4± 1.2 1.9± 1.6 64.5± 1.5

Des, CIFAR-10 86.9± 0.9 3.6± 1.8 84.4± 0.6 1.0± 1.5 85.9± 0.9 2.7± 1.7 83.3± 0.9

Des, CIFAR-100 68.6± 0.6 2.3± 1.7 66.8± 1.5 1.6± 1.6 66.8± 1.6 1.8± 1.6 66.1± 1.9

20 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
Pre110, CIFAR-10 84.7± 0.9 4.2± 1.0 83.3± 0.9 2.7± 0.9 82.5± 1.0 1.9± 1.4 80.4± 0.7

Pre110, CIFAR-100 62.4± 0.8 3.3± 2.0 61.7± 1.0 2.0± 1.6 61.5± 1.0 2.5± 2.3 59.3± 1.7

Des, CIFAR-10 82.9± 0.9 2.4± 0.9 82.0± 0.7 1.4± 1.3 81.8± 0.6 1.8± 1.0 80.1± 0.9

Des, CIFAR-100 64.5± 0.7 3.8± 1.7 62.5± 1.3 2.9± 2.0 62.0± 1.5 1.3± 1.4 60.4± 1.7

acc.–accuracy, o.p.–outperformed comparing to baseline.

Table 3: Performance comparison for different delay tolerant algorithms
Model & dataset Pre110,CIFAR-10 Pre110,CIFAR-100 Des,CIFAR-10 Des,CIFAR-100
PC-ASGD 87.3± 1.1 67.4± 1.4 86.9± 0.6 68.6± 0.6

D-ASGD [11] 84.0± 0.3 64.5± 1.5 83.3± 0.9 66.1± 1.9

DC-s3gd [18] 86.3± 0.8 63.5± 1.7 85.7± 0.8 66.2± 1.3

D-ASGD with IS [5] 85.0± 0.3 64.6± 1.2 84.6± 0.4 66.2± 0.8

Adaptive Braking [19] 86.8± 0.9 66.5± 1.2 85.3± 1.0 67.3± 1.1

5. Conclusion

This paper presents a novel learning algorithm for distributed deep learning with heterogeneous
delay characteristics in agent-communication-network systems. We propose PC-ASGD algorithm
consisting of a predicting step, a clipping step, and the corresponding update law for reducing the
staleness and negative effects caused by the outdated weights. We present theoretical analysis for
the convergence rate of the proposed algorithm with constant step size when the objective functions
are weakly strongly-convex and nonconvex. The numerical studies show the effectiveness of our
proposed algorithms in different distributed systems with delays, by comparing it to multiple base-
lines. In future work, the cases for distributed networks with diverse delays and dynamic topology
will be further studied and tested.
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Appendix A. Additional Analysis

A.1. Derivation of delay compensated gradient gdc,rk (xkt−τ )

The delay compensated gradient can be expressed as follows:

gdc,rk (xkt−τ ) =
τ−1∑
r=0

gk(x
k
t−τ ) + λgk(x

k
t−τ )⊙ gk(x

k
t−τ )⊙ (xit−τ+r − xit−τ ), (4)

where λ is a positive constant in (0, 1] and the term λgk(x
k
t−τ ) ⊙ gk(x

k
t−τ ) is an estimate of the

Hessian matrix, ∇gk(x
k
t−τ ). We detail how to arrive at Eq. 4. Specifically, given the outdated

weights of agent k, xkt−τ , due to the delay equal to τ , by induction, we can obtain for agent k

xkt−τ+1 =xkt−τ − ηgk(x
k
t−τ )

=xkt−τ − η

0∑
r=0

[gk(x
k
t−τ ) + λgk(x

k
t−τ )⊙ gk(x

k
t−τ )⊙ (xit−τ+r − xit−τ )]

(5)

xkt−τ+2 = xkt−τ+1 − ηgk(x
k
t−τ+1) = xkt−τ − ηgk(x

k
t−τ )− ηgk(x

k
t−τ+1)

≈ xkt−τ − η
1∑

r=0

[gk(x
k
t−τ ) + λgk(x

k
t−τ )⊙ gk(x

k
t−τ )⊙ (xit−τ+r − xit−τ )]

· · ·

(6)

xkt ≈xkt−τ − η
τ−1∑
r=0

[gk(x
k
t−τ ) + λgk(x

k
t−τ )⊙ gk(x

k
t−τ )⊙ (xit−τ+r − xit−τ )] (7)

As we mentioned in the main contents, the term (xit−τ+r−xit−τ ) is from agent i due to the outdated
information of agent k, which intuitively illustrates that the compensation is driven by the agent i
when agent k is in its neighborhood and deemed an unreliable one.

We now present convergence results for the PC-ASGD. We show the consensus estimate and
the optimality for nonconvex smooth objectives. The consensus among agents (aka, disagreement
estimate) can be thought of as the norms ∥xit − xjt∥, the differences between the iterates xit and
xjt . Alternatively, the consensus can be measured with respect to a reference sequence, i.e., yt =
1
N

∑N
i=1 x

i
t. In particular, we discuss ∥xit − yt∥ for any time t as the metrics with respect to the

delay τ .

Lemma 4 (Consensus) Let Assumption 1 hold. Suppose that the delay compensated gradients are
uniformly bounded, i.e., there exists a scalar B > 0, such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1,

Then for all i ∈ V and t ≥ 0, ∃η > 0, we have

E[∥xit − yt∥] ≤ η
G+ (τ − 1)Bθm

1− δ2
, (8)

where θm = max{θs+1}t+τ−1
s=t , δ2 = max{θse2 + (1 − θs)ẽ2}t+τ−1

s=0 < 1, where e2 := e2(W ) < 1
and ẽ2 := e2(W̃ ) < 1, where e2(·) and ẽ2(·) are the second-largest eigenvalues of W and W̃ .
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Proof Since
∥xit+τ − yt+τ∥ ≤ ∥xt+τ − yt+τ1∥

= ∥xt+τ −
1

N
1Txt+τ1∥

= ∥xt+τ −
1

N
11Txt+τ∥

= ∥(I − 1

N
11T )xt+τ∥,

(9)

where 1 is the column vector with entries all being 1. According to Assumption 2, we have
1
N 11TW = 1

N 11T . Hence, by induction, setting x0 = 0, and Lemma 1, the following relationship
can be obtained

∥xt+τ − yt+τ1∥ = η∥
t+τ−1∑
s=0

(

t+τ−1∏
v=s+1

Wt+τ+s−v −
1

N
11T )g(xs)

+

t+τ−1∑
s=t

(

t+τ−1∏
v=s+1

Wt+τ+s−v −
1

N
11T )θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥

≤ η
t+τ−1∑
s=0

∥
t+τ−1∏
v=s+1

Wt+τ+s−v −
1

N
11T ∥∥g(xs)∥+ η

t+τ−1∑
s=t

∥
t+τ−1∏
v=s+1

Wt+τ+s−v −
1

N
11T ∥

∥θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥ ≤ ηG
t+τ−1∑
s=0

δt+τ−1−s
2 + η

t+τ−1∑
s=t

δt+τ−1−s
2 θs+1(τ − 1)B

≤ηG
1

1− δ2
+ η(τ − 1)Bθm

δt2 − δt+τ−1
2

1− δ2
≤ η

G+ (τ − 1)Bθm
1− δ2

.

(10)
The second inequality follows from the Triangle inequality and Cauthy-Schwartz inequality and the
third inequality follows from Assumption 1 2) and that the matrix 1

N 11T is the projection of W
onto the eigenspace associated with the eigenvalue equal to 1. The last inequality follows from the
property of geometric sequence. The proof is completed by replacing t + τ with t on the left hand
side.

Lemma 4 states the consensus bound among agents, which is proportional to the step size η and
inversely proportional to the gap between the largest and the second-largest magnitude eigenvalues
of the equivalent graph W .

Remark 5 One implication that can be made from Lemma 4 is when τ = 1, the consensus bound
becomes the smallest, which can be obtained as ηG

1−δ2
. This bound is the same as obtained already

by most decentralized learning (or optimization) algorithms. This accordingly implies that the
delay compensated gradient or predicted gradient does not necessarily require many time steps.
Otherwise, more compounding error could be included. Alternatively, θm = 0 can also result in
such a bound, suggesting that the clipping step dominates in the update. On the other hand, once
τ ≫ 1 and θm ̸= 0, the consensus bound becomes worse, which will be validated by the empirical
results. Additionally, if the network is sparse, which suggests e2 → 1 and ẽ2 → 1, the consensus
among agents may not be achieved well and correspondingly the optimality would be negatively
affected, which has been justified in existing works [9].

10



PC-ASGD IN DISTRIBUTED LEARNING

Appendix B. Proof of Theorem 2

Theorem 2: Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are
uniformly bounded, i.e., there exits a a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (11)

and that
E[∥gdc,r(xt)∥2] ≤ M. (12)

Then for the iterates generated by PC-ASGD, there exists 0 < η < 1
γm

, such that for all T ≥ 1,

1

T

T∑
t=1

E[∥∇F (xt)∥2] ≤
2(F (x1)− F ∗)

Tη
+

R

η
, (13)

where

R = 2Gη2C1 +
τη2γmM

2
+

ησ2

2
+ ηστB + 2η2γm(τB +G)C1.

Proof According to the smoothness condition of F (x), we have

F (xt+τ+1)− F (vt+τ )

≤ ⟨∇F (vt+τ ),xt+τ+1 − vt+τ ⟩+
γm
2

+ ∥xt+τ+1 − vt+τ∥2

= ⟨∇F (vt+τ ),−η(

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩+
η2γm
2

∥
τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= ⟨∇F (vt+τ )−∇F (xt+τ ) +∇F (xt+τ ), η(
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩

+
η2γm
2

∥
τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2 = −η⟨∇F (xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩

+ η⟨(∇F (vt+τ )−∇F (xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩

+
η2γm
2

∥
τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

(14)

11
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Hence, we have

F (xt+τ+1)− F (vt+τ )

= −η

2
[∥∇F (xt+τ )∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2

− ∥∇F (xt+τ )− (
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))∥2] + η⟨∇F (xt+τ )−∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩

+
η2γm
2

∥
τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2 = −η

2
∥∇F (xt+τ )∥2 −

η

2
∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2

+
η

2
(∥∇F (xt+τ )− g(xt+τ )∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt)∥2 − 2⟨∇F (xt+τ )− g(xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt)⟩)

+ η⟨∇F (xt+τ )−∇F (vt+τ ),

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩+
η2γm
2

∥
τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= −η

2
∥∇F (xt+τ )∥2 − (

η

2
− η2γm

2
)∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2

+
η

2
∥∇F (xt+τ )− g(xt+τ )∥2 +

η

2
∥
τ−1∑
r=1

W ′gdc,r(xt)∥2 − η⟨∇F (xt+τ )− g(xt+τ ),

τ−1∑
r=1

W ′gdc,r(xt)⟩

+ η⟨∇F (xt+τ )−∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩ = −η

2
∥∇F (xt+τ )∥2 + (

η2γm
2

− η

2
)

∥
τ−1∑
r=0

W ′gdc,r(xt)∥2 + (
η2γm
2

− η

2
)∥g(xt+τ )∥2

+ (
η2γm
2

− η

2
)⟨g(xt+τ ),

τ−1∑
r=0

W ′gdc,r(xt)⟩

+
η

2
∥∇F (xt+τ )− g(xt+τ )∥2 +

η

2
∥
τ−1∑
r=1

W ′gdc,r(xt)∥2 − η⟨∇F (xt+τ )− g(xt+τ ),

τ−1∑
r=1

W ′gdc,r(xt)⟩+ η⟨∇F (xt+τ )−∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩

(15)

12
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We then have

F (xt+τ+1)− F (vt+τ )

≤ −η

2
∥∇F (xt+τ )∥2 + (

η2γm
2

− η

2
)∥

τ−1∑
r=0

W ′gdc,r(xt)∥2

+ (
η2γm
2

− η

2
)∥g(xt+τ )∥2 + (

η2γm
2

− η

2
)∥g(xt+τ )∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥

+
η

2
∥∇F (xt+τ )− g(xt+τ )∥2 +

η

2
∥
τ−1∑
r=1

W ′gdc,r(xt)∥2 + η∥∇F (xt+τ )− g(xt+τ )∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥

+ η∥∇F (xt+τ )−∇F (vt+τ )∥∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥.

(16)

The last inequality follows from Cauthy-Schwarz inequality.
The left hand side of the above inequality can be rewritten associated

F (xt+τ+1)− F (xt+τ ) + F (xt+τ )− F (vt+τ )

13
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Taking expectation for both sides, with the last inequality, we have

E[F (xt+τ+1)− F (xt+τ )] ≤ E[F (vt+τ )− F (xt+τ )]−
η

2
E[∥∇F (xt+τ )∥2]

+
η2γm − η

2
E[∥

τ−1∑
r=0

W ′gdc,r(xt)∥2] +
η2γm − η

2
E[∥g(xt+τ )∥2]

+
η2γm − η

2
E[∥g(xt+τ )∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥] +
η

2
E[∥∇F (xt+τ )− g(xt+τ )∥2]

+
η

2
E[∥

τ−1∑
r=1

W ′gdc,r(xt)∥2] + ηE[∥∇F (xt+τ )− g(xt+τ )∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥]

+ ηE[∥∇F (xt+τ )−∇F (vt+τ )∥∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥]

≤GE[∥vt+τ − xt+τ∥]−
η

2
E[∥∇F (xt+τ )∥2] +

η2γm − η

2
τ
τ−1∑
r=0

E[∥W ′gdc,r(xt)∥2]

+
η2γm − η

2
E[∥g(xt+τ )∥2] +

η2γm − η

2
E[∥g(xt+τ )∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥]

+
η

2
E[∥∇F (xt+τ )− g(xt+τ )∥2] +

η

2
E[∥

τ−1∑
r=1

W ′gdc,r(xt)∥2]

+ ηE[∥∇F (xt+τ )− g(xt+τ )∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥] + ηE[∥∇F (xt+τ )−∇F (vt+τ )∥

∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥] ≤ −η

2
E[∥∇F (xt+τ )∥2]

+
τ2η2γmM

2
+

ησ2

2
+ ηστB + 2η2γm(τB +G+

G

ηγm
)
G+ (τ − 1)Bθm

1− δ2

The last inequality follows from the smoothness condition of F (x) and the bounded gradient, re-
spectively, as well as η < 1

γm
. Hence, by replacing t+ τ with t, one can obtain

E[F (xt+1)− F (xt)] ≤ −η

2
E[∥∇F (xt)∥2] +R (17)

where R indicates the constant term on the right hand side of the inequality. As we assume that
F (x) is bounded from below, applying the last inequality from 1 to T , one can get

F ∗ − F (x1) ≤ E[F (xt+1)]− F (x1)

≤ −η

2

T∑
t=1

E[∥∇F (xt)∥2] + TR
(18)

which results in
T∑
t=1

E[∥∇F (xt)∥2] ≤
2[(F (x1)− F ∗) + TR]

η
(19)
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Dividing both sides by T , the desirable results is obtained.

Appendix C. Settings

Our practical variant with this criterion in Eq. 3 still converges since we just set θt as 0 or 1 for
each iteration and the previous analysis in our paper still holds. To facilitate the understanding of
predicting and clipping steps, in the experiments, we also have two other variants P-ASGD and C-
ASGD. While the former corresponds to an “optimistic" scenario to only rely on the predicting step,
the latter presents a “pessimistic" scenario by dropping all outdated agents. Both of variants follow
the same convergence rates induced by PC-ASGD. The specific algorithm is showed as Algorithm
2.

Algorithm 2 PC-ASGD-PV

Input: number of agents N , learning rate η > 0, agent interaction matrices W , W̃ , number of
epochs T

Output: the models’ parameters in agents xiT ,i = 1, 2, ...N
1: Initialize all the agents’ parameters xi0, i = 1, 2, ...N
2: Do broadcast to identify the clusters of reliable agents and the delay τ
3: t = 0
4: while epoch t < T do
5: for each agent i do
6: Predicting Step: xit+1,pre =

∑
j∈Rwijx

j
t − ηgi(x

i
t) +

∑
k∈Rc wik(x

k
t − ηgdck (xkt−τ ))

7: Clipping Step: xit+1,cli =
∑

j∈R w̃ijx
j
t − ηgi(x

i
t)

8: ∆pre = xit+1,pre − xit; ∆cli = xit+1,cli − xit

9: if ⟨∆pre,gi(x
i
t)⟩

∥∆pre∥ ≥ ⟨∆cli,gi(x
i
t)⟩

∥∆cli∥ then
10: xit+1 = xit+1,pre

11: else
12: xit+1 = xit+1,cli

13: t = t+ 1

C.1. Distributed Network and Learning Setting

Models and Data sets. Decentralized asynchronous SGD (D-ASGD) is adopted as the baseline
algorithm. Two deep learning structures, PreResNet110 and DenseNet (noted as model 1 and model
2), are employed. The detailed model structures are illustrated in the Appendix. CIFAR-10 and
CIFAR-100 are used in the experiments following the settings in [10]. The training data is randomly
assigned to each agent, and the parameters of the deep learning structure are maintained within each
agent and communicated with the predefined delays. The testing set is utilized for each agent to
verify the performance, where our metric is the average accuracy among the agents. 6 runs are
carried out for each case and the mean and variance are obtained and listed in Table 3.

As for the practical implementation, an structure that is much closer to the real distributed
system is used. Each agent is allocated to an independent GPU, and a communication layer is set up
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for the parameter transferring, which is convenient to the following protocol design. Such settings
provide us availability for quick implementation of the algorithm in real distributed networks.

Delay setting. The delay is set as τ as discussed before, which means the parameters received
from the agents outside of the reliable cluster are the ones that were obtained τ iterations before. For
model 1 and model 2, τ is both fixed at 20 to test the performances of different algorithms including
our different variants (P-ASGD, C-ASGD, and PC-ASGD) and baseline algorithms.

Distributed network setting. A distributed network (noted as distributed network 1) with 8
agents (nodes) in a fully connected graph is first applied with model 1 and model 2, and 2 clusters of
reliable agents are defined within the graph consisting of 3 agents and 5 agents, respectively. Then
another distributed network (20-agent) is used, noted as distributed network 2 involving 4 clusters
with 3 clusters consisting of 6 agents while the rest has 2 agents.

C.2. Detailed Settings of Deep Learning Models

For the PreResNet110 (model 1) and DenseNet (model 2), the batch size is selected as 128. After
hyperparameter searching in (0.1, 0.01, 0.001), the learning rate is set as 0.01 for the first 160 epochs
and changed as 0.001. The decay are applied in epochs (80, 120, 160, 200). The approximation
coefficient λ is set as 1. λ = 0.001 is first tried as suggested by DC-ASGD [24] and the results
show that the predicting step doesn’t affect the training process. By considering the upper bound of
1, a set of values (0.001, 0.1, 1) are tried and λ = 1 is applied according to the performance.

Appendix D. Additional Results

D.1. Impacts of Different Delay Settings

To further show our algorithm’s effectiveness, we also implement experiments with different de-
lays. As discussed above, a more severe delay could cause significant drop on the accuracy. More
numerical studies with different steps of delay are presented here. The delays are set as 5, 20, 60
with our PreResNet110 (model 1) of 8 agents (synchronous network without delay is also tested).
We use CIFAR-10 in the studies and the topology is distributed network 1. The results are shown in
Fig. 2.
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Figure 2: Performance evaluation for different steps of delay.

We can find out as the delay increases, the accuracy decreases. For the synchronous setting,
the testing accuracy is close to that in the centralized scenario [23] but with higher batch size.
When the delay is 60, the accuracy for the D-ASGD reduces significantly, and this validates that the
large delay significantly influences the performance and causes difficulties in the training process.
However, the delays are practical in the real implementations such as industrial IoT platforms.
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For our proposed PC-ASGD, it outperforms other algorithms in all cases with different delays.
Moreover, the accuracy drop is relatively smaller in cases with larger delays, which suggests that
PC-ASGD is more robust to different communication delays.

D.2. Numerical Studies on θ Assignments

We also conduct empirical studies about the different choices for θ. As we mentioned above, a
practical variant is applied for θ, where we intend to form a strategy to determine if the received
information (parameters of the deep learning models) is outdated or not. Here, different assignment
rules for θ are tested and compared. Model 1 is applied, by using CIFAR-10 and the 8 agents system
with 3 and 5 agents (distributed network 1).

First, θ is fixed as 0.3, 0.5, 0.7 (denoted as f1, f2, f3), respectively. Then we determine the θ as
0, 1 randomly with fixed probability in each round with 0.3, 0.5, 0.7 (denoted as p1, p2, p3). We
also try the fully uniformly random assigned θ in each round (denoted as r1). The results are listed

Table 4: Mean Performance for Different θ assignment for Pre110, CIFAR-10
Method\Parameters f1/p1 f2/p2 f3/p3
θ Fixed 86.3 85.0 84.5

θ Bool randomly 85.6 85.0 84.1

θ randomly (r1) 85.2

PC-ASGD-PV 87.3

D-ASGD(Baseline) 84.0

in Table 4. Note also that in the first three scenarios the criterion is not applied. The PC-ASGD-PV
obtains the best performance which implies that the trade-off between the predicting step and the
clipping step in the Algorithm 2 is proper and plays an important role in the convergence process.
With the fixed θ (first row ‘θ fixed’), the experimental results show that the optimal ratio between
the predicting step and clipping step is 0.3 in this case. And this suggests that more clipping steps
are better. For the p1, p2, p3 cases (second row θ Bool randomly i.e. either 0 or 1), the experimental
results show that the optimal probability between the predicting step and clipping step is 0.3. This is
consistent with the fixed θ case. Compared with the fix θ setting, picking 0, 1 for the θ in a predefined
probability performs worse. The randomness still help the convergence process but is not as good as
the fix θ setting. For the random θ, the randomness helps the convergence process. However, there
exists a optimal θ for every case and the randomness is not able to get the best performance. The
baseline D-ASGD gets the worst performance, which shows the predicting and clipping steps are
helpful for the scenarios with delays in the distributed network. This also provides us the necessity
of the additional time cost for the predicting and clipping steps. Note also that optimizing the
selection of θ is beneficial and we can set θ as binary or non-binary (continuous). The binary setting
with the strategy in Algorithm 2 is straightforward and performs well in this work.

D.3. Validation for Theoretical Analysis

Finally, we present two examples to verify our constructed theoretical analysis. We establish a
network involving three agents. We also set two reliable clusters with 1 and 2 agents, respectively.
We leverage two nonconvex functions, i.e., Rastrigin and Rosenbrock [12] to test the performance
of our proposed framework. Though these two functions are simple nonconvex problems, they have
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been used widely to test the performance for many numerical optimizers [15]. We randomly sample
batch during local training in each agent. We set a fixed step size according our Theorem 2 as 0.008.
The number of iterations is set 500 for each case.
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Figure 3: The results of simple functions.

From Fig. 3, we can view the convergence of our proposed PC-ASGD algorithms. For the
bound verification, we take different values of the delay to observe the performances of our theo-
retical framework. Here, we first find that when delay is large, the squared norm of the gradient
is large, which is consistent with our theoretical analysis. In Rosenbrock function case, our estab-
lished theory could describe the tendency of the average gradients square norm and the results are
nearly tight asymptotically. But in Rastrigin function cases, we observe that the differences between
different delay are not large such that the bound is not so tight. However, when calculating bounds,
we find that the bounds for different delays differ mildly, which is consistent along all the empirical
results. It also shows the effectiveness of our proposed theoretical analysis.
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