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Abstract

Describing terminologies with definition texts001
is an important step towards understanding002
the scientific literature, especially for domains003
with limited labeled terminologies. Previous004
works have sought to design supervised neural005
text generation models to solve the biomedi-006
cal terminology generation task, but most of007
them failed to define never-before-seen termi-008
nologies in newly emerging research fields.009
Here, we tackle this challenge by introducing010
a zero-shot definition generation model based011
on prompting, a recent approach for eliciting012
knowledge from pre-trained language models,013
with automatically generated prompts. Fur-014
thermore, we enhanced the biomedical termi-015
nology dataset by adding descriptive texts to016
each biomedical subdiscipline, thus enabling017
zero-shot learning scenarios. Our model out-018
performed existing supervised baseline and the019
baseline pre-trained language model that em-020
ploys manually crafted prompts by up to 52 and021
6 BLEU score, respectively.022

1 Introduction023

Describing new terminologies has become a task024

of great significance in scientific research, as ex-025

pert curated definitions cannot scale to the rapidly026

emerging terminologies, especially in new research027

topics(Cimino et al., 1994). Prior works have028

sought to generate biomedical definitions via neural029

text generation models(Liu et al., 2021b), leverag-030

ing both the terminology text and the terminology031

relation graph. However, these methods focus on032

designing supervised learning models by assuming033

the availability of sufficient annotated terminology034

text in every scientific subdiscipline, which is sel-035

dom the case. In many newly emerging research036

topics, such as COVID-19, people have very few037

expert curated definitions, hindering the usage of038

those fully supervised learning models(Baines and039

Elliott, 2020). On the other hand, large amounts040

of gold definitions are available in some other re-041

search domains, and descriptive texts of scientific 042

subdisciplines are widely accessible. 043

To form a more realistic setting, we propose our 044

task as zero-shot definition text generation, similar 045

to Zero-shot text classification (ZSC) to classify 046

text using label descriptions without any exam- 047

ples(Yin et al., 2019). In the past, lines of few-shot 048

text generation models have been proposed to ad- 049

dress this task(Lin et al., 2019; Song et al., 2020; 050

Schick and Schütze, 2021); however, most of these 051

models fail to fully leverage the language models 052

pre-trained on massive amounts of raw text. Re- 053

cently, prompting has become a popular approach 054

among the NLP community to elicit knowledge 055

from large language models, allowing for direct per- 056

formance of few-shot and zero-shot learning(Seoh 057

et al., 2021; Gao et al., 2021; Brown et al., 2020; 058

Liu et al., 2021a). For instance, text summariza- 059

tion can be formalized as a language model task by 060

adding "TL; DR" to the end of an article(Radford 061

et al., 2019). Unfortunately, it is challenging to 062

manually acquire prompts, and these prompts are 063

likely to be sub-optimal. Hence, people have intro- 064

duced automatic prompts generating tools in order 065

to overcome the need of human crafted prompts 066

template(Shin et al., 2020). 067

In this paper, we propose a zero-shot biomedical 068

definition generation dataset GRAPHINE-ZERO and 069

a biomedical definition generation model AUTO- 070

GRAPHEX. An overview of our method is shown 071

in Figure 1. We introduced GRAPHINE-ZERO by 072

removing the intersected terminologies of indepen- 073

dent graphs in GRAPHINE and collecting dataset 074

descriptions from biomedical ontology databases 075

for each graph. Our model, AUTOGRAPHEX, gen- 076

erates definitions in a particular biomedical sub- 077

discipline without any training data. Specifically, 078

AUTOGRAPHEX only leverages descriptive texts 079

in the target subdiscipline and expert-curated def- 080

inition texts in other biomedical domains. Given 081

a pre-trained language model, it appends prompts 082
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Figure 1: An overview of AUTOGRAPHEX. The input terminology text from an ontology graph is first transformed
into prompts based on the template, which serve as input to the language model to generate the definition text.
AUTOGRAPHEX selects candidate token based on the cosine similarity between its embedding vector and the
gradient with respect to trigger token. This process is carried out iteratively to select the best candidate tokens.

that consist of the dataset description, terminol-083

ogy text, neighbour biomedical ontology regarding084

the graph and a collection of trigger tokens. Fur-085

thermore, AUTOGRAPHEX uses a gradient-based086

prompts search method to automatically select sub-087

words for predicting those trigger tokens. Besides,088

we validate the effectiveness of AUTOGRAPHEX089

with several machine translation metrics includ-090

ing BLEU, METEOR and NIST. Concretely, AU-091

TOGRAPHEX outperformed supervised baseline,092

GRAPHEX, by 52.32, 73.18 and 14.47 in terms093

of BLEU score, METEOR score and NIST score094

(Table 2).095

2 Methods096

2.1 Dataset: GRAPHINE-ZERO097

Graphine dataset consists of 2,010,648 biomedi-098

cal terminology definition pairs encapsulated in099

227 directed acyclic graphs (DAGs)(Liu et al.,100

2021b). Each edge in the DAGs represents an101

is-a relation between two nodes. We created our102

dataset GRAPHINE-ZERO based on GRAPHINE by103

removing the intersected terminologies in different104

graphs, leaving 211 DAGs, to set different DAGs105

as independent tasks in zero-shot learning. We106

further obtain descriptions for each DAG from on-107

tology databases, Open Biological and Biomedical108

Ontology Foundry (OBO)(Smith et al., 2007), Bio-109

Portal and EMBL-EBI Ontology Lookup Service110

(OLS)(Noy et al., 2009; Jupp et al., 2015). For111

example, the description for GO (Gene Ontology) 112

dataset is: "An ontology for describing the function 113

of genes and gene products." 114

2.2 Task: zero-shot definition generation 115

Let G = {G1, G2, ...GN} denote N graphs. For 116

each graph G = {V, E ,X,Y,d}, V is a set of 117

nodes, E is a set of edges, d is the description 118

sentence for the graph G. Each node is associated 119

with a terminology xi ∈ X and a definition yi ∈ Y. 120

Both xi and yi are token sequences. We then split 121

the meta-set G into Gtrain , Gvalid and Gtest. A 122

zero-shot definition generation model is trained on 123

Gtrain and Gvalid to adapt to the task of definition 124

generation in Gtest with no definition samples in 125

each graph G ∈ Gtest. 126

2.3 Definition generation with prompting 127

Definition generation problems can be solved in 128

the framework of using prefix prompts together 129

with pre-trained auto-regressive language models 130

such as GPT and BART(Lewis et al., 2019). In 131

our task, the prefix prompt should consider infor- 132

mation of terminology text, neighbor ontology and 133

description text. The prompting text should be 134

similar to what one would typically write and in 135

accordance with the real biomedical facts corre- 136

sponding to ontology hierarchy. We came up with 137

the following manually crafted prompt in Table 1, 138

in which [term] is the terminology text, [def] is 139

the definition text of the biomedical ontology and 140
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Methods Xprompt Yprompt

Manual
[Term] is in [Desc]. Concat([Term] is a [Parent-1],...[Term]
is a [Parent-m]). Concat( [Child-1] is a [Term],...[Child-n] is
a [Term]). The definition of [Term] is

[Def]

AutoGraphex
[Term] [T] [T] [Desc]. Concat([Term] [T] [T] [Parent-
1],...[Term] [T] [T] [Parent-m]). Concat( [Child-1] [T] [T]
[Term],...[Child-n] [T] [T] [Term]). [T] [T] [T] [Term] [T]

[Def]

Table 1: Manually crafted prompt templates and the prompt templates used by AUTOGRAPHEX.

[desc] is the description text of the DAG that the141

biomedical ontology belongs to. Each ontology142

node has several parent nodes , indicating the cur-143

rent node belongs to its parent ontology node, and144

several child nodes that belong to the ontology of145

the current node. We use [parent-i] and [child-i]146

to represent the terminology text of parent nodes147

and child nodes. Formally, our pre-trained auto-148

regressive language model optimizes the following149

loss L in the training stage:150

L =
∏

x∈Xp,y∈Yp

pM (y|x) (1)151

where Xp and Yp are the prompt dataset after152

applying the templates on the training dataset, and153

pM is the language model loss.154

The pre-trained weights of large auto-regressive155

models are available, but these models are not pre-156

trained on general biomedical corpus. People have157

proposed masked language models and other rep-158

resentation learning models pre-trained on scien-159

tific publications(Gu et al., 2020; Lee et al., 2020b;160

Beltagy et al., 2019; Cohan et al., 2020); however,161

these models are not appropriate for text genera-162

tion tasks. To tackle this challenge, we trained163

our language model on the training split Gtrain and164

the validation split Gvalid of the meta-set using the165

manually crafted prompt mentioned above. In the166

test stage, we remove the [def] sentence and let the167

language model generate sentences conditioned on168

the prompt. We compared this prompt with sev-169

eral other choices and achieved best performance170

among them. However, the possible search space171

for prompts is large, and we were only able to test a172

few comparison prompt templates. Hence, we rely173

on automatic prompt search to address the issue174

next.175

2.4 Model: AUTOGRAPHEX176

The idea of AUTOGRAPHEX is to first create177

prompt templates with trigger tokens, and then178

fill the trigger tokens with real subword tokens 179

that maximize the likelihood on training dataset. 180

Based on the automatic prompts searching work 181

on Masked Language Models (MLMs)(Shin et al., 182

2020), we employ a gradient-based subword search 183

strategy on the auto-regressive model. First, we 184

construct the following template based on the 185

prompt template proposed in subsection 2.3 by re- 186

placing manually crafted words with trigger tokens 187

in Table 1. We use [T] to represent trigger tokens 188

in the template, and initialize these tokens with the 189

words in manually created templates. These trigger 190

tokens are then updated iteratively by swapping 191

trigger tokens with the tokens in the vocabulary. 192

We select the candidate token through maximizing 193

the cosine similarity of the candidate tokens em- 194

bedding and the gradient vector with respect to the 195

trigger token embedding. Formally, we have: 196

Vcand = maxω∈V(ω
T∇ωt log(p(xprompt))) (2) 197

where ω is the embedding of the candidate token, 198

ωt is the gradient of log-likelihood loss function 199

with respect to the embedding vector of the trigger 200

tokens, p is the language model loss and xprompt 201

is the prompt text. Then we replace the trigger 202

token with the candidate token and calculate the 203

language model loss to decide whether to use the 204

token or not. After several iterations, all of the 205

candidate tokens are fixed and this prompt is used 206

for definition generation in the test stage. 207

3 Experimental Results 208

3.1 Baselines 209

We compared our methods with G-META (Huang 210

and Zitnik, 2020) and GRAPHEX (Liu et al., 211

2021b). 212

G-META is a meta-learning algorithm for graphs. 213

It uses local subgraphs to transfer subgraph-specific 214

information and learn transferable knowledge faster 215
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Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR NIST
G-meta 20.21 15.36 13.24 9.82 7.63 0.21

Graphex(Supervised) 34.35 26.97 22.99 20.21 16.57 1.15
Prompting 69.85 69.02 67.13 66.37 87.94 11.94

AutoGraphex 74.63 74.09 73.59 72.53 90.25 15.62

Table 2: Comparison of the zero-shot definition generation performance of AUTOGRAPHEX against baselines in
terms of BLEU, METEOR and NIST score.

via meta gradients based on MAML(Finn et al.,216

2017). Note that G-META cannot be used on text217

generation task directly, so we implemented a trans-218

former version of G-META under its framework as219

G-META is model-agnostic (Vaswani et al., 2017).220

GRAPHEX is a supervised graph-aware defini-221

tion generation approach. It first calculates the222

global semantic embedding through propagating223

terminology and definition on the graph, and then224

obtains a local embedding of the specific terminol-225

ogy. GRAPHEX uses transformer as its text gener-226

ation model and uses BIOBERT as its pre-trained227

text encoder(Lee et al., 2020b).228

3.2 Experimental Setup229

We compared our methods and baselines meth-230

ods on GRAPHINE-ZERO. We used 118 DAGs231

as the training dataset, 22 DAGs as the validation232

dataset and 71 DAGs as the test dataset. As we233

removed similar terminology in different DAGs,234

GRAPHINE-ZERO has only 1,366,064 terminology235

definition pairs. The smallest 5 DAGs only in-236

clude 17, 40, 41, 45 and 92 terminology definition237

pairs, while the largest 5 DAGs includes 34,002,238

43,795, 114,062, 121,610 and 321,860 pairs, indi-239

cating the data quantity in different biomedical sub-240

disciplines are severely unbalanced. Meta-learning241

and few-shot learning methods may fail to general-242

ize well in unbalanced and out-of-distribution data243

regimes(Lee et al., 2020a).244

We used several machine translation metrics for245

performance comparison. We used six standard246

metrics including BLEU1-4, METEOR and NIST247

(Papineni et al., 2002) (Banerjee and Lavie, 2005)248

(Doddington, 2002). BLEU measures the n-gram249

similarities between generated and reference sen-250

tences. METEOR considers synonyms when com-251

paring unigram and using F1 score instead of pre-252

cision used in BLEU. NIST re-weights words by253

frequency when matching n-gram overlap to adjust254

the contribution of common words.255

We selected BART as our pre-trained auto-256

regressive model(Lewis et al., 2019). Our im- 257

plementation followed the parameters of BART- 258

LARGE given in the original paper, with 24 layers, 259

16 heads and 1024 hidden dimensions. The training 260

process on our meta training and validation dataset 261

took 1 day on 2 Nvidia-3090 GPUs. 262

3.3 Results 263

We can discover in Table 2 that pre-trained lan- 264

guage model prompting methods significantly out- 265

performed meta-learning baseline and supervised 266

learning baseline. Pre-trained models with man- 267

ually crafted prompts obtained performance im- 268

provement of 46.16, 71.37 and 10.79 in terms of 269

BLEU-4, METEOR and NIST score. Further- 270

more, our model AUTOGRAPHEX outperformed 271

manual prompting methods by 9.3%, 2.6% and 272

30.8% in terms of BLEU-4, METEOR and NIST 273

score. These results showed that AUTOGRAPHEX 274

improves the quality of the generated definition to 275

a large scale. 276

4 Conclusion 277

In this work, we tackled the challenge of biomed- 278

ical definition generation through introducing a 279

zero-shot definition generation dataset, GRAPHINE- 280

ZERO, and a pre-trained language model with auto- 281

matic prompting mechanism, AUTOGRAPHEX. We 282

examined the performance of AUTOGRAPHEX on 283

GRAPHINE-ZERO and experimental results showed 284

that our method significantly outperformed base- 285

line methods. Experimental results also demon- 286

strated that fully supervised learning methods may 287

fail to perform well in small data regimes, which 288

could be a more realistic scenario. AUTOGRAPHEX 289

can effectively utilize cross domain similarities in 290

definition sentence structure and recognize text de- 291

scriptions on various biomedical subdisciplines, 292

suggesting that it would be more applicable in real 293

definition generation tasks which suffer from the 294

problem of scarce labelled data. 295

4



References296

Darrin Baines and RJ Elliott. 2020. Defining misin-297
formation, disinformation and malinformation: An298
urgent need for clarity during the covid-19 infodemic.299
Discussion Papers.300

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An301
automatic metric for mt evaluation with improved cor-302
relation with human judgments. Proceedings of the303
ACL workshop on intrinsic and extrinsic evaluation304
measures for machine translation and/or summariza-305
tion, 2005.306

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-307
ert: A pretrained language model for scientific text.308
EMNLP-IJCNLP, pages 3615–3620.309

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie310
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind311
Neelakantan, Pranav Shyam, Girish Sastry, Amanda312
Askell, Sandhini Agarwal, Ariel Herbert-Voss,313
Gretchen Krueger, Tom Henighan, Rewon Child,314
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,315
Clemens Winter, Christopher Hesse, Mark Chen, Eric316
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,317
Jack Clark, Christopher Berner, Sam McCandlish,318
Alec Radford, Ilya Sutskever, and Dario Amodei.319
2020. Language models are few-shot learners. NIPS.320

James J Cimino, Paul D Clayton, George Hripcsak,321
and Stephen B Johnson. 1994. Knowledge-based322
approaches to the maintenance of a large controlled323
medical terminology. Journal of the American Medi-324
cal Informatics Association, 1(1):35–50.325

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug326
Downey, and Daniel S. Weld. 2020. SPECTER:327
Document-level Representation Learning using328
Citation-informed Transformers. In ACL.329

George Doddington. 2002. Automatic evaluation of ma-330
chine translation quality using n-gram co-occurrence331
statistics. HLT 2002.332

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.333
Model-agnostic meta-learning for fast adaptation of334
deep networks. ICML 2017.335

Tianyu Gao, Adam Fischz, and Danqi Chen. 2021.336
Making pre-trained language models better few-shot337
learners. ACL 2021.338

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto339
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng340
Gao, and Hoifung Poon. 2020. Domain-specific lan-341
guage model pretraining for biomedical natural lan-342
guage processing. arXiv preprint arXiv:2007.15779.343

Kexin Huang and Marinka Zitnik. 2020. Graph meta344
learning via local subgraphs. NeurIPS 2020.345

Simon Jupp, Tony Burdett, Catherine Leroy, and He-346
len E Parkinson. 2015. A new ontology lookup ser-347
vice at embl-ebi. In SWAT4LS, pages 118–119.348

Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon 349
Kim, Minseop Park, Eunho Yang, and Sung Ju 350
Hwang. 2020a. Learning to balance: Bayesian meta- 351
learning for imbalanced and out-of-distribution tasks. 352
In International Conference on Learning Representa- 353
tions. 354

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon 355
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 356
2020b. Biobert: a pre-trained biomedical language 357
representation model for biomedical text mining. 358
Bioinformatics, 36(4):1234–1240. 359

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 360
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 361
and Ves Stoyanovand Luke Zettlemoyer. 2019. Bart: 362
Denoising sequence-to-sequence pre-training for nat- 363
ural language generation, translation, and compre- 364
hension. arXiv preprint arXiv:1910.13461. 365

Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, and 366
Pascale Fung. 2019. Personalizing dialogue agents 367
via meta-learning. ACL 2019. 368

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 369
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre- 370
train, prompt, and predict: A systematic survey of 371
prompting methods in natural language processing. 372
ArXiv, abs/2107.13586. 373

Zequn Liu, Shukai Wang, Yiyang Gu, Ruiyi Zhang, 374
Ming Zhang, and Sheng Wang. 2021b. Graphine: A 375
dataset for graph-aware terminology definition gener- 376
ation. EMNLP 2021. 377

Natalya F Noy, Nigam H Shah, Patricia L Whetzel, Ben- 378
jamin Dai, Michael Dorf, Nicholas Griffith, Clement 379
Jonquet, Daniel L Rubin, Margaret-Anne Storey, 380
Christopher G Chute, et al. 2009. Bioportal: on- 381
tologies and integrated data resources at the click of a 382
mouse. Nucleic acids research, pages W170–W173. 383

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 384
Jing Zhu. 2002. Bleu: a method for automatic evalu- 385
ation of machine translation. ACL 2002. 386

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 387
Dario Amodei, and Ilya Sutskever. 2019. Language 388
models are unsupervised multitask learners. Techni- 389
cal report. 390

Timo Schick and Hinrich Schütze. 2021. Few-shot text 391
generation with natural language instructions. In 392
EMNLP. 393

Ronald Seoh, Ian Birle, Mrinal Tak, Haw-Shiuan Chang, 394
Brian Pinette, and Alfred Hough. 2021. Open aspect 395
target sentiment classification with natural language 396
prompts. EMNLP 2021. 397

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, 398
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 399
Eliciting knowledge from language models with au- 400
tomatically generated prompts. EMNLP 2020. 401

5

https://openreview.net/forum?id=rkeZIJBYvr
https://openreview.net/forum?id=rkeZIJBYvr
https://openreview.net/forum?id=rkeZIJBYvr


Barry Smith, Michael Ashburner, Cornelius Rosse,402
Jonathan Bard, William Bug, Werner Ceusters,403
Louis J Goldberg, Karen Eilbeck, Amelia Ire-404
land, and Christopher J Mungall. 2007. The obo405
foundry: coordinated evolution of ontologies to sup-406
port biomedical data integration. Nature biotechnol-407
ogy.408

Yiping Song, Zequn Liu, Wei Bi, Rui Yan, and Ming409
Zhang. 2020. Learning to customize model structures410
for few-shot dialogue generation tasks. ACL 2020.411

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob412
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz413
Kaiser, and Illia Polosukhin. 2017. Attention is all414
you need. NIPS 2017.415

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-416
marking zero-shot text classification: Datasets, eval-417
uation and entailment approach. In Proceedings of418
the 2019 Conference on Empirical Methods in Natu-419
ral Language Processing and the 9th International420
Joint Conference on Natural Language Processing421
(EMNLP-IJCNLP), pages 3914–3923, Hong Kong,422
China. Association for Computational Linguistics.423

6

https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404

