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Abstract

Describing terminologies with definition texts
is an important step towards understanding
the scientific literature, especially for domains
with limited labeled terminologies. Previous
works have sought to design supervised neural
text generation models to solve the biomedi-
cal terminology generation task, but most of
them failed to define never-before-seen termi-
nologies in newly emerging research fields.
Here, we tackle this challenge by introducing
a zero-shot definition generation model based
on prompting, a recent approach for eliciting
knowledge from pre-trained language models,
with automatically generated prompts. Fur-
thermore, we enhanced the biomedical termi-
nology dataset by adding descriptive texts to
each biomedical subdiscipline, thus enabling
zero-shot learning scenarios. Our model out-
performed existing supervised baseline and the
baseline pre-trained language model that em-
ploys manually crafted prompts by up to 52 and
6 BLEU score, respectively.

1 Introduction

Describing new terminologies has become a task
of great significance in scientific research, as ex-
pert curated definitions cannot scale to the rapidly
emerging terminologies, especially in new research
topics(Cimino et al., 1994). Prior works have
sought to generate biomedical definitions via neural
text generation models(Liu et al., 2021b), leverag-
ing both the terminology text and the terminology
relation graph. However, these methods focus on
designing supervised learning models by assuming
the availability of sufficient annotated terminology
text in every scientific subdiscipline, which is sel-
dom the case. In many newly emerging research
topics, such as COVID-19, people have very few
expert curated definitions, hindering the usage of
those fully supervised learning models(Baines and
Elliott, 2020). On the other hand, large amounts
of gold definitions are available in some other re-

search domains, and descriptive texts of scientific
subdisciplines are widely accessible.

To form a more realistic setting, we propose our
task as zero-shot definition text generation, similar
to Zero-shot text classification (ZSC) to classify
text using label descriptions without any exam-
ples(Yin et al., 2019). In the past, lines of few-shot
text generation models have been proposed to ad-
dress this task(Lin et al., 2019; Song et al., 2020;
Schick and Schiitze, 2021); however, most of these
models fail to fully leverage the language models
pre-trained on massive amounts of raw text. Re-
cently, prompting has become a popular approach
among the NLP community to elicit knowledge
from large language models, allowing for direct per-
formance of few-shot and zero-shot learning(Seoh
et al., 2021; Gao et al., 2021; Brown et al., 2020;
Liu et al., 2021a). For instance, text summariza-
tion can be formalized as a language model task by
adding "TL; DR" to the end of an article(Radford
et al., 2019). Unfortunately, it is challenging to
manually acquire prompts, and these prompts are
likely to be sub-optimal. Hence, people have intro-
duced automatic prompts generating tools in order
to overcome the need of human crafted prompts
template(Shin et al., 2020).

In this paper, we propose a zero-shot biomedical
definition generation dataset GRAPHINE-ZERO and
a biomedical definition generation model AUTO-
GRAPHEX. An overview of our method is shown
in Figure 1. We introduced GRAPHINE-ZERO by
removing the intersected terminologies of indepen-
dent graphs in GRAPHINE and collecting dataset
descriptions from biomedical ontology databases
for each graph. Our model, AUTOGRAPHEX, gen-
erates definitions in a particular biomedical sub-
discipline without any training data. Specifically,
AUTOGRAPHEX only leverages descriptive texts
in the target subdiscipline and expert-curated def-
inition texts in other biomedical domains. Given
a pre-trained language model, it appends prompts
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Figure 1: An overview of AUTOGRAPHEX. The input terminology text from an ontology graph is first transformed
into prompts based on the template, which serve as input to the language model to generate the definition text.
AUTOGRAPHEX selects candidate token based on the cosine similarity between its embedding vector and the
gradient with respect to trigger token. This process is carried out iteratively to select the best candidate tokens.

that consist of the dataset description, terminol-
ogy text, neighbour biomedical ontology regarding
the graph and a collection of trigger tokens. Fur-
thermore, AUTOGRAPHEX uses a gradient-based
prompts search method to automatically select sub-
words for predicting those trigger tokens. Besides,
we validate the effectiveness of AUTOGRAPHEX
with several machine translation metrics includ-
ing BLEU, METEOR and NIST. Concretely, AU-
TOGRAPHEX outperformed supervised baseline,
GRAPHEX, by 52.32, 73.18 and 14.47 in terms
of BLEU score, METEOR score and NIST score
(Table 2).

2 Methods

2.1 Dataset: GRAPHINE-ZERO

Graphine dataset consists of 2,010,648 biomedi-
cal terminology definition pairs encapsulated in
227 directed acyclic graphs (DAGs)(Liu et al.,
2021b). Each edge in the DAGs represents an
is-a relation between two nodes. We created our
dataset GRAPHINE-ZERO based on GRAPHINE by
removing the intersected terminologies in different
graphs, leaving 211 DAG:s, to set different DAGs
as independent tasks in zero-shot learning. We
further obtain descriptions for each DAG from on-
tology databases, Open Biological and Biomedical
Ontology Foundry (OBO)(Smith et al., 2007), Bio-
Portal and EMBL-EBI Ontology Lookup Service
(OLS)(Noy et al., 2009; Jupp et al., 2015). For

example, the description for GO (Gene Ontology)
dataset is: "An ontology for describing the function
of genes and gene products.”

2.2 Task: zero-shot definition generation

Let G = {G1,Ga,...GN} denote N graphs. For
each graph G = {V,&£,X,Y,d}, V is a set of
nodes, £ is a set of edges, d is the description
sentence for the graph G. Each node is associated
with a terminology x; € X and a definitiony; € Y.
Both z; and y; are token sequences. We then split
the meta-set G into Girain » Guatia and Giest. A
zero-shot definition generation model is trained on
Girain and G454 to adapt to the task of definition
generation in Gy with no definition samples in
each graph G € Gyest.

2.3 Definition generation with prompting

Definition generation problems can be solved in
the framework of using prefix prompts together
with pre-trained auto-regressive language models
such as GPT and BART(Lewis et al., 2019). In
our task, the prefix prompt should consider infor-
mation of terminology text, neighbor ontology and
description text. The prompting text should be
similar to what one would typically write and in
accordance with the real biomedical facts corre-
sponding to ontology hierarchy. We came up with
the following manually crafted prompt in Table 1,
in which [term]| is the terminology text, [def] is
the definition text of the biomedical ontology and



Methods X prompt Y prompt
[Term| is in [Desc|. Concat(|Term] is a [Parent-1],...[Term)]
Manual is a [Parent-m]|). Concat( [Child-1] is a [Term)],...[Child-n| is [Def]
a [Term|). The definition of [Term)] is
[Term| [T] [T] [Desc|]. Concat(|[Term| [T| [T] [Parent-
AutoGraphex | 1],...[Term| |T] [T] [Parent-m|). Concat( [Child-1| [T] [T] [Def]
[Term],...[Child-n] [T] [T] [Term]). [T] [T] [T] [Term] [T]

Table 1: Manually crafted prompt templates and the prompt templates used by AUTOGRAPHEX.

[desc] is the description text of the DAG that the
biomedical ontology belongs to. Each ontology
node has several parent nodes , indicating the cur-
rent node belongs to its parent ontology node, and
several child nodes that belong to the ontology of
the current node. We use [parent-i| and [child-i]
to represent the terminology text of parent nodes
and child nodes. Formally, our pre-trained auto-
regressive language model optimizes the following
loss £ in the training stage:

c= 11

z€Xp,YeY)p

pu(ylz) (1)

where X, and Y}, are the prompt dataset after
applying the templates on the training dataset, and
pas 1s the language model loss.

The pre-trained weights of large auto-regressive
models are available, but these models are not pre-
trained on general biomedical corpus. People have
proposed masked language models and other rep-
resentation learning models pre-trained on scien-
tific publications(Gu et al., 2020; Lee et al., 2020b;
Beltagy et al., 2019; Cohan et al., 2020); however,
these models are not appropriate for text genera-
tion tasks. To tackle this challenge, we trained
our language model on the training split G4, and
the validation split G,,;;4 of the meta-set using the
manually crafted prompt mentioned above. In the
test stage, we remove the [def] sentence and let the
language model generate sentences conditioned on
the prompt. We compared this prompt with sev-
eral other choices and achieved best performance
among them. However, the possible search space
for prompts is large, and we were only able to test a
few comparison prompt templates. Hence, we rely
on automatic prompt search to address the issue
next.

2.4 Model: AUTOGRAPHEX

The idea of AUTOGRAPHEX is to first create
prompt templates with trigger tokens, and then

fill the trigger tokens with real subword tokens
that maximize the likelihood on training dataset.
Based on the automatic prompts searching work
on Masked Language Models (MLMs)(Shin et al.,
2020), we employ a gradient-based subword search
strategy on the auto-regressive model. First, we
construct the following template based on the
prompt template proposed in subsection 2.3 by re-
placing manually crafted words with trigger tokens
in Table 1. We use |T] to represent trigger tokens
in the template, and initialize these tokens with the
words in manually created templates. These trigger
tokens are then updated iteratively by swapping
trigger tokens with the tokens in the vocabulary.
We select the candidate token through maximizing
the cosine similarity of the candidate tokens em-
bedding and the gradient vector with respect to the
trigger token embedding. Formally, we have:

Veand = maxwev(wvat IOg(p(Xprompt))) (2)

where w is the embedding of the candidate token,
w; is the gradient of log-likelihood loss function
with respect to the embedding vector of the trigger
tokens, p is the language model loss and Xpompt
is the prompt text. Then we replace the trigger
token with the candidate token and calculate the
language model loss to decide whether to use the
token or not. After several iterations, all of the
candidate tokens are fixed and this prompt is used
for definition generation in the test stage.

3 Experimental Results

3.1 Baselines

We compared our methods with G-META (Huang
and Zitnik, 2020) and GRAPHEX (Liu et al.,
2021b).

G-META is a meta-learning algorithm for graphs.
It uses local subgraphs to transfer subgraph-specific
information and learn transferable knowledge faster



Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR NIST
G-meta 20.21 15.36 13.24 9.82 7.63 0.21
Graphex(Supervised) | 34.35 26.97 22.99 20.21 16.57 1.15
Prompting 69.85 69.02 67.13 66.37 87.94 11.94
AutoGraphex 74.63 74.09 73.59 72.53 90.25 15.62

Table 2: Comparison of the zero-shot definition generation performance of AUTOGRAPHEX against baselines in

terms of BLEU, METEOR and NIST score.

via meta gradients based on MAMUL(Finn et al.,
2017). Note that G-META cannot be used on text
generation task directly, so we implemented a trans-
former version of G-META under its framework as
G-META is model-agnostic (Vaswani et al., 2017).

GRAPHEX is a supervised graph-aware defini-
tion generation approach. It first calculates the
global semantic embedding through propagating
terminology and definition on the graph, and then
obtains a local embedding of the specific terminol-
ogy. GRAPHEX uses transformer as its text gener-
ation model and uses BIOBERT as its pre-trained
text encoder(Lee et al., 2020b).

3.2 Experimental Setup

We compared our methods and baselines meth-
ods on GRAPHINE-ZERO. We used 118 DAGs
as the training dataset, 22 DAGs as the validation
dataset and 71 DAGs as the test dataset. As we
removed similar terminology in different DAGs,
GRAPHINE-ZERO has only 1,366,064 terminology
definition pairs. The smallest 5 DAGs only in-
clude 17, 40, 41, 45 and 92 terminology definition
pairs, while the largest 5 DAGs includes 34,002,
43,795, 114,062, 121,610 and 321,860 pairs, indi-
cating the data quantity in different biomedical sub-
disciplines are severely unbalanced. Meta-learning
and few-shot learning methods may fail to general-
ize well in unbalanced and out-of-distribution data
regimes(Lee et al., 2020a).

We used several machine translation metrics for
performance comparison. We used six standard
metrics including BLEU1-4, METEOR and NIST
(Papineni et al., 2002) (Banerjee and Lavie, 2005)
(Doddington, 2002). BLEU measures the n-gram
similarities between generated and reference sen-
tences. METEOR considers synonyms when com-
paring unigram and using F1 score instead of pre-
cision used in BLEU. NIST re-weights words by
frequency when matching n-gram overlap to adjust
the contribution of common words.

We selected BART as our pre-trained auto-

regressive model(Lewis et al., 2019). Our im-
plementation followed the parameters of BART-
LARGE given in the original paper, with 24 layers,
16 heads and 1024 hidden dimensions. The training
process on our meta training and validation dataset
took 1 day on 2 Nvidia-3090 GPUs.

3.3 Results

We can discover in Table 2 that pre-trained lan-
guage model prompting methods significantly out-
performed meta-learning baseline and supervised
learning baseline. Pre-trained models with man-
ually crafted prompts obtained performance im-
provement of 46.16, 71.37 and 10.79 in terms of
BLEU-4, METEOR and NIST score. Further-
more, our model AUTOGRAPHEX outperformed
manual prompting methods by 9.3%, 2.6% and
30.8% in terms of BLEU-4, METEOR and NIST
score. These results showed that AUTOGRAPHEX
improves the quality of the generated definition to
a large scale.

4 Conclusion

In this work, we tackled the challenge of biomed-
ical definition generation through introducing a
zero-shot definition generation dataset, GRAPHINE-
ZERO, and a pre-trained language model with auto-
matic prompting mechanism, AUTOGRAPHEX. We
examined the performance of AUTOGRAPHEX on
GRAPHINE-ZERO and experimental results showed
that our method significantly outperformed base-
line methods. Experimental results also demon-
strated that fully supervised learning methods may
fail to perform well in small data regimes, which
could be a more realistic scenario. AUTOGRAPHEX
can effectively utilize cross domain similarities in
definition sentence structure and recognize text de-
scriptions on various biomedical subdisciplines,
suggesting that it would be more applicable in real
definition generation tasks which suffer from the
problem of scarce labelled data.
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