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a b s t r a c t

Complex-valued neural networks have attracted increasing attention in recent years, while it re-
mains open on the advantages of complex-valued neural networks in comparison with real-valued
networks. This work takes one step on this direction by introducing the complex-reaction network
with fully-connected feed-forward architecture. We prove the universal approximation property for
complex-reaction networks, and show that a class of radial functions can be approximated by a
complex-reaction network using the polynomial number of parameters, whereas real-valued networks
need at least exponential parameters to reach the same approximation level. For empirical risk
minimization, we study the landscape and convergence of complex gradient descents. Our theoretical
result shows that the critical point set of complex-reaction networks is a proper subset of that of
real-valued networks, which may show some insights on finding the optimal solutions more easily for
complex-reaction networks.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Deep neural networks have become a mainstream model of
eep learning (LeCun, Bengio, & Hinton, 2015) during the past
ecades, mostly working with real-valued neural networks. For
xample, great progresses have been made for real-valued neu-
al networks in many real applications such as computer vi-
ion (Krizhevsky, Sutskever, & Hinton, 2012), speech recogni-
ion (Graves, Mohamed, & Hinton, 2013; Sutskever, Vinyals, &
e, 2014), machine translation (Bahdanau, Cho, & Bengio, 2014),
tc. Theoretical studies have also attracted much attention on
he deep understanding of real-valued neural networks, including
niversal approximation (Barron, 1994; Funahashi, 1989; Hornik,
991; Kidger & Lyons, 2020; Leshno, Lin, Pinkus, & Schocken,
993; Lu, Pu, Wang, Hu, & Wang, 2017; Sun, Chen, Wang, Liu, &
iu, 2016), optimization dynamics (Allen-Zhu, Li, & Song, 2019;
auphin et al., 2014; Du, Lee, Li, Wang, & Zhai, 2019; Poggio,
anburski, & Liao, 2020), generalization (Hardt, Recht, & Singer,
016; Zhang, Bengio, Hardt, Recht, & Vinyals, 2017), neural tan-
ent kernel (Arora, Du, Hu, Li, & Wang, 2019; Du, Zhai, Poczos, &
ingh, 2018; Jacot, Gabriel, & Hongler, 2018), etc.
Recent years have also witnessed an increasing interest on

omplex-valued neural networks. Hirose and Yoshida (2012) in-
roduced the complex-valued neural networks with amplitude–
hase-type activation function, and showed better generalization
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than real-valued networks in the fitting interpolation of temporal
signals. Tygert et al. (2016) simulated the complex-valued con-
volution operations from the perspective of wavelets. Danihelka,
Wayne, Uria, Kalchbrenner, and Graves (2016) presented faster
learning by adding some complex-valued modules to the re-
current architecture. Some studies showed that complex-valued
neural networks can surpass their real-valued contenders in some
applications, such as vision (Koenderink, van Doorn, & Gegenfurt-
ner, 2021; Oyallon & Mallat, 2015; Virtue, Stella, & Lustig, 2017;
Worrall, Garbin, Turmukhambetov, & Brostow, 2017), NLP (Trouil-
lon, Welbl, Riedel, Gaussier, & Bouchard, 2016), signal process-
ing (Adali, Schreier, & Scharf, 2011; Hirose & Yoshida, 2011,
2012), MRI fingerprinting (Virtue et al., 2017), time series fore-
casting (Burkard, Zimmermann, & Schwarzer, 2021; Wolter & Yao,
2018; Zhang & Zhou, 2021), etc.

From the theoretical perspective, Voigtlaender (2020) took
an important step on the universal approximation of shallow
and deep complex-valued networks, and similar to real-valued
networks, complex-valued neural networks could achieve uni-
versal approximation with exponential depth or width (Arena,
Fortuna, Re, & Xibilia, 1993, 1995; Voigtlaender, 2020). Several re-
searchers made efforts on optimization dynamics, e.g., all critical
points are proven to be saddle points, which are generated from
the hierarchical structure of complex-valued networks (Nitta,
2002, 2013), and Adali et al. (2011) showed that complex-valued
networks have no bad local minima as for fitting low-degree poly-
nomials. Despite promising theoretical progress, the advantages
or killer areas of complex-valued neural networks are not yet
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ell understood theoretically compared to the existing network
odels.
This work presents theoretical understandings on the ad-

antages of complex-valued networks in comparison with real-
alued ones. We investigate a practical complex-valued neural
etwork with fully-connected feed-forward architecture from the
erspectives of approximation and optimization dynamics. The
ain theoretical results can be summarized as follows:

• For approximation, we show that the complex-reaction net-
work has universal approximation property in Theorem 1.

• We prove that a kind of radial functions can be approxi-
mated by a complex-reaction network with a polynomial
number of parameters, whereas the real-valued network
cannot arrive at the same approximation level even with
exponential (O(C1(2d+ 1)eC1(2d))) parameters for some con-
stant C > 0, where 2d denotes the input dimension. This
conclusion is shown in Theorem 2.

• For optimization dynamics, we consider the empirical risk
minimization based on the standard gradient descent algo-
rithm, and provide a corresponding convergence analysis in
Theorem 3.

• We prove that the critical point set of complex-reaction
networks is a proper subset of that of real-valued net-
works in Theorem 4, which may shed some insights on
finding optimal solutions more easily for complex-reaction
networks.

The rest of this paper is organized as follows. Section 2 in-
troduces the preliminaries and notations. Section 3 presents the
approximation analysis of complex-reaction networks. Section 4
studies the optimization dynamics of complex-reaction networks.
Section 5 discusses with future issues. Section 6 concludes this
work.

2. Preliminaries

We start our work by introducing the Complex-Reaction Net-
work with fully-connected feed-forward architecture. Let z =

1 + z2i be a complex number where i =
√

−1 and z1, z2 ∈ R. We
denote by z̄ = z1 − z2i and |z|2 = z21 + z22 . Let [·]R and [·]I denote
the operators on the extraction of real and imaginary parts from
a complex-valued formation, respectively, for examples, [z1 +

z2i]R = z1 and [z1 + z2i]I = z2.
Generally, we consider the real-valued data including instances

and labels, as the works of Hirose and Yoshida (2012), Trabelsi
et al. (2018), Wolter and Yao (2018). For complex-valued for-
mation, we enable the first d feature maps to represent the real
components and the remaining d to record the imaginary ones,
which has been implemented by Trabelsi et al. (2018). Hence,
the basic building block of a complex-reaction network can be
formalized as

τ : Cd
→ C, z ↦→ σcr (w⊤z)

where w ∈ Cd denotes the connection weights and σcr is a
complex-valued activation function. In this work, we employ the
zReLU function (Trabelsi et al., 2018; Zhang & Zhou, 2021) as
activation σcr

zReLU(z) =

{
z, if θz ∈ [0, π/2] ∪ [π, 3π/2],
0, otherwise.

Thus, for α ∈ R+, we have the following complex-homogeneity
property

σcr (z) =
∂σcr (z) z and σcr (αz) = ασcr (z).
∂z
81
We also employ a pure linear connection as the final layer and
extract the real part as the outputs. Thus, we have established the
Complex-Reaction Network, denoted by fCR : Cd

→ R.
Notice that a fully-connected complex-reaction network with

one-hidden layer has l(d+m) complex-valued connection weights,
which is equivalent to 2l(d + m) real-valued connection weights,
where l and m denote the number of neurons in hidden and
output layers, respectively. Notice that we focus on the number
of ‘‘real-valued’’ parameters when one mentions the number
of parameters in complex-reaction networks. Besides, provided
homogeneous activation functions, for a, b ∈ C, we have⎧⎪⎪⎨⎪⎪⎩
[

∂ fCR(a · b)
∂b

]
R

=
∂[fCR(a · b)]R

∂[b]R
=

∂[fCR(a · b)]I
∂[b]I

,[
∂ fCR(a · b)

∂b

]
I
=

∂[fCR(a · b)]I
∂[b]R

= −
∂[fCR(a · b)]R

∂[b]I
.

(1)

Finally, we introduce the some notations. Let [N] = {1, 2, . . . ,
} be the set for an integer N > 0. Given a function g(n), we

denote by h1(n) = Θ(g(n)) if there exist positive constants c1, c2
nd n0 such that c1g(n) ≤ h1(n) ≤ c2g(n) for every n ≥ n0; we
lso denote by h2(n) = O(g(n)) if there exist positive constants c
nd n0 such that h2(n) ≤ cg(n) for every n ≥ n0.
For w ∈ Cn and W ∈ Cn×m, we denote by

w∥2
def
=

(
n∑

i=1

|wi|
2

)1/2

and ∥W∥2
def
=

⎛⎝ n∑
i=1

m∑
j=1

|wij|
2

⎞⎠1/2

he ‘entry-wise’ vector norm and matrix norm, respectively.
We say that f is a radial function if f (x) = f (x′) for ∥x∥ = ∥x′

∥.
et φ2(x) be the density function of some probability measure µ,
hich satisfies∫
x∈R2d

φ2(x) dx =

∫
x∈B

1 dx = 1, (2)

here B is a unit ball. Then, for continuous functions f , g , we have
he following equalities under Fourier transform

f̂ φ − ĝφ∥L2(µ) = ∥f φ − gφ∥L2(µ), (3)

nd

φ̂ = f̂ ∗ φ̂, for the convolution operator ∗ .

. Approximation

In this section, we first present the universal approximation
or the complex-reaction network, which assures its legitimacy,
nd then, show the approximation complexity advantages of
omplex-reaction networks over the real-valued ones.
We now present the universal approximation for complex-

eaction networks as follows.

heorem 1. For zReLU activation function, the complex-reaction
etwork with one-hidden layer fCR : Cd

→ R is a universal
pproximator for any continuous function f : R2d

→ R, where
∼= R2.

Theorem 1 shows that complex-reaction networks have the
niversal approximation property, similar to that of the real-
alued networks. This theorem can be easily derived from (Voigt-
aender, 2020, Theorem 1.3), where a shallow complex-valued
eural network has the universal approximation property, and we
mit the detailed proof of Theorem 1.
Next, we present the approximation complexity theorem for

omplex-reaction networks as follows.

heorem 2. For zReLU activation function, there exist a probability
easure µ and a radial function f : R2d

→ R such that
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(i) for any δ > 0, there is a one-hidden-layer complex-reaction
network fCR : Cd

→ R with O((d + 1)(2d)3.75) parameters
such that the followings hold:

Ex∼µ(fCR(x) − f (x))2 < δ,

(ii) there exists a constant δ > 0 such that

Ex∼µ (fR(x) − f (x))2 ≥ δ,

for any one-hidden-layer real-valued network fR : R2d
→ R

with exponential parameter number O(C1(2d+1)eC1(2d)). Here,
C1 is a constant independent to d.

This theorem shows that a kind of radial functions can be
approximated by one-hidden-layer complex-reaction networks of
polynomial parameters, whereas such functions cannot be ap-
proximated by real-valued networks with exponential (O(C1(2d+

)eC1(2d))) parameters.
This proof idea can be summarized as follows. It is observed

hat the zReLU function σcr comprises the radius (i.e., norm)
nd phase (i.e., angle). Thus, there exist some linear connections
including rotation transformations) such that the combination
f some complex-reaction neurons is invariant to rotations. In
ther words, complex-reaction networks can easily and well ap-
roximate some radial functions, see Lemma 2, since the radial
unction is invariant to rotations, and is dependent on the input
orm. On the other hand, provided the probability measure µ

nd corresponding density function φ, defined as Eq. (2), it is
bserved that the composition f φ is radial as well as some radial
unction f . Further, we conjecture that f̂ φ is also a radial function
ccording to Eq. (3) with g ≡ 0. In contrast, the distribution of
he composition fRφ under Fourier transform, corresponding to a
ne-hidden-layer real-valued network fR, is supported on a finite
ollection of lines {w⊤

i x}, i.e.,

upp(f̂Rφ) ⊆

{
x
⏐⏐⏐ ∥x − x′

∥2 ≤ 1, x′
∈

k⋃
i=1

span{wi}

}
.

otice that the Supp(f̂Rφ) is sparse in the Fourier space unless
is an exponential. Thus, a one-hidden-layer real-valued net-
ork within polynomial parameters cannot achieve arbitrarily
pproximation for radial functions.
Based on the ideas above, it is sufficient to provide an approxi-

ation guarantee between the complex-reaction network fCR and
arget function f , that is,

x∼µ(fCR(x) − f (x))2 =

∫
(fCR(x) − f (x))2φ2(x) dx

= ∥(fCR − f )φ∥
2
L2 (µ) = ∥f̂ φ − ĝφ∥

2
L2(µ) ≤ δ.

otivated from Eldan and Shamir (2016), we consider the radial
unction

(x) =

N∑
i=1

ϵifi(x) with fi(x) = 1{∥x∥ ∈ Ωi}, (4)

here ϵi ∈ {−1, +1}, N is a polynomial function of d, and Ωi’s are
isjoint intervals of width O(1/N) on values in the range Θ(

√
2d).

Next, we formally begin our proof of Theorem 2 with some useful
lemmas.

Lemma 1. Let f : [−R, R] → R be an L-Lipschitz function for
constant R > 0. For any δ > 0, Cr ≥ 1, and nr ≤ 2CrLR/δ, there
exists a real-valued network with one-hidden layer fR s.t.

sup |f (x) − fR(x)| ≤ δ.

x∈R2d

82
Specifically, fR : R → R can be given by

fR(x) =

nr∑
i=1

αi σr (βix − bi) − a,

for ReLU or general sigmoidal activation σr and real-valued param-
eters a, {αi, βi, bi}

nr
i=1.

Lemma 1 shows that a one-dimensional L-Lipschitz function
can be approximated by real-valued networks of one-hidden
layer with general sigmoidal or ReLU activations. The detailed
proof of Lemma 1 is given in Appendix A.2.

We now present a crucial lemma for complex-valued net-
works from Lemma 1 as follows.

Lemma 2. Let g : [r, R] → R be an L-Lipschitz function for r ≤ R.
For any δ > 0, Ccr ≥ 1, and ncr ≤ 2CcrdR2L/(

√
rδ), there exists a

complex-reaction network with one-hidden layer fCR s.t.

sup
x∈Cd

|g(∥x∥) − fCR(x)| ≤ δ.

pecifically, fCR : Cd
→ R can be given by

fCR(x) =

[
ncr∑
i=1

vi σcr (wT
i x − bi) − a

]
R

,

for zReLU function σcr and complex-valued parameters a,
{wi, vi, bi}

ncr
i=1.

Proof. Let f ′
: Cd

→ R be a radial function with f ′(x) = |x|. For
any δ > 0 and d ≥ 1, we have

sup
x∈C

⏐⏐⏐f ′(x) − |σcr (wx − b)|
⏐⏐⏐ ≤ δ/2. (5)

We further introduce a new function g ′
: R → R as follows.

g ′(s) =

n′∑
i=1

α′

iσ
′(s) − a′

i,

where σ is the ReLU function and α′

i , a
′

i ∈ R. For Lipschitz
continuous function r

√
· and from Lemma 1, we have

sup
s∈[rk,Rk]

⏐⏐g( k√s) − g ′(s)
⏐⏐ ≤ δ/2, (6)

when n′
≤ C ′L(Rk

− rk)/( k
√
rδ) for some constant C ′ > 0 and

integer k ≥ 2. Given complex-reaction network

CR(x) =

[
ncr∑
i=1

vi σcr (w⊤

i x − bi) − a

]
R

,

e have⏐⏐g ′(s) − fCR(x)
⏐⏐ =

⏐⏐g ′(s) − f ′(x)
⏐⏐

+

⏐⏐⏐⏐⏐f ′(x) −

[
ncr∑
i=1

vi σcr (w⊤

i x − bi) − a

]
R

⏐⏐⏐⏐⏐ , (7)

where

f ′(x) =

n′
cr∑

i=1

v′

i

⏐⏐σcr (w′⊤

i x − b′

i)
⏐⏐− a′.

in which {w′

i, b
′

i} and {v′

i}, a
′ denote another collection of complex-

valued and real-valued parameters, respectively. The first term of
Eq. (7) can be bounded δ/4 from Lemma 1 for any s ∈ [rk, Rk

].
The second term is at most δ/4 when ncr ≥ n′

cr from Eq. (5). This
follows that⏐⏐g ′(s) − f (x)

⏐⏐ ≤ δ/2. (8)
CR
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ombining with Eqs. (6) and (8), we have

g(∥x∥) − fCR(x)| ≤
⏐⏐g( k√s) − g ′(s)

⏐⏐+ ⏐⏐g ′(s) − fCR(x)
⏐⏐ ≤ δ,

where x ∈ R2d ∼= Cd and s ∈ [rk, Rk
]. We finally obtain

cr ≤ 2Ccr (Rk
− rk)dL/( k√rδ),

provided ncr ≤ 2dn′ and C ′
≤ Ccr . We complete the proof by

setting k = 2 in the above upper bound. □

Lemma 3. For 2d > C2 > 0, let f : R2d
→ R is an L-Lipschitz

radial function supported on the set

S = {x : 0 < C2
√
2d ≤ ∥x∥ ≤ 2C2

√
2d}.

or any δ > 0, there exists a complex-reaction network fCR of
ne-hidden layer with width at most 2Ccr (C2)3/2L(2d)7/4/δ such that

sup
∈R2d∼=Cd

|f (x) − fCR(x)| < δ.

Lemma 3 shows that the radial functions can be approxi-
ated by complex-reaction networks with polynomial parame-

ers, which is proved as follows.

roof. Let r = C2
√
2d, R = 2C2

√
2d, and d ≥ 1, then we have

≥ 1, which satisfies the condition of Lemma 2. Invoke Lemma 2
o construct the complex-reaction networks and define δ′

≤ δ/2d.
hen for any L-Lipschitz radial function f : R2d

→ R supported
n S , we have

sup
∈R2d∼=Cd

|f (x) − fCR(x)| ≤ δ′,

here the width of the hidden layer is bounded by

cr ≤
2Ccr (C2)3/2dL

δ
(2d)3/4 ≤

2Ccr (C2)3/2L
δ

(2d)7/4.

his completes the proof. □

emma 4. Let f (x) =
∑N

i=1 ϵifi(x) be defined by Eq. (4). For
ny ϵi ∈ {−1, +1} (i ∈ [N]), there exists a Lipschitz function

g : S → [−1, +1] such that∫
R2d

(g(x) − f (x))2 φ2(x) dx ≤
3

(C2)2
√
2d

.

Lemma 4 shows that any non-Lipschitz function f (x) can be
pproximated and bounded by a Lipschitz function with density
2, which is proved in Appendix A.3.
So far, the part (i) of Theorem 1 can be summarized as follows.

roposition 1. Let f be the radial function described by Eq. (4). For
C2, C3 > 0 with d > C2, any δ > 0, and any choice of ϵi ∈ {−1, +1}
(i ∈ [N]), there exists a complex-reaction network fCR of one-hidden
layer with range in [−2, +2] and width at most C3Ccr (2d)3.75, such
that

∥f (x) − fCR(x)∥L2(µ) ≤

√
3

C2(2d)1/4
+ δ.

emma 5. For positive constants C1, C2, C3, ρ, α with 2d > C2 and
> C2, we define

f (x) =

N∑
i=1

ϵifi(x) and fR(x) =

nr∑
i=1

f̃i(⟨wi, x⟩),

where N ≥ 4C2α
3/2d2, nr ≤ C1e2C1d, and f̃i : R → R are measurable

functions with |fi(x)| ≤ C3(1 + |x|ρ). For any δ > 0, there exists a
group of ϵi ∈ {−1, +1} (i ∈ [N]) such that

∥f (x) − f (x)∥ ≥ δ/α.
R

83
Lemma 5 shows that some radial function cannot be approx-
imated by real-valued networks with exponential (O(C1eC1(2d)))
neurons, beyond which (ii) of Theorem 1 holds. The detailed proof
can be accessed in Appendix A.4.

Proof of Theorem 2. Let f (x) =
∑N

i=1 ϵifi(x) be defined by
Eq. (4) and N ≥ 4C5/2

2 d2. According to Lemma 4, there exists a
Lipschitz function h with range [−1, +1] such that

∥h(x) − f (x)∥L2(µ) ≤

√
3

C2(2d)1/4
.

Based on Lemmas 2 and 3, any Lipschitz radial function supported
on S can be approximated by a complex-reaction network fCR
with one-hidden layer of width at most C3Ccr (2d)3.75, where C3
is a constant relative to C2 and δ. This means that,

sup
x∈R2d

|h(x) − fCR(x)| ≤ δ.

hus, we have

h − fCR∥L2(µ) ≤ δ.

ence, the range of fCR is in [−1 − δ, +1 + δ] ⊆ [−2, +2]. In
summary, we have

∥f (x) − fCR(x)∥L2(µ) ≤ ∥f (x) − h(x)∥L2(µ) + ∥h(x) − fCR(x)∥L2(µ)

≤

√
3

C2(2d)1/4
+ δ.

This implies that given constants 2d > C2 > 0 and C3 > 0,
for any δ > 0 and ϵi ∈ {−1, +1} (i ∈ [N]), the target radial
function f can be approximated by a complex-reaction network
fCR of one-hidden layer with range in [−2, +2] and width at most
C3Ccr (2d)3.75, that is,

∥fCR − f ∥L2(µ) ≤

√
3

C2(2d)1/4
+ δ < δ1.

ccording to Lemmas 1 and 5, there are some groups of ϵi ∈

{−1, +1} (i ∈ [N]) such that

∥fR − f ∥L2(µ) ≥ δ1,

for any real-valued network fR of one-hidden layer with width at
most C1Cre2C1d. The real-valued and complex-reaction networks
have the number of parameters:{

Nr = (2d) × nr + nr ≤ C1Cr (2d + 1)eC1(2d),

Ncr = 2 × d × ncr + 2 × ncr ≤ 2C3Ccr (d + 1)(2d)3.75,

where Nr and Ncr indicate the parameter numbers of the real-
valued and complex-reaction networks, respectively. This com-
pletes the proof. □

4. Optimization dynamics

This section studies the optimization dynamics of complex-
reaction networks, and focuses on binary classification where
y ∈ {−1, +1} for simplicity. Let {xn, yn}Nn=1 be a training dataset,
and denote by X = {xn}Nn=1. We employ the zReLU activa-
ion function, and, for convenience, use [f (W; x)]R to denote the
omplex-reaction network. We consider minimizing the empiri-
al exponential loss, as studied in Hirose (2012)

(W;X) =
1
N

N∑
n=1

exp (−yn[f (W; xn)]R) , (9)

where W = (W1,W2, . . . ,WL) for some integer L > 0.
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.1. Convergence analysis

This subsection focuses on the convergence of minimizing
q. (9) using complex gradient descents. As shown in previous
orks (Zhang & Mandic, 2015; Zhang & Zhou, 2021), the complex
radient descent usually follows the recursive form

l(t + 1) = Wl(t) − ρ
∂L(W(t);X)

∂Wl , (10)

here ρ is the learning rate at the t-th epoch and t ∈ N+.
We now provide the convergence analysis for Eq. (10).

Theorem 3. Let W(0) denote the initial point and the gradient
∂L(W(t);X)/∂Wl is an L-Lipschitz function with respect to Wl. Then,
provided a real-valued learning rate, i.e., ρ ∈ R, if ρ ∈ [0, (2Lθ )−1

],
we have

L(w(t + 1)) − L(w(t)) ≤ 0 and lim
t→∞

∂L(w(t))
∂w

 = 0.

Provided a complex-valued learning rate, i.e., ρ ∈ C, if 2Lθ ([ρ]
2
R +

[ρ]
2
I ) ≤ [ρ]R, we have

L(w(t + 1)) − L(w(t)) ≤ 0 and lim
t→∞

∂L(w(t))
∂w

 = 0.

Theorem 3 shows the convergence of complex gradient de-
scents with real-valued and complex-valued learning rates for
minimizing the empirical exponential loss. The proof idea is sim-
ilar to those of Zhang, Liu, Xu, and Zhang (2014).

Proof. Let w denote the i-th column vector of Wl for any i and l
and abbreviate L(W(t);X) as L(w(t)). It is observed that

∂L(w(t))
∂w

= −
1
N

N∑
n=1

yn exp (−yn[f (w(t))]R)

×
∂[f (w(t))]R

∂w
and L(w(t)) ≥ 0. (11)

ince exp(·) is a monotonically increasing function, we have

∂L(w(t))
∂w̄

=
∂L(w(t))
∂[w]R

−
∂L(w(t))
∂[w]I

i =
∂L(w(t))

∂w
.

et

t = w(t + 1) − w(t)

nd

∆t = w(t + 1) − w(t) = w(t + 1) − w(t).

hus, we have

(w(t + 1)) − L(w(t))
(a)
=

1
2

∂L(w(t) + θ∆t )
∂w

∆t +
1
2

∂L(w(t) + θ∆t )
∂w̄

∆t

=
1
2

∂L(w(t))
∂w

∆t +
1
2

[
∂L(w(t) + θ∆t )

∂w
−

∂L(w(t))
∂w

]
∆t

+
1
2

∂L(w(t))
∂w̄

∆t +
1
2

[
∂L(w(t) + θ∆t )

∂w̄
−

∂L(w(t))
∂w̄

]
∆t

≤

[
∂L(w(t))

∂w
∆t

]
R
+

∂L(w(t) + θ∆t )
∂w

−
∂L(w(t))

∂w

 ∥∆t∥

≤

[
∂L(w(t))

∂w
∆t

]
R
+ 2Lθ ∥∆t∥

2

(b)
=

[
−ρ

∂L(w(t))
∂w

(
∂L(w(t))

∂w

)⊤
]

+ 2Lθ
ρ ∂L(w(t))

∂w

2 .
R
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where the equalities (a) and (b) follow from the mean value
theorem and Eq. (10), respectively. Provided ρ ∈ C, we have

L(w(t + 1)) − L(w(t)) =
(
−[ρ]R + 2Lθ |ρ|

2) ∂L(w(t))
∂w

2 .

Once −[ρ]R+2Lθ |ρ|
2

≤ 0, then we have L(w(t+1))−L(w(t)) ≤ 0.
Further, we have

L(w(t + 1)) ≤ L(w(t)) +
(
−[ρ]R + 2Lθ |ρ|

2) ∂L(w(t))
∂w

2
≤ L(w(0)) +

(
−[ρt ]R + 2Lθ |ρ|

2) t∑
s=1

∂L(w(t))
∂w

2 .

According to Eq. (11), the following holds

(
[ρt ]R − 2Lθ |ρ|

2) t∑
s=1

∂L(w(t))
∂w

2 ≤ L(w(0)) < ∞ for t → ∞,

which implies that

lim
t→∞

∂L(w(t))
∂w

 = 0.

One can assess the proof of the case that ρ ∈ R from Zhang et al.
(2014, Theorem 1). This completes the proof. □

4.2. Critical point sets

This subsection concerns the critical point sets of real-valued
and complex-reaction networks by using standard gradient de-
scents. For specification, we here employ the weight normaliza-
tion technique, which is formulated as follows

Wl
j = γ l

j Vl
j, with γ l

j ∈ R+ and ∥Vl
j∥ = 1,

where Wl
j denotes the i-th row vector of the matrix Wl in the l-th

layer. Hence, we can limit the critical points of the optimization
problem in Eq. (9) onto the unit ball.

We now present the main result as follows.

Theorem 4. For the minimization of Eq. (9), we have

G ⊆ SCR ⊆ SR and SCR ̸= SR,

where G is the optima set of Eq. (9), SR and SCR denote the critical
point sets of real-valued and complex-reaction networks, respec-
tively.

Theorem 4 shows that the critical point set of complex-reaction
networks is a proper subset of that of real-valued networks,
which may shed some insights on finding optimal solutions more
easily for complex-reaction networks.

This proof idea can be summarized as follows. It forms a
manifold for the parameters space of neural networks. Generally
speaking, the complex manifold ΩCR is a subset of the real mani-
fold ΩR, since the coordinate transformation of complex manifold
satisfies the holomorphic condition. On the other hand, it is
essential to look for the critical points θ with ∂L(θ)/∂θ = 0 when
we solve an empirical minimization optimization using gradient
descents. Therefore, the proof of Theorem 4 can be converted into
the problem of finding the critical points in ΩR yet except ΩCR.

We construct a transformation to link the real and com-
plex manifolds that correspond to the real-valued and complex-
reaction networks, respectively. Finally, we find the desired points
from the symplectic manifolds, which share certain characteris-
tics with Riemannian geometry and complex geometry and link
two geometric theories in some fields of mathematics.
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efinition 1. Define a linear mapping φ : K p×q
→ K p×q,

(Θ; ρ, i, j) = ( . . . ; ρθj + θi   ; . . . ; (1 − ρ)θj  ; . . . ),

i j

where K p×q is compact in Rp×q or Cp×q, Θ = (θ1, . . . , θq) ∈ K p×q,
ρ ∈ R or C, and i, j ∈ [q].

Lemma 6. For any i, j ∈ [q], φ(Θ) consists of some straight lines
in an 2-dimensional affine space.

Lemma 6 shows that the linear mapping φ leads to an affine
space defined by θj, which is proved by Appendix B.1.

Definition 2. A mapping is said to be analytic if it is continuous
and expandable in a power series around any points.

Definition 3. Let f be a function expressed by a neural network
with parameter space K . An analytic mapping T ∈ C1(K ) is said
to be an equioutput transformation, if f (T (W);X) = f (W;X) for
V ∈ K .

Lemma 7. For any equioutput transformation T ∈ C1(K ), there is
a collection of finite mappings {φ}, such that T is a composition of
φ’s.

Lemma 8. All equioutput transformations, generated from Lemma 7,
constitute a multiplicative group G, which is isomorphic to a direct
product of Weyl groups.

A straightforward combination of Lemmas 7 and 8 shows
that the equioutput transformation is composited of finite linear
mapping φ, and for any i, j, the equioutput transformations con-
stitute an algebraic group, isomorphic to a direct product of Weyl
groups (Warner, 1983). The detailed proof of Lemma 8 are present
as follows.

Next, we provide two crucial propositions about the dynamical
systems led by complex-reaction and real-valued networks with
gradient descents, respectively.

Proposition 2. For the minimization of Eq. (9) using complex-
reaction networks, we have the following dynamical systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

Nγ l
j

N∑
n=1

exp (−yn[f (W; xn)]R) yn[f (V; xn)]R,

dVl
j

dt
=

η

N(γ l
j )2

N∑
n=1

exp (−yn[f (W; xn)]R) yn∆j,

where η is a strictly positive constant relative to γ l
j , and

j =

(
∂[f (V; xn)]R

∂
[
Vl
j

]
R

− [Vl
j]R[f (V; xn)]R

)

+

(
∂[f (V; xn)]I

∂
[
Vl
j

]
I

− [Vl
j]I [f (V; xn)]R

)
i.

Proposition 3. Let fR : R2d
→ {−1, +1} be a real-valued neural

etwork with ReLU activation and weight normalization Pl
j = γ l

j Q
l
j

here ∥Ql
j∥ = 1. the gradient descent procedure for minimizing the

exponential loss coincides with the following dynamical systems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dγ l

j

dt
=

η

Nγ l
j

1
N

exp (−ynfR(P; xn)) ynfR(Q; xn),

dQl
j

dt
=

η

N(γ l)2

N∑
exp (−ynfR(P; xn)) ynφl

j,

j n=1
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where η is a strictly positive constant relative to γ l
j and

φl
j = ∂ fR(Q; xn)/∂Ql

j − Ql
jfR(Q; xn).

Propositions 2 and 3 hold from Lemmas 9 and 10 as follows.

emma 9. For w, v ∈ R1×n and S = In×n − v⊤v with w = γ v
nd ∥v∥ = 1, we have S = In×n − w⊤w/∥w∥

2
2, ∂v/∂w = S/γ ,

wT
= SvT = 0, and S2 = S.

emma 10 (Weight Norms). During the gradient descent procedure,
he change rate of ∥γ l

j ∥ (i.e., weight norms) is the same for each
ayer.

Lemmas 9 and 10 stand up for both complex-reaction and
eal-valued networks. Notice that Lemma 10 shows that (γ l

j )
2

=

Wl
j∥

2 grows at a rate independent of the row j and layer l.
hereby, using gradient descent to solve the optimization prob-
em, there is no difference in the change rate of connection
eights layer by layer. This result also holds for real-valued
etworks. The detailed proofs of Lemmas 9 and 10 are presented
y Appendix C.1 and C.2, respectively.

roof of Proposition 2. We study the minimization optimization
roblem of complex-reaction networks as follows.

min
Vl
j,γ

l
j

L(W;X) =
1
N

N∑
n=1

exp (−yn[f (W; xn)]R) ,

.t. Wl
j = γ l

j Vl
j, ∥Vl

i∥ = 1.

olving this problem by the standard gradient descent, the opti-
ization procedure concerning Wl induces the following dynam-

ical system:

dWl

dt
=

1
N

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂Wl .

imilarly, the dynamical system that corresponds to the gradient
escent procedure with weight normalization is

dγ l

dt
=

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂γ l ,

dVl

dt
=

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂Vl .

Let wj = ([Wl
j]R, −[Wl

j]I ), vj = ([Vl
j]R, −[Vl

j]I ), and Sj = I− v⊤

j vj. It
s observed that if [Wl

j]R has d elements, wj is a 2d-dimensional
ow vector. From Lemma 9, one has

j = I − w⊤

j wj/∥wj∥
2
2 and Sjw⊤

j = Sjv⊤

j = 0.

hus, we have

dγ l
j

dt
=

d∥wj∥

dt
= vj

(
dwj

dt

)⊤

and
dvj
dt

=
Sj
γ l
j

(
dwj

dt

)⊤

.

So the dynamical systems concerning Vl and γ l
j become⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

Nγ l
j

N∑
n=1

yn exp (−yn[f (W; xn)]R) vju⊤

j ,

dvj
dt

=
η

N(γ l)2

N∑
n=1

yn exp (−yn[f (W; xn)]R)ψj,

here ψj =
(
uj − vj[f (V; xn)]R

)
and

j =

(
∂[f (V; xn)]R[

l
] , −

∂[f (V; xn)]R[
l
] )

.

∂ Vj R

∂ Vj I
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D
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ζ

ue to vju⊤

j = [f (V; xn)]R, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

Nγ l
j

N∑
n=1

yn exp (−yn[f (W; xn)]R) [f (V; xn)]R,

dvj
dt

=
η

N(γ l
j )2

N∑
n=1

yn exp (−yn[f (W; xn)]R)ψj.

We complete this proof by multiplying the matrix IC = (Id×d,

−Id×di)⊤ with the formulas above. □

Based on the aforementioned results, we now present the
crucial lemmas for proving Theorem 4 as follows.

Lemma 11. Let V be the complex-valued parameters of a complex-
reaction network. If V is a critical point of L(V), then we have

(i) ∂L(T (V))/∂V = 0 for any equioutput transformation T with
ρ ∈ R;

(ii) ∂L(T (V))/∂V ̸= 0 for any equioutput transformation T with
ρ ∈ C.

Proof. From Lemma 7, any transformation is composited of φ’s.
Thus, it suffices to prove that the conclusions above hold upon the
minor equioutput transformation from the basic theorem of alge-
bra. Here, we consider building the following minor equioutput
transformation.

Let Θ ∈ Cp×q and Λ = (αsk) ∈ Cq×r denote the connection
weights of adjacent layers in a complex-reaction network, respec-
tively. For any i, j ∈ [q], s ∈ [r], and ρ, ρ ′

∈ C, we abbreviate
φ(Θ; ρ, i, j), ρθj + θi, (1 − ρ)θj, ρ ′αsj + θsi, and (1 − ρ ′)αsj as Θ̃ ,
θ̃i, θ̃j, α̃si, and α̃sj, respectively. Hence, the output of the original
network

hs(z) = αsσcr (Θz) ,

where αs denotes the s-th row vector of Λ and z ∈ Cp×1 is the
input. Compositing the linear mapping φ with Θ , we have the
output of the transformed network

h̃s(z) =

q∑
k̸=i,j

αskσcr
(
θ⊤

k z
)
+ α̃siσcr

(
(ρθj + θi)⊤z

)
+ α̃sjσcr

(
(1 − ρ)θ⊤

j z
)
.

Let h̃s(z) = hs(z). The equation has at least one solution since
the degree of freedom (i.e., 4) of this equation is greater than the
number of equations (i.e., 2). It implies that for any ρ, there exists
a linear mapping φ′ with ρ ′ acts upon the connection weights Λ,
such that

L(Θ, Λ) = L(Θ̃, φ′(Λ)) = L(φ(Θ), φ′(Λ)),

where L(Θ, Λ) is a short notation of loss function described in
Eq. (9). From Lemma 8, the stacking of φ and φ′ constitutes the
minimum generator of G. Hence, the composition of φ and φ′ is
the desired minor equioutput transformation.

Based on Proposition 2 and ∂L(Θ, Λ)/∂θk = 0 (k ∈ [q]), it
stands for the original networks

1
N

N∑
n=1

yn exp(−yn[f (W; xn)]R)∆(θk; xn) = 0,

where

∆(θk; xn) =

(
∂[f (Θ; xn)]R

∂ [θk]R
− [θk]R[f (Θ; xn)]R

)
+

(
∂[f (Θ; xn)]I

− [θk]I [f (Θ; xn)]R
)
i.
∂ [θk]I
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For the transformed networks, we consider the following cases.
(a) For k ̸= i, j, we have

∂L(Θ̃, φ′(Λ))/∂ θ̃k = ∂L(Θ, Λ)/∂θk = 0.

(b) For i, we have

∂L(Θ̃, φ′(Λ))

∂ θ̃i
∝

1
N

N∑
n=1

1
r

r∑
s=1

ynL(Θ, Λ) ζi,

here α̃i denotes the i-th row vector of φ′(Λ), and

i =
∂[f (Θ; zs, xn)]R

∂h
α̃i

∂σcr (Θz)
∂z

z

+
∂[f (Θ; zs, xn)]R

∂h̄
α̃i

∂σcr (Θz)
∂z

z.

Thus, we have

∂L(Θ̃, φ′)

∂ θ̃i

{
= 0, if ρ ∈ R;

̸= 0, if ρ ∈ C and [ρ]I ̸= 0.

(c) Similarly, for j, it holds

∂L(Θ̃, φ′)

∂ θ̃j

{
= 0, if ρ ∈ R,

̸= 0, if ρ ∈ C and [ρ]I ̸= 0.

Lemma 11 holds as desired when Θ = Vl (l ̸= L). □

From Lemma 11, it is easy to obtain the following lemma.

Lemma 12. Let Q be the real-valued parameters of a real-valued
neural network. If Q is a critical point of L(Q), then for any equiout-
put transformation T with ρ ∈ R, φ(T (Q)) are critical points.

Lemma 13. For any fully-connected feed-forward real-valued
neural network with parameter space ΩR, there exists a complex-
reaction network with parameter space ΩCR such that ΩCR ⊆

ΩR.

These lemmas above show that, for any real-valued neural
network, we can construct a complex-reaction network such that
(i) both networks have the same depth, and (ii) both networks
have the same number of parameters for each layer. The detailed
proof is given by Appendix B.4.

Proof of Theorem 4. Let GR and GCR denote the groups of the
equioutput transformations with real-valued and complex-valued
ρ (Definition 1), respectively. Let G be the optima set, SR and
SCR denote the critical point sets of the real-valued and complex-
reaction networks, respectively. It suffices to consider the real-
valued and complex-reaction networks with the same parame-
ters, generated from Lemma 13, and this follows ΩCR ⊆ ΩR.

From Lemma 6, we divide the 4 × 4 matrices in Eq. (B.1)
and (B.2) into the block formations by 2 × 2, and find that two
block matrices relative to θj are anti-symmetric for ρ ∈ C (see
Eq. (B.1)), and thus φ is a linear mapping from complex manifold
to complex manifold. For ρ ∈ R, two block matrices relative to θj
are diagonal (see Eq. (B.2)), which implies that φ(θj) is not on the
complex manifold. In other words, the equioutput transformation
with real-valued ρ projects a critical point on complex manifold
onto the real manifold, specially almost-complex manifold (New-
lander & Nirenberg, 1957; Wells, 1980). The transformed points
are still critical points from Lemma 11(i), whereas any critical
point in complex manifold after any equioutput transformation
with complex-valued ρ cannot derive new critical points from
Lemma 11(ii). On the other hand, Lemma 12 shows that a critical
point on real manifold after any equioutput transformation still
dwells on the real manifold and derives new critical points.
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In summary, the critical point set of real-valued networks
s closed to the equioutput transformation with real-valued ρ,
here this property does not hold for that of complex-reaction
etworks. Therefore, we have{
G ⊆ GR ◦ SCR ⊆ GR ◦ SR = SR

G ⊆ SCR ⫋ GCR ◦ SCR.
(12)

rom Lemma 8, both groups GR and GCR are isomorphic to a
irect product of Weyl groups. Thus, GR is isomorphic to GCR,
.e., GR ∼= GCR. This completes the proof. □

. Discussions and future issues

Theorems 2 and 4 show the advantages of complex-valued
eural networks in comparisons with real-valued ones from the
erspectives of approximation complexity and optimization dy-
amics, respectively. These conclusions benefit from unitary trans-
ormation and anti-symmetric multiplication, perhaps two most
mportant characteristics of the complex-valued neural networks.
n Theorem 2, we adopt a considerably direct way, i.e., regard
he relevance of the radius and phase to the target function as a
rior (e.g., radial function) that imposes more constraints on the
omplex-valued neural network than a real-valued one would,
nd thus, the unitary transformation that allows radius scaling
nd phase rotation (see Lemma 2) yields an advantageous reduc-
ion of the approximation complexity. This means that merely
oubling the number of real-valued parameters (or neurons) in
ach layer does not give the equivalent effect observed in a
omplex-valued neural network, which is consistent with the
onclusions in Hirose (2003), Mönning and Manandhar (2018).
lternatively, a complex number z = z1 + z2i can be written into
matrix form

z1 −z2
z2 z1

)
= z1

(
1 0
0 1

)
+ z2

(
0 −1
1 0

)
,

hich yields an anti-symmetric multiplication (Abraham & Mars-
en, 2008) between the partial derivatives and independent vari-
bles, e.g., Eq. (1). Once half of entries is known, the other half
s fixed. Such an adjoint relation not only reduces the complexity
or approximating rotation operations (Joshua, Qian, & Li, 2021;
u, Zhang, Jiang, & Zhou, 2021b), but also contributes to escaping

he saddle points using complex-valued gradient descents (see
heorem 4).
In light of the preceding merits, we feel the complex-valued

eural network has the potential and power of representing the
unctions with unitary transformation and searching the opti-
al solution in some optimizations. There are two main future
irections. One important is to investigate the theoretical advan-
ages of other related networks. The proposed complex-reaction
etwork is of course a general formulation paradigm of some
racticable complex-valued neural networks, such as the deep
omplex networks (Trabelsi et al., 2018), the flexible transmitter
etworks (Zhang & Zhou, 2021), etc. Hence, our work provides
olid support for designating the theoretical legitimacy (Trabelsi,
019) and characterization (Wu et al., 2021b) of such network
odels. Besides, it would be interesting to theoretically study

eature space transformation (Zhou, 2021) and width-depth rep-
esentation (Wu, Jing, Du, & Chen, 2021a; Zhang & Fan, 2021)
hich might be a key to understand mysteries behind the success
f deep neural networks.
Another important is to develop some practical complex-

alued modules correspondingly. For example, Theorem 2 shows
he power of complex-valued activations on representing radial
r equally rotation-invariant functions. So we conjecture that
dding complex-valued activations may reduce parameter con-
umption when suffering from data augmentation techniques,
87
such as image rotation. Besides, from Theorem 4, it is apparent
that using complex-valued gradients during the whole train-
ing procedure or in stages is conducive to finding the optimal
point (Yeats, Chen, & Li, 2021). In the future, it is intriguing and
reasonable to explore some practical complex-valued modules,
just akin to the gating operation or batch normalization, to reduce
complexity and accelerate calculation in deep neural networks.

6. Conclusions

This work theoretically presents the advantages of complex-
valued neural networks beyond real-valued ones. We investigate
the complex-reaction network with fully-connected feed-forward
architecture from the perspectives of approximation and opti-
mization dynamics, and then provide two main conclusions. First,
we show that a class of radial functions can be approximated
by a complex-reaction network using the polynomial number of
parameters, yet cannot be approximated by real-valued networks
with exponential parameters. Second, we prove that for practical
optimization problems, the critical point set of complex-reaction
networks is a proper subset of that of real-valued networks,
which may shed some insights on finding optimal solutions more
easily for complex-reaction networks. These conclusions not only
provide a complement support for complex-valued neural net-
works, but also exhibit the possibility of developing deep neural
network with complex-valued modules.
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Appendix A. Full proofs for Theorem 2

We provided the detailed proofs for Theorems 2.

A.1. Constructions in Theorem 2

Here, we first review the candidate radial function in Eldan
and Shamir (2016). Define

f (x) =

N∑
i=1

ϵifi(x),

where ϵi ∈ {−1, +1}, N is a polynomial function of d,

fi(x) =

{
1, if Bi = 1,
0, if Bi = 0,

for Bi’s are binary indicators, and

Ωi =

[(
1 +

i − 1
N

)
C2

√
2d,

(
1 +

i
N

)
C2

√
2d
]

, i = 1, . . . ,N.

Next, the concerned density function φ is the Fourier trans-
form of the indicator of a unit-volume Euclidean ball, that is,∫

φ2(x) dx =

∫
1 dω = 1.
R2d Bd

https://www.nju.edu.cn/en/98/99/c7892a170137/page.psp
https://www.nju.edu.cn/en/98/99/c7892a170137/page.psp
https://www.nju.edu.cn/en/98/99/c7892a170137/page.psp
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hus, we have

(x) =

∫
Bd

1 · exp
(
−2πix⊤ω

)
dω with

Bd =

{
ω

⏐⏐⏐ ∥ω∥2 ≤

(∫
B
1 dω

)−1
}

.

The proof of Theorem 1 consists of the following two parts:
(i) of Theorem 1. Let f be the radial function described by

Eq. (4). For C2, C3 > 0 with d > C2, any δ > 0, and any choice of
ϵi ∈ {−1, +1} (i ∈ [N]), there exists a complex-reaction network
fCR of one-hidden layer with range in [−2, +2] and width at most
C3Ccr (2d)3.75, such that

∥f (x) − fCR(x)∥L2(µ) ≤

√
3

C2(2d)1/4
+ δ.

(ii) of Theorem 1. For positive constants C1, C2, C3, ρ, α with
2d > C2 and α > C2, we define

f (x) =

N∑
i=1

ϵifi(x) and fR(x) =

nr∑
i=1

f̃i(⟨wi, x⟩),

where N ≥ 4C2α
3/2d2, nr ≤ C1e2C1d, and f̃i : R → R are

measurable functions with |fi(x)| ≤ C3(1 + |x|ρ). For any δ > 0,
there exists a group of ϵi ∈ {−1, +1} (i ∈ [N]) such that

∥f (x) − fR(x)∥ ≥ δ/α.

A.2. Proof of Lemma 1

From the universal approximation theorems (Cybenko, 1989;
Leshno et al., 1993), the shallow real-valued neural networks with
general sigmoidal and ReLU activation functions have the univer-
sal approximation properties for any continuous functions. Here,
we provide the tight bounds for the degree of approximation.

For general sigmoidal activation, Chen (1993) has proved that
a L-Lipschitz function f can be approximated by real-valued neu-
ral networks of one-hidden layer with δ ≥ Lω(f ; n−1

r ).
Next, we discuss the ReLU activation. Given 2d = 1, we have

R ≥ δ/(2L); Otherwise, Lemma 1 is trivially satisfied once we
force the real-valued network fR ≡ 0. In the case of R ≥ δ/(2L),
let n0 = ⌈δ/(2RL)⌉. For any L-Lipschitz function f : [−R, R] → R,
we have

|gi(β) − f (β)| ≤ δ,

where for i ∈ [n0],

gi(x) = gi(−R)+
gi(β + δ/(2L)) − gi(β − δ/(2L))

δ/L
σr (x−β) with β = δ/L.

hus, then we have

up
x∈R

⏐⏐f (x) − g(x)
⏐⏐ ≤ δ,

where

g(x) = g(−R) +

n0∑
i

gi(βi + δ/(2L)) − gi(βi − δ/(2L))
δ/L

σr (x − βi),

and

|gi(βi) − f (βi)| ≤ δ, for βi = iδ/L and i ∈ [n0].

Provided a real-valued neural network of one-hidden layer with
ReLU activation

fR(x) =

nr∑
αi σr (βix − bi) − a,
i=1

88
we employ that

a = −g(−R), αi =
gi(βi + δ/(2L)) − gi(βi − δ/(2L))

δ/L
, βi = iδ/L,

nd

r ≤ n0 ≤
δ

2RL
,

nd thus, Lemma 1 holds as desired. □

.3. Proof of Lemma 4

Define a branch function

i(x) =

{
max{1,NDi}, if Bi = 1,

0 , if Bi = 0,

with

Di = min
{⏐⏐⏐⏐∥x∥ −

(
1 +

i − 1
N

)
C2

√
2d
⏐⏐⏐⏐ , ⏐⏐⏐⏐∥x∥ −

(
1 +

i
N

)
C2

√
2d
⏐⏐⏐⏐} .

Let

g(x) =

N∑
i=1

ϵigi(x).

Since Bi = 1 and Ωi’s are disjoint intervals, gi(x) is an N-Lipschitz
function. Thus, g is also an N-Lipschitz function. So we have∫
R2d

(
g(x) −

N∑
i=1

ϵifi(x)

)2

φ2(x) dx

=

∫
R2d

N∑
i=1

ϵ2
i (gi(x) − fi(x))2 φ2(x) dx

=

N∑
i=1

∫
R2d

(gi(x) − fi(x))2 φ2(x) dx ≤ (3/(C2)2
√
2d),

where the last inequality holds from Eldan and Shamir (2016,
Lemma 22). This completes the proof. □

A.4. Proof of Lemma 5

We first list some useful lemmas or propositions.

Proposition 4. Let fR(x) =
∑k

i=1 f̃i(⟨wi, x⟩), where f̃i : R → R are
measurable functions satisfying |fi(x)| ≤ C3(1 + |x|ρ) and ρ is an
nteger satisfying ρ ≤ C1e2C1d. If fRφ ∈ L2, then

upp(f̂Rφ) ⊆

k⋃
i=1

(span{wi} + B) ,

here B is a unit ball. Furthermore, there exists a pair of functions
p, q) that satisfies

• p ∈ Supp(f̂Rφ);
• q is radial and

∫
B q(x)

2dx ≤ 1 − δ for some δ ∈ [0, 1];
• ∥p∥L2 = ∥q∥L2 = 1. Then

1 − ⟨p, q⟩L2 ≥ δ/2 − ke−2Cd.

This proposition is proved by Eldan and Shamir (2016).

roposition 5. Provided ∥p∥L2 = ∥q∥L2 = 1, for any real-valued
calars a, b > 0, we have

ap − bq∥L ≥
b
∥p − q∥L .
2 2 2
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roposition 6. According to Eldan and Shamir (2016, Lemma 11),
e have

fRφ∥L2 = ∥fR∥L2(µ) ≥ θ/α.

The proofs of Propositions 5, 4, and 6 are shown in Appendix C.
Based on the results above, we define the pair (p, q)

=
f̂ φ

∥f φ∥L2
and q =

f̂Rφ
∥fRφ∥L2

,

which satisfy the conditions of Propositions 4 and 5. Thus, we
have

∥f − fR∥L2(µ) =∥ f φ − fRφ ∥L2= ∥ f̂ φ − f̂Rφ ∥L2

=∥
(
∥ f φ ∥L2

)
p −

(
∥ fRφ ∥L2

)
q ∥L2

≥
1
2
∥ p − q ∥L2∥ fRφ ∥L2 ≥

θ

2α
∥ p − q ∥L2

≥
θ

2α

√
2(1 − ⟨p, q⟩L2 )

≥
θ

2α

√
max{δ/2 − nre−2Cd, 0}.

Provided nr ≤ C1e2C1d and C1 = min{δ/4, C}, we have

∥f − fR∥L2(µ) ≥
θ
√

δ

4α
,

and√
max{δ/2 − nre−2Cd, 0} ≥

√
δ/4.

his completes the proof. □

ppendix B. Full proofs for Theorem 4

We provided the detailed proofs for Theorem 4.
.1. Proof of Lemma 6

For i, j and ρ ∈ R, let vi = ρθj + θi and vj = (1 − ρ)θj, then
we have⎛⎜⎝[vi]R

[vi]I
[vj]R
[vj]I

⎞⎟⎠ =

⎛⎜⎝[θi]R
[θi]I
0
0

⎞⎟⎠+ ρ

⎛⎜⎝[θj]R
[θj]I
0
0

⎞⎟⎠+ (1 − ρ)

⎛⎜⎝ 0
0

[θj]R
[θj]I

⎞⎟⎠
=

⎛⎜⎝ 1 0 ρ 0
0 1 0 ρ

0 0 (1 − ρ) 0
0 0 0 (1 − ρ)

⎞⎟⎠
⎛⎜⎝[θi]R

[θi]I
[θj]R
[θj]I

⎞⎟⎠ .

(B.1)

For the case ρ = ρ1 + ρ2i ∈ C, one has⎛⎜⎝[vi]R
[vi]I
[vj]R
[vj]I

⎞⎟⎠ =

⎛⎜⎝ 1 0 ρ1 −ρ2
0 1 ρ2 ρ1
0 0 (1 − ρ1) ρ2
0 0 −ρ2 (1 − ρ1)

⎞⎟⎠
⎛⎜⎝[θi]R

[θi]I
[θj]R
[θj]I

⎞⎟⎠ . (B.2)

So each linear mapping φ(Θ; ρ, i, j) leads to a straight line in an
2-dimensional affine space. This completes the proof. □

B.2. Proof of Lemma 7

The existence of real-valued equioutput transformations is
proved by Chen, Lu, and Hecht-Nielsen (1993). The proof sketch of
the complex-valued equioutput transformations is similar. There
are three facts that (1) zReLU is even on the complex-valued
domain, that is, zReLU(−z) = zReLU(z); (2) for l ̸= L and any
i, j, ρ1, ρ2, there exists a pair of scalar parameters α̃i and α̃j in the
next layer (i.e., (l + 1)-th layer) such that

L
(
φ ◦ φ (Θ l), α̃ , α̃

)
= L(Θ l, α , α ).
2 1 i j i j l

89
(3) (α̃i, α̃j) is led by a composition φ′

1◦φ′

2 of other linear mappings
for some ρ ′

1, ρ
′

2.
Next, we are going to prove facts (2) and (3). Provided the

parameters {θi, θj, αi, αj} relative to neurons i, j, we have

h(z) = αiσcr (θ⊤

i z) + αjσcr (θ⊤

j z)

=

⎛⎜⎝ 1
i
1
i

⎞⎟⎠
⊤⎛⎜⎝ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠
⎛⎜⎜⎝

[α⊤

i zi]R
[α⊤

i zi]I
[α⊤

j zj]R
[α⊤

j zj]I

⎞⎟⎟⎠ ,

here σcr denotes the element-wise activation, and

[zi]R
[zi]I
[zj]R
[zj]I

⎞⎟⎠ = σcr ◦

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠
⎛⎜⎜⎝

[θ⊤

i x]R
[θ⊤

i x]I
[θ⊤

j x]R
[θ⊤

j x]I

⎞⎟⎟⎠ .

et ρ1 = ρ11 + ρ12i, ρ2 = ρ21 + ρ22i, ρ ′

1 = ρ ′

11 + ρ ′

12i, and
′

2 = ρ ′

21 + ρ ′

22i. According to Eq. (B.2), one has

˜(x) = α̃iσcr ((ρθj + θi)⊤x) + α̃jσcr ((1 − ρ)θ⊤

j x)

=

⎛⎜⎝ 1
i
1
i

⎞⎟⎠
⊤⎛⎜⎝ 1 0 (1 − ρ ′

21) ρ ′

22
0 1 −ρ ′

22 (1 − ρ ′

21)
0 0 ρ ′

21 −ρ ′

22
0 0 ρ ′

22 ρ ′

21

⎞⎟⎠

×

⎛⎜⎝ 1 0 ρ ′

11 −ρ ′

12
0 1 ρ ′

12 ρ ′

11
0 0 (1 − ρ ′

11) ρ ′

12
0 0 −ρ ′

12 (1 − ρ ′

11)

⎞⎟⎠
⎛⎜⎜⎝

[α⊤

i z ′

i ]R
[α⊤

i z ′

i ]I
[α⊤

j z ′

j ]R

[α⊤

j z ′

j ]I

⎞⎟⎟⎠ ,

here
[z ′

i ]R
[z ′

i ]I
[z ′

j ]R
[z ′

j ]I

⎞⎟⎠ = σcr ◦

⎛⎜⎝ 1 0 (1 − ρ21) ρ22
0 1 −ρ22 (1 − ρ21)
0 0 ρ21 −ρ22
0 0 ρ22 ρ21

⎞⎟⎠

×

⎛⎜⎝ 1 0 ρ11 −ρ12
0 1 ρ12 ρ11
0 0 (1 − ρ11) ρ12
0 0 −ρ12 (1 − ρ11)

⎞⎟⎠
⎛⎜⎜⎝

[θ⊤

i x]R
[θ⊤

i x]I
[θ⊤

j x]R
[θ⊤

j x]I

⎞⎟⎟⎠ .

et h̃(x) = h(x), we obtain a semi-linear equation with eight
ree parameters. This equation has at least one solution, which
ompletes the proof of facts (2) and (3). Lemma 7 holds as
esired. □

.3. Proof of Lemma 8

Write the parameter space as Θ1
× · · · × ΘL, where Θ l

enotes the subspace concerning the l-th layer. Let Gl denote
he set of linear mapping φ upon Θ l. According to Lemmas 6
nd 7, Gl forms a cube symmetry group, that is, isomorphic to
he Weyl group (Warner, 1983; Weyl, 1946). So the equioutput
ransformation, i.e., group action upon each hidden layer (except
he case l = L) can be regarded as the direct operation of Gl on
he corresponding subspace Θ1 and as indirect but isomorphic
peration led by some sequence {φ}. According to Lemma 7
nd the fact that the hidden layers only have symmetry groups
ssociated with themselves, each hidden layer contributes exactly
ne cube symmetry group to the overall group action. In other
ords, Gl 1–1 corresponds to Θ l. Thus, group G is isomorphic to
he direct product of these groups
∼= G1 × · · · × GL−1, (B.3)

ince the actions of the individual groups operating on different

ayers commute. Next, we are going to bound the order of G,
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enoted as |G|#. Based on Eq. (B.3), we have

|G|# =

L−1∏
l=1

|Gl|#.

Suppose that the l-th layer has nl neurons, then there are nl! dif-
erent pairs (i, j) in this layer. Further, if the equation L(Θ l, αi, αj) =

(φ(Θ l, ρ, i, j), α̃i, α̃j) in the proof of Lemma 7, led by the mini-
um generator, has finite solution, then from the Weyl group

heory, the order of the group |Gl|# is bounded by nl!2nl . Other-
ise, G is an infinite group. This completes the proof. □

.4. Proof of Lemma 13

For real-valued neural networks, let p and q denote the neuron
umbers of some adjacent layers. According to Section 2, there
re pq parameters. Consider the following cases. (1) Both p, q are

even, that is, p = 2n and q = 2m. We construct a complex-
reaction network with two layers, where the first and second
layers have 2n and m neurons, respectively. Then the constructed
complex-reaction network has 2(2n)m real-valued parameters.
(2) When p = 2n + 1 and q = 2m, we can construct a complex-
eaction network with two layers, where the first and second
ayers have p and m neurons, respectively. Then the constructed
complex-reaction network has 2pm real-valued parameters. (3)
When p = 2n + 1 and q = 2m + 1, we can construct a
omplex-reaction network as follows: (3a) this network consists
f two layers where the first and second layers have n + 1 and
m + 1 neurons; (3b) we force imaginary part of the last neuron
f the first layer to be zero. Thus, half of the connection weights
hat link this neuron and 2m + 1 neurons of the second layer
are useless. Then the constructed complex-reaction network has
2(n + 1)(2m + 1) − (2m + 1) real-valued parameters.

Summing up the above, for any fully-connected feed-forward
real-valued neural network, we can construct a complex-reaction
network, which has the same parameter structure with the real-
valued one. According to the differential manifold theory, the
coordinate transformation of the complex manifold needs to sat-
isfy the holomorphic condition. So the complex manifold led by
the parameters of the constructed network is a subset of the real
manifold led by that of the real-valued one, that is,

Ω l
CR ⊆ Ω l

R,

where the superscript l denotes the l-th layer. According to
Lemma 8, we can write the connection weights of each network
as {Θ1 . . . ΘL

}, where Θ l denotes the connection weight matrix
oncerning the l-th layer. Thus, the parameter space of each
etwork is a direct product of the sub-manifolds led by each layer,
hat is,

CR = Ω1
CR × · · · × ΩL

CR and ΩR = Ω1
R × · · · × ΩL

R.

Finally, we have

ΩCR ⊆ ΩR.

This completes the proof. □

B.5. Full proof of Proposition 2

We begin our proof with some useful lemmas.

Lemma 14 (Normalization Matrix). Let w, v ∈ R1×n with w = γ v
and ∥v∥ = 1. Define S = In×n − v⊤v, then we have

(1) S = In×n −
w⊤w

∥w∥
2
2
; (2)

∂v

∂w
=

S
γ

; (3) Sw⊤
= Sv⊤

= 0; (4) S2 = S.

The detailed proof of Lemma 9 is given by Appendix C.1.
90
Lemma 15 (Weight Norms). During the gradient descent procedure,
the change rate of ∥γ l

j ∥ (i.e., weight norms) is the same for each
layer.

Lemma 10 shows that (γ l
j )

2
= ∥Wl

j∥
2 grows at a rate inde-

pendent of the row j and layer l. Thereby, using gradient descent
o solve the optimization problem, there is no difference in the
hange rate of connection weights layer by layer. This result also
olds for real-valued networks. The detailed proof is presented
y Appendix C.2.
Here, we study the following minimization optimization prob-

em of complex-reaction networks.

min
Vl
j,γ

l
j

L(W;X) =
1
N

N∑
n=1

exp (−yn[f (W; xn)]R) ,

.t. Wl
j = γ l

j Vl
j, ∥Vl

i∥ = 1.

olving this problem by the standard gradient descent, the opti-
ization procedure concerning Wl induces the following dynam-

ical system:

dWl

dt
= −

∂L
∂Wl =

1
N

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂Wl .

Based on the Euler’s theorem for homogeneous functions, we
have

[f (W;X)]R = Wl
i
∂[f (W;X)]R

∂Wl
i

= Wl
j

[
∂[f (W;X)]R

∂Wl
j

+
∂[f (W;X)]R

∂Wl
j

i

]
and
∂ f (Wl)
∂Wl ∝

∂ f (Vl)
∂Vl .

The formula above implies that the standard gradient descents of
non-normalized and normalized complex-reaction networks are
proportional. Thus, the gradient descent procedure with weight
normalization induces the following dynamical systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l

dt
= −

∂L
∂γ l =

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂γ l ,

dVl

dt
= −

∂L
∂Vl =

N∑
n=1

exp (−yn[f (W; xn)]R) yn
∂[f (W; xn)]R

∂Vl .

(B.4)

Let wj = ([Wl
j]R, −[Wl

j]I ), vj = ([Vl
j]R, −[Vl

j]I ), and Sj = I− v⊤

j vj. It
s observed that if [Wl

j]R has d elements, wj is a 2d-dimensional
ow vector. According to Lemma 9, one has

j = I −
w⊤

j wj

∥wj∥
2
2

and Sjw⊤

j = Sjv⊤

j = 0.

Thus, we have

dγ l
j

dt
=

d∥wj∥

dt
= vj

(
dwj

dt

)⊤

and
dvj
dt

=
Sj
γ l
j

(
dwj

dt

)⊤

.

So Eq. (B.4) becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

γ l
j

1
N

N∑
n=1

yn exp (−yn[f (W; xn)]R) vju⊤

j ,

dvj
dt

=
η(
l
)2 1

N

N∑
yn exp (−yn[f (W; xn)]R)

(
uj − vj[f (V; xn)]R

)
,

γ n=1
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w
f

f

here

j =

(
∂[f (V; xn)]R

∂
[
Vl
j

]
R

, −
∂[f (V; xn)]R

∂
[
Vl
j

]
I

)
.

Due to

vju⊤

j = [Vl
j]R

[
∂[f (V; xn)]R

∂
[
Vl
j

]
R

]⊤

+ [Vl
j]I

[
∂[f (V; xn)]R

∂
[
Vl
j

]
I

]⊤

= [f (V; xn)]R,

we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

γ l
j

1
N

N∑
n=1

yn exp (−yn[f (W; xn)]R) [f (V; xn)]R,

dvj
dt

=
η(

γ l
j

)2 1
N

N∑
n=1

yn exp (−yn[f (W; xn)]R)
(
uj − vj[f (V; xn)]R

)
.

(B.5)

Let IC = (Id×d, −Id×di)T and multiply it by Eq. (B.5). Thus,
we can obtain the gradient descent dynamics concerning the
normalized network⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l
j

dt
=

η

γ l
j

1
N

N∑
n=1

yn exp (−yn[f (W; xn)]R) [f (V; xn)]R,

dVl
j

dt
=

dvj
dt

IC =
η(

γ l
j

)2 1
N

N∑
n=1

yn exp (−yn[f (W; xn)]R) ∆j,

here

j =

(
∂[f (V; xn)]R

∂
[
Vl
j

]
R

− [Vl
j]R[f (V; xn)]R

)

+

(
∂[f (V; xn)]I

∂
[
Vl
j

]
I

− [Vl
j]I [f (V; xn)]R

)
i.

This completes the proof. □

B.6. Proof of Proposition 3

Consider a real-valued neural network fR : R2d
→ {−1, +1}

with ReLU activation and weight normalization Pl
j = γ l

j Q
l
j, where

γ l
j ∈ R+ and ∥Ql

j∥ = 1. Given a training set {xn, yn}Nn=1 with
X = {xn}Nn=1, we employ standard gradient descents to minimize
the empirical exponential loss.

First, we should introduce some necessary facts. The ReLU
function has the real-valued homomorphism property (Poggio
et al., 2020), that is, for any x ∈ R and α ≥ 0, the equation holds
σr (αx) = ασr (x). Thus, we have

σr (x) =
∂σr (x)

∂x
x,

which implies

fR(P;X) = Pl
j

(
∂ fR(P;X)

∂Pl
j

)⊤

and fR(Q;X) = Ql
j

(
∂ fR(Q;X)

∂Ql
j

)⊤

.

he optimization procedure concerning Pl is led by the following
dynamical systems

dPl

dt
= −

∂L
∂Pl =

1
N

N∑
exp (−ynfR(P; xn)) yn

∂ fR(P; xn)
∂Pl .
n=1
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The gradient descent procedure with weight normalization in-
duces the following dynamical systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dγ l

dt
= −

∂L
∂γ l =

N∑
n=1

exp (−ynfR(P; xn)) yn
∂ fR(P; xn)

∂γ l ,

dVl

dt
= −

∂L
∂Ql =

N∑
n=1

exp (−ynfR(P; xn)) yn
∂ fR(P; xn)

∂Ql .

(B.6)

imilar to the proof of Proposition 2, we use the vectorized
epresentation, i.e., denote wj = Pl

j and vj = Ql
j. Define a matrix

j = I − v⊤

j vj = I −
w⊤

j wj

∥w⊤

j wj∥
.

According to Lemma 9, we have
dγ l

j

dt
=

d∥wj∥

dt
= vj

(
dwj

dt

)⊤

and
dvj
dt

=
Sj
γ l
j

(
dwj

dt

)⊤

, respectively.

hus, Eq. (B.6) becomes

dγ l
j

dt
=

η

γ l
j

1
N

N∑
n=1

yn exp (−ynfR(P; xn))Ql
j

(
∂ fR(Q;X)

∂Ql
j

)⊤

=
η

γ l
j

1
N

N∑
n=1

yn exp (−ynfR(P; xn))Ql
j

(
∂ fR(Q;X)

∂Ql
j

)⊤

,

dvj
dt

=
η(

γ l
)2 1

N

N∑
n=1

yn exp (−ynfR(P; xn)) Sj
∂ fR(Q;X)

∂Ql
j

=
η(

γ l
)2 1

N

N∑
n=1

yn exp (−ynfR(P; xn))

×

(
∂ fR(Q;X)

∂Ql
j

− Ql
jfR(Q; xn)

)
,

here η is a strictly positive constant relative to γ l
j , which satis-

ies

(P;X) = ηf (Q;X) and
∂ f (Pl

j)

∂Pl
j

=
η

γ l
j

∂ f (Ql
j)

∂Ql
j

, respectively.

This completes the proof. □

Appendix C. Complete proofs for useful lemmas

This section completes the proofs of some useful lemmas in
Appendix A.

C.1. Proof of Lemma 9

Let w = (w1, . . . , wn), v = (v1, . . . , vn). Since w = γ v and
∥v∥ = 1, we have

∥v∥ =

√
(v1)2 + · · · + (vn)2 = 1 and wi = γ vi for any i ∈ [n].

Let

S = In×n − v⊤v =

⎛⎜⎜⎜⎝
1 − (v1)2 −v1v2 · · · −v1vn
−v2v1 1 − (v2)2 · · · −v2vn

...
...

. . .
...

−vnv1 −vnv2 · · · 1 − (vn)2

⎞⎟⎟⎟⎠ .

On the other hand, we have

In×n −
w⊤w

∥w∥
2
2

= In×n −
1

∥w∥
2
2

⎛⎜⎜⎜⎝
(w1)2 w1w2 · · · w1wn
w2w1 (w2)2 · · · w2wn

...
...

. . .
...

2

⎞⎟⎟⎟⎠ .
wnw1 wnw2 · · · (wn)
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F

a

−

T

I
i

S

L

S

a

S

T
a

A

A

B

B

B

C

C

C

D

D

D

D

E

F

G

H

H

H
H

H

H

J

J

K

K

or i, j ∈ [n], one has

1 −
(wi)2

(w1)2 + · · · + (wn)2
=

∑
k̸=i(wk)2∑
k(wk)2

=

∑
k̸=i(vk)2∑
k(vk)2

= 1 −
(vi)2

(v1)2 + · · · + (vn)2

= 1 − (vi)2,

nd
wiwj

(w1)2 + · · · + (wn)2
= −

vivj

(v1)2 + · · · + (vn)2
= −vivj.

Thus, we have

S = In×n −
w⊤w

∥w∥
2
2
.

Consider the partial derivative of v with respect to w

∂v

∂w
=

⎛⎜⎜⎝
∂v1/∂w1 ∂v1/∂w2 · · · ∂v1/∂wn
∂v2/∂w1 ∂v2/∂w2 · · · ∂v2/∂wn

...
...

. . .
...

∂vn/∂w1 ∂vn/∂w2 · · · ∂vn/∂wn

⎞⎟⎟⎠ .

hus, we have
∂v

∂w
=

S
γ

.

t is easily to verify that 0 is an eigenvalue of the matrix S and v
s the corresponding eigenvector. So we have

w⊤
= Sv⊤

= 0.

et Si denote the i-th row vector of matrix S. Thus, we have

i (Si)⊤ =

∑
k̸=i

(vivk)2 +
(
1 − (vi)2

)2
=

∑
k̸=i

(vivk)2 +

⎛⎝∑
k̸=i

(vk)2

⎞⎠2

= 1 − (vi)2,

nd

i
(
Sj
)⊤

=

∑
k̸=i,j

(vivj)(vk)2 +
(
1 − (vi)2

)
vjvi + vivj

(
1 − (vj)2

)
=

∑
k̸=i,j

(vivj)(vk)2 + vivj

⎛⎝2
∑
k̸=i,j

(vk)2 + (vi)2 + (vj)2

⎞⎠
= −vivj.

Thus, we have S2 = S. This completes the proof. □

C.2. Proof of Lemma 10

Observing the change rate of γ l
j in Proposition 2, we have

d
(
γ l
j

)2
dt

= 2 γ l
j

dγ l
j

dt
= 2

η

N

N∑
n=1

exp (−yn[f (W; xn)]R) [f (V; xn)]R.

hus, we have

dWl
j

dt

 =
∂∥Wl

j∥

∂Wl
j

dWl
j

dt
,

nd then

dWl
j

dt


2

=
2
N

N∑
n=1

exp (−yn[f (W; xn)]R) [f (W; xn)]R.

So the change rate of ∥Wl
j∥

2 is independent of the layer index l
and row index j. Finally, it is easily to verify that these results
above also hold for Proposition 3. □
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