
Residual Prompt Tuning: Improving Prompt Tuning
with Residual Reparameterization

Anonymous ACL submission

Abstract

Prompt tuning is one of the successful ap-001
proaches for parameter-efficient tuning of pre-002
trained language models. Despite being ar-003
guably the most parameter-efficient (tuned soft004
prompts constitute < 0.1% of total parame-005
ters), it typically performs worse than other006
efficient tuning methods and is quite sensitive007
to hyper-parameters. In this work, we intro-008
duce RESIDUAL PROMPT TUNING – a simple009
and efficient method that significantly improves010
the performance and stability of prompt tuning.011
We propose to reparameterize soft prompt em-012
beddings using a shallow network with a resid-013
ual connection. Our experiments show that014
RESIDUAL PROMPT TUNING significantly out-015
performs prompt tuning on SuperGLUE bench-016
mark across T5-Large, T5-Base and BERT-017
Base models. Notably, our method reaches +7018
points improvement over prompt tuning with019
T5-Base and allows to reduce the prompt length020
by ×10 without hurting performance. In addi-021
tion, we show that our approach is robust to the022
choice of learning rate and prompt initializa-023
tion, and is effective in few-shot settings.1024

1 Introduction025

Pre-trained language models have achieved remark-026

able performance on a variety of natural language027

understanding tasks (Devlin et al., 2018; Liu et al.,028

2019; Raffel et al., 2020). Recent studies have029

shown that scaling up model size consistently leads030

to performance gains (Kaplan et al., 2020; Raffel031

et al., 2020; Zhang et al., 2022), and larger scale032

models are becoming increasingly more common,033

e.g. GPT-3, 175B parameters (Brown et al., 2020),034

MT-NLG, 530B parameters (Smith et al., 2022).035

Despite the significant performance improvement036

achieved with larger-scale models, their applicabil-037

ity is limited due to their size. The standard prac-038

tice of fine-tuning becomes prohibitively expensive039

since it requires storing gradients and optimizer040

1Our code will be released upon publication.

Figure 1: Illustration of RESIDUAL PROMPT TUN-
ING and comparison with prompt tuning by Lester
et al. (2021). a. RESIDUAL PROMPT TUNING reaches
stronger performance than prompt tuning (performance
with T5-Large model on WSC task are shown). b.
Prompt Tuning tunes prompt embeddings P , which are
concatenated with input embeddings X and fed into the
frozen language model. c. RESIDUAL PROMPT TUN-
ING passes the original prompt embeddings P through a
shallow network (e.g. MLP) with a residual connection
and then prepends them to the input. Embeddings P
and MLP parameters are jointly tuned.

states for all model parameters. Additionally, stor- 041

ing a separate copy of a fine-tuned model for each 042

task is infeasible for billion-parameter models. 043

To address the challenges associated with full 044

model tuning, a line of research has focused on 045

prompt design, where natural language prompts 046

are used to query a frozen model (Brown et al., 047

2020). In this setup, all tasks are cast as language 048

modeling tasks (e.g. 0/1 classes could be encoded 049

as “True“/“False“), and manually selected prompts 050

condition the frozen model to generate the desired 051

output. Despite the fact that prompt design can 052

1



achieve strong few-shot performance, manually053

finding optimal prompts remains challenging and054

time-consuming (Zhao et al., 2021). Additionally,055

different prompt choices often lead to large vari-056

ances in the final performance (Zhao et al., 2021;057

Vu et al., 2021).058

Recently, Lester et al. (2021) proposed prompt059

tuning – a method of learning soft prompts through060

gradient descent instead of designing the prompts061

manually. Soft prompts are a series of continuous062

embeddings prepended to the input, which are up-063

dated throughout training, and typically constitute064

< 0.1% of the total parameters. Notably, prompt065

tuning has been shown to perform close to full066

model tuning when model size increases, closing067

the performance gap when the model contains over068

11B parameters (Lester et al., 2021). Nevertheless,069

prompt tuning still underperforms with smaller070

models, and its performance can vary significantly071

depending on the choice of hyperparameters, such072

as prompt initialization and learning rate (Vu et al.,073

2021). Furthermore, prompt tuning generally re-074

quires long training and a large number of prompt075

tokens (over 100) to achieve stable performance076

(Lester et al., 2021).077

In this work, we present RESIDUAL PROMPT078

TUNING, a method that can significantly improve079

and stabilize prompt tuning performance through080

residual reparameterization of prompt embeddings081

(Figure 1). RESIDUAL PROMPT TUNING passes082

soft prompt embeddings through a shallow net-083

work with a residual connection, and subsequently084

prepends reparameterized prompt to the input and085

feeds to the language model. This reparameteriza-086

tion gives the model more flexibility to decide be-087

tween using a separate embedding for each prompt088

token versus the representation obtained from the089

shared reparameterization network. After training090

is completed, the reparameterization network can091

be discarded and original prompt embeddings can092

be replaced with their projections.093

We conduct extensive experiments on Super-094

GLUE tasks with T5-Large, T5-Base and BERT-095

Base models (Raffel et al., 2020; Devlin et al.,096

2018) and demonstrate that RESIDUAL PROMPT097

TUNING outperforms previous prompt tuning-098

based methods by a large margin, achieving +7099

points improvement over prompt tuning on Super-100

GLUE with T5-Base. We also show that RESID-101

UAL PROMPT TUNING reduces performance vari-102

ance under different learning rates or prompt ini-103

tializations, and achieves strong performance with 104

fewer training iterations. Finally, we show that 105

RESIDUAL PROMPT TUNING significantly im- 106

proves over prompt tuning in few-shot settings. 107

2 Background 108

Fine-tuning. The predominant approach for adapt- 109

ing a pre-trained language model to a downstream 110

task is to fine-tune all its parameters Θ (Devlin 111

et al., 2018; Raffel et al., 2020). Consider a classifi- 112

cation task T with input text x, and output scalar la- 113

bel y, where pΘ is a probability distribution of out- 114

put classes parameterized by the full model weights 115

Θ. The training objective is simply: 116

max
Θ

∑
x,y∈T

log pΘ(y|x). (1) 117

Despite its effectiveness, fine-tuning updates all 118

model parameters, which can be prohibitively 119

expensive for large language models. 120

121

Prompt Tuning. Lester et al. (2021) pro- 122

posed prompt tuning as a lightweight alternative 123

to fine-tuning. The main idea is to prepend a 124

sequence of virtual token embeddings, or a soft 125

prompt P , to the input text x, and learn only them 126

on the downstream task while keeping other model 127

parameters fixed. The model parameters Θ are 128

now composed of the frozen pre-trained language 129

model parameters, and the additional soft prompt 130

parameters θP , which are tuned on the downstream 131

task. The training objective becomes: 132

max
θP

∑
x,y∈T

log pΘ(y|[P ;x]). (2) 133

Prompt tuning offers an attractive parameter- 134

efficient solution to repurpose pre-trained models 135

for many real-world applications. However, train- 136

ing soft prompts often requires extensive hyperpa- 137

rameter tuning and longer training time to achieve 138

the desired performance (Lester et al., 2021). 139

3 Method 140

3.1 RESIDUAL PROMPT TUNING 141

We propose to use a more flexible parameterization 142

of soft prompts using a shallow network with a skip 143

connection (Figure 1). Specifically, we project the 144

sequence of prompt embeddings P consisting of 145

n virtual tokens [P1, ..., Pn] into a reparameterized 146

sequence P ′ as follows: 147

P ′ = [P ′
1, ..., P

′
n] = [Φ(P1), ...,Φ(Pn)], (3) 148

2



where Φ(·) is a reparameterization function com-149

posed of a shallow network ϕ(·) with a residual150

connection. Φ(·) is applied independently to each151

prompt token:152

Φ(Pi) = ϕ(Pi) + Pi, i ∈ {1...n} (4)153

Our ϕ(·) network is a multi-layer perceptron (MLP)154

that follows a "bottleneck" design, as in commonly155

used ResNet building blocks (He et al., 2016) and156

adapter modules (Houlsby et al., 2019). It con-157

sists of down-projection Wdown ∈ Rd×m and up-158

projection Wup ∈ Rm×d layers (as shown in Fig-159

ure 2), a combination of which has been thoroughly160

explored in literature (He et al., 2016; Houlsby161

et al., 2019). Here, d is the dimensionality of model162

embeddings and m is the bottleneck size of the163

MLP (hyperparameter of our approach). We train164

only the prompt embeddings θP and the repreme-165

terization parameters θϕ on the downstream task,166

while keeping all other parameters frozen. The167

training objective is to maximize the log-likelihood168

of correct output y given the input text x concate-169

nated with the reparameterized soft prompt P ′:170

max
θP ,θϕ

∑
x,y∈T

log pΘ(y|[P ′;x]). (5)171

3.2 Design choices172

We discuss here several important design choices173

for the reparameterization network Φ.174

Residual connection. We find that residual con-175

nection plays a key role in boosting performance176

and speeding up the convergence in RESIDUAL177

PROMPT TUNING (Section 5.1, Appendix B.2).178

Similar to ResNets (He et al., 2016), we hypoth-179

esize that residual learning gives the model more180

flexibility to decide between using a separate em-181

bedding for each prompt token versus the repre-182

sentation obtained from the shared network. We183

discuss further benefits of residual connection in184

Appendix B.2.185

Depth and width of MLP. We use two-layer186

MLP, whose up- and down-projection matrices187

Wup and Wdown constitute the additional trainable188

parameters. Increasing the dimensionality m of189

the hidden layer results in higher performance (see190

Section 5.6), suggesting that the overparameteriza-191

tion (Allen-Zhu et al., 2019) of prompt tokens is im-192

portant for the performance improvement. More de-193

tails on parameter-efficiency are in Appendix A.6.194

Non-linearity and normalization. We select195

LayerNorm (Ba et al., 2016) as our normaliza-196

tion layer and ReLU as our non-linearity. We find197

Figure 2: Illustration of reparameterization network Φ
used in RESIDUAL PROMPT TUNING. Each virtual
token Pi is passed through the down-projection layer,
followed by the non-linearity, then the up-projection
layer, and the normalization layer, and then summed
with the unprojected embedding via skip connection.

that LayerNorm helps to stabilize the performance, 198

while the effect of the specific choice of the non- 199

linear layer is of lesser importance. 200

Parameter sharing. In our setup, we apply 201

a shared reparameterization network Φ to each 202

virtual token embedding. Another design choice 203

is to apply a separate network to each prompt 204

embedding. We compare both variants in Sec- 205

tion 5.6. Overall, a shared MLP is significantly 206

more parameter-efficient and offers the benefit of 207

knowledge sharing in limited data settings. 208

3.3 Training and Inference 209

During training, we jointly optimize prompt embed- 210

dings P and parameters of the reparameterization 211

network Φ(·), while keeping the backbone model 212

frozen. The reparameterized prompt is inserted 213

before the input text embeddings and fed into the 214

language model (see details in Section 4.2). Im- 215

portantly, we use task-specific prompts, meaning 216

that reparameterized prompt embeddings are not 217

dependent on the input. 218

After training is complete, we project prompt 219

embeddings through the learned reparameteriza- 220

tion network Φ(·), and replace the original prompt 221

embeddings with their corresponding projections 222

P ′ = Φ(P ). During inference, we discard the 223

reparameterization network and solely use the 224

projected prompt embeddings P ′. Specifically, we 225

insert P ′ in front of the input text embeddings, and 226

feed them together to the frozen pre-trained model. 227

3



4 Experiments228

4.1 Datasets229

Following previous works on prompt tuning (Lester230

et al., 2021; Vu et al., 2021), we use NLU tasks231

from the SuperGLUE benchmark to assess the232

performance of the language model (Wang et al.,233

2019). Specifically, we use the following 8 datasets:234

BoolQ (Clark et al., 2019), CB (De Marneffe235

et al., 2019), COPA (Roemmele et al., 2011), Mul-236

tiRC (Khashabi et al., 2018), ReCoRD (Zhang237

et al., 2018), RTE (Giampiccolo et al., 2007), WiC238

(Pilehvar and Camacho-Collados, 2018) and WSC239

(Levesque et al., 2012). More details on are dis-240

cussed in Appendix A.1, A.2.241

4.2 Architectures242

RESIDUAL PROMPT TUNING is a model-agnostic243

approach that can be used with any transformer244

architecture – similarly to the original prompt245

tuning (Lester et al., 2021). In our experiments,246

we explore the performance of our method with247

encoder-decoder T5 model2 (Raffel et al., 2020)248

and encoder-only BERT model (Devlin et al.,249

2018). Specifically, we focus on BERT-Base250

(110M parameters), T5-Base (220M parameters)251

and T5-Large (770M parameters) model variants.252

253

BERT. For BERT experiments, we insert254

the trainable prompt in front of the input se-255

quence, but before the [CLS] token, resulting in256

the following input x̂ to the language model:257

x̂ = concat[E([CLS]), P ′,E(S[EOS])], where P ′258

is the embeddings matrix of the reparameterized259

soft prompt, S is the input sentence, [CLS] and260

[EOS] denote special tokens (for sentence classifica-261

tion and marking end-of-sentence), and E denotes262

tokenization and extraction of embeddings.263

To predict the class of input text x̂, we follow the
original (Devlin et al., 2018) setup and use encoder
representation of the [CLS] token, h[CLS], and add
a linear transformation parameterized by w and a
softmax layer to predict the class of x̂:

p(y = c|h) = ewch[CLS]∑
k∈C e

wkh[CLS]

2While Lester et al. (2021) reports better performance with
T5 v1.1 compared to T5, several subsequent works find version
v1.1 less stable for prompt tuning compared to the original T5
and report worse performance (Karimi Mahabadi et al., 2021;
Asai et al., 2022). Therefore, in this work we use the original
T5 model.

264

After that, we apply cross-entropy loss to 265

perform gradient updates on the prompt embed- 266

dings, linear head, and reparameterization network. 267

268

T5. For T5 experiments we cast all tasks as 269

language modeling tasks, following Raffel et al. 270

(2020); Lester et al. (2021). In this setup, we model 271

the classification task as conditional generation, 272

where output is a sequence of tokens that represent 273

a class label. We prepend reparameterized prompt 274

embeddings P ′ in front of the input text embed- 275

dings, hence total input x̂ = concat[P ′,E(S)] 276

is passed into the pre-trained language model. 277

T5 model applies a multi-headed self-attention 278

over the input tokens followed by position-wise 279

feed-forward layers to output a distribution over 280

target tokens. We train prompt embeddings and 281

parameters of the reparameterization network 282

with cross-entropy loss. More details on input 283

preprocessing and prompt initialization are in 284

Appendix A.3, A.4. 285

4.3 Baselines 286

We compare RESIDUAL PROMPT TUNING (Res 287

PT) with approaches from two different cate- 288

gories: methods for prompt reparameterization and 289

parameter-efficient tuning (PEFT) methods. 290

In our first set of experiments, we study how 291

much residual reparameterization can improve 292

prompt tuning performance and evaluate it against 293

other reparameterization techniques. In sum, we 294

compare our approach with the original prompt 295

tuning (PT; no reparameterization of the prompt 296

embeddings, Lester et al. 2021), prompt tuning 297

with MLP reparameterization (PT w/ MLP; Li and 298

Liang 2021), prompt tuning with LSTM reparam- 299

eterization (PT w/ LSTM; Liu et al. 2021b) and 300

fine-tuning. 301

In our second set of experiments, we assess the 302

benefits of RESIDUAL PROMPT TUNING method 303

versus existing PEFT approaches. In addition to 304

prompt tuning, we include a set of PEFT base- 305

lines: Adapter (Houlsby et al., 2019), AdapterDrop 306

(Rücklé et al., 2020), SPoT (Vu et al., 2021), AT- 307

TEMPT (Asai et al., 2022). Adapter and Adapter- 308

Drop approaches are based on adapters by Houlsby 309

et al. (2019), whereas SPoT and ATTEMPT are 310

tranfer learning-based methods for prompt tuning, 311

which find optimal prompt initializations by pre- 312

training prompts on informative source tasks. 313

4



Task → BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Avg.
Method ↓ Acc. F1/Acc. Acc. F1/EM F1/EM Acc. Acc. Acc. -

T5-Large
Prompt Tuning 83.4 86.4 54.0 67.9 73.3 86.4 67.5 31.0 68.7
PT w/ MLP 83.4 82.1 37.0 67.9 68.8 77.4 66.2 7.0 61.2
PT w/ LSTM 53.8 78.9 0.0 66.4 82.1 49.5 15.2 0.0 43.2
Residual PT 83.5 86.9 56.3 68.6 68.1 86.2 70.8 50.4 71.4

Fine-tuning† 85.4 93.2 83.4 67 86.3 87.8 69.3 86.3 82.3
T5-Base

Prompt Tuning 78.0 77.4 58.3 59.2 59.5 63.7 66.2 37.7 62.5
PT w/ MLP 77.5 74.8 57.7 59.5 60.8 56.0 65.2 39.5 61.4
PT w/ LSTM 51.1 5.0 3.5 12.5 32.3 43.3 54.9 43.1 30.7
Residual PT 77.9 79.2 58.3 59.3 60.2 70.4 66.8 49.1 65.2

Fine-tuning† 81.4 86.2 94.0 71.2 61.4 74.6 68.3 80.8 76.2
BERT-Base

Prompt Tuning 62.2 60.7 51.6 57.5 60.0 53.1 54.3 61.9 57.7
PT w/ MLP 62.0 61.3 53.2 58.3 62.8 48.0 54.6 64.1 58.0
PT w/ LSTM 62.2 65.2 52.0 53.1 62.7 44.6 59.9 63.5 57.9
Residual PT 62.7 67.9 63.5 59.0 61.1 54.9 57.1 63.5 61.2
Fine-tuning 73.2 89.9 65.7 66.9 62.8 65.1 67.8 63.8 69.4

Table 1: Results on SuperGLUE development set with 10-token prompt. All scores are averaged over 3 runs.
†denotes results reported by Raffel et al. (2020). For tasks with two metrics, the average score is reported.

4.4 Experimental setup314

For all experiments with prompt tuning-based meth-315

ods, we follow standard protocol by Lester et al.316

(2021) and report results on the validation set. Un-317

less otherwise specified, we use standard metrics as-318

sociated with each task to report final performance319

(see Table 7). For experiments where we compare320

RESIDUAL PROMPT TUNING with PEFT methods321

(Section 5.1.2), we follow PEFT training protocol322

(Asai et al., 2022; Karimi Mahabadi et al., 2021).323

More experimental details are in Appendix A.5.324

5 Results325

We describe our main results showing the effective-326

ness of RESIDUAL PROMPT TUNING compared to327

other prompt tuning-based methods and parameter-328

efficient methods in Section 5.1. We study the329

robustness of our method to the choice of hyperpa-330

rameters in Sections 5.2 and 5.3. Then, we explore331

the performance of RESIDUAL PROMPT TUNING332

in more extreme settings, including smaller prompt333

sizes (Section 5.4) and few-shot data regime (Sec-334

tion 5.5).335

5.1 Main results336

5.1.1 Comparison with prompt tuning337

We compare RESIDUAL PROMPT TUNING with338

the original prompt tuning, as well as two different339

reparameterization methods (via MLP and LSTM).340

Table 1 shows results for each task with 10-token341

prompts, and results for 100-token prompts are342

Prompt len. → 10 tokens 100 tokens
Method ↓ T5L T5B BERT T5L T5B BERT

Prompt Tuning 68.7 62.5 57.7 74.5‡ 63.1‡ 59.2
PT w/ MLP 61.2 61.4 58.0 67.8 62.4 60.8
PT w/ LSTM 43.2 30.7 57.9 60.1 55.2 58.8
Residual PT 71.4 65.2 61.2 74.5 70.5 61.6

Fine-tuning 82.3† 76.2† 69.4 82.3† 76.2† 69.4

Table 2: RESIDUAL PROMPT TUNING outperforms
other prompt tuning variations across three architec-
tures (T5-Large, T5-Base and BERT-Base) and different
prompt sizes (10 and 100 tokens). Average performance
across all SuperGLUE tasks is reported. All our results
are averaged over 3 runs. †denotes results reported by
Raffel et al. (2020); ‡denotes results reported by Lester
et al. (2021); Vu et al. (2021).

presented in Appendix B.1. We perform experi- 343

ments with T5-Large, T5-Base, and BERT-Base 344

model architectures, and with two different prompt 345

sizes: 10 and 100 tokens. Additionally, we include 346

full model tuning results as an upper-bound perfor- 347

mance. 348

Table 2 summarizes the average performance on 349

SuperGLUE with 10-token and 100-token prompts 350

across three model variants. RESIDUAL PROMPT 351

TUNING outperforms other methods, gaining +3 352

points improvement with 10-token prompts on both 353

T5B and T5L models, and over +7 points improve- 354

ment with 100-token prompts on T5B. 355

Table 1 dissects the performance with 10-token 356

prompts, showing per-task results for all Super- 357

GLUE tasks across three model variants. RESID- 358

UAL PROMPT TUNING leads to consistent improve- 359

5



Figure 3: Robustness of RESIDUAL PROMPT TUNING to the choice of learning rate. Experiments are performed with
T5L model and 100-token prompt. The x-axis shows different learning rates, the y-axis represents the corresponding
performance on the development set. First plot shows average performance on SuperGLUE with respect to the
learning rate; other figures show performance on three SuperGLUE tasks (WiC, MultiRC and CB).

ment over prompt tuning across different tasks.360

LSTM-based reparameterization shows worse per-361

formance compared to our approach. Prompt tun-362

ing with MLP reparameterization experiences sig-363

nificant fluctuations depending on the task – with364

stronger performance on ReCoRD (+0.6 points),365

but substantially lower score on WiC (−9.6 points)366

compared to our approach. Overall, RESIDUAL367

PROMPT TUNING shows strong improvement over368

prompt tuning and other reparameterization meth-369

ods across all model architectures.370

As shown in Figure 4, RESIDUAL PROMPT TUN-371

ING leads to faster convergence compared to other372

methods. We discuss convergence in more detail in373

Appendix B.2.374

Figure 4: RESIDUAL PROMPT TUNING (orange) speeds
up the optimization process of prompt embeddings com-
pared to prompt tuning (blue) and prompt tuning with
MLP (green). The x-axis shows the number of train-
ing epochs, the y-axis shows loss or accuracy on the
train/development sets of RTE. Each point represents an
average of 3 runs of T5B model with 10-token prompt.

5.1.2 Other parameter-efficient methods375

We compare the performance of different PEFT376

methods on SuperGLUE benchmark. Here, for all377

the experiments, we follow Asai et al. (2022) setup378

and train T5-Base model with a 100-token prompt379

on a selection of 5 SuperGLUE tasks (details in380

Appendix A.5). Our results are shown in Table 3. 381

Notably, RESIDUAL PROMPT TUNING achieves 382

significant performance gains over prompt tun- 383

ing, achieving over +10 points improvement in 384

average score. A major benefit of our method is 385

that it does not require transfer learning on source 386

tasks to achieve strong results, contrary to two 387

other prompt tuning-based methods: SPoT and 388

ATTEMPT. RESIDUAL PROMPT TUNING substan- 389

tially outperforms SPoT (+6.1 points), and reaches 390

close performance to ATTEMPT (1.5 points differ- 391

ence) without being pre-trained on any source tasks. 392

Further comparison is in Appendix B.3. 393

Task → CB Bool Multi WiC WSC Avg.
Method ↓ F1 Acc. F1 Acc. Acc. Avg.

Fine-tune∗ 85.7 81.1 72.8 70.2 59.6 73.9
Adapter∗ 85.7 82.5 75.9 67.1 67.3 75.7
AdaptDrop∗ 85.7 82.3 72.9 68.3 67.3 75.3
ATTEMPT∗ 78.6 78.8 74.4 66.8 78.6 70.5
SPoT∗ 46.4 77.2 74.0 67.0 50.0 62.9
PT∗ 67.9 61.7 58.7 48.9 51.9 57.8
Res-PT 86.0 79.0 58.9 68.4 52.6 69.0

Table 3: Comparison of parameter-efficient tuning meth-
ods across five SuperGLUE tasks averaged over 3 runs.
∗ denotes results reported by Asai et al. (2022).

5.2 Robustness to the choice of learning rate 394

We study the performance of RESIDUAL PROMPT 395

TUNING across a wide range of learning rates. Pre- 396

vious works report that prompt tuning is very sen- 397

sitive to the learning rate and requires extensive hy- 398

perparameter search to reach optimal performance 399

(Lester et al., 2021; Vu et al., 2021). 400

We evaluate the performance of our proposed ap- 401

proach and prompt tuning (Lester et al., 2021) with 402

learning rates from {0.001, 0.01, 0.03, 0.3, 10} on 403

SuperGLUE benchmark. For fair comparison, we 404

use the most stable model variant: T5-Large model 405

with 100-token prompt. Our results are shown in 406

Figure 3. Notably, residual reparameterization al- 407

lows stabilizing prompt tuning performance across 408

6



a wide range of learning rates. Original prompt409

tuning often experiences fluctuations in its perfor-410

mance, with some tasks favoring lower learning411

rates (e.g. MultiRC), other tasks performing bet-412

ter with higher learning rates (e.g. CB), and yet413

other tasks achieving peak performance at a spe-414

cific learning rate (e.g. WiC). In contrast to prompt415

tuning, RESIDUAL PROMPT TUNING is robust to416

the choice of learning rate – it achieves strong per-417

formance with minimal fluctuations (less than 2418

points on average SuperGLUE score) with learning419

rates between 0.01 and 10 (over 100-fold variation).420

5.3 Robustness to the prompt initialization421

Lester et al. (2021) finds that initialization of422

prompt parameters plays a major role in the final423

performance. Specifically, initializing prompt em-424

beddings from sampled vocabulary embeddings425

can boost average SuperGLUE performance by up426

to +10 points compared to random uniform ini-427

tialization (Lester et al., 2021). Here, we asked if428

RESIDUAL PROMPT TUNING performance would429

depend on the choice of initialization.430

Table 4 shows our results (initialization details431

are in Appendix A.4; we use T5B model with432

10-token prompt). We can see that RESIDUAL433

PROMPT TUNING is robust to the prompt initializa-434

tion method, reaching comparable results with both435

initialization choices: 0.8 points average perfor-436

mance difference between random uniform initial-437

ization and sampled vocabulary initialization. Of438

note, the initialization effect is more pronounced439

for smaller-scale dataset CB (250 samples) – ran-440

dom initialization attributes to −0.3 performance441

drop for RESIDUAL PROMPT TUNING versus −4.5442

score difference for the original prompt tuning.443

Task → CB WiC Multi RTE Avg.
Method ↓ Init. ↓ F1/Acc Acc F1/Acc Acc -

Prompt tune Rand. 72.9 65.0 59.1 63.7 65.2
Prompt tune Vocab. 77.4 66.2 59.2 63.7 66.6
delta - 4.5 1.2 0.1 0.0 1.5

Res-PT Rand. 78.9 66.8 59.4 67.3 68.1
Res-PT Vocab. 79.2 66.8 59.3 70.4 68.9
delta - 0.3 0.0 -0.1 3.1 0.8

Table 4: Robustness of RESIDUAL PROMPT TUNING
the prompt initialization method. We show results for
two prompt initialization methods: sampled uniformly
from the range [−0.5, 0.5] (Rand.), and initializing from
the sampled vocabulary (Vocab.). We use T5B model
and 10-token prompt. Delta denotes the performance
difference between two initialization choices.

444

5.4 Performance and prompt length 445

We evaluate the RESIDUAL PROMPT TUNING per- 446

formance with smaller prompt sizes, and compare 447

it to the original prompt tuning by Lester et al. 448

(2021). Specifically, we explore the performance 449

with prompts of lengths 2, 10, and 100 tokens with 450

T5-Large model. Our results are shown in Table 5. 451

In sum, RESIDUAL PROMPT TUNING improves 452

performance across all prompt lengths over prompt 453

tuning, achieving average improvement of +2.6, 454

+1.1 and +0.8 points with 2, 10, and 100-token 455

prompts correspondingly. 456

Prompt CB WiC Multi RTE Avg.
Len. ↓ Method ↓ Acc Acc F1/Acc Acc -

2 PT 91.7 67.4 84.8 81.0 81.2
2 Res-PT 94.0 70.7 84.9 85.6 83.8

10 PT 92.9 67.7 85.0 86.4 83.0
10 Res-PT 94.0 71.0 85.1 86.2 84.1

100 PT 92.9 70.2 83.8 87.5 83.6
100 Res-PT 95.2 71.3 83.8 87.0 84.4

Table 5: Comparison of RESIDUAL PROMPT TUNING
and prompt tuning by Lester et al. (2021) across differ-
ent prompt lengths (2, 10, 100 tokens) with T5L model.

5.5 Prompt tuning in few-shot setting 457

We perform further experiments in few-shot set- 458

tings (Figure 5). Specifically, we sample 5, 20, 459

and 100 samples per class. To avoid variance 460

due to selected samples, we fix the same training 461

subset across all runs for each task; we use T5- 462

Large model and 100-token prompt (as it reaches 463

strongest performance for prompt tuning baseline). 464

RESIDUAL PROMPT TUNING is very effective 465

in few-shot setup, boosting prompt tuning perfor- 466

mance by +7 and +2 points on SuperGLUE bench- 467

mark with 5 and 20 samples per class. 468

5.6 Ablation studies 469

Parameter sharing. We ablate the effect of a 470

shared reparameterization network by assessing the 471

performance when each prompt is reparameterized 472

through a separate MLP with a skip connection (Ta- 473

ble 6). We select four SuperGLUE tasks of differ- 474

ent sizes: small-scale CB and COPA (250 and 400 475

training examples), and larger-scale WiC and RTE 476

(6,000 and 2,500 training examples). Interestingly, 477

shared reparameterization network is beneficial in 478

the low data regime, outperforming separate net- 479

works by +2 points on CB dataset. However, on 480

larger datasets separate networks achieve slightly 481

7



Figure 5: Comparison of RESIDUAL PROMPT TUNING to the prompt tuning in few-shot setting (5, 20, and 100
samples/class) using T5L model and 100-token prompt. The x-axis shows the number of samples per class, the
y-axis represents the corresponding performance on the development set. Left corner shows average performance
on SuperGLUE with respect to the k-shot training setup; other figures show performance on specific SuperGLUE
tasks (WiC, RTE, BoolQ, and WSC).

better performance at the expense of more trained482

parameters. We show more detailed results in Ap-483

pendix C.1.

CB COPA WiC RTE Avg.
Acc. Acc. Acc. Acc. -

shared MLP 83.1 58.7 66.7 71.6 70.0
separate MLPs 81.1 60.3 67.8 74.5 70.9

Table 6: Performance of RESIDUAL PROMPT TUNING
with shared and separate embedding reparameterization
networks on four SuperGLUE tasks with T5B.

484
Overparameterization. We ablate the ef-485

fect of MLP width by varying the dimension486

of MLP hidden layer in the following range:487

{5, 10, 50, 100, 400, 1500} (Figure 6). Overall,488

that increase in dimensionality leads to perfor-489

mance gains, with performance saturating when490

the dimension reaches over 50 units.

Figure 6: The effect of MLP hidden layer size on the
performance of RESIDUAL PROMPT TUNING with T5B.
The x-axis shows the hidden layer size, the y-axis shows
the maximal validation performance. Each result is aver-
aged over 3 runs, shadow depicts the standard deviation.

491

6 Related work492

Prompt tuning methods. Several methods were493

recently proposed to improve over prompt tuning.494

Liu et al. (2021a) proposed adding soft prompts495

at every transformer layer. While their method496

improves performance, it requires much more train-497

able parameters (10x in some cases). Other works498

explored transfer learning-based methods to (Vu499

et al., 2021; Asai et al., 2022). These methods pre- 500

train soft prompts on a collection of source tasks 501

and subsequently use the learned prompt embed- 502

dings to initialize prompts for target tasks. 503

Reparameterization methods. Although repa- 504

rameterization has not been traditionally used with 505

prompt tuning, Li and Liang (2021) explored repa- 506

rameterization of embeddings as a way to improve 507

the performance of prefix tuning, and Liu et al. 508

(2021b) explored reparameterizing injectable em- 509

beddings together full model tuning. With these 510

approaches, prefix embeddings are passed through 511

a shallow neural network, such as MLP (in prefix 512

tuning) or LSTM (in GPT2 tuning by Liu et al. 513

(2021b)), before being concatenated to the input 514

embeddings (or representations) and passed into a 515

subsequent layer of the language model. Liu et al. 516

(2021a) explores MLP-based reparameterization 517

for P-tuning v2. Despite improvements on some 518

tasks, Liu et al. (2021a) finds that the reparameteri- 519

zation effect is not consistent across datasets and 520

can hinder the performance of certain tasks. 521

7 Conclusion 522

We propose RESIDUAL PROMPT TUNING, a new 523

method for learning soft prompts under a frozen 524

language model using residual reparameterization 525

of prompt embeddings. Our method enables effi- 526

cient learning of soft prompts, without the need 527

for extensive hyperparameter search, long train- 528

ing times, or pre-training on source tasks. The 529

experiments show that RESIDUAL PROMPT TUN- 530

ING significantly outperforms prompt tuning by 531

Lester et al. (2021) and its two variations across 532

three model architectures (T5-Large, T5-Base and 533

BERT-Base) on SuperGLUE benchmark. Further- 534

more, our method is robust to the hyperparame- 535

ter choice (learning rate and prompt initialization), 536

speeds up convergence and is highly effective in 537

few-shot settings. 538

8



Limitations539

Despite the simplicity and strong empirical results,540

RESIDUAL PROMPT TUNING still has few limita-541

tions. First, its performance is still not on par with542

fine-tuning on (e.g. 7.8 points difference with T5L543

model and 100-token prompt on SuperGLUE av-544

erage score). Also, our method uses slightly more545

parameters than prompt tuning to train the reparam-546

eterization network. However, this is not a signifi-547

cant limitation given the full language model size.548

We have tried to cover several model architectures,549

but so far we have focused on encoder-decoder (T5)550

and encoder-only (BERT) models. In future work,551

we would like to investigate decoder-only methods552

(e.g. GPT). Another limitation is that our method553

(similarly to other prompt tuning-based methods)554

strives to reduce the number of trainable parame-555

ters, but uses a longer sequence than the original556

input text (due to the injected prompt).557

Ethics Statement558

The main objective of RESIDUAL PROMPT TUN-559

ING is to improve parameter-efficient tuning of560

large language models, which makes state-of-the-561

art models more accessible to groups with limited562

computational and data-labeling resources. We do563

not believe there is any potential risk in the pub-564

lished code or models in this work, as all of our565

experiments are based on public data that is widely566

used in the research community.567

References568

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019.569
A convergence theory for deep learning via over-570
parameterization. In International Conference on571
Machine Learning, pages 242–252. PMLR.572

Akari Asai, Mohammadreza Salehi, Matthew E Peters,573
and Hannaneh Hajishirzi. 2022. Attentional mix-574
tures of soft prompt tuning for parameter-efficient575
multi-task knowledge sharing. arXiv preprint576
arXiv:2205.11961.577

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-578
ton. 2016. Layer normalization. arXiv preprint579
arXiv:1607.06450.580

Tom Brown, Benjamin Mann, Nick Ryder, Melanie581
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind582
Neelakantan, Pranav Shyam, Girish Sastry, Amanda583
Askell, et al. 2020. Language models are few-shot584
learners. Advances in neural information processing585
systems, 33:1877–1901.586

Christopher Clark, Kenton Lee, Ming-Wei Chang, 587
Tom Kwiatkowski, Michael Collins, and Kristina 588
Toutanova. 2019. Boolq: Exploring the surprising 589
difficulty of natural yes/no questions. arXiv preprint 590
arXiv:1905.10044. 591

Marie-Catherine De Marneffe, Mandy Simons, and Ju- 592
dith Tonhauser. 2019. The commitmentbank: Inves- 593
tigating projection in naturally occurring discourse. 594
In proceedings of Sinn und Bedeutung, volume 23, 595
pages 107–124. 596

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 597
Kristina Toutanova. 2018. Bert: Pre-training of deep 598
bidirectional transformers for language understand- 599
ing. arXiv preprint arXiv:1810.04805. 600

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 601
William B Dolan. 2007. The third pascal recognizing 602
textual entailment challenge. In Proceedings of the 603
ACL-PASCAL workshop on textual entailment and 604
paraphrasing, pages 1–9. 605

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 606
Sun. 2016. Deep residual learning for image recog- 607
nition. In Proceedings of the IEEE conference on 608
computer vision and pattern recognition, pages 770– 609
778. 610

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 611
Bruna Morrone, Quentin De Laroussilhe, Andrea 612
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 613
Parameter-efficient transfer learning for nlp. In In- 614
ternational Conference on Machine Learning, pages 615
2790–2799. PMLR. 616

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 617
Brown, Benjamin Chess, Rewon Child, Scott Gray, 618
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 619
Scaling laws for neural language models. arXiv 620
preprint arXiv:2001.08361. 621

Rabeeh Karimi Mahabadi, James Henderson, and Se- 622
bastian Ruder. 2021. Compacter: Efficient low-rank 623
hypercomplex adapter layers. Advances in Neural 624
Information Processing Systems, 34:1022–1035. 625

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, 626
Shyam Upadhyay, and Dan Roth. 2018. Looking 627
beyond the surface: A challenge set for reading com- 628
prehension over multiple sentences. In Proceedings 629
of the 2018 Conference of the North American Chap- 630
ter of the Association for Computational Linguistics: 631
Human Language Technologies, Volume 1 (Long Pa- 632
pers), pages 252–262. 633

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 634
The power of scale for parameter-efficient prompt 635
tuning. arXiv preprint arXiv:2104.08691. 636

Hector Levesque, Ernest Davis, and Leora Morgenstern. 637
2012. The winograd schema challenge. In Thir- 638
teenth international conference on the principles of 639
knowledge representation and reasoning. 640

9



Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:641
Optimizing continuous prompts for generation. arXiv642
preprint arXiv:2101.00190.643

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,644
Zhilin Yang, and Jie Tang. 2021a. P-tuning v2:645
Prompt tuning can be comparable to fine-tuning646
universally across scales and tasks. arXiv preprint647
arXiv:2110.07602.648

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,649
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt650
understands, too. arXiv preprint arXiv:2103.10385.651

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-652
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,653
Luke Zettlemoyer, and Veselin Stoyanov. 2019.654
Roberta: A robustly optimized bert pretraining ap-655
proach. arXiv preprint arXiv:1907.11692.656

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight657
decay regularization in adam.658

Adam Paszke, Sam Gross, Francisco Massa, Adam659
Lerer, James Bradbury, Gregory Chanan, Trevor660
Killeen, Zeming Lin, Natalia Gimelshein, Luca661
Antiga, et al. 2019. Pytorch: An imperative style,662
high-performance deep learning library. Advances in663
neural information processing systems, 32.664

Mohammad Taher Pilehvar and Jose Camacho-Collados.665
2018. Wic: the word-in-context dataset for evaluat-666
ing context-sensitive meaning representations. arXiv667
preprint arXiv:1808.09121.668

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine669
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,670
Wei Li, Peter J Liu, et al. 2020. Exploring the limits671
of transfer learning with a unified text-to-text trans-672
former. J. Mach. Learn. Res., 21(140):1–67.673

Melissa Roemmele, Cosmin Adrian Bejan, and An-674
drew S Gordon. 2011. Choice of plausible alter-675
natives: An evaluation of commonsense causal rea-676
soning. In AAAI spring symposium: logical formal-677
izations of commonsense reasoning, pages 90–95.678

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman679
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna680
Gurevych. 2020. Adapterdrop: On the effi-681
ciency of adapters in transformers. arXiv preprint682
arXiv:2010.11918.683

Shaden Smith, Mostofa Patwary, Brandon Norick,684
Patrick LeGresley, Samyam Rajbhandari, Jared685
Casper, Zhun Liu, Shrimai Prabhumoye, George686
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-687
speed and megatron to train megatron-turing nlg688
530b, a large-scale generative language model. arXiv689
preprint arXiv:2201.11990.690

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and691
Daniel Cer. 2021. Spot: Better frozen model adap-692
tation through soft prompt transfer. arXiv preprint693
arXiv:2110.07904.694

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 695
preet Singh, Julian Michael, Felix Hill, Omer Levy, 696
and Samuel Bowman. 2019. Superglue: A stick- 697
ier benchmark for general-purpose language under- 698
standing systems. Advances in neural information 699
processing systems, 32. 700

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 701
Chaumond, Clement Delangue, Anthony Moi, Pier- 702
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 703
et al. 2019. Huggingface’s transformers: State-of- 704
the-art natural language processing. arXiv preprint 705
arXiv:1910.03771. 706

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng 707
Gao, Kevin Duh, and Benjamin Van Durme. 2018. 708
Record: Bridging the gap between human and ma- 709
chine commonsense reading comprehension. arXiv 710
preprint arXiv:1810.12885. 711

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 712
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 713
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 714
Opt: Open pre-trained transformer language models. 715
arXiv preprint arXiv:2205.01068. 716

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 717
Sameer Singh. 2021. Calibrate before use: Improv- 718
ing few-shot performance of language models. In In- 719
ternational Conference on Machine Learning, pages 720
12697–12706. PMLR. 721

10



Appendix722

A Implementation and Training723

A.1 Implementation details724

We use PyTorch (Paszke et al., 2019) and Hugging-725

Face Transformers library (Wolf et al., 2019) for726

our implementation. To download data for Super-727

GLUE tasks, we use HuggingFace datasets (https:728

//github.com/huggingface/datasets) (Wang729

et al., 2019).730

In our prompt tuning and reparameterization731

experiments, we follow setup from the previous732

works on prompt tuning (Lester et al., 2021; Vu733

et al., 2021), and use the available validation set for734

each task to report the highest performance.735

A.2 Datasets736

Table 7 shows details of the eight datasets from737

SuperGLUE benchmark (Wang et al., 2019) that we738

used for our experiments, along with their training739

sizes and evaluation metrics. Following Raffel et al.740

(2020) and Lester et al. (2021), for tasks that have741

two evaluation metrics we use the average of both742

scores as the final performance metric.743

Dataset name Train Task Domain Metric

1. BoolQ 9,427 QA Wikipedia acc.
2. CB 250 NLI various F1 & acc.
3. COPA 400 QA blogs, encyclop. acc.
4. MultiRC 5,100 QA various F1 & EM
5. ReCoRD 101K QA various F1 & EM
6. RTE 2,500 NLI news, Wiki acc.
7. WiC 6,000 WSD lexical databases acc.
8. WSC 554/259* coref. fiction books acc.

Table 7: The details of 8 SuperGLUE tasks used in our
experiments. NLI denotes natural language inference,
QA denotes questions and answers task, WSD denotes
word sense disambiguation, EM denotes exact match
scoring, acc. denotes accuracy. *For T5 model variants
we follow Raffel et al. (2020) setup, casting WSC as
a text generation task and limit our training set to the
positive examples only, where the supplied referent is
correct (resulting in a total of 259 examples). For BERT
we use the full WSC training set (554 examples) and
train the model for binary classification, following Wang
et al. (2019).

A.3 Tokenization and Preprocessing744

Following common practice (Lester et al., 2021;745

Vu et al., 2021; Asai et al., 2022), for all our ex-746

periments, we set the maximum input length (in-747

cluding the prepended prompt) to 512 tokens. We748

use padding to maximum length and mask out the749

padded tokens. In case of input exceeding 512 to- 750

kens, we truncate the input. We do not perform any 751

specific text preprocessing (e.g. removing punc- 752

tuation) but instead directly tokenize the raw text 753

from SuperGLUE datasets using the corresponding 754

model tokenizer from HuggingFace (Wolf et al., 755

2019). 756

For BERT experiments, we follow Devlin et al. 757

(2018) formatting – the input sequence begins with 758

[CLS] token, and ends with [EOS] token. For tasks 759

with sentence pairs (e.g. RTE), we only insert our 760

soft prompt before the first sentence, and concate- 761

nate both sentences with [SEP] token in between. 762

For T5 experiments, we follow Raffel et al. 763

(2020) formatting. We feed input examples along 764

with their descriptors (e.g. "sentence1" and "sen- 765

tence2"), and cast all classification tasks into text- 766

to-text format (e.g. 0 and 1 classes in BoolQ task 767

are cast into "True" and "False") replicating guide- 768

lines from Raffel et al. (2020). 769

A.4 Prompt initialization 770

In all our experiments, unless otherwise specified, 771

we initialize prompt virtual tokens using randomly 772

sampled vocabulary embeddings (Lester et al., 773

2021). We sample uniformly across the whole vo- 774

cabulary, without limiting to top-k most common 775

tokens. For our studies on performance robustness 776

to the prompt initialization (Section 5.3), we also 777

explore random initialization, where embedding 778

values are sampled uniformly from [−0.5, 0.5] fol- 779

lowing Lester et al. (2021). 780

A.5 Training details 781

A.5.1 Infrastucture 782

All of our experiments were conducted with 12 783

GPUs, with 32 GB memory each. On each task, 784

training took between 20 minutes and 26 hours. 785

A.5.2 Hyperparameters 786

Following Lester et al. (2021); Vu et al. (2021), we 787

tune each method with a flat learning rate (LR) de- 788

termined by hyperparameter search. Hyperparame- 789

ter search was done via manual tuning and settings 790

were selected based on the best SuperGLUE score 791

(we use a subset of 5 tasks as in Asai et al. (2022)). 792

For T5 models, we search LRs from 793

{0.01, 0.1, 0.3, 0.7, 1.0}; based on the search use 794

the following LRs: 0.7 for RESIDUAL PROMPT 795

TUNING, MLP and LSTM-reparameterized prompt 796

tunings, 0.3 for the original prompt tuning (this 797

also agrees with Vu et al. (2021)). 798

11

https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets


For BERT model, we search LRs from799

{10−6, 5×10−6, 10−5, 2×10−5, 5×10−5, 10−4};800

we find LR of 2× 10−5 to achieve the best perfor-801

mance with RESIDUAL PROMPT TUNING and all802

prompt tuning variations, and use LR of 10−6 for803

fine-tuning according to Wang et al. (2019).804

In all our experiments, we use batch size of 8 and805

AdamW optimizer (Loshchilov and Hutter, 2018)806

with the following hyperparameters: β1 of 0.9, β2807

of 0.999, weight decay of 0.01, ϵ of 10−8 and bias808

correction turned on.809

A.5.3 MLP and LSTM design810

For RESIDUAL PROMPT TUNING and prompt tun-811

ing w/ MLP we use two-layer MLP as shown in Fig-812

ure 2. The only design difference between RESID-813

UAL PROMPT TUNING and prompt tuning w/ MLP814

is the residual connection. We set the hidden layer815

dimension of MLP to 250 in parameter-efficient816

experiments (Section 5.1.2), and to 400 in all other817

experiments. We use ReLU non-linearity and apply818

LayerNorm normalization.819

For prompt tuning w/ LSTM we use one-layer820

bidirectional LSTM with embedding dimension821

of 300, and dropout of 0.05, following Liu et al.822

(2021b).823

A.5.4 Training and evaluation824

We train all prompt tuning-based methods for 15825

epochs in case of 10-token prompts and for 20826

epochs in case of 100-token prompts. We run fine-827

tuning experiments for 30 epochs.828

In Section 5.1.2, where we compare parameter-829

efficient methods, we replicate training setup from830

Asai et al. (2022), and trained our method for 20831

epochs (since explored datasets are small-sized and832

contained less than 10k examples)833

Since SuperGLUE tasks that we used in our834

study do not have a test set, we used validation835

set performance as a final performance metric, fol-836

lowing previously used prompt tuning protocols by837

Lester et al. (2021) and Vu et al. (2021). We check-838

point the models every epoch, and report the high-839

est validation performance. Similarly to Lester et al.840

(2021), for each task we used its recommended met-841

ric by Wang et al. (2019) (see Table 7); for tasks842

with two corresponding metrics we report the aver-843

age of both scores.844

A.6 Parameter-efficiency of RESIDUAL 845

PROMPT TUNING 846

The total number of trainable parameters in RESID- 847

UAL PROMPT TUNING consists of 1) trainable 848

prompt embeddings, and 2) reparameterization 849

network, which tunes down-projection Wdown ∈ 850

Rd×m and up-projection Wup ∈ Rm×d layers, 851

as well as LayerNorm parameters (as shown in 852

Figure 2). We assume that d is the dimension- 853

ality of model embeddings, m is MLP bottle- 854

neck size and N is the number of prompt tokens. 855

Hence, we have d×N soft prompt parameters, and 856

m× d+ d×m+ 2d = 2dm+ 2d parameters in 857

the reparameterization network. Thus, RESIDUAL 858

PROMPT TUNING has 2dm+ 2d+ dN trainable 859

parameters. Importantly, the reparameterization 860

network can be discarded after training, hence we 861

only have dN task-specific parameters. 862

B Performance on SuperGLUE 863

B.1 Performance with 100-token prompts 864

Table 9 shows the performance of different ap- 865

proaches for prompt tuning (w/ and w/o reparame- 866

terization) with 100-token prompts, presenting per- 867

task results for all SuperGLUE tasks across three 868

model variants (T5-Large, T5-Base, BERT-Base). 869

We see that our method, RESIDUAL PROMPT TUN- 870

ING, leads to consistent performance improvement 871

over prompt tuning and two reparameterization 872

methods across different tasks. 873

B.2 Convergence of different prompt tuning 874

approaches 875

Here, we study the convergence of RESIDUAL 876

PROMPT TUNING, prompt tuning, and prompt tun- 877

ing with MLP reparameterization. We show the 878

evolution of accuracy and loss over the course of 879

training on several SuperGLUE tasks in Figure 7. 880

We observe that RESIDUAL PROMPT TUNING sub- 881

stantially speeds up convergence over the original 882

prompt tuning by Lester et al. (2021). Notably, 883

the residual connection in the reparameterization 884

network plays a key role in boosting performance 885

– MLP-based reparameterization without skip con- 886

nection is actually slower to converge than the stan- 887

dard prompt tuning (Figure 7). We hypothesize 888

that this is explained by skip connection making 889

it easier to optimize prompt embeddings. Specifi- 890

cally, skip connection allows to bypass learning the 891

identity function, and learns projections "on top" of 892

the original embeddings instead of learning them 893

12



from scratch (similar observations by (He et al.,894

2016)). Thus, residual prompt repameterization895

allows to flexibly combine the original prompt em-896

beddings with embeddings projections, resulting in897

faster convergence and improved performance.898

B.3 Comparison of different899

parameter-efficient methods900

Section 5.1.2 compares RESIDUAL PROMPT TUN-901

ING performance to other PEFT approaches, fol-902

lowing Asai et al. (2022). In addition to perfor-903

mance reported in Table 3, here we include specific904

details of the explored PEFT methods (see Table 8).905

Method Train. params Add. params Pre-train.

Fine-tune 220M 0 No
Adapter 1.9M 1.9M No
AdaptDrop 1.1M 1.1M No
ATTEMPT 223K 223K Yes
SPoT 77K 77K Yes
PT 77K 77K No
Res-PT 462K 77K No

Table 8: Comparison of parameter-efficient tuning meth-
ods. Train. params denotes total number of trainable
parameters, Add. params denotes number of additional
parameters that would be injected into the language
model during inference, Pre-train denotes if the method
requires pre-training on source tasks.

C Extended ablation studies906

C.1 Effect of shared reparameterization907

network908

Figure 8 shows performance of RESIDUAL909

PROMPT TUNING with shared and separate MLP910

for reparameterization. Interestingly, shared MLP911

offers better performance on small datasets (e.g.912

CB) due to knowledge sharing between prompt913

tokens. At the same time, separate MLPs offer914

more flexibility and perform better on larger-scale915

datasets (e.g. WiC). Overall, their performance916

is similar and shared MLP is a significantly more917

parameter-efficient variant. Hence, we choose to918

use shared MLP in our work.919

13



Task → BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Avg.
Method ↓ Acc. F1/Acc. Acc. F1/EM F1/EM Acc. Acc. Acc. -

T5-Large
Prompt Tuning‡ - - - - - - - - 74.5
PT w/ MLP 83.7 87.1 52.7 65.3 77.4 85.7 68.5 21.9 67.8
Residual PT 84.2 93.3 54.3 83.9 65.9 87.7 71.1 55.3 74.5

Fine-tuning† 85.4 93.2 83.4 67 86.3 87.8 69.3 86.3 82.3
T5-Base

Prompt Tuning‡ - - - - - - - - 63.1
PT w/ MLP 72.7 78.7 56.3 58.1 63.0 61.4 66.1 43.0 62.4
Residual PT 79.0 86.0 60.0 79.6 56.7 81.5 68.4 52.6 70.5

Fine-tuning† 81.4 86.2 94.0 71.2 61.4 74.6 68.3 80.8 76.2
BERT-Base

Prompt Tuning 62.2 62.5 54.6 57.4 64.8 52.5 55.4 64.1 59.2
PT w/ MLP 62.3 63.7 64.0 58.3 65.2 51.5 57.1 64.4 60.8
Residual PT 62.3 72.6 64.2 57.8 65.2 52.7 54.2 63.8 61.6
Fine-tuning 73.2 89.9 65.7 66.9 62.8 65.1 67.8 63.8 69.4

Table 9: Results on SuperGLUE development set with 100-token prompt. All scores are averaged over 3 runs.
‡denotes results reported by Vu et al. (2021); Lester et al. (2021) (only average SuperGLUE performance is reported).
†denotes results reported by Raffel et al. (2020). For tasks with two corresponding scores the average of both scores
is reported.

Figure 7: Comparison of convergence of RESIDUAL PROMPT TUNING (in orange), prompt tuning (in blue) and
prompt tuning with MLP reparameterization (in green). Experiments are performed with T5-Base model and
10-token prompt. We show accuracy and loss on train and development sets over the course of training (20 epochs);
each point on the plot is an average of 3 runs. Results are shown for BoolQ task (top plot), CB task (middle plot)
and WiC task (bottom plot).

14



Figure 8: Effect of shared (in orange) versus separate (in green) reparameterization network on the performance of
RESIDUAL PROMPT TUNING. Experiments are performed with T5-Base model and 10-token prompt. We show
accuracy and loss on train and development sets over the course of training (20 epochs); each point on the plot is an
average of 3 runs. Results are shown for CB task (top plot) and WiC task (bottom plot).

15


