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Abstract

Generating commonsense assertions, given a
certain story context, is a tough challenge
even for modern language models. One of
the reasons for this may be that the model
has to "guess" what topic or entity in a story
to generate an assertion about. Prior work
has tackled part of the problem, by provid-
ing techniques to align commonsense infer-
ences with stories and training language gen-
eration models on these. However, none of
the prior work provides means to control the
parts of a generated assertion. In this work,
we present "hinting", a data augmentation tech-
nique for improving inference of contextual-
ized commonsense assertions. Hinting is a pre-
fix prompting strategy that uses both hard and
soft prompts. We demonstrate the effective-
ness of hinting by showcasing its effect on two
contextual commonsense inference datasets:
ParaCOMET (Gabriel et al., 2021) and GLU-
COSE (Mostafazadeh et al., 2020), for both
general and context-specific inference.

1 Introduction

The task of Contextual or Discourse-Aware Com-
monsense Inference, which consists of generating
relevant and coherent commonsense assertions (i.e.
facts) for a certain sentence in a story context, while
easy for humans, remains challenging for machines
(Gabriel et al., 2021). Within this task, we define
an assertion as a tuple that contains a subject!, a
relation, and (e.g., a dog, is a, ),
similar to a subject-verb-object triple. An assertion
in this task can be seen as contextually specific facts
or generally applicable rules, that can be inferred
from a sentence in a given story context.
Automated systems (such as pre-trained
transformer-based language models (Devlin
"'We note that here we utilize the term "subject” as a part
of the relation tuple, and it is not necessarily "subject" in a
grammatical sense. In the case of ATOMIC, a subject could

be a sentence describing an event that causes another event or
a reaction, whereas in ConceptNet it could be a concept.

et al., 2019; Radford et al., 2019)) struggle with
generating these contextual assertions, since there
is an implicit assumption that clues for making
predictions can always be found explicitly in
the text. (Da and Kasai, 2019; Davison et al.,
2019; Liu and Singh, 2004; Zhang et al., 2021).
This becomes problematic because the model is
essentially forced to use knowledge that it may
not have seen during pre-training. Additionally,
models are forced to guess what to predict about
(e.g., what the subject of an assertion is), which
may lead to decreased performance (e.g., the
model generates an assertion about cats when it
should have talked about dogs).

To clarify the task of contextual commonsense
inference even further, below we give an exam-
ple with a story, a target sentence, and some cor-
responding story specific and general inferences.
The story is picked directly from the ROCStories
corpus. (Mostafazadeh et al., 2016)

Story: The hockey game was tied up. The red
team had the puck. They sprinted down the ice.
They cracked a shot on goal! They scored a final
goal!

Story Specific Commonsense Inference: The
red team, is capable of,

General Commonsense Inference: Some peo-
ple scored a final goal , causes,

In this example we can see the aforementioned
problems that models have to deal with. Although
it is commonsense that a final goal will lead to a
victory for the red team, it is not explicitly stated
in the text. Pre-training of models may include text
related to a sudden death goal from sources such
as Wikipedia, but the model has to extrapolate that
the final goal in this example is a type of sudden
death goal and will concede victory to the red team.
Similarly, although we may want to talk about the
red team, the model has to somehow know that it
needs to talk about this, and not something else.



Previous attempts have tackled the problem of
contextual commonsense inference by construct-
ing datasets of stories aligned with assertions (i.e.
an assertion is given for a sentence in a story), ei-
ther through automated or human-annotated ways,
and building a model to, given the story and a tar-
get sentence, predict part or the whole assertion.
One previous attempt to tackle this problem, Para-
COMET (Gabriel et al., 2021), trained a GPT-2
language model (Radford et al., 2019) to infer

of a commonsense assertion tuple from the
ATOMIC (Sap et al., 2019) knowledge base®. They
formulate the task as follows. Given a story, a sen-
tence identifier token, and a specified relation, the
model has to predict of a commonsense
assertion. An example of an input and expected
output from the ParaCOMET formulation can be
seen below:

Model Input: The hockey game was tied up.
The red team had the puck. They sprinted down
the ice. They cracked a shot on goal! They scored
a final goal! <lsent5I> <IxEffect>

Model Target/Output:

In this example, since the model is predicting
ATOMIC objects, the output is a single phrase
(.e., ). Additionally, the symbols
<lIsent5|> and <IxEffect|> mean that the target sen-
tence is sentence number five>, and that the relation
we want to generate a tuple about is the "has the
effect on a certain person(s)" respectively.

Another work that tries to approach this is GLU-
COSE (Mostafazadeh et al., 2020). Here a dataset
is constructed to consist of stories and human an-
notations for sentences in the stories. The human
annotations provide specific and general common-
sense assertions. The authors utilize this dataset to
train a TS (Raffel et al., 2020) model to perform
contextualized and generalized story assertion in-
ference. The model takes an input sequence in
the form of a story, a relation to predict, and a tar-
get sentence, and has to predict both the general
and specific assertions that may be present in the
target sentence with the given story context. An
example of the GLUCOSE formulation’s inputs
and expected outputs is given below:

2ATOMIC is composed of causal assertions, where a cer-
tain subject event, causes a certain object event through a
given relation.

3We note that in the original ParaCOMET work, the sen-
tences were O-start indexed. We utilize 1-start indexing for
clearer understanding.

Model Input: 1: The hockey game was tied up.
The red team had the puck. They sprinted down
the ice. They cracked a shot on goal! *They
scored a final goal!*

Model Target/Output: The red team scores,
Causes/Enables, ** People_A
score, Causes/Enables,

This formulation of contextual commonsense in-
ference is harder than the ParaCOMET one in that
it has to generate two sets of a subject, relation, and

tuples, in which one is the story specific
one and the other is the general version of the as-
sertion. These are seen above separated by the **
respectively. In this example additionally, we can
see the symbol /: which tells the model to predict
along a dimension of commonsense described by
GLUCOSE (.e., 1: Event that directly causes or
enables X), and the sentence enclosed by asterisks
(*) which signifies it is the target sentence. In both
works, the models are expected to do their infer-
ence from the story, a target sentence, and relation
alone.

Recently, there has been work on exploring
prompting (Liu et al., 2021), which is essentially
finding ways of altering the input to a language
model such that it matches templates that it has seen
during pre-training. Prompting a model correctly
gives stronger performance in tasks, can help with
controllability in the case of text generation, and
is more parameter-efficient and data-efficient than
fine-tuning, in some cases (Li and Liang, 2021).
One novel type of prompting is prefix prompting
(Li and Liang, 2021; Lester et al., 2021). Pre-
fix prompting consists of modifying a language
model’s input (i.e. prefix) by adding additional
words. These words can be explicit hard prompts
(i.e., actual words such as "give a happy review")
or they can be soft prompts, embeddings that are
input into a model and can be trained to converge
on some virtual template or virtual prompt that can
help the model. Prompting holds great potential for
improving contextualized commonsense inference.

We introduce the idea of a hint, a hybrid of hard
and soft prompts. We define a hint as an additional
input in the form of a part(s) of an assertion that a
model has to predict, along with special identifiers
for these parts, wrapped within parenthesis charac-
ters. Syntactically, a hint would take the form of:
"([subject symbol, subject], [relation symbol, rela-
tion], [object symbol, 1)" where the actual
content of the hint, between the parenthesis, would
be a permutation of all but one of the elements of



the target tuple during training. In the case of sup-
plying hints to GLUCOSE, we include a specific or
general symbol which determines whether the part
of the hint belongs to a story specific assertion or
a general rule. For example, a hint for the hockey
example for the GLUCOSE formulation would be
"(<Ispecificl><Isubjl>The red team scores, <lgen-
erall><lobjl> )". Altogether,
the model’s input would be:

Model Input: 1: The hockey game was tied up.

The red team had the puck. They sprinted down

the ice. They cracked a shot on goal! *They

scored a final goal!*(<Ispecificl><Isubjl>The
red team scores, <lgenerall><lobjl>

)
Model Target/Output: The red team scores,
Causes/Enables, ** People_A
score, Causes/Enables,

Hints are provided during training by sampling
a binomial distribution (with p = 0.5) for each
element in a minibatch, which determines whether
to give a hint or not. The actual content of the hint
would then be generated by randomly sampling
without replacement up to all but one of the ele-
ments in a target tuple. We give a more detailed
description of hinting in section 3.2 and 3.3.

We hypothesize that this scheme of hinting
strikes a balance between the model recalling in-
formation from its pre-training, with information
that it may not have seen that may only be present
in the target tuple. Additionally, by providing and
fine-tuning a model on the combination of hard
and soft prompts, a generative language model can
be guided to "talk" about a certain subject, ,
or relation, thus enabling finer control of models
in downstream applications. We note that the ap-
proach was designed to be simple to implement,
and to give control when generating text. In the
following sections, we give some background and
follow this with a set of experiments to show the
effects of hinting for the ParaCOMET and GLU-
COSE datasets, and finally, analyze the results, and
present future directions for this work. Concretely,
our contributions are:

* A hybrid prefix prompting technique called
hinting that provides a partial assertion to aug-
ment data for contextual commonsense infer-
ence, and

* Demonstrating that hinting does in fact im-
prove the performance for contextual com-
monsense inference as measured by auto-

mated metrics and is comparable in human-
based metrics.

2 Related Work
2.1 Prompting

Recently, there has been a shift in paradigm in Nat-
ural Language Processing from pre-training and
fine-tuning a model, to pre-training, prompting, and
predicting (Liu et al., 2021). One primary reason
for this shift is the creation of ever-larger language
models, which have become computationally ex-
pensive to fine-tune. Prompting can be described as
converting a pre-trained language model input se-
quence into another sequence that resembles what
the language model has seen during pre-training.
Overall, most prompting research is focused on
formulating the task as a cloze (fill-in-the-blanks)
task. However, we consider the task of language
generation, an open-ended formulation.

Recall that prefix prompting modifies the in-
put to a language model, by adding either a
hard prompt (additional words to the input se-
quence)(Shin et al., 2020) or a soft prompt (i.e.,
adding trainable vectors that represent, but are
not equivalent to, additional words) (Li and Liang,
2021; Lester et al., 2021; Liu et al., 2021).

Unlike classic prefix prompting, hinting uses
both hard and soft prompts. The soft prompts are
in the form of symbols that represent the different
parts of the assertion (i.e., subject, relation type,
and ), and the hard prompts are in the form
of the actual parts of the assertion that are selected
to be appended as part of the Aint. Our work is sim-
ilar to KnowPrompt (Chen et al., 2021a), except
that they use a masked language model and soft
prompts for relationship extraction. AutoPrompt
(Shin et al., 2020) is also similar, but finds a set of
"trigger" words that give the best performance on
a cloze-related task, whereas we provide specific
structured input for the model to guide text gen-
eration. We additionally note that although there
are prompt-based relation extraction models (Chen
et al., 2021b), we are performing a different task
which is contextual commonsense inference.

2.2 Controllable Generation

Controllable generation can be described as ways
to control a language model’s text generation given
some kind of guidance. One work that tries to im-
plement controllable generation is CTRL (Keskar
et al., 2019). The authors supply control signals



during pre-training of a general language model.
A body of work in controllable generation has fo-
cused on how it can be used for summarization.
Representative work that uses techniques similar
to ours is GSum (Dou et al., 2021). In contrast to
GSum, our method is model independent, allows
for the source document to interact with the guid-
ance signal, and contains soft prompts in the form
of trainable embeddings that represent the parts of
a tuple. The GSum system gives interesting insight
into the fact that highlighted sentences, and the pro-
vision of triples, does in fact help with the factual
correctness of abstractive summarization. We make
the distinction that hinting falls more under prompt-
ing for the reason that we utilize additionally the
trainable soft embeddings rather than purely ad-
ditional hard tokens and that our task of contex-
tual commonsense generation is not explored in
the controllable generation works, whose main fo-
cus is on controlling unstructured text generation.
Some works that are in this area are also (Peng
et al., 2018) who utilize what they call "control fac-
tors" as keywords or phrases that are supplied by a
human-in-the-loop to guide a conversation. More
similar to our work, but tailored for the task of
interactive story generation and without trainable
soft-embeddings, is the work by (Brahman et al.,
2020) which uses automatically extracted keywords
to generate a story. Future work we could possibly
utilize the automatic keyword extraction to supply
parts of a hint, rather than our approach of com-
plete parts of an assertion, and expand this to utilize
synonyms of keywords. Lastly, there is the work
by (See et al., 2019) which looks at controllable
text generation for the purpose of conversation and
utilizes an embedding give quantitative control sig-
nals as part of conditional training.

2.3 Discourse-aware/Contextual
commonsense inference

Commonsense inference is the task of gener-
ating a commonsense assertion.  Discourse-
aware/contextual commonsense inference is the
task of, given a certain narrative or discourse, in-
fering commonsense assertions that are coherent
within the narrative(Gabriel et al., 2021). This task
is particularly hard because commonsense knowl-
edge may not be explicitly stated in text (Liu and
Singh, 2004) and the model needs to keep track of
entities and their states either explicitly or implic-
itly. Research into the knowledge that pre-trained

language models learn has yielded good results
in that they do contain various types of factual
knowledge, as well as some commonsense knowl-
edge(Da and Kasai, 2019; Petroni et al., 2019; Davi-
son et al., 2019). The amount of commonsense
knowledge in these models can be improved by
supplementing sparsely covered subject areas with
structured knowledge sources such as ConceptNet
(Speer et al., 2017; Davison et al., 2019).
Knowing that these pre-trained language mod-
els may contain some commonsense information
has led to the development of knowledge models
such as COMET(Bosselut et al., 2019). This line of
research has been extended from the sentence-by-
sentence level in COMET, to the paragraph-level
in ParaCOMET (Gabriel et al., 2021). Contempo-
raneously, GLUCOSE Mostafazadeh et al. (2020)
builds a dataset of commonsense assertions that are
contextualized to a set of stories, and generalized.

3 Modeling
3.1 Task

We now detail the task of Contextual Common-
sense Inference. We are given a story S composed
of n sentences, S = {51, S2,...,S,} , atarget sen-
tence from that story, S;, where S; € S, and a di-
mension/relation type R. Given all this, we want to
generate a tuple in the form of (subject, 17, )
that represents an assertion, present or implied, in
S given the context S, and the relation type R.

We run tests with two variations of this task, one
is the ParaCOMET variation and the other the GLU-
COSE variation. In the ParaCOMET experiments,
we represent S; with a unique token. Additionally,
we only generate the of the tuple.

In our GLUCOSE experiments, we represent .Sy
by marking it with * on the left and right of the
sentence. Additionally, we generate two subject, R,

tuples, one that is the context-specific tuple,
and the other is the general tuple, separated by two
asterisks (**). An example of both is in Section 1.

3.2 Hinting

The mechanism we present in this work, called
hinting, is a kind of mixed/hybrid prompting for
generative language models. Prompting is essen-
tially supplying additional text (i.e. prompts) to a
language model to aid/guide it in a specific task.
In our case, we opt to give a "hint", as to what
the assertion that we want to predict contains, at
the end of our input text. We chose placing the



Model Input

Model Output

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *

They scored a final goal >Causes>They feel(s) happy **
Some People_A scored a final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.

The red team had the puck. They sprinted down the ice.

They cracked a shot on goal!. * They scored a final goal!. *
hint: (<Ispecificl><Isubjl>the red team scores the final goal)

the red team scores the final goal >Causes>the red team feel(s) happy **
Some People_A (who are a team) score the final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.

The red team had the puck. They sprinted down the ice.

They cracked a shot on goal!. * They scored a final goal!. *

hint: (<Ispecificl><Isubjl>the blue team does not score the final goal)

the blue team does not score the final goal >Causes>the blue team feel(s) disappoinment **
Some People_A do not score the final goal >Causes>Some People_A feel(s) disappointment

7: The hockey game was tied up.

The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<Ispecificl><lobjl> )

they scored a final goal >Causes> wx
Some People_A scored a final goal >Causes>Someone_A feel(s) happy

7: The hockey game was tied up.

The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<Igenerall><Isubjl> Something_A (that is a point))

They scored a final goal >Causes>They feel(s) happy **
Something_A (that is a point)) is scored >Causes>Some People_A feel(s) happy

Table 1: Example of inputs and outputs for the GLUCOSE trained model with hints. The hint is bolded and the

parts of the hint are colored (subject, relation,

). Without a hint we can see that the model tries to infer

directly on the content of the sentence, however with hints, the model tries to include an inference based on the

target sentence with the contents of the hint.

hint at the end of the input for simplicity in dataset
processing, but it can be placed anywhere and we
leave it as future work to explore the effects of plac-
ing hints possibly next to the target sentence or at
the beginning of the input. Hinting can be seen as
a hybrid of prompting the generative model with
hard prompts composed of parts of what should
be predicted along with soft prompts of symbols
that represent those parts. These symbols are for
the subject, relation, and respectively. These
soft prompts utilize untrained embeddings for the
task. We structure hinting this way such that, after
training, whenever a hint is given, the model can
be guided to generate knowledge about the hint’s
content based on the target sentence and context.

To balance the model’s reliance on the context,
its knowledge, and the hint, we determine whether
to supply the hint by sampling a binomial distribu-
tion (p = 0.5). Thus, we can control the frequency
of when to supply a hint. Additionally, the content
of the hint is determined by random sampling of
permutations of components, up to a maximum of
all but one component. Since our task is to predict
the tuple, we do not want to make the model overly
reliant on hints for the answer.

3.3 An example of Hinting

A simple example of hinting is the following:

Story: The hockey game was tied up. The red
team had the puck. They sprinted down the ice.
They cracked a shot on goal! They scored a final
goal!

Target sentence: They scored a final goal!

Target assertion: (subject: the red team, rela-
tion: are capable of, object: .)

A hint can be any permutation of the target as-
sertion, except the complete assertion, along with
some symbol that indicates which part it is:

Possible Hints:  (<lsubjl> the red team),
(<lsubjl> the red team, <lrell> capable of),
(<lsubjl> the red team, <lobjl>

), (<lrell> capable of, <lobjl>

), (<lobjl> ), (<lrell> ca-
pable of)

A hint for the given story, target sentence and
target assertion, yields the following:

Hint: (<Isubjl> the red team, <lrell> capable of)

Putting everything altogether, the input for the
model would be:

Story with Hint: The hockey game was tied up.
The red team had the puck. They sprinted down
the ice. They cracked a shot on goal! They scored
a final goal! (<lsubjl> the red team, <lrell> ca-
pable of).

We note that this is a general version of how
the hinting mechanism works. The dataset specific
hints that we utilize are described in Section 4.1.

3.4 Models

For our first set of experiments, we utilize the Para-
COMET (Gabriel et al., 2021) dataset and frame-
work with the same GPT-2 model as ParaCOMET,
along with a BART (Lewis et al., 2020) model and a
TS5 (Raffel et al., 2020) model to observe the effects
of hinting in a sequence-to-sequence formulation
of the dataset. We use the off the shelf (Hugging-
face (Wolf et al., 2019)) pretrained "base" version
of these models for efficiency. For our second set of
experiments with the GLUCOSE dataset, we also
utilize the TS model as was done in GLUCOSE.



4 Experimental Setup

4.1 Experiment Description

We run two sets of experiments to show the effec-
tiveness of hinting. The first is utilizing the original
ParaCOMET dataset and setup and adding hints.
The ParaCOMET setup consists of given a story .S
composed of n sentences, S = {S1,52,...,5,},a
relation type R, and a target sentence token (i.e. <
|sent0] >, < |sentl| >, ..., < |sent(n — 1)| >).
In the ParaCOMET dataset, we must predict the

of a triple, utilizing implicitly the sentence
as a subject and explicitly the supplied sentence
symbol and relation R symbol.

Within this framework, after the relation R, we
add our hint between parenthesis (i.e. “([hint])”).
In this framing, our hint can be composed of: a
subject symbol (<Isubjl>) along with the target sen-
tence to serve as a subject, a relation symbol along
with the relation R, or an object symbol along with
the of the triple. Using the hockey example
a possible hint in this set of experiments would be:
"(<Irell> <IxEffectl>, )"

In our GPT-2 experiments, we utilize the same
cross-entropy loss as in (Gabriel et al., 2021).
We note that we utilize a sequence-to-sequence
(Sutskever et al., 2014) formulation for the T5 and
the BART models. This in contrast to the GPT-2-
based system requires encoding a source sequence
(i.e., story, target sentence, and relation symbol),
and decoding it into a target sequence (i.e., the

of an assertion). For the TS5 model, we add the
prefix "source:” before the story S, and the prefix
"hint:" for placing our hints. For simplicity, we con-
struct the same "heuristic" dataset as ParaCOMET
which utilizes a heuristic matching technique to
align ATOMIC (Sap et al., 2019) triples to story
sentences.

For our second set of experiments, we utilize the
formulation utilized in GLUCOSE (Mostafazadeh
et al., 2020). The formulation utilizes the TS5 model
in a sequence-to-sequence formulation once more.
In this formulation, the source text is composed of
a prefix of a dimension to predict D € 1,2, ...10%
followed by the story .S with the marked target sen-
tence. The target sentence, S;, is marked with *
before and after the sentence. An example input
is: "1: The first sentence. *The target sentence. *
The third sentence.". This task is slightly different
from the ParaCOMET one, in that in addition to

“The definition for each dimension number is given in the
GLUCOSE work

predicting a context specific triple, the model has to
predict a generalized triple. In this task we have to
infer a general and context specific subject,

and a relation. For our hints we provide up to five
out of these six things, along with a symbol that
represents whether it is the subject, or arela-
tion, and another symbol that represents whether it
is part of the general or specific assertion. We add
our hint after the story .S, utilizing the prefix “hint:”
and supplying the hint between parenthesis. In
this set of experiments, an example of our hint can
be, given the example in section 3.3: "(<Igenerall>
<lobjl> )",

4.2 Experiment Configuration

We run the ParaCOMET experiments for 10 epochs
on the dataset’s training data and evaluation data.
We utilize a max source sequence length for the
BART and T5 models of 256, and a max target
length of 128. For the GPT-2 models we utilize
a max sequence length of 384. Additionally, we
use the ADAM (Kingma and Ba, 2015) optimizer
with a learning rate of 2e-5, and a linear warm-up
of 0.2 percent of the total iterations. For the T5
models we utilize a learning rate of 1e-4 because
early experiments showed that the model would
not converge with lesser learning rates. We uti-
lize the scripts from (Gabriel et al., 2021) for data
generation. We also utilize a batch size of 4 for
training and we accumulate gradients for 4 steps
for an effective batch size of 16. The results that
we present are the average of the 10 runs over 4
seeds for hinted and non-hinted conditions.

We run GLUCOSE experiments for 5 epochs
and 4 seeds on the original GLUCOSE data. Addi-
tionally, we utilize a linear warm up of 3000 steps.
We utilize the ADAM optimizer with a learning
rate of 3e-4, a train batch size 4, with gradient ac-
cumulation of 4 steps for an effective batch size of
16, and a max source length of 256 and max target
length of 128. In our results we present the average
of the 4 seeds across the 5 epochs. In both exper-
iments we report the scores given by SacreBLEU
(Post, 2018), ROUGE (Lin, 2004), and METEOR
(Banerjee and Lavie, 2005) using the datasets li-
brary (Lhoest et al., 2021) metrics system. We
run our experiments in a machine with an AMD
ThreadRipper 3970 Pro and 4 NVIDIA A6000s.
Every epoch per model is approximately an hour.

Additionally, we run a small Mechanical Turk
study similar to the one presented in the original



Model BLEU METEOR ROUGEI1 ROUGE2 ROUGE L ROUGE L SUM
Hint No Hint | Hint No Hint | Hint No Hint | Hint No Hint | Hint No Hint | Hint No Hint
ParaCOMET | 42.705% | 41.960 | 59.411* | 59.045 | 63.339* | 61.454 | 52.483* | 50.513 | 63.292* | 61.395 | 63.294%* | 61.399
Bart 41.765% | 41.639 | 58.766* | 58.639 | 61.054 | 61.013 | 49.970 | 49.889 | 61.004 | 60.964 | 61.010 | 60.969
T5 41.070 | 41.102 | 58.004 | 58.000 | 59.535 | 59.631 | 48.695 | 48.823 | 59.488 | 59.588 | 59.494 | 59.597

Table 2: Averages of 4 different seeds over 10 epochs for hinted (Hint) and non-hinted (No Hint) runs of the Para-
COMET dataset from (Gabriel et al., 2021). The largest scores are bolded and significantly different scores have
an asterisk (*) next to them. We can see from the results that hinted systems tend to achieve higher performance
even if slightly and in some cases significantly, and do not decrease performance significantly.

Bleu Meteor Rouge 1 Rouge 2 ROUGE L Rouge LSUM
No Hint | Hint No Hint | Hint No Hint | Hint No Hint | Hint No Hint | Hint No Hint | Hint
58.542 | 59.099* | 66.829 | 66.917 | 66.387 | 66.681* | 47.850 | 48.141 | 62.542 | 62.874* | 62.528 | 62.868*

Table 3: Averages of 4 different seeds over 5 epochs for hinted (Hint) and non-hinted (No Hint) runs of the
GLUCOSE contextual inference task dataset. This is the same dataset as the work in (Mostafazadeh et al., 2020)
The largest scores are bolded and significantly different scores have an asterisk (*) next to them. Once more, we
see that hinting provides a small, increase in performance, all the while permitting controllability.

Model Non-Hinted | Hinted Model Non-Hinted | Hinted
ParaCOMET 3.71 3.76 ParaCOMET 81% 84 %
Bart 3.72 3.48 Bart 83% T4%
T5 3.73 3.68 T5 81% 81%
T5-GLUCOSE | 4.10 4.06 T5-GLUCOSE | 92% 90%

Table 4: Results of human evaluation of ParaCOMET and GLUCOSE datasets. The largest scores are bolded and
significantly different scores have an asterisk (*) next to them. We sampled 100 test points for each model from
their test datasets and had the hinted and non-hinted models infer assertions. Humans judged these assertions on
a 5 point Likert scale where above 3 was plausible similar to (Gabriel et al., 2021). On the left we can see the
average values of the human judgments and on the right we can see the percentage of plausible inferences (rated

>=3). We can see that hinting provides comparable performance.

ParaCOMET (Gabriel et al., 2021) in which a hu-
man judges a generated assertion and judges the
plausibility of it on a 5-point Likert scale: obvi-
ously true (5), generally true (4), plausible (3), neu-
tral or unclear (2), and doesn’t make sense (1). We
present the results in the same manner where Ta-
ble 4 displays the percent of inferences judged as
plausible or true (3-5), and the average rating per
inference. Participants were given $0.1 to complete
the task. We give an image of the HIT in Appendix
A. We sample from each of the ParaCOMET and
GLUCOSE test sets, 100 entries. Then based on
the models for each dataset, we pick the epoch that
had the highest automated scores and we proceed
to randomly sample one of the trained hint and non-
hinted models. We then select one sentence of the
randomly sampled test entries and ask both models
to generate an inference along a randomly sampled
relation or dimension for that sentence.

5 Results and Analysis
5.1 Experiment 1: ParaCOMET with hints

The aggregated results for this set of experiments
can be found in Table 2. We can see here that on
average, hinting does tend to improve the score
even if slightly. It seems that providing a hint is
beneficial and not detrimental for contextual com-
monsense inference. Given the way that this task
is framed, a possibility that could explain the rela-
tive similarity of the performances, is that hinting
only adds the of the triple as additional pos-
sible data that the model may see during training;
the subject and the can be repeated with
hinting. We note that the performance of the T5
model was less than that of the other models, and
we believe that it may be lack of hyperparameter
tuning, as it was seen that the model was sensitive
to the learning rate and had to use a higher than
usual learning rate.

5.2 Experiment 2: GLUCOSE with hints

The aggregated results for this set of experiments
can be found in Table 3. Onc more we notice that



hinting does tend to improve the performance of the
contextual commonsense inference task. This sug-
gests that hinting is indeed beneficial for the task of
contextualized commonsense inference, especially
when faced with the harder task of generating both
a general and context dependent assertion. We be-
lieve that this improvement is because hinting gives
the model the clues it may need to decide on what
to focus or attend to, to generate useful inferences.

5.3 Experiment 3: Human Judgements

The results for a small Mechanical Turk study for
human evaluation of model inferences can be seen
in Table 4. Overall we can see here that hinted
systems are judged as less plausible. Interestingly,
after inspecting the results where there was a large
difference (more than two points between), we see
that there are some cases in which the same or very
similar responses got completely different scores.
We also see upon looking some of the inferences
that the hinted model tends to be more general
and provide shorter responses than the non-hinted
model (e.g., hinted inference: "satisfied" vs. non-
hinted inference: "happy and satisfied").

5.4 Discussion: Why hint?

From the results of our experiments, we can see that
hinting tends to increase the performance of con-
textualized commonsense inference at least with
regards to automated metrics and does not signifi-
cantly degrade or improve human judgements. This
brings the question of: Why hint at all? The pri-
mary reason is for controllability in the genera-
tion. By supplying these hints, we are teaching
the model pay attention and generate inferences
about a certain subject, , or . This
in turn, after training, can be leveraged by a user
or downstream application to guide the model to
generate assertions from parts that are manually
supplied. Although this is not very clear within the
ParaCOMET formulation, it becomes clearer in the
GLUCOSE formulation of the problem. We give
an illustrative example of the usefulness of hinting
in Table 1. We can see that by giving a model the
hint, the model could be capable of inferring about
information that may not be present in the story.
We note that this behavior is useful in downstream
tasks such as story understanding and contextual
knowledge graph generation in which we may need
a model to have a specific subject or . Lastly,
hinting was designed to be simple to implement,
and is model independent.

5.5 Discussion: Is hinting optimal?

This work was a proof of concept for this technique.
We acknowledge there is a large body of research
on the area of prompting. The way the hinting
mechanism was designed however, leaves much
space to explore alternate mechanisms such as Au-
toPrompt(Shin et al., 2020), including additional
soft prompts such as those in Li and Liang (2021),
or even replacing the contents of the hint with syn-
onyms or related words. Because of the naivety
of the approach, we do not think it is an optimal
approach, and there is a large body of research that
points to manual templating of prompts being less
effective than learned prompts (Liu et al., 2021).
However, from our tests, our approach does not
degrade performance, and only improves it.

6 Future Work

When designing the hinting system certain aspects
were formulated to leave space for improvements.
One such area is finding a smarter way of selecting
when to hint, and finding a smarter way of selecting
what to hint. Additionally, more soft prompts could
be added to the hint such that they would learn a
better virtual template.

Another area to explore is providing deeper ab-
lation studies to determine what parts of the hint
are more effective and when. This work is more
a proof-of-concept that hinting, or more broadly
prompting, is useful towards the task of contextual
commonsense inference. Furthermore, given that
models trained with hinting for contextual com-
monsense inference can be guided by the infor-
mation supplied in hints, such models can be uti-
lized in a variety of downstream applications such
as story understanding and contextual knowledge
graph generation.

7 Conclusion

In this work we presented hinting, a simple hybrid
prompting mechanism that consists of appending
parts of a target tuple into an input sequence for
the task of contextual commonsense inference. We
showed that hinting tends to improve performance
in automated metrics and provides comparable per-
formance with human-based judgements. With this,
we open the doors for exploring prompting within
the realm of contextual commonsense inference.
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A Mechanical Turk Survey

e o
Commonsense knowledge verification

You are helping to determine whether some statement is true for most people or not given a context.
Please make sure to read the full instructions before starting.

This HIT is part of amcientiﬂc research project. Your decision to complete this HIT is voluntary. There is no way for us to identify you. The only information we will have, in addition to your
inr blished

responses, is the time at which you completed the survey. The results of the research may be p d at scientific ings or p in scientific journals. Clicking on the 'SUBMIT' button on
the bottom of this page indicates that you are at least 18 years of age and agree to complete this HIT voluntarily.

Instructions
. Read the story context
. Read dimension of commonsense

1
2

3. Read the generated contextual inference

4. Answer the question to the best of your understanding

Story Context:
Read the following story context and focus on the sentence that is bolded:

Dan recently entered his dog into a ugly dog contest. As Dan arrived, he was shocked to see how other dogs looked. In addition, Dan was shocked to see how others were looking at him. Dan
realized that his dog was not as ugly as he thought. Dan laughed because his dog looked real good compared to other dogs.

Figure 1: Screenshot of the Mechanical Turk Task

Inference Dimension:
Read the following commonsense dimension:

has the effect on a person

Statement:
Read the following statement:

looks at dog

Question 1:

For the given story context and inference dimension, how would you rate the statement?

Obviously True
Generally True
Plausible

Neutral or Unclear
Doesn't Make Sense

Figure 2: Screenshot of the Mechanical Turk Task pt.2
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