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Abstract

Generating commonsense assertions, given a001
certain story context, is a tough challenge002
even for modern language models. One of003
the reasons for this may be that the model004
has to "guess" what topic or entity in a story005
to generate an assertion about. Prior work006
has tackled part of the problem, by provid-007
ing techniques to align commonsense infer-008
ences with stories and training language gen-009
eration models on these. However, none of010
the prior work provides means to control the011
parts of a generated assertion. In this work,012
we present "hinting", a data augmentation tech-013
nique for improving inference of contextual-014
ized commonsense assertions. Hinting is a pre-015
fix prompting strategy that uses both hard and016
soft prompts. We demonstrate the effective-017
ness of hinting by showcasing its effect on two018
contextual commonsense inference datasets:019
ParaCOMET (Gabriel et al., 2021) and GLU-020
COSE (Mostafazadeh et al., 2020), for both021
general and context-specific inference.022

1 Introduction023

The task of Contextual or Discourse-Aware Com-024

monsense Inference, which consists of generating025

relevant and coherent commonsense assertions (i.e.026

facts) for a certain sentence in a story context, while027

easy for humans, remains challenging for machines028

(Gabriel et al., 2021). Within this task, we define029

an assertion as a tuple that contains a subject1, a030

relation, and an object (e.g., a dog, is a, animal),031

similar to a subject-verb-object triple. An assertion032

in this task can be seen as contextually specific facts033

or generally applicable rules, that can be inferred034

from a sentence in a given story context.035

Automated systems (such as pre-trained036

transformer-based language models (Devlin037

1We note that here we utilize the term "subject" as a part
of the relation tuple, and it is not necessarily "subject" in a
grammatical sense. In the case of ATOMIC, a subject could
be a sentence describing an event that causes another event or
a reaction, whereas in ConceptNet it could be a concept.

et al., 2019; Radford et al., 2019)) struggle with 038

generating these contextual assertions, since there 039

is an implicit assumption that clues for making 040

predictions can always be found explicitly in 041

the text. (Da and Kasai, 2019; Davison et al., 042

2019; Liu and Singh, 2004; Zhang et al., 2021). 043

This becomes problematic because the model is 044

essentially forced to use knowledge that it may 045

not have seen during pre-training. Additionally, 046

models are forced to guess what to predict about 047

(e.g., what the subject of an assertion is), which 048

may lead to decreased performance (e.g., the 049

model generates an assertion about cats when it 050

should have talked about dogs). 051

To clarify the task of contextual commonsense 052

inference even further, below we give an exam- 053

ple with a story, a target sentence, and some cor- 054

responding story specific and general inferences. 055

The story is picked directly from the ROCStories 056

corpus. (Mostafazadeh et al., 2016) 057

Story: The hockey game was tied up. The red 058
team had the puck. They sprinted down the ice. 059
They cracked a shot on goal! They scored a final 060
goal! 061

062

Story Specific Commonsense Inference: The 063
red team, is capable of, winning the game 064

065

General Commonsense Inference: Some peo- 066
ple scored a final goal , causes, some people to 067
be happy 068

In this example we can see the aforementioned 069

problems that models have to deal with. Although 070

it is commonsense that a final goal will lead to a 071

victory for the red team, it is not explicitly stated 072

in the text. Pre-training of models may include text 073

related to a sudden death goal from sources such 074

as Wikipedia, but the model has to extrapolate that 075

the final goal in this example is a type of sudden 076

death goal and will concede victory to the red team. 077

Similarly, although we may want to talk about the 078

red team, the model has to somehow know that it 079

needs to talk about this, and not something else. 080
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Previous attempts have tackled the problem of081

contextual commonsense inference by construct-082

ing datasets of stories aligned with assertions (i.e.083

an assertion is given for a sentence in a story), ei-084

ther through automated or human-annotated ways,085

and building a model to, given the story and a tar-086

get sentence, predict part or the whole assertion.087

One previous attempt to tackle this problem, Para-088

COMET (Gabriel et al., 2021), trained a GPT-2089

language model (Radford et al., 2019) to infer an090

object of a commonsense assertion tuple from the091

ATOMIC (Sap et al., 2019) knowledge base2. They092

formulate the task as follows. Given a story, a sen-093

tence identifier token, and a specified relation, the094

model has to predict the object of a commonsense095

assertion. An example of an input and expected096

output from the ParaCOMET formulation can be097

seen below:098

Model Input: The hockey game was tied up.099
The red team had the puck. They sprinted down100
the ice. They cracked a shot on goal! They scored101
a final goal! <|sent5|> <|xEffect|>102
Model Target/Output: win the game103

104

In this example, since the model is predicting105

ATOMIC objects, the output is a single phrase106

(i.e., win the game). Additionally, the symbols107

<|sent5|> and <|xEffect|> mean that the target sen-108

tence is sentence number five3, and that the relation109

we want to generate a tuple about is the "has the110

effect on a certain person(s)" respectively.111

Another work that tries to approach this is GLU-112

COSE (Mostafazadeh et al., 2020). Here a dataset113

is constructed to consist of stories and human an-114

notations for sentences in the stories. The human115

annotations provide specific and general common-116

sense assertions. The authors utilize this dataset to117

train a T5 (Raffel et al., 2020) model to perform118

contextualized and generalized story assertion in-119

ference. The model takes an input sequence in120

the form of a story, a relation to predict, and a tar-121

get sentence, and has to predict both the general122

and specific assertions that may be present in the123

target sentence with the given story context. An124

example of the GLUCOSE formulation’s inputs125

and expected outputs is given below:126

2ATOMIC is composed of causal assertions, where a cer-
tain subject event, causes a certain object event through a
given relation.

3We note that in the original ParaCOMET work, the sen-
tences were 0-start indexed. We utilize 1-start indexing for
clearer understanding.

Model Input: 1: The hockey game was tied up. 127
The red team had the puck. They sprinted down 128
the ice. They cracked a shot on goal! *They 129
scored a final goal!* 130
Model Target/Output: The red team scores, 131
Causes/Enables, they win the game ** People_A 132
score, Causes/Enables, People_A win a game 133

134

This formulation of contextual commonsense in- 135

ference is harder than the ParaCOMET one in that 136

it has to generate two sets of a subject, relation, and 137

an object tuples, in which one is the story specific 138

one and the other is the general version of the as- 139

sertion. These are seen above separated by the ** 140

respectively. In this example additionally, we can 141

see the symbol 1: which tells the model to predict 142

along a dimension of commonsense described by 143

GLUCOSE (i.e., 1: Event that directly causes or 144

enables X), and the sentence enclosed by asterisks 145

(*) which signifies it is the target sentence. In both 146

works, the models are expected to do their infer- 147

ence from the story, a target sentence, and relation 148

alone. 149

Recently, there has been work on exploring 150

prompting (Liu et al., 2021), which is essentially 151

finding ways of altering the input to a language 152

model such that it matches templates that it has seen 153

during pre-training. Prompting a model correctly 154

gives stronger performance in tasks, can help with 155

controllability in the case of text generation, and 156

is more parameter-efficient and data-efficient than 157

fine-tuning, in some cases (Li and Liang, 2021). 158

One novel type of prompting is prefix prompting 159

(Li and Liang, 2021; Lester et al., 2021). Pre- 160

fix prompting consists of modifying a language 161

model’s input (i.e. prefix) by adding additional 162

words. These words can be explicit hard prompts 163

(i.e., actual words such as "give a happy review") 164

or they can be soft prompts, embeddings that are 165

input into a model and can be trained to converge 166

on some virtual template or virtual prompt that can 167

help the model. Prompting holds great potential for 168

improving contextualized commonsense inference. 169

We introduce the idea of a hint, a hybrid of hard 170

and soft prompts. We define a hint as an additional 171

input in the form of a part(s) of an assertion that a 172

model has to predict, along with special identifiers 173

for these parts, wrapped within parenthesis charac- 174

ters. Syntactically, a hint would take the form of: 175

"([subject symbol, subject], [relation symbol, rela- 176

tion], [object symbol, object] )" where the actual 177

content of the hint, between the parenthesis, would 178

be a permutation of all but one of the elements of 179
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the target tuple during training. In the case of sup-180

plying hints to GLUCOSE, we include a specific or181

general symbol which determines whether the part182

of the hint belongs to a story specific assertion or183

a general rule. For example, a hint for the hockey184

example for the GLUCOSE formulation would be185

"(<|specific|><|subj|>The red team scores, <|gen-186

eral|><|obj|>People_A win the game)". Altogether,187

the model’s input would be:188

Model Input: 1: The hockey game was tied up.189
The red team had the puck. They sprinted down190
the ice. They cracked a shot on goal! *They191
scored a final goal!*(<|specific|><|subj|>The192
red team scores, <|general|><|obj|>they win the193
game)194
Model Target/Output: The red team scores,195
Causes/Enables, they win the game ** People_A196
score, Causes/Enables, People_A win a game197

198

Hints are provided during training by sampling199

a binomial distribution (with p = 0.5) for each200

element in a minibatch, which determines whether201

to give a hint or not. The actual content of the hint202

would then be generated by randomly sampling203

without replacement up to all but one of the ele-204

ments in a target tuple. We give a more detailed205

description of hinting in section 3.2 and 3.3.206

We hypothesize that this scheme of hinting207

strikes a balance between the model recalling in-208

formation from its pre-training, with information209

that it may not have seen that may only be present210

in the target tuple. Additionally, by providing and211

fine-tuning a model on the combination of hard212

and soft prompts, a generative language model can213

be guided to "talk" about a certain subject, object,214

or relation, thus enabling finer control of models215

in downstream applications. We note that the ap-216

proach was designed to be simple to implement,217

and to give control when generating text. In the218

following sections, we give some background and219

follow this with a set of experiments to show the220

effects of hinting for the ParaCOMET and GLU-221

COSE datasets, and finally, analyze the results, and222

present future directions for this work. Concretely,223

our contributions are:224

• A hybrid prefix prompting technique called225

hinting that provides a partial assertion to aug-226

ment data for contextual commonsense infer-227

ence, and228

• Demonstrating that hinting does in fact im-229

prove the performance for contextual com-230

monsense inference as measured by auto-231

mated metrics and is comparable in human- 232

based metrics. 233

2 Related Work 234

2.1 Prompting 235

Recently, there has been a shift in paradigm in Nat- 236

ural Language Processing from pre-training and 237

fine-tuning a model, to pre-training, prompting, and 238

predicting (Liu et al., 2021). One primary reason 239

for this shift is the creation of ever-larger language 240

models, which have become computationally ex- 241

pensive to fine-tune. Prompting can be described as 242

converting a pre-trained language model input se- 243

quence into another sequence that resembles what 244

the language model has seen during pre-training. 245

Overall, most prompting research is focused on 246

formulating the task as a cloze (fill-in-the-blanks) 247

task. However, we consider the task of language 248

generation, an open-ended formulation. 249

Recall that prefix prompting modifies the in- 250

put to a language model, by adding either a 251

hard prompt (additional words to the input se- 252

quence)(Shin et al., 2020) or a soft prompt (i.e., 253

adding trainable vectors that represent, but are 254

not equivalent to, additional words) (Li and Liang, 255

2021; Lester et al., 2021; Liu et al., 2021). 256

Unlike classic prefix prompting, hinting uses 257

both hard and soft prompts. The soft prompts are 258

in the form of symbols that represent the different 259

parts of the assertion (i.e., subject, relation type, 260

and object), and the hard prompts are in the form 261

of the actual parts of the assertion that are selected 262

to be appended as part of the hint. Our work is sim- 263

ilar to KnowPrompt (Chen et al., 2021a), except 264

that they use a masked language model and soft 265

prompts for relationship extraction. AutoPrompt 266

(Shin et al., 2020) is also similar, but finds a set of 267

"trigger" words that give the best performance on 268

a cloze-related task, whereas we provide specific 269

structured input for the model to guide text gen- 270

eration. We additionally note that although there 271

are prompt-based relation extraction models (Chen 272

et al., 2021b), we are performing a different task 273

which is contextual commonsense inference. 274

2.2 Controllable Generation 275

Controllable generation can be described as ways 276

to control a language model’s text generation given 277

some kind of guidance. One work that tries to im- 278

plement controllable generation is CTRL (Keskar 279

et al., 2019). The authors supply control signals 280
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during pre-training of a general language model.281

A body of work in controllable generation has fo-282

cused on how it can be used for summarization.283

Representative work that uses techniques similar284

to ours is GSum (Dou et al., 2021). In contrast to285

GSum, our method is model independent, allows286

for the source document to interact with the guid-287

ance signal, and contains soft prompts in the form288

of trainable embeddings that represent the parts of289

a tuple. The GSum system gives interesting insight290

into the fact that highlighted sentences, and the pro-291

vision of triples, does in fact help with the factual292

correctness of abstractive summarization. We make293

the distinction that hinting falls more under prompt-294

ing for the reason that we utilize additionally the295

trainable soft embeddings rather than purely ad-296

ditional hard tokens and that our task of contex-297

tual commonsense generation is not explored in298

the controllable generation works, whose main fo-299

cus is on controlling unstructured text generation.300

Some works that are in this area are also (Peng301

et al., 2018) who utilize what they call "control fac-302

tors" as keywords or phrases that are supplied by a303

human-in-the-loop to guide a conversation. More304

similar to our work, but tailored for the task of305

interactive story generation and without trainable306

soft-embeddings, is the work by (Brahman et al.,307

2020) which uses automatically extracted keywords308

to generate a story. Future work we could possibly309

utilize the automatic keyword extraction to supply310

parts of a hint, rather than our approach of com-311

plete parts of an assertion, and expand this to utilize312

synonyms of keywords. Lastly, there is the work313

by (See et al., 2019) which looks at controllable314

text generation for the purpose of conversation and315

utilizes an embedding give quantitative control sig-316

nals as part of conditional training.317

2.3 Discourse-aware/Contextual318

commonsense inference319

Commonsense inference is the task of gener-320

ating a commonsense assertion. Discourse-321

aware/contextual commonsense inference is the322

task of, given a certain narrative or discourse, in-323

fering commonsense assertions that are coherent324

within the narrative(Gabriel et al., 2021). This task325

is particularly hard because commonsense knowl-326

edge may not be explicitly stated in text (Liu and327

Singh, 2004) and the model needs to keep track of328

entities and their states either explicitly or implic-329

itly. Research into the knowledge that pre-trained330

language models learn has yielded good results 331

in that they do contain various types of factual 332

knowledge, as well as some commonsense knowl- 333

edge(Da and Kasai, 2019; Petroni et al., 2019; Davi- 334

son et al., 2019). The amount of commonsense 335

knowledge in these models can be improved by 336

supplementing sparsely covered subject areas with 337

structured knowledge sources such as ConceptNet 338

(Speer et al., 2017; Davison et al., 2019). 339

Knowing that these pre-trained language mod- 340

els may contain some commonsense information 341

has led to the development of knowledge models 342

such as COMET(Bosselut et al., 2019). This line of 343

research has been extended from the sentence-by- 344

sentence level in COMET, to the paragraph-level 345

in ParaCOMET (Gabriel et al., 2021). Contempo- 346

raneously, GLUCOSE Mostafazadeh et al. (2020) 347

builds a dataset of commonsense assertions that are 348

contextualized to a set of stories, and generalized. 349

3 Modeling 350

3.1 Task 351

We now detail the task of Contextual Common- 352

sense Inference. We are given a story S composed 353

of n sentences, S = {S1, S2, . . . , Sn} , a target sen- 354

tence from that story, St, where St ∈ S, and a di- 355

mension/relation type R. Given all this, we want to 356

generate a tuple in the form of (subject, R, object) 357

that represents an assertion, present or implied, in 358

St given the context S, and the relation type R. 359

We run tests with two variations of this task, one 360

is the ParaCOMET variation and the other the GLU- 361

COSE variation. In the ParaCOMET experiments, 362

we represent St with a unique token. Additionally, 363

we only generate the object of the tuple. 364

In our GLUCOSE experiments, we represent St 365

by marking it with ∗ on the left and right of the 366

sentence. Additionally, we generate two subject, R, 367

object tuples, one that is the context-specific tuple, 368

and the other is the general tuple, separated by two 369

asterisks (**). An example of both is in Section 1. 370

3.2 Hinting 371

The mechanism we present in this work, called 372

hinting, is a kind of mixed/hybrid prompting for 373

generative language models. Prompting is essen- 374

tially supplying additional text (i.e. prompts) to a 375

language model to aid/guide it in a specific task. 376

In our case, we opt to give a "hint", as to what 377

the assertion that we want to predict contains, at 378

the end of our input text. We chose placing the 379
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Model Input Model Output
7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *

They scored a final goal >Causes>They feel(s) happy **
Some People_A scored a final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|subj|>the red team scores the final goal)

the red team scores the final goal >Causes>the red team feel(s) happy **
Some People_A (who are a team) score the final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|subj|>the blue team does not score the final goal)

the blue team does not score the final goal >Causes>the blue team feel(s) disappoinment **
Some People_A do not score the final goal >Causes>Some People_A feel(s) disappointment

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|obj|>a child)

they scored a final goal >Causes>a child feel(s) happy **
Some People_A scored a final goal >Causes>Someone_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|general|><|subj|> Something_A (that is a point))

They scored a final goal >Causes>They feel(s) happy **
Something_A (that is a point)) is scored >Causes>Some People_A feel(s) happy

Table 1: Example of inputs and outputs for the GLUCOSE trained model with hints. The hint is bolded and the
parts of the hint are colored (subject, relation, object). Without a hint we can see that the model tries to infer
directly on the content of the sentence, however with hints, the model tries to include an inference based on the
target sentence with the contents of the hint.

hint at the end of the input for simplicity in dataset380

processing, but it can be placed anywhere and we381

leave it as future work to explore the effects of plac-382

ing hints possibly next to the target sentence or at383

the beginning of the input. Hinting can be seen as384

a hybrid of prompting the generative model with385

hard prompts composed of parts of what should386

be predicted along with soft prompts of symbols387

that represent those parts. These symbols are for388

the subject, relation, and object respectively. These389

soft prompts utilize untrained embeddings for the390

task. We structure hinting this way such that, after391

training, whenever a hint is given, the model can392

be guided to generate knowledge about the hint’s393

content based on the target sentence and context.394

To balance the model’s reliance on the context,395

its knowledge, and the hint, we determine whether396

to supply the hint by sampling a binomial distribu-397

tion (p = 0.5). Thus, we can control the frequency398

of when to supply a hint. Additionally, the content399

of the hint is determined by random sampling of400

permutations of components, up to a maximum of401

all but one component. Since our task is to predict402

the tuple, we do not want to make the model overly403

reliant on hints for the answer.404

3.3 An example of Hinting405

A simple example of hinting is the following:406

Story: The hockey game was tied up. The red407
team had the puck. They sprinted down the ice.408
They cracked a shot on goal! They scored a final409
goal!410

Target sentence: They scored a final goal!411

Target assertion: (subject: the red team, rela-412
tion: are capable of, object: winning the game.)413

A hint can be any permutation of the target as- 414

sertion, except the complete assertion, along with 415

some symbol that indicates which part it is: 416

Possible Hints: (<|subj|> the red team), 417
(<|subj|> the red team, <|rel|> capable of), 418
(<|subj|> the red team, <|obj|> winning the 419
game), (<|rel|> capable of, <|obj|> winning the 420
game), (<|obj|> winning the game), (<|rel|> ca- 421
pable of) 422

A hint for the given story, target sentence and 423

target assertion, yields the following: 424

Hint: (<|subj|> the red team, <|rel|> capable of) 425

Putting everything altogether, the input for the 426

model would be: 427

Story with Hint: The hockey game was tied up. 428
The red team had the puck. They sprinted down 429
the ice. They cracked a shot on goal! They scored 430
a final goal! (<|subj|> the red team, <|rel|> ca- 431
pable of). 432

We note that this is a general version of how 433

the hinting mechanism works. The dataset specific 434

hints that we utilize are described in Section 4.1. 435

3.4 Models 436

For our first set of experiments, we utilize the Para- 437

COMET (Gabriel et al., 2021) dataset and frame- 438

work with the same GPT-2 model as ParaCOMET, 439

along with a BART (Lewis et al., 2020) model and a 440

T5 (Raffel et al., 2020) model to observe the effects 441

of hinting in a sequence-to-sequence formulation 442

of the dataset. We use the off the shelf (Hugging- 443

face (Wolf et al., 2019)) pretrained "base" version 444

of these models for efficiency. For our second set of 445

experiments with the GLUCOSE dataset, we also 446

utilize the T5 model as was done in GLUCOSE. 447
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4 Experimental Setup448

4.1 Experiment Description449

We run two sets of experiments to show the effec-450

tiveness of hinting. The first is utilizing the original451

ParaCOMET dataset and setup and adding hints.452

The ParaCOMET setup consists of given a story S453

composed of n sentences, S = {S1, S2, . . . , Sn}, a454

relation type R, and a target sentence token (i.e. <455

|sent0| >, < |sent1| >, . . . , < |sent(n− 1)| >).456

In the ParaCOMET dataset, we must predict the457

object of a triple, utilizing implicitly the sentence458

as a subject and explicitly the supplied sentence459

symbol and relation R symbol.460

Within this framework, after the relation R, we461

add our hint between parenthesis (i.e. “([hint])”).462

In this framing, our hint can be composed of: a463

subject symbol (<|subj|>) along with the target sen-464

tence to serve as a subject, a relation symbol along465

with the relation R, or an object symbol along with466

the object of the triple. Using the hockey example467

a possible hint in this set of experiments would be:468

"(<|rel|> <|xEffect|>,<|obj|> they win the game)".469

In our GPT-2 experiments, we utilize the same470

cross-entropy loss as in (Gabriel et al., 2021).471

We note that we utilize a sequence-to-sequence472

(Sutskever et al., 2014) formulation for the T5 and473

the BART models. This in contrast to the GPT-2-474

based system requires encoding a source sequence475

(i.e., story, target sentence, and relation symbol),476

and decoding it into a target sequence (i.e., the ob-477

ject of an assertion). For the T5 model, we add the478

prefix "source:” before the story S, and the prefix479

"hint:" for placing our hints. For simplicity, we con-480

struct the same "heuristic" dataset as ParaCOMET481

which utilizes a heuristic matching technique to482

align ATOMIC (Sap et al., 2019) triples to story483

sentences.484

For our second set of experiments, we utilize the485

formulation utilized in GLUCOSE (Mostafazadeh486

et al., 2020). The formulation utilizes the T5 model487

in a sequence-to-sequence formulation once more.488

In this formulation, the source text is composed of489

a prefix of a dimension to predict D ∈ 1, 2, . . .104,490

followed by the story S with the marked target sen-491

tence. The target sentence, St, is marked with ∗492

before and after the sentence. An example input493

is: "1: The first sentence. *The target sentence. *494

The third sentence.". This task is slightly different495

from the ParaCOMET one, in that in addition to496

4The definition for each dimension number is given in the
GLUCOSE work

predicting a context specific triple, the model has to 497

predict a generalized triple. In this task we have to 498

infer a general and context specific subject, object 499

and a relation. For our hints we provide up to five 500

out of these six things, along with a symbol that 501

represents whether it is the subject, object or a rela- 502

tion, and another symbol that represents whether it 503

is part of the general or specific assertion. We add 504

our hint after the story S, utilizing the prefix “hint:” 505

and supplying the hint between parenthesis. In 506

this set of experiments, an example of our hint can 507

be, given the example in section 3.3: "(<|general|> 508

<|obj|> People_A win a Something_A)". 509

4.2 Experiment Configuration 510

We run the ParaCOMET experiments for 10 epochs 511

on the dataset’s training data and evaluation data. 512

We utilize a max source sequence length for the 513

BART and T5 models of 256, and a max target 514

length of 128. For the GPT-2 models we utilize 515

a max sequence length of 384. Additionally, we 516

use the ADAM (Kingma and Ba, 2015) optimizer 517

with a learning rate of 2e-5, and a linear warm-up 518

of 0.2 percent of the total iterations. For the T5 519

models we utilize a learning rate of 1e-4 because 520

early experiments showed that the model would 521

not converge with lesser learning rates. We uti- 522

lize the scripts from (Gabriel et al., 2021) for data 523

generation. We also utilize a batch size of 4 for 524

training and we accumulate gradients for 4 steps 525

for an effective batch size of 16. The results that 526

we present are the average of the 10 runs over 4 527

seeds for hinted and non-hinted conditions. 528

We run GLUCOSE experiments for 5 epochs 529

and 4 seeds on the original GLUCOSE data. Addi- 530

tionally, we utilize a linear warm up of 3000 steps. 531

We utilize the ADAM optimizer with a learning 532

rate of 3e-4, a train batch size 4, with gradient ac- 533

cumulation of 4 steps for an effective batch size of 534

16, and a max source length of 256 and max target 535

length of 128. In our results we present the average 536

of the 4 seeds across the 5 epochs. In both exper- 537

iments we report the scores given by SacreBLEU 538

(Post, 2018), ROUGE (Lin, 2004), and METEOR 539

(Banerjee and Lavie, 2005) using the datasets li- 540

brary (Lhoest et al., 2021) metrics system. We 541

run our experiments in a machine with an AMD 542

ThreadRipper 3970 Pro and 4 NVIDIA A6000s. 543

Every epoch per model is approximately an hour. 544

Additionally, we run a small Mechanical Turk 545

study similar to the one presented in the original 546
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Model BLEU METEOR ROUGE1 ROUGE2 ROUGE L ROUGE L SUM
Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint

ParaCOMET 42.705* 41.960 59.411* 59.045 63.339* 61.454 52.483* 50.513 63.292* 61.395 63.294* 61.399
Bart 41.765* 41.639 58.766* 58.639 61.054 61.013 49.970 49.889 61.004 60.964 61.010 60.969
T5 41.070 41.102 58.004 58.000 59.535 59.631 48.695 48.823 59.488 59.588 59.494 59.597

Table 2: Averages of 4 different seeds over 10 epochs for hinted (Hint) and non-hinted (No Hint) runs of the Para-
COMET dataset from (Gabriel et al., 2021). The largest scores are bolded and significantly different scores have
an asterisk (*) next to them. We can see from the results that hinted systems tend to achieve higher performance
even if slightly and in some cases significantly, and do not decrease performance significantly.

Bleu Meteor Rouge 1 Rouge 2 ROUGE L Rouge LSUM
No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint
58.542 59.099* 66.829 66.917 66.387 66.681* 47.850 48.141 62.542 62.874* 62.528 62.868*

Table 3: Averages of 4 different seeds over 5 epochs for hinted (Hint) and non-hinted (No Hint) runs of the
GLUCOSE contextual inference task dataset. This is the same dataset as the work in (Mostafazadeh et al., 2020)
The largest scores are bolded and significantly different scores have an asterisk (*) next to them. Once more, we
see that hinting provides a small, increase in performance, all the while permitting controllability.

Model Non-Hinted Hinted
ParaCOMET 3.71 3.76
Bart 3.72 3.48
T5 3.73 3.68
T5-GLUCOSE 4.10 4.06

Model Non-Hinted Hinted
ParaCOMET 81% 84%
Bart 83% 74%
T5 81% 81%
T5-GLUCOSE 92% 90%

Table 4: Results of human evaluation of ParaCOMET and GLUCOSE datasets. The largest scores are bolded and
significantly different scores have an asterisk (*) next to them. We sampled 100 test points for each model from
their test datasets and had the hinted and non-hinted models infer assertions. Humans judged these assertions on
a 5 point Likert scale where above 3 was plausible similar to (Gabriel et al., 2021). On the left we can see the
average values of the human judgments and on the right we can see the percentage of plausible inferences (rated
>= 3). We can see that hinting provides comparable performance.

ParaCOMET (Gabriel et al., 2021) in which a hu-547

man judges a generated assertion and judges the548

plausibility of it on a 5-point Likert scale: obvi-549

ously true (5), generally true (4), plausible (3), neu-550

tral or unclear (2), and doesn’t make sense (1). We551

present the results in the same manner where Ta-552

ble 4 displays the percent of inferences judged as553

plausible or true (3-5), and the average rating per554

inference. Participants were given $0.1 to complete555

the task. We give an image of the HIT in Appendix556

A. We sample from each of the ParaCOMET and557

GLUCOSE test sets, 100 entries. Then based on558

the models for each dataset, we pick the epoch that559

had the highest automated scores and we proceed560

to randomly sample one of the trained hint and non-561

hinted models. We then select one sentence of the562

randomly sampled test entries and ask both models563

to generate an inference along a randomly sampled564

relation or dimension for that sentence.565

5 Results and Analysis 566

5.1 Experiment 1: ParaCOMET with hints 567

The aggregated results for this set of experiments 568

can be found in Table 2. We can see here that on 569

average, hinting does tend to improve the score 570

even if slightly. It seems that providing a hint is 571

beneficial and not detrimental for contextual com- 572

monsense inference. Given the way that this task 573

is framed, a possibility that could explain the rela- 574

tive similarity of the performances, is that hinting 575

only adds the object of the triple as additional pos- 576

sible data that the model may see during training; 577

the subject and the relation can be repeated with 578

hinting. We note that the performance of the T5 579

model was less than that of the other models, and 580

we believe that it may be lack of hyperparameter 581

tuning, as it was seen that the model was sensitive 582

to the learning rate and had to use a higher than 583

usual learning rate. 584

5.2 Experiment 2: GLUCOSE with hints 585

The aggregated results for this set of experiments 586

can be found in Table 3. Onc more we notice that 587
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hinting does tend to improve the performance of the588

contextual commonsense inference task. This sug-589

gests that hinting is indeed beneficial for the task of590

contextualized commonsense inference, especially591

when faced with the harder task of generating both592

a general and context dependent assertion. We be-593

lieve that this improvement is because hinting gives594

the model the clues it may need to decide on what595

to focus or attend to, to generate useful inferences.596

5.3 Experiment 3: Human Judgements597

The results for a small Mechanical Turk study for598

human evaluation of model inferences can be seen599

in Table 4. Overall we can see here that hinted600

systems are judged as less plausible. Interestingly,601

after inspecting the results where there was a large602

difference (more than two points between), we see603

that there are some cases in which the same or very604

similar responses got completely different scores.605

We also see upon looking some of the inferences606

that the hinted model tends to be more general607

and provide shorter responses than the non-hinted608

model (e.g., hinted inference: "satisfied" vs. non-609

hinted inference: "happy and satisfied").610

5.4 Discussion: Why hint?611

From the results of our experiments, we can see that612

hinting tends to increase the performance of con-613

textualized commonsense inference at least with614

regards to automated metrics and does not signifi-615

cantly degrade or improve human judgements. This616

brings the question of: Why hint at all? The pri-617

mary reason is for controllability in the genera-618

tion. By supplying these hints, we are teaching619

the model pay attention and generate inferences620

about a certain subject, relation, or object. This621

in turn, after training, can be leveraged by a user622

or downstream application to guide the model to623

generate assertions from parts that are manually624

supplied. Although this is not very clear within the625

ParaCOMET formulation, it becomes clearer in the626

GLUCOSE formulation of the problem. We give627

an illustrative example of the usefulness of hinting628

in Table 1. We can see that by giving a model the629

hint, the model could be capable of inferring about630

information that may not be present in the story.631

We note that this behavior is useful in downstream632

tasks such as story understanding and contextual633

knowledge graph generation in which we may need634

a model to have a specific subject or object . Lastly,635

hinting was designed to be simple to implement,636

and is model independent.637

5.5 Discussion: Is hinting optimal? 638

This work was a proof of concept for this technique. 639

We acknowledge there is a large body of research 640

on the area of prompting. The way the hinting 641

mechanism was designed however, leaves much 642

space to explore alternate mechanisms such as Au- 643

toPrompt(Shin et al., 2020), including additional 644

soft prompts such as those in Li and Liang (2021), 645

or even replacing the contents of the hint with syn- 646

onyms or related words. Because of the naivety 647

of the approach, we do not think it is an optimal 648

approach, and there is a large body of research that 649

points to manual templating of prompts being less 650

effective than learned prompts (Liu et al., 2021). 651

However, from our tests, our approach does not 652

degrade performance, and only improves it. 653

6 Future Work 654

When designing the hinting system certain aspects 655

were formulated to leave space for improvements. 656

One such area is finding a smarter way of selecting 657

when to hint, and finding a smarter way of selecting 658

what to hint. Additionally, more soft prompts could 659

be added to the hint such that they would learn a 660

better virtual template. 661

Another area to explore is providing deeper ab- 662

lation studies to determine what parts of the hint 663

are more effective and when. This work is more 664

a proof-of-concept that hinting, or more broadly 665

prompting, is useful towards the task of contextual 666

commonsense inference. Furthermore, given that 667

models trained with hinting for contextual com- 668

monsense inference can be guided by the infor- 669

mation supplied in hints, such models can be uti- 670

lized in a variety of downstream applications such 671

as story understanding and contextual knowledge 672

graph generation. 673

7 Conclusion 674

In this work we presented hinting, a simple hybrid 675

prompting mechanism that consists of appending 676

parts of a target tuple into an input sequence for 677

the task of contextual commonsense inference. We 678

showed that hinting tends to improve performance 679

in automated metrics and provides comparable per- 680

formance with human-based judgements. With this, 681

we open the doors for exploring prompting within 682

the realm of contextual commonsense inference. 683
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A Mechanical Turk Survey883

Figure 1: Screenshot of the Mechanical Turk Task

Figure 2: Screenshot of the Mechanical Turk Task pt.2
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