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ABSTRACT

Conformal Prediction (CP) is a popular method for uncertainty quantification
with machine learning models. While conformal prediction provides probabilistic
guarantees regarding the coverage of the true label, these guarantees are agnostic
to the presence of sensitive attributes within the dataset. In this work, we formalize
Conformal Fairness, a notion of fairness using conformal predictors, and provide
a theoretically well-founded algorithm and associated framework to control for
the gaps in coverage between different sensitive groups. Our framework leverages
the exchangeability assumption (implicit to CP) rather than the typical IID as-
sumption, allowing us to apply the notion of Conformal Fairness to data types and
tasks that are not IID, such as graph data. Experiments were conducted on graph
and tabular datasets to demonstrate that the algorithm can control fairness-related
gaps in addition to coverage aligned with theoretical expectations.

1 INTRODUCTION

Machine learning (ML) models are increasingly used to make critical decisions in many fields of
human endeavor, making it essential to quantify the uncertainty associated with their predictions.
Conformal Prediction (CP) is a distribution-free framework (Vovk et al., 2005) which produces
confidence sets with rigorous theoretical guarantees and has become popular in real-world applica-
tions (Cherian & Bronner, 2020). Post-hoc CP allows for facile integration into ML pipelines and
applies to a wide variety of data types, including graph data (H. Zargarbashi et al., 2023; Huang
et al., 2024), because of its weaker requirement of a statistical exchangeability.

Relatedly, ensuring the fairness of machine learning models is vital for their high-stakes deployments
in critical decision-making. Biases affect ML models at different stages - from data collection to al-
gorithmic learning stages (Mehrabi et al., 2021). During the data collection stage, measurement and
representation biases can skew how each feature is interpreted, leading to inaccurate determinations
by learning models. Algorithmic bias, caused by model design choices and prioritization of specific
metrics while learning the model, can also lead to unfair outcomes. Many models inherit biases from
historical outcomes (Kallus & Zhou, 2018; Dwork et al., 2012) and inadvertently skew decisions to-
wards members of certain advantaged groups (Mehrabi et al., 2021). These biases have led to several
global actors proposing and requiring practitioners to adhere to certain fairness standards (Hirsch
et al., 2023). To facilitate ML pipeline and model adherence to socio-cultural or regulatory fairness
standards, researchers have proposed methods to either construct fair-predictors (Alghamdi et al.,
2022; Creager et al., 2019; Zhao et al., 2023) or audit fairness claims made by deployed machine
learning models (Ghosh et al., 2021; Maneriker et al., 2023; Yan & Zhang, 2022).

However, these efforts on fairness (predictors, auditing, and uncertainty quantification) primarily
focus on binary classification, often implicitly relying on the independent and identically distributed
(IID) assumption, and largely do not bridge fairness and uncertainty quantification. The need to both
quantify uncertainty and ensure fairness considerations are met is critical. A few researchers have
started to examine how to assess (and possibly improve) the prediction quality of unreliable models
(Wang & Wang, 2024) while meeting socio-cultural or regulatory standards of fairness. However,
these efforts are limited in that they either require knowledge of group membership at inference time
(a somewhat impractical assumption) (Lu et al., 2022) or are model-specific (Wang & Wang, 2024).

*Equal Contribution, †This work was done while the author was a student at The Ohio State University
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Key Contributions: We propose a novel and comprehensive Conformal Fairness (CF) Framework
to redress these concerns.

First, we develop the theoretical insights that facilitate how our framework leverages CP’s
distribution-free approach to build and construct fair uncertainty sets according to user-specified
notions of fairness. Our framework is not only comprehensive but also highly flexible, as it can be
adapted to bespoke user-specified fairness criteria. This adaptability ensures that the framework can
be customized to meet the specific needs of different users, enhancing its practicality and usability.

Second, the weaker (exchangeability) assumptions required by CP allow us to extend the utility of
our framework to fairness problems in graph models. Graph models, in particular, suffer from the
homophily effect, which exacerbates inherent segregation due to node linkages and causes further
biases in predictions (Current et al., 2022; Dong et al., 2023; He et al., 2023).

Third, we discuss how our approach serves as a fairness auditing tool for conformal predictors. This
function is important as it allows one to verify model fairness, ensuring that fairness is not just a
theoretical concept but a practical reality in predictive modeling.

Finally, we demonstrate the effectiveness of our CF Framework by evaluating fairness using multiple
popular fairness metrics for multiple different conformal predictors on both real-world graph and
tabular fairness datasets.

2 BACKGROUND

2.1 CONFORMAL PREDICTION

Conformal Prediction (Vovk et al., 2005) is a framework for quantifying the uncertainty of a model
by constructing prediction sets that satisfy a coverage guarantee. For expository simplicity, we
will focus on split (or inductive) conformal prediction (CP) in the classification setting. Given a
calibration dataset, Dcalib = {(xi, yi)}ni=1 and a test point (xn+1, yn+1), where xi ∈ X = Rd and
yi ∈ Y = {0, . . . ,K − 1}, CP is used to construct a prediction set C(xn+1) such that:

1− α ≤ Pr[yn+1 ∈ C(xn+1)] ≤ 1− α+
1

n+ 1
, (1)

where 1 − α ∈ (0, 1) is the coverage bound. Concretely, given a non-conformity score function
s : X × Y → R, let q̂(α) = Quantile

(
⌈(n+1)(1−α)⌉

n ; {s(xi, yi)}ni=1

)
be the conformal quantile.

Then Cq̂(α)(xn+1) = {y ∈ Y : s(xn+1, y) ≤ q̂(α)} is a prediction set that satisfies Equation 1.

Evaluating CP: Coverage quantifies the true test time probability Pr
[
yn+1 ∈ Cq̂(α)(xn+1)

]
while

efficiency is the average test prediction set size,
∣∣Cq̂(α)(xn+1)

∣∣. Intuitively, there is an inverse re-
lationship between coverage and efficiency, as a higher desired coverage is harder to achieve, the
method may produce larger prediction sets to satisfy the guarantee. In CP, the only assumption made
about the data is that Dcalib ∪ {(xn+1, yn+1)} is exchangeable – a weaker notion than iid, enabling
its use on non-iid data, including graph data.

Graph CP: In this work, we focus on the node classification task. Given an attributed graph G =
(V, E ,X), where V is the set of nodes, E is the set of edges, and X is the set of node attributes. Let
A be the adjacency matrix for the graph. Further, let Y = {0, . . . ,K − 1} denote the set of classes
associated with the nodes. For v ∈ V , xv ∈ Rd denotes its features and yv ∈ Y denotes its true
class. The task of node classification is to learn a model that predicts the label for each node given
all the node features and the adjacency matrix, i.e., (X,A, v) 7→ yv . In the transductive setting,
the entire graph, including test points, is accessible during the base model training. In this scenario,
for any trained permutation-equivariant function (e.g., GNN) trained on a set of training/validation
nodes, the scores produced on the calibration set and test set are exchangeable, thus enabling CP to
be applied (H. Zargarbashi et al., 2023; Huang et al., 2024).

2.2 FAIRNESS METRICS

Group (or statistical) fairness requires individuals from different sensitive groups to be treated
equally. Sensitive groups are subpopulations characterized by sensitive attributes, including gen-
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der, race, and/or ethnicity. Group fairness metrics aim to observe bias in the predictions of a model
between the different groups in a dataset. This work considers several popular fairness metrics, in-
cluding equal opportunity, equalized odds, demographic parity, predictive equality, and predictive
parity. For generality, we define the metrics for the multiclass setting with an n-ary sensitive at-
tribute. Let Y+ denote the set of advantaged labels (e.g., “is approved” in a loan approval task),
Y be the true label, and Ŷ be the predicted label from a classifier. Let G be the set of all groups
for the sensitive attribute(s). Table A1 discusses the formal definitions of different fairness metrics
considered in this work.

Achieving exact fairness (i.e., the equality in Table A1) can be challenging or, in some cases, im-
possible (Barocas et al., 2023). Often, regulatory requirements focus on the difference (or ratio)
in probabilities between groups for any given positive label. This is achieved by ensuring the dif-
ference (or ratio) meets a prespecified closeness criterion. For example, many regulatory bodies
consider the Four-Fifths Rule (EEOC, 1979; Feldman et al., 2015), which asserts that the ratio of
the selection probabilities between groups is at least 0.8.

3 CONFORMAL FAIRNESS (CF) FRAMEWORK

In this section, we propose a theoretically well-founded framework using conformal predictors to
control for fairness disparity between different sensitive groups. The framework is motivated by
adapting the standard CP algorithm to determine conditional coverage given a score threshold, λ,
for the prediction sets (i.e. Cλ(xn+1) = {y ∈ Y | s(xn+1, y) ≤ λ}). Depending on the fairness
metric, fairness disparity refers to gaps in group-conditional or group-and-class-conditional cover-
ages between groups and advantaged labels. The conditional coverages are leveraged to evaluate if
fairness is achieved for some closeness criterion c for different fairness metrics. This is achieved
by searching a threshold space Λ for an optimal threshold λopt that achieves the closeness criteria.
The framework also handles user-defined metrics as discussed in Section 3.4, thus controlling for
quantities, potentially orthogonal to conditional coverage.

3.1 EXEMPLAR CONFORMAL FAIRNESS (CF) METRICS

For conformal fairness, we adapt popular fairness metrics defined for multiclass classification
(shown in Table A1). For standard point-wise predictions, fairness measures are concerned with
the probability a prediction is a specific label (i.e., ỹ = Ŷ ), given a condition, i.e., X ∈ ga, Y = ỹ
for Equal Opportunity, for a particular covariate (X,Y ). We replace equivalence to the predicted
value with set membership (ỹ ∈ Cλ(X)) to adapt these notions for prediction sets. The adapted
conformal fairness metrics are in Table 1.

Table 1: Conformal Fairness Metrics.

Metric Definition

Demographic (or Statistical) Parity
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Equal Opportunity
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y = ỹ, X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y = ỹ, X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Predictive Equality
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y ̸= ỹ, X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y ̸= ỹ, X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Equalized Odds Equal Opp. and Pred. Equality

Predictive Parity Pr
[
Y = ỹ

∣∣∣ ỹ ∈ Cλ(X), X ∈ ga

]
= Pr

[
Y = ỹ

∣∣∣ ỹ ∈ Cλ(X), X ∈ gb

]
, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

3.2 CONFORMAL FAIRNESS (CF) THEORY

Before presenting our framework, we first lay out the necessary theoretical groundwork. Detailed
proofs are in Appendix B.

Filtering Dcalib: Group fairness metrics are evaluated on a subset of the population, defined by a
condition on the data (i.e., membership in a group, true label value). For example, Demographic
Parity is evaluated per group (X ∈ ga in definition), while Equal Opportunity is evaluated per
group and true label (Y = y,X ∈ ga in definition). To formalize this notion, let M denote
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a fairness metric (e.g. Equal Opportunity) and define FM : X × Y × G × Y+ → {0, 1} be a
filter function which maps a calibration point along with a group and positive label, (xi, yi, g, ỹ),
to 0 or 1 depending on whether the condition for the fairness metric, M , is satisfied. For Equal
Opportunity, FM would instantiate to FEO(xi, yi, g, ỹ) := 1[xi ∈ g ∩ yi = ỹ]. We can filter Dcalib

to be Dcalib(g,ỹ) = {(xi, yi) ∈ Dcalib | FM (xi, yi, g, ỹ) = 1}. By doing so, we provide guarantees
regarding the conditional coverages as stated in Lemma 3.1
Lemma 3.1. For any (g, ỹ) ∈ G × Y+, calibrating on
Dcalib(g,ỹ) = {(xi, yi) | FM (xi, yi, g, ỹ) = 1} guarantees the following about the conditional cov-
erage:

1− α ≤ Pr[yn+1 ∈ Cλ(xn+1) | FM (xn+1, yn+1, g, ỹ) = 1] ≤ 1− α+
1

|Dcalib(g,y)|+ 1
(2)

The interval width is 1
|Dcalib(g,y)|+1 .

Prior work (Ding et al., 2024; Vovk et al., 2005; Lei et al., 2016) focused on the upper bound;
however, the lower bound is also necessary for our framework.

Inverse Quantile: Given an (1−α)-coverage level, we have that the (1−α)-quantile of the calibra-
tion non-conformity scores is the appropriate threshold to achieve Equation 1. For our framework,
given a threshold, λ, we recover the coverage level. This can be done using the inverse λ-quantile.
Formally, if (xn+1, yn+1) is a test point and Scalib = {s(xi, yi) | (xi, yi) ∈ Dcalib}, the inverse
λ-quantile is given by

Q−1(λ,Scalib) := Pr[s(xn+1, yn+1) ≤ λ] = Pr[yn+1 ∈ Cλ(xn+1)].

Moreover, Q−1(λ,Scalib) is the coverage level for the label yn+1. Lemma 3.2 asserts that the cover-
age level is within a bounded interval of length 1

|Dcalib|+1 .

Lemma 3.2. For λ ∈ [0, 1] and n = |Dcalib|,∑n
i=1 1[s(xi, yi) ≤ λ]

n+ 1
≤ Pr[yn+1 ∈ Cλ(xn+1)] ≤

∑n
i=1 1[s(xi, yi) ≤ λ] + 1

n+ 1
, (3)

CF for a Fixed Label: In standard CP, coverage is only evaluated for the true label, yi. However,
for fairness evaluation, it is essential to balance disparity between groups for all positive labels (see
Table A1. So for conformal fairness evaluation, coverage needs to be balanced between groups for
any given ỹ ∈ Y+, as seen in Table 1. Lemma 3.3 asserts that we can perform CP using a fixed label
and get the same coverage guarantees.
Lemma 3.3. Equation 1 holds if we replace {(xi, yi)} with {(xi, ỹ)} for a fixed ỹ ∈ Y .

Connecting Theory to the Framework: For a particular fairness metric, we filter the calibration set
based on the conditional from Table 1 and achieve bounds on the conditional coverage with Lemma
3.1. By Lemma 3.3, the bounds continue to hold when considering the conditional coverage for
a fixed positive label. We use Lemma 3.2 to perform an inverse quantile to compute the coverage
under various λ thresholds. With the coverages for a fixed positive label and each sensitive group,
we compute the worst pairwise coverage gap across the groups using the bounds given by Lemma
3.3 to evaluate and control fairness at the desired closeness criterion.

3.3 CORE CONFORMAL FAIRNESS (CF) ALGORITHM

Input: The input to the core CF algorithm (Algorithm 1), include the calibration set, Dcalib, the set
of labels (Y) and positive labels (Y+), the set of sensitive groups, G, a closeness criterion, c, the
threshold search space, Λ, a fairness metric, M , and a corresponding filter function, FM .

Specifying c: In practice, the choice of closeness criterion, c, may not be in the hands of the prac-
titioner but instead defined by a (external) regulatory framework. For example, for Demographic
Parity and c, we want that ∀ga, gb ∈ G,

|Pr[yn+1 ∈ Cλ(xn+1) |xn+1 ∈ ga]− Pr[yn+1 ∈ Cλ(xn+1) |xn+1 ∈ gb]| < c.

Choosing Λ: The algorithm accepts a user-provided search space, Λ, which avoids degen-
erate thresholds and can guarantee desirable conditions. For our experiments, we set Λ =
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[q̂(α),max{Scalib}], ensuring that the optimal threshold, λopt, is at least q̂(α). Since λopt ≥ q̂(α),
the coverage increases for larger thresholds and still satisfies the 1− α coverage requirement. That
is,

1− α ≤ Pr
[
yn+1 ∈ Cq̂(α)(xn+1)

]
≤ Pr

[
yn+1 ∈ Cλopt

(xn+1)
]
.

Procedure: For each λ ∈ Λ, we want to check if it balances the coverage between groups for all
positive labels. So, for each (g, ỹ) ∈ G × Y+, we use FM to filter Dcalib (Line 11 in Algorithm
1) and then compute the non-conformity scores, Scalib(g,ỹ)

(Line 12). With the inverse quantile,
the coverage level is computed at the λ threshold on the scores (Line 14). We then compare the
coverages for a fixed y ∈ Y+ between groups and check if the worst-case disparity satisfies the
desired closeness criterion (Lines 16-21), forming the set ΛM (Line 2). We choose λopt = minλ ΛM

(Line 3) to minimize the final prediction set size (i.e., get the best efficiency). When evaluating
multiple fairness metrics simultaneously, for example with Equalized Odds, the framework can be
used to construct the set of satisfying lambdas for Equal Opportunity and Predictive Equality, ΛEO

and ΛPE respectively. Then, λopt = minλ{ΛEO ∩ ΛPE}.

Algorithm 1 Conformal Fairness Framework

1: procedure CONFORMAL FAIRNESS(Dcalib, Y , Y+, G, c, Λ, FM )
2: ΛM =

{
λ ∈ Λ | SATISFY LAMBDA(Dcalib,Y,Y+,G, c, λ, FM )

}
▷ Optimize for fairness

3: λopt = minλ ΛM ▷ Optimize for efficiency
4: return λopt
5: end procedure
6:
7: procedure SATISFY LAMBDA(Dcalib, Y , Y+,G, c,λ, FM )
8: label coverages = [0](Gi,y)∈G×Y
9: interval widths = [0](Gi,y)∈G×Y

10: for (g, ỹ) ∈ G × Y+ do
11: Dcalib(g,ỹ) = {(xi, yi) ∈ Dcalib | FM (xi, yi, g, ỹ) = 1}
12: Scalib(g,ỹ)

=
{
s(xi, yi) | (xi, yi) ∈ Dcalib(g,ỹ)

}
13: interval widths[(g, ỹ)] = 1

|Dcalib(g,ỹ)|+1
▷ Uses Lemma 3.1

14: label coverages[(g, ỹ)] = Q−1(λ,Scalib(g,ỹ)
) ▷ Uses Lemma 3.2

15: end for
16: for ỹ ∈ Y+ do ▷ Uses Lemma 3.3
17: αmin = min(label coverages[(·, ỹ)] − interval widths[(·, ỹ)])
18: αmax = max(label coverages[(·, y)])
19: if αmax − αmin > c then return False
20: end if
21: end for
22: return True
23: end procedure

Using multiple λ thresholds: We also consider a classwise approach where we choose a
[λ0

opt, . . . , λ
k−1
opt ] = λopt ∈ [0, 1]K for each of the K classes. λi

opt is only required to satisfy
the closeness criterion for the ith class. One can achieve this by setting Y+ = {ỹ} and repeating
Lines 2 and 3 in Algorithm 1 for each ỹ ∈ Y+. This allows for smaller λi

opt to be chosen for most
classes as they are no longer impacted by minority classes, which require a larger threshold to meet
the closeness criterion.

A distinguishing feature of the CF framework is that it does not require group information at in-
ference time. Though one can choose a different λ for each (g, y) ∈ G × Y pair, in streaming (or
online) settings, the sensitive attribute may be unavailable. For example, loan applications may be
race or gender-blind to enforce fairer judgment. In these settings, the CF Framework is not limited
and provides group conditional coverage when group information is absent at inference time.

3.4 FRAMEWORK EXTENSIBILITY

Algorithm 1 directly applies to Demographic Parity, Equal Opportunity, Predictive Equality, and
Equalized Odds. The following modifications are necessary to accommodate Disparate Impact,
Predictive Parity, and some user-defined metrics.
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Disparate Impact: The standard criterion for Disparate Impact is the Four-Fifths Rule applied to
Demographic Parity. To control the conditional coverages for the Four-Fifths Rule, we only change
Line 19 in Algorithm 1 to check if (1− αmax)/(1− αmin) < c for c = 0.8.

Predictive Parity: Predictive Parity seeks to balance the Positive Predictive Value (PPV) between
groups (Verma & Rubin, 2018). It differs from the other fairness metrics in Table 1 as it is condi-
tioned on membership in the prediction set. Given the objective of balancing conditional coverage,
the conformal definition of Predictive Parity, and Bayes’ Theorem, we get

Pr[Y = ỹ | ỹ ∈ Cλ(X), X ∈ gi] =
Pr[ỹ ∈ Cλ(X) | Y = ỹ, X ∈ gi]

Pr[ỹ ∈ Cλ(X) | X ∈ gi]︸ ︷︷ ︸
Equal Opportunity over Demographic Parity

· Pr[Y = ỹ | X ∈ gi]︸ ︷︷ ︸
Conditional Label Probability

(4)

for ỹ ∈ Y+ and gi ∈ G. A threshold, λ, is guaranteed to exist for any Y+ ⊆ Y if c is greater than
the maximum pairwise total variation distance of the group-conditioned label distribution. This is
formalized in Theorem 3.4.
Theorem 3.4. Let W be a random variable for a label distribution over Y . Let Wi ∼ W |(X ∈
gi) – the label distribution conditioned on group membership. Then there exists λ such that for
c ≥ max{DTV (Wi,Wj) | i, j ∈ {1, . . . , |G|}}, where DTV is the total variation distance1, the
difference in Predictive Parity between groups is within c.

In Equation 4, the Equal Opportunity, Demographic Parity, and Conditional Label Probability terms
lie within finite intervals. This allows us to compute an interval where conformal Predictive Parity
holds and use the CF framework to identify values of λ that meet the coverage closeness criterion.
Further theoretical details and the proof of Theorem 3.4 are provided in Appendix C.

To control for arbitrarily small values of c, we use the Predictive Parity Proxy–an example of a
user-defined metric– defined in Equation 5. For all gi ∈ G, ỹ ∈ Y+,

Pr(Y = ỹ | ỹ ∈ Cλ(X), X ∈ gi)− Pr(Y = ỹ | X ∈ gi). (5)

In cases where it is possible to assume the label distribution is independent of group membership,
Equation 4 can be directly controlled for an arbitrarily small closeness criterion, c. Proofs and
technical details on these modifications can be found in Appendix C.

3.5 LEVERAGING THE CF FRAMEWORK FOR FAIRNESS AUDITING

Using the Conformal Fairness Framework, one can audit if the disparity of a conformal predictor
between multiple groups violates a user-specified fairness criterion. Specifically, we have thus far
focused on fairness criteria concerning bounding the disparity between groups using the fairness
metrics described in Table 1 by some closeness criterion, c. It is straightforward to support user-
defined fairness metrics concerning label coverage. While Algorithm 1, as presented, gives a method
of finding an optimal λ threshold which satisfies the fairness guarantees using Lemmas 3.1, 3.2,
and 3.3, the same SATISFY LAMBDA procedure can be leveraged to check if a given λ used by a
conformal predictor satisfies the same fairness guarantees. Notably, the CF framework can also be
leveraged even if the conformal predictor is treated as a black-box model. In this case, we construct
an Daudit set exchangeable with the calibration data used for the conformal predictor. Using Daudit,
we can determine if the conformal predictor satisfies the corresponding fairness guarantee given the
fairness metric and the λ threshold used.

3.6 NON-CONFORMITY SCORES

There are several choices for the non-conformity score for performing fair conformal prediction
with classification tasks. We currently implement TPS (Sadinle et al., 2019), APS (Romano et al.,
2020), RAPS (Angelopoulos et al., 2022), DAPS (H. Zargarbashi et al., 2023), and CFGNN (Huang
et al., 2024) in the CF framework, though any non-conformity score can be used. More details on
the specifics of each non-conformity score can be found in Appendix D.2.

1A modified total variation distance, D+
TV (Wi,Wj) := supk∈Y+ |Pr[Wi = k]− Pr[Wj = k]|, can be

used in place of DTV in Theorem 3.4 for a weaker assumption about c, which still gives a satisfying λ.
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4 EXPERIMENTS

4.1 SETUP

Datasets: To evaluate the CF Framework, we used five multi-class datasets: Pokec-n (Takac &
Zabovsky, 2012), Pokec-z (Takac & Zabovsky, 2012), Credit (Agarwal et al., 2021), ACSIncome
(Ding et al., 2021), and ACSEducation (Ding et al., 2021) (see Table 2 for details). For each dataset,
we use a 30%/20%/25%/25% stratified split of the labeled points for Dtrain/Dvalid/Dcalib/Dtest.

Table 2: Dataset Statistics. T refers to Tabular, and G refers to Graph.

Name Type Size # Labeled # Groups # Classes

ACSIncome T 1, 664, 500 ALL race(9) 4
ACSEducation T 1, 664, 500 ALL race(9) 6

Name Type (|V|, |E|) # Labeled # Groups # Classes

Credit T/G (30, 000, 1, 436, 858) ALL age(2) 4
Pokec-n G (66, 569, 729, 129) 8, 797 region(2), gender(2) 4
Pokec-z G (66, 569, 729, 129) 8, 797 region(2), gender(2) 4

Models: For the graph datasets, we evaluated with GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), or GAT (Veličković et al., 2018) as the base model (results reported
are for the highest performing base model). For Credit, we additionally evaluated XGBoost (Chen
& Guestrin, 2016) (i.e., ignoring the graph structure) as we empirically observed this approach to
outperform the graph neural network baselines in terms of efficiency for this dataset. The choice
of ignoring edge information while training Credit on XGBoost does not prohibit us from using
CFGNN or DAPS, which utilize the edge information. The conformal predictor requires the soft-
max logits from the base model (i.e., XGBoost) but is otherwise model agnostic. For ACSIncome
and ACSEducation, we used an XGBoost model. Each model’s hyperparameters were tuned as
discussed in Appendix D.3.

Baseline: For each dataset and CP non-conformity score, we built a conformal predictor to achieve
a coverage level of 1 − α = 0.9. Then, we assess fairness according to the specific fairness metric
using the SATISFY LAMBDA from Algorithm 1 for λ = q̂(α).

Evaluation Metrics: We report the worst fairness disparity and efficiency. For Disparate Impact,
the worst fairness disparity is the minimum (1 − αmax)/(1 − αmin) across the positive labels. For
the remaining metrics, we record the maximum αmax − αmin across the positive labels.

4.2 RESULTS

For each figure, we use a line to indicate the base conformal predictor’s average worst fairness dis-
parity across different thresholds, the bar plot for the worst fairness disparity using the CF Frame-
work, and a dot to denote the desired fairness disparity. We report the average base performance for
simplicity and readability of the figures. In every experiment, except for Figure 2, the CF framework
was better than the average base conformal predictor. We provide a more granular version of Figure
2 with Figure E4, where it is clear that the framework performs better for every closeness threshold.

Controlling for Fairness Disparity: For different closeness thresholds, our CF Framework effec-
tively controls the fairness disparity for several metrics compared to the base conformal predictor. In
Figure 1 and 2, we can observe that in terms of fairness disparity, our CF Framework precisely (note
step-wise change with c on violations) improves upon the baseline conformal predictor. As with al-
gorithmic fairness, a trade-off is involved in that there is a slightly worse efficiency. From Figure 2,
we continue to observe this for both standard and graph-based conformal predictors. Furthermore,
if the base conformal predictor is already “fair” according to our fairness disparity criterion, then the
CF Framework will report the results accordingly. This phenomenon is observed with the CFGNN
results in Figure 2, where the CF Framework matches the baseline regarding both evaluation met-
rics. This behavior of the CF Framework makes it suitable to leverage for black box fairness auditing
(as noted previously). We present additional results, for example, the disparity results for the CF
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Framework without classwise lambdas in Appendix E. Notably, the prediction set sizes are more
prominent due to selecting a larger λ than the classwise approach (see Figure E3 vs Figure 1).

Controlling for Disparate Impact: For Disparate Impact, we present results for the standard
Four-Fifths Rule. In Table 3, we see that using the CF Framework can significantly improve the base
conformal predictor for the Four-Fifths Rule. The disparate impact value is far below the desired
0.8 for the base conformal predictor, sometimes even less than 0.4, as with Credit with TPS and
ACSIncome dataset. Our framework, however, is close to the 0.8 value and in some cases surpasses
it, like in Credit with CFGNN, with minor effects on the efficiency for both datasets.

Table 3: Four-Fifths Rule for Credit and ACSIncome. Our framework surpasses the base conformal
predictor and achieves close to or exceeds the disparate impact value of 0.80. The - means N/A.

APS RAPS TPS CFGNN DAPS
Base CF Base CF Base CF Base CF Base CF

Credit Disp. Impact 0.646 0.821 0.586 0.768 0.252 0.793 0.922 0.922 0.539 0.809
Efficiency 2.326 2.513 2.326 2.509 2.268 2.558 2.202 2.202 2.254 2.526

ACSIncome Disp. Impact 0.397 0.797 0.387 0.790 0.356 0.798 - - - -
Efficiency 2.212 2.674 2.169 2.752 2.109 2.679 - - - -

Agnostic to Non-Conformity Score: As discussed earlier, the CF Framework can support a va-
riety of non-conformity scores, emphasizing the agnostic nature of our framework. We achieved
effective results for conformal predictors with different underlying non-conformity score functions
for all the experiments. Further results can be found in Appendix E.
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Figure 1: ACSIncome. The left two plots are efficiency results, while the right two are the fairness disparities
for (a) APS, (b) RAPS, and (c) TPS. In all cases, our framework gives results at or better than the desired
threshold and better than the baseline.

Intersectional Fairness: When characterizing data points into groups, we are not limited to a
single sensitive attribute. In many applications, there can be multiple sensitive attributes (e.g., race
and gender) that need to be considered. Our CF Framework is not limited to analyzing a single
sensitive attribute. To demonstrate this, we experiment with the Pokec-n dataset. Pokec-n has two
sensitive attributes, namely region and gender. We treat each combination of region and gender as
a separate sensitive group and apply the CF framework to control for fairness disparities. Figure
3 shows that the CF framework improves upon the base conformal predictor regarding fairness
disparity. This improvement is starker with the graph-based conformal predictors, CFGNN, and
DAPS, as seen in Figure 3 plots (b) and (c).
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Figure 2: Credit. The top four plots are efficiency results, while the bottom four are the fairness disparities
for (a) APS, (b) CFGNN, (c) DAPS, (d) RAPS, and (e) TPS. In all cases, our framework achieves the desired
coverage gap better than the baseline, with a minor impact on efficiency.

A key challenge with intersectional fairness is the multiplicative increase in the number of groups
(i.e., combinations of sensitive attributes and classes) that must be calibrated and evaluated. This
increases the data requirements needed to satisfy the coverage guarantees discussed in Section 3.2,
as these guarantees become harder to achieve when the size of D(g,y) decreases. This problem is
exacerbated (in empirical results) for datasets with only a few labeled points, such as Pokec-n. For
Pokec-n, using a standard data split, the calibration set has around 2200 data points. The calibration
set is then further split to get the conditional positive label coverage for each positive label and group
pair. This results in the calibration being done with sets of fewer than a few hundred points, which
is much lower than the suggested 1000 points in the literature (Angelopoulos & Bates, 2021). In
Figure 3, the effect of this challenge is seen with the fairness disparity given by the CF Framework
being slightly above the desired closeness threshold for c = 0.1. Nevertheless, the guarantees still
hold, even under intersectional fairness constraints.
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Figure 3: Pokec-n using both sensitive attributes. The top four plots are the efficiency results, while the
bottom four are the fairness disparities for (a) APS, (b) CFGNN, (c) DAPS, (d) RAPS, and (e) TPS. CFGNN
(b) and DAPS (c) achieve the desired fairness coverage thresholds better than standard CP methods.

Predictive Parity Proxy: As discussed, the CF framework is extensible to user-defined fairness
notions. We consider the Predictive Parity Proxy in Equation 5 as an example of a user’s ability to
provide a reasonable fairness measure (Disparate Impact, above, is another example). An experiment
on ACSEducation in Table 4 demonstrates we can control for arbitrarily small values of c, unlike
the standard notion of Predictive Parity. Additionally, it empirically illustrates that we can control
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for disparities of probabilities conditioned on the prediction set. This metric can also be applied in
the graph setting, as seen in Appendix E.

Table 4: ACSEducation. The worst-case fairness disparity, based on the Predictive Parity Proxy, with our
method is below the desired c threshold, while the average baseline disparity is much higher (> 0.30) than all
of the c thresholds we consider.

Closeness Threshold (c) 0.05 0.10 0.15 0.20 Base (Average)

APS Max Fairness Disparity 0.044 0.093 0.152 0.166 0.411
Efficiency 3.662 3.236 3.049 3.008 2.982

RAPS Max Fairness Disparity 0.043 0.094 0.153 0.172 0.268
Efficiency 3.948 3.339 3.102 3.063 3.030

TPS Max Fairness Disparity 0.038 0.091 0.167 0.199 0.319
Efficiency 3.662 3.061 2.880 2.845 2.828

4.3 DISCUSSION AND RELATED WORK

Few prior efforts study fairness and conformal prediction (Wang et al., 2024; Lu et al., 2022; Liu
et al., 2022). One line of work has focused on applying fairness notions toward CP problems for
regression tasks, explicitly focusing on Demographic Parity (Liu et al., 2022) and Equal Opportunity
(Wang et al., 2024). Another line of work focuses on applying the notion of Overall Accuracy
Equality for CP (Lu et al., 2022). This effort considers a specific medical application of detecting
malignant skin conditions and applies group-balanced CP (Vovk, 2012).

An orthogonal direction is on (group) conditional CP. Foygel Barber et al. (2021) provides a theoret-
ical grounding for conditional CP, while Gibbs et al. (2023) considers the impact of covariate shift
for conditional coverage under the I.I.D assumption. Others Bastani et al. (2022); Jung et al. (2023)
look at multivalid CP, which requires (1) group-conditional and (2) threshold-calibrated coverage
guarantees – a distinct notion from Conformal Fairness. Deng et al. (2023) also introduces a gen-
eralization for multi-calibration and how it relates to algorithmic fairness for conformal prediction,
focusing on equalized coverage for regression.

Our work differs in its breadth and flexibility (i.e., support for several fairness metrics and non-
conformity scores) and focus on classification. Some existing works represent specific instantia-
tions in our framework (e.g., Wang et al. (2024)). Others provide baselines for comparison (e.g.,
BatchGCP (Jung et al., 2023)), without our framework’s theoretical guarantees for fairness. Ap-
pendix E.6 contains more details on BatchGCP and results. The CF framework generalizes group-
balanced CP to consider the notion of coverage for specific labels, thus allowing us to evaluate
disparity based on classical fairness metrics in a manner that does not require a priori knowledge of
group membership at inference time, unlike many approaches listed above.

Lastly, CF can be used in fairness-critical domains where conditional conformal prediction is infea-
sible, such as finance, which can have strict fairness requirements (Agarwal et al., 2021), and health
care (Wang et al., 2024), where privileged information may be unavailable at inference time.

5 CONCLUSION

In this work, we formalize the notion of Conformal Fairness (CF) for conformal predictors and pro-
pose a novel and comprehensive CF Framework. We provide a theoretically grounded algorithm
that can be used to control for the gaps in conditional coverage, defined based on different fairness
metrics, across sensitive groups. We conduct experiments on tabular and graph datasets, leveraging
the exchangeability assumption of conformal prediction. We present results for CF based on vari-
ous classical and user-defined fairness metrics on conformal predictors with various non-conformity
score functions, including results on the framework’s effectiveness in evaluating intersectional fair-
ness with conformal predictors. We further describe how the CF framework can be practically
leveraged for applications, including fairness auditing of conformal predictors. Future work could
extend the framework to regression tasks and strengthen the theory by relaxing assumptions and
exploring non-exchangeable settings.
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A FAIRNESS METRICS

As discussed in Section 2.2, exact fairness is difficult to achieve. So, for many metrics, we want
to say something about the difference between groups. Formally, for Demographic Parity, we may
require that for some (small) c ∈ (0, 1],

max
ỹ∈Y+

{∣∣∣Pr[Ŷ = ỹ | X ∈ ga

]
− Pr

[
Ŷ = ỹ | X ∈ gb

]∣∣∣ | ∀ga, gb ∈ G
}
< c.

Similar requirements exist for the other fairness metrics.

Table A1: Fairness metrics formulations for multiclass classification (Rouzot et al., 2022).

Metric Definition

Demographic (or Statistical) Parity Pr
[
Ŷ = y

∣∣∣X ∈ ga

]
= Pr

[
Ŷ = y

∣∣∣ X ∈ gb

]
, ∀ga, gb ∈ G, ∀y ∈ Y+

Equal Opportunity Pr
[
Ŷ = y

∣∣∣ Y = y,X ∈ ga

]
= Pr

[
Ŷ = y

∣∣∣ Y = y,X ∈ gb

]
, ∀ga, gb ∈ G, ∀y ∈ Y+

Predictive Equality Pr
[
Ŷ = y

∣∣∣ Y ̸= y,X ∈ ga

]
= Pr

[
Ŷ = y

∣∣∣ Y ̸= y,X ∈ gb

]
, ∀ga, gb ∈ G, ∀y ∈ Y+

Equalized Odds Equal Opp. and Pred. Equality

Predictive Parity Pr
[
Y = y

∣∣∣ Ŷ = y,X ∈ ga

]
= Pr

[
Y = y

∣∣∣ Ŷ = y,X ∈ gb

]
, ∀ga, gb ∈ G, ∀y ∈ Y+

B PROOFS

B.1 PROOF OF LEMMA 3.1

Lemma 3.1. For any (g, ỹ) ∈ G × Y+, calibrating on
Dcalib(g,ỹ) = {(xi, yi) | FM (xi, yi, g, ỹ) = 1} guarantees the following about the conditional cov-
erage:

1− α ≤ Pr[yn+1 ∈ Cλ(xn+1) | FM (xn+1, yn+1, g, ỹ) = 1] ≤ 1− α+
1

|Dcalib(g,y)|+ 1
(2)

The interval width is 1
|Dcalib(g,y)|+1 .

Proof. The proof for the upper bound follows Ding et al. (2024), where the test score s(xn+1, yn+1)
follows the distribution of scores in Dcalib ∩ R, thus holding the conditional coverage. The upper-
bound guarantee directly follows Romano et al. (2019), assuming distinct non-conformity scores or
a suitably random way to tie-break equal scores.

B.2 PROOF OF LEMMA 3.2

To prove Lemma 3.2, we use the following Lemma that is stated in the proof of Theorem D.1 from
Angelopoulos & Bates (2021):
Lemma B.1. Suppose you have n+1 exchangeable random variables Z1, Z2, . . . , Zn, Zn+1. Then,
Pr[Zn+1 ≤ Z(k)] =

k
n+1 for all k ≤ n, where Zn+1 is the test point.

Proof Sketch. Using Z1, . . . , Zn, you can form n + 1 intervals, (L,Z(1)], (Z(1), Z(2)],
. . . , (Z(n−1), Z(n)], (Z(n), U ], where L and U are the lower and upper bounds of the random vari-
ables. Exchangeability gives us that Zn+1 falls in any of the n + 1 intervals with equal prob-
ability. Thus, Pr[Zn+1 ≤ Z(k)] is the probability that it falls in the first k intervals giving us
Pr[Zn+1 ≤ Z(k)] =

k
n+1 .

Now using Lemma B.1, we will prove Lemma 3.2.
Lemma 3.2. For λ ∈ [0, 1] and n = |Dcalib|,∑n

i=1 1[s(xi, yi) ≤ λ]

n+ 1
≤ Pr[yn+1 ∈ Cλ(xn+1)] ≤

∑n
i=1 1[s(xi, yi) ≤ λ] + 1

n+ 1
, (3)
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Proof. Let si = s(xi, yi) for brevity. By Lemma B.1, we have that Pr(sn+1 ≤ s(k)) =
k

n+1 for all
k ≤ n. Let k be s.t. s(k) ≤ λ ≤ s(k+1). We then have that Pr(sn+1 ≤ s(k)) ≤ Pr(sn+1 ≤ λ) ≤
Pr(sn+1 ≤ s(k+1)). So,

k

n+ 1
≤ Pr(sn+1 ≤ λ) ≤ k + 1

n+ 1
.

Since s1, . . . , sn are known empirically, we have that k =
∑n

i=1 1[si ≤ λ]. Hence,∑n
i=1 1[si ≤ λ]

n+ 1
≤ Pr(sn+1 ≤ λ) ≤

∑n
i=1 1[si ≤ λ] + 1

n+ 1
.

Since Pr[sn+1 ≤ λ] = Pr[yn+1 ∈ Cλ(xn+1)], we get Equation 3.

B.3 PROOF OF LEMMA 3.3

Lemma 3.3. Equation 1 holds if we replace {(xi, yi)} with {(xi, ỹ)} for a fixed ỹ ∈ Y .

Proof. By computing q̂(α) = Quantile
(

⌈(n+1)(1−α)⌉
n ; {s(xi, ỹ)}ni=1

)
, where ỹ is the fixed label.

Using the assumption of exchangeability we have that s(x1, ỹ), s(x2, ỹ), . . . , s(xn+1, ỹ) is an ex-
changeable sequence. Thus

1− α ≤ Pr[s(xn+1, ỹ) ≤ q̂(α)] ≤ 1− α+
1

n+ 1
. (6)

Equivalently,

1− α ≤ Pr
[
ỹ ∈ Cq̂(α)(xn+1)

]
≤ 1− α+

1

n+ 1
. (7)

C FURTHER DISCUSSION ON PREDICTIVE PARITY

Theorem 3.4. Let W be a random variable for a label distribution over Y . Let Wi ∼ W |(X ∈
gi) – the label distribution conditioned on group membership. Then there exists λ such that for
c ≥ max{DTV (Wi,Wj) | i, j ∈ {1, . . . , |G|}}, where DTV is the total variation distance2, the
difference in Predictive Parity between groups is within c.

Proof. Let λ be the maximum value it can take on as the threshold of the prediction set. Let y ∈ Y+

and gm, gn ∈ G. Then,

Pr
[
Y = y

∣∣∣ y ∈ Cλ(X), X ∈ gm

]
=

Pr

[
y∈Cλ(X)

∣∣∣ Y=y,X∈gm

]

Pr

[
y∈Cλ(X)

∣∣∣ X∈gm

] Pr
[
Y = y

∣∣∣ X ∈ gm

]
= Pr

[
Y = y

∣∣∣ X ∈ gm

]
since the numerator and the denominator are 1 due to the selection of λ. Using the same argument
for gn and the definition of DTV the difference in Predictive Parities is:∣∣∣Pr[Y = y

∣∣∣ X ∈ gm

]
− Pr

[
Y = y

∣∣∣ X ∈ gn

]∣∣∣ ≤ DTV (Wm,Wn)

Since, DTV (Wm,Wn) ≤ max{DTV (Wi,Wj) | i, j ∈ {1, . . . , |G|}} ≤ c, the choosen λ value
causes the Predictive Parity difference to be less than c. Thus a solution exists for c ≥
max{DTV (Wi,Wj) | i, j ∈ {1, . . . , |G|}}.

2A modified total variation distance, D+
TV (Wi,Wj) := supk∈Y+ |Pr[Wi = k]− Pr[Wj = k]|, can be

used in place of DTV in Theorem 3.4 for a weaker assumption about c, which still gives a satisfying λ.
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C.1 ACHIEVING ARBITRARY CLOSENESS

We will further discuss the two methods for controlling for arbitrarily small values of c, depending
on whether the label distribution is independent of group membership.

C.1.1 LABEL DISTRIBUTION INDEPENDENT OF GROUP MEMBERSHIP

Assuming independence, we have the following corollary of Theorem 3.4:

Corollary C.1. Given a random variable, W , from a label distribution over Y that is independent
of group membership, then the Conformal Fairness Framework can find a λ such that the disparity
of Predictive Parity is within any c > 0.

Proof. Let Wi ∼ W |(X ∈ gi) be the label distribution condition on group membership. Using the
independence assumption we get W = Wi, ∀i ∈ {1, . . . , |G|}, thus DTV (Wi,Wj) = 0, ∀i, j ∈
{1, . . . , |G|}. Hence, using Theorem 3.4, c > max{DTV (Wi,Wj) | i, j ∈ {1, . . . , |G|}} = 0. Thus
a λ can be found for any c > 0.

C.1.2 WITHOUT INDEPENDENCE ASSUMPTION

When independence cannot be assumed, then we propose a proxy for Predictive Parity that the
Conformal Fairness Framework can use. We propose a Predictive Parity Proxy as the balancing
the quantity Pr(Y = y | y ∈ Cλ(X), X ∈ ga)−Pr(Y = y | X ∈ ga) across all groups and positive
labels. Thus, for the framework, given a user-specified value for c, we want ∀ga, gb ∈ G, ∀y ∈ Y+:∣∣(Pr[Y = y | y ∈ Cλ(X), X ∈ ga]− Pr[Y = y | X ∈ ga])

− (Pr[Y = y | y ∈ Cλ(X), X ∈ gb]− Pr[Y = y | X ∈ gb])
∣∣ < c. (8)

Observe that using λ = supΛ will make Equation 8 equal to zero, thus c can be arbitrarily small.
Intuitively, this proxy balances the information provided about an outcome if the label is in the
prediction set, similar to Predictive Parity. Formally, if the label distribution is independent of group
membership, then balancing the proxy would be the same as balancing Predictive Parity.

D ADDITIONAL EXPERIMENT DETAILS

D.1 DATASETS

Credit (G): The Credit dataset is from the UCI repository, and traditionally the binary target is to
predict the existence of default payments (Yeh & Lien, 2009). We used a graph version of Credit
as considered by Agarwal et al. (2021). To convert the dataset to a multi-class dataset, we used the
education level (4 labels) as the target and used gender as the sensitive attribute, as done by Liu et al.
(2023).

Pokec-{n,z} (G): The Pokec dataset (Takac & Zabovsky, 2012) is a social-network graph dataset
collected from Pokec, a popular social network in Slovakia. Since several rows in the dataset are
missing features, two commonly used subgraphs are the Pokec-z and Pokec-n datasets. The graphs
have 4 labels, corresponding to the fieldwork. They also have two sensitive attributes, gender (2
groups) and region (2 groups). Our experiments consider each attribute individually and intersec-
tional fairness by creating an attribute with 4 (2x2) groups.

ACSIncome (T): In the fairness space, the American Community Services (ACS) datasets from
the Folktables library are widely used (Ding et al., 2021). For ACSIncome, we used the standard
ACSIncome dataset in Foltables however, we divided the targets into 4 classes by evenly dividing
the income into 4 brackets. Race is the sensitive attribute and has 9 groups.

ACSEducation (T): Similar to ACSIncome, we used the ACS data and selected the Education
Level as our target. We broke the education level into 6 groups {did not complete high school,
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has a high school diploma, has a GED, started an undergrad program, completed an undergrad pro-
gram, and completed graduate or professional school}. ACSEducation also uses race as a sensitive
attribute.

D.2 NON-CONFORMITY SCORES

Let π̂ be a trained classification model with softmaxed output.

Threshold Prediction Sets (TPS) In TPS (Sadinle et al., 2019), the score function is s(x, y) =
1 − π̂(x)y , where π̂(x)y is the class probability for the correct class. This is the simplest method,
which is also shown to be optimal with respect to efficiency (Sadinle et al., 2019).

Adaptive Prediction Sets (APS) The most popular baseline when comparing CP method is
APS (Romano et al., 2019). The scoring function works by sorting the softmax logits in de-
scending order and accumulating the class probabilities until the correct class is included. For
tighter prediction sets, randomization is introduced through a uniform random variable. Formally, if
π̂(x)(1) ≥ π̂(x)(2) ≥ · · · ≥ π̂(x)(K−1), u ∼ U(0, 1), and ry is the rank of the correct label, then

s(x, y) =

[
ry∑
i=1

π̂(x)(i)

]
− uπ̂(x)y.

Regularized Adaptive Prediction Sets (RAPS) One drawback of APS is that it can produce large
prediction sets. Angelopoulos et al. (2022) introduces a regularization approach for APS. Given the
same setup and notation as APS, define o(x, y) = |{c ∈ Y : π̂(x)y ≥ π̂(x)c}|. Then,

s(x, y) =

[
ry∑
i=1

π̂(x)(i)

]
− uπ̂(x)y + ν ·max{(o(x, y)− kreg), 0},

where ν and kreg ≥ 0 are regularization hyperparameters.

Diffusion Adaptive Prediction Sets (DAPS) Graphs are rich with neighborhood information,
with nodes tending to be homophilous. Intuitively, this suggests that the non-conformity scores of
connected nodes are also related. To utilize this observation, DAPS H. Zargarbashi et al. (2023)
performs a one-step diffusion update on the non-conformity scores. Formally, if s(x, y) is a point-
wise score function (e.g., APS), then the diffusion step gives a new score function

ŝ(x, y) = (1− δ)s(x, y) +
δ

|Nx|
∑

u∈Nx

s(u, y),

where δ ∈ [0, 1] is a diffusion hyperparamter and Nx is the 1-hop neighborhood of x.

Conformalized GNN (CFGNN) CFGNN (Huang et al., 2024) is a GNN approach to graph CP.
The underlying observation is that the inefficiencies are correlated between nodes with similar neigh-
borhood topologies. Bearing this in mind, using the calibration set, a second GNN is trained to
correct the scores from the base model to optimize for efficiency through an inefficiency loss func-
tion Huang et al. (2024) propose. The inefficiency loss function definition includes a point-wise
score function and can be different for training and validation. For our experiments, we set the score
function to be APS and kept it consistent between training and validation.

D.3 HYPERPARAMETER TUNING

Hyperparameter tuning was done using Ray Tune (Liaw et al., 2018). For the Pokec n and Pokec z
datasets, hyperparameters for the base GNN models were tuned via random search using Table
D1 for each model type (i.e., GCN, GAT, and GraphSAGE) and for each choice of the sensitive
attribute(s). For the Credit, ACS Income, and ACS Education datasets, the base XGBoost models
were tuned via random search using Table D2 for each choice of sensitive attribute(s).
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For Credit, Pokec n, and Pokec z, we tune the hyperparameters for the CFGNN model via random
search using Table D3 for each model type (e.g., GCN, GAT, and GraphSAGE), for each dataset,
and choice of sensitive attribute(s). We set Dcalib = Dtest = (1−Dtrain −Dvalid)/2.

All experiments were run on a single P100 GPU.

In the interest of reproducibility, the source code for the CF Framework is provided in the supple-
mentary material.

Table D1: Hyperparameter search space for the base GNN model for Pokec n and Pokec z. The last
two rows are layer-type specific for GAT and GraphSAGE, respectively.

Hyperparameter Search Space

batch size 64
lr loguniform(10−4, 10−1)
hidden channels {16, 32, 64, 128}
layers {1, 2, 4}
dropout uniform(0.1, 0.8)

heads {2, 4, 8}
aggr fn {mean, gcn, pool, lstm}

Table D2: Hyperparameter search space for the base XGBoost model for Credit, ACS Education,
and ACS Income.

Hyperparameter Search Space

lr loguniform(10−4, 10−1)
n estimators {2, . . . , 500}
max depth {2, . . . , 30}
gamma uniform(0, 1)
colsample bytree uniform(0.25, 1.0)
colsample bylevel uniform(0.25, 1.0)
colsample bynode uniform(0.25, 1.0)
subsample uniform(0.5, 1.0)

Table D3: Hyperparameter search space for the CFGNN model for Credit, Pokec n, and Pokec z.
The last two rows are layer-type specific for GAT and GraphSAGE, respectively.

Hyperparameter Search Space

batch size 64
lr loguniform(10−4, 10−1)
hidden channels {16, 32, 64, 128}
layers {1, 2, 3, 4}
dropout uniform(0.1, 0.8)
τ loguniform(10−3, 101)

heads {2, 4}
aggr fn {mean, gcn, pool, lstm}

E ADDITIONAL RESULTS

Here we provide additional results and discourse for each dataset and experiment we discuss in the
main paper.
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E.1 ACSEDUCATION

Below we include results for the ACSEducation dataset, which is unique as it has a greater number
of classes and is a custom dataset generated from the ACS datasets.

Dem_Parity Eq_Opp Eq_Odds Pred_Eq
0

1

2

3

4

5

6

Ef
fic

ie
nc

y

APS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

RAPS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

TPS

Closeness Criterion:
0.05 0.1 0.15 0.2

Dem_Parity Eq_Opp Eq_Odds Pred_Eq
0

1

2

3

4

5

6

Ef
fic

ie
nc

y

APS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

RAPS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

TPS

Closeness Criterion:
0.05 0.1 0.15 0.2

Figure E1: ACSEducation. Comparison of efficiencies when using the CF Framework without (top) and
with (bottom) classwise lambdas. We observe that the efficiencies are better in the right plot. This is because
∀i,...,k λnon-classwise ≥ λi

classwise (k is the number of classes), which causes fewer labels to be included in the
prediction set, thus improving efficiency with the classwise approach. For some experiments, the fairness
disparity is 0 (e.g. APS and RAPS in the no-classwise setting), because the framework is producing the full
prediction set–the trivial case–which means the coverage of ỹ ∈ Y+ is 1.00, thus causing the disparity to be 0.
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Figure E2: ACSEducation. Comparison of fairness disparities when using the CF Framework without (top)
and with (bottom) classwise lambdas. We observe that the fairness disparities are better in the left plot. This
is because by using a single λ, only the hardest-to-satisfy label will be at or around the coverage gap, c, unlike
classwise which ensures all labels will be at or around the coverage gap, c. Since fewer labels have coverages
around the coverage gap, for non-classwise in (left) the likelihood of being above the threshold is limited - as
opposed to the classwise approach (right).
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E.2 IMPACT OF CLASSWISE LAMBDAS

E.2.1 ACSINCOME
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Figure E3: ACSIncome. The efficiency (top) and fairness disparity (bottom) plots when not using classwise
lambdas. We observe that the efficiency is worse, but the disparity control is much better than using classwise
lambdas (see Figure 1).

E.2.2 CREDIT

Dem_Parity Eq_Opp Eq_Odds Pred_Eq
0.0

0.1

0.2

0.3

0.4

0.5

Ac
tu

al
 Fa

irn
es

s D
isp

ar
ity

APS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

CFGNN

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

DAPS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq
0.0

0.1

0.2

0.3

0.4

0.5

Ac
tu

al
 Fa

irn
es

s D
isp

ar
ity

RAPS

Dem_Parity Eq_Opp Eq_Odds Pred_Eq

TPS

Closeness Criterion:
0.05 0.1 0.15 0.2

Figure E4: Credit. A granular version of Figure 2, which has a bar over each value of c rather than
considering an average. This plot clarifies that the CF framework matches or exceeds the baseline
conformal predictor’s performance in fairness disparity.
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Figure E5: Credit. The efficiency (left) and fairness disparity (right) plots when not using classwise
lambdas. We observe that the efficiency is worse, but the disparity control is much better than using
classwise lambdas (see Figure 2).
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E.3 IMPACT OF DIFFERENT POKEC SENSITIVE ATTRIBUTES

E.3.1 POKEC-N
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Figure E6: Pokec-n. The efficiency (top) and fairness violation (bottom) plots when considering only gender
as the sensitive attribute. Observe that the baseline disparity here is smaller than the baseline in intersectional
fairness (see Figure 3). Thus, when controlling for c = 0.05 coverage, there is a minimal change in efficiency
across all the non-conformity scores.
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Figure E7: Pokec-n. The efficiency (top) and fairness violation (bottom) plots when considering only region
as the sensitive attribute. Compared to using gender in Figure E6, the prediction set sizes are larger for region
when controlling for c = 0.05, thus illustrating that exact performance will vary based on the sensitive attribute
and group distribution.
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E.3.2 POKEC-Z
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Figure E8: Pokec-z. The efficiency (top) and fairness violation (bottom) plots when considering only gender
as the sensitive attribute. Unlike Pokec-n - using gender (see Figure E6 - we find that the baseline is unfair for
several values of c - exemplifying the auditing capabilities of the CF framework. This result also demonstrates
how fairness can vary at different localities since Pokec-n and Pokec-z are disjoint subgraphs of the same graph.
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Figure E9: Pokec-z. The efficiency (top) and fairness violation (bottom) plots when considering only region
as the sensitive attribute. In these plots for c ≥ 0.1, the baselines are fair for all score functions except for TPS.
The baseline for TPS being ’unfair’ at c = 0.1 suggests TPS sacrifices fairness for efficiency.

E.4 PREDICTIVE PARITY PROXY RESULTS
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Figure E11: Pokec-z. Results using the Predictive Parity Proxy on a graph dataset. We can see that the CF
Framework controls for this metric as well as or better than the base conformal predictor at all values of c and
non-conformity scores.
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Figure E10: Pokec-z. Another example of intersectional fairness using both sensitive attributes of the Pokec-
z dataset. Like Pokec-n, we find that the worst-case fairness disparity is better than the baseline for the CF
Framework. We reiterate that the challenge of intersection fairness is the multiplicative increase in the number
of groups that must be balanced. Thus, intersection fairness would benefit from more calibration points.

28



Published as a conference paper at ICLR 2025

E.5 DISPARATE IMPACT RESULTS

Table E1: ACSEducation. The CF framework significantly enhances fairness (increases the ratio
close to the desired 80% disparate impact rule), with a cost to efficiency. The classwise approach
improves efficiency further while retaining a ratio near 80%.

ACSEducation APS RAPS TPS

Classwise Base CF Base CF Base CF

False Disp. Impact 0.011 0.799 0.014 0.791 0.019 0.804
Efficiency 2.982 5.662 3.031 5.658 2.828 5.705

True Disp. Impact 0.011 0.781 0.014 0.761 0.019 0.797
Efficiency 2.982 4.727 3.031 4.724 2.828 4.744

Table E2: ACSIncome. The CF framework significantly enhances fairness (increases the ratio close
to the desired 80% disparate impact rule), with a cost to efficiency. The classwise approach improves
efficiency further while retaining a ratio near 80%.

ACSIncome APS RAPS TPS

Classwise Base CF Base CF Base CF

False Disp. Impact 0.397 0.815 0.387 0.847 0.356 0.804
Efficiency 2.212 3.557 2.169 3.610 2.109 3.416

True Disp. Impact 0.397 0.797 0.387 0.790 0.356 0.797
Efficiency 2.212 2.674 2.169 2.752 2.109 2.679

Table E3: Credit. For the Credit dataset, we notice that the CF Framework improves over the
baseline for APS, RAPS, TPS, and DAPS. We find that the baseline for TPS performs the worst of
the 4 methods regarding disparate impact. Interestingly, the CFGNN baseline, on the other hand,
maximizes the disparate impact while having the best efficiency. CFGNN demonstrates a case where
CF does not perform worse than the baseline since the baseline was already ‘fair’. It also provides
an example of where an audit via CF would find that the CFGNN conformal predictor is a priori
fair.

Credit APS RAPS TPS CFGNN DAPS

Classwise Base CF Base CF Base CF Base CF Base CF

False Disp. Impact 0.646 0.821 0.586 0.768 0.252 0.793 0.922 0.922 0.539 0.809
Efficiency 2.325 2.561 2.326 2.559 2.268 2.620 2.202 2.202 2.254 2.573

True Disp. Impact 0.646 0.821 0.586 0.768 0.252 0.793 0.922 0.922 0.539 0.809
Efficiency 2.325 2.513 2.326 2.509 2.268 2.558 2.202 2.202 2.254 2.526
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Table E4: Pokec-n. For Pokec-n, the CF Framework improves the disparate impact of the base-
line conformal predictor. Similar to the other fairness metrics, the disparate impact worsens when
considering intersectional fairness and is near or exceeds 80% when only one sensitive attribute is
considered (i.e., region or gender).

Pokec-n APS RAPS TPS CFGNN DAPS

Classwise Group Base CF Base CF Base CF Base CF Base CF

False Gender Disp. Impact 0.798 0.802 0.793 0.811 0.777 0.796 0.784 0.797 0.800 0.806
Efficiency 2.465 2.565 2.434 2.648 2.343 2.494 2.636 2.838 2.474 2.639

True Gender Disp. Impact 0.798 0.802 0.793 0.810 0.777 0.796 0.784 0.797 0.800 0.806
Efficiency 2.465 2.473 2.434 2.457 2.343 2.358 2.636 2.666 2.474 2.494

False Region Disp. Impact 0.814 0.823 0.820 0.829 0.803 0.814 0.916 0.918 0.822 0.831
Efficiency 2.401 2.498 2.373 2.552 2.300 2.426 3.168 3.185 2.413 2.584

True Region Disp. Impact 0.814 0.814 0.820 0.822 0.803 0.806 0.916 0.917 0.822 0.824
Efficiency 2.401 2.430 2.374 2.404 2.300 2.332 3.168 3.180 2.413 2.437

False Region & Disp. Impact 0.718 0.792 0.723 0.774 0.716 0.785 0.602 0.812 0.720 0.787
Gender Efficiency 2.485 3.037 2.435 3.012 2.341 2.970 2.537 3.563 2.509 2.991

True Region & Disp. Impact 0.718 0.767 0.723 0.760 0.716 0.754 0.602 0.779 0.720 0.764
Gender Efficiency 2.485 2.739 2.435 2.656 2.341 2.566 2.537 2.964 2.509 2.709

Table E5: Pokec-z. For Pokec-z, the CF Framework improves the disparate impact of the base-
line conformal predictor. Similar to the other fairness metrics, the disparate impact worsens when
considering intersectional fairness and is near or exceeds 80% when only one sensitive attribute is
considered (i.e., region or gender).

Pokec-z APS RAPS TPS CFGNN DAPS

Classwise Group Base CF Base CF Base CF Base CF Base CF

False Gender Disp. Impact 0.798 0.802 0.737 0.800 0.737 0.800 0.784 0.797 0.800 0.806
Efficiency 2.523 2.995 2.489 3.088 2.327 3.134 2.512 3.388 2.522 2.996

True Gender Disp. Impact 0.798 0.802 0.737 0.800 0.661 0.742 0.784 0.797 0.800 0.806
Efficiency 2.523 2.572 2.489 2.571 2.327 2.415 2.512 2.642 2.522 2.579

False Region Disp. Impact 0.807 0.823 0.796 0.826 0.812 0.816 0.781 0.796 0.811 0.829
Efficiency 2.429 2.569 2.369 2.592 2.337 2.497 2.546 2.644 2.416 2.586

True Region Disp. Impact 0.807 0.815 0.796 0.800 0.812 0.816 0.781 0.796 0.811 0.813
Efficiency 2.429 2.475 2.369 2.403 2.337 2.391 2.546 2.603 2.416 2.453

False Region & Disp. Impact 0.658 0.787 0.661 0.770 0.640 0.785 0.590 0.806 0.658 0.768
Gender Efficiency 2.408 3.173 2.359 3.214 2.265 3.175 2.512 3.471 2.409 3.133

True Region & Disp. Impact 0.658 0.773 0.661 0.742 0.640 0.745 0.590 0.800 0.658 0.749
Gender Efficiency 2.408 2.799 2.359 2.741 2.265 2.627 2.512 2.788 2.409 2.743
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E.6 COMPARISON WITH BATCHGCP

To produce conformal prediction sets with group-wise coverage, BatchGCP (Jung et al., 2023)
learns a group-dependent threshold function to provide 1 − α coverage for the correct label - i.e.
Pr

(
yn+1 ∈ Cf̂(xn+1;λ)

(xn+1) | xn+1 ∈ g′
)
= 1− α ∀g′ ∈ G. To achieve this, a group-dependent

threshold function, f̂(xn+1;λ), in Equation 9 is used to construct prediction sets by adding a cor-
rection to the base threshold function f(x). For the scoring functions considered (i.e., APS), we
define f(x) ≡ q̂(α) as the 1 − α quantile of the calibration scores. λ ∈ R|G| is a vector with λg′

corresponding to the entry for the g′ group. The groups, g′, may intersect, allowing for xn+1 to be
a part of multiple groups.

f̂(x;λ) = f(x) +
∑
g′∈G

λg′1[x ∈ g′] (9)

To determine the value of λ, Jung et al. (2023) solve the convex optimization problem in 10, where
Lq is the pinball loss (Equation 11) - a function used to determine how close a threshold, f̂(x;λ),
is to a specific quantile, 1 − α, for a given score, s. Using the pinball loss, λ∗ - the optimal λ - is
computed and used to construct prediction sets.

λ∗ = argmin
λ

E
[
Lq

(
f̂(x;λ), s(x, y)

)]
(10)

L1−α(τ, s) = (s− τ)(1− α)1[s > τ ] + (τ − s)α1[s ≤ τ ] (11)

To compare against BatchGCP, we adapted the codebase3 provided by Jung et al. (2023) to accom-
modate APS as a non-conformity score and use the classification variant of the Folktables datasets
since Jung et al. (2023) conducts experiments with those datasets. With the BatchGCP implemen-
tation, we get the threshold function, f̂ , and use it when constructing prediction sets. The fairness
disparity is evaluated using Demographic Parity and Disparate Impact. Since BatchGCP aims to
optimize group-conditional coverage, we only compare against those two fairness metrics, for a fair
comparison.

While BatchGCP provides PAC guarantees on group-wise coverage, it does not necessarily provide
the fairness guarantees our framework does, as empirically seen with the ACSIncome and ACSE-
ducation datasets in Table E6 and Figures E12 and E13. We can dissect the poor performance on
these datasets by looking at the per-group conditional coverages in Figure E14, where several groups
are undercovered. We note that BatchGCP requires group information at inference time, which re-
stricts it from settings where group information may be unavailable at inference time – this is not a
limitation of the CF Framework.

Table E6: Comparing Base APS, BatchGCP, and CF framework under Disparate Impact. For the CF frame-
work, we set c = 0.8 and use classwise lambdas. We observe that the CF Framework can achieve a disparate
impact value much closer to c = 0.8 with little effect on efficiency.

Base APS BatchGCP CF

ACSEducation Disp. Impact 0.011 0.576 0.781
Efficiency 2.982 2.893 4.727

ACSIncome Disp. Impact 0.397 0.349 0.797
Efficiency 2.212 2.200 2.674

3https://github.com/ProgBelarus/BatchMultivalidConformal

31

https://github.com/ProgBelarus/BatchMultivalidConformal


Published as a conference paper at ICLR 2025

Dem_Parity
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ef
fic

ie
nc

y

APS

Closeness Criterion:
0.05 0.1 0.15 0.2

Dem_Parity
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 Fa

irn
es

s D
isp

ar
ity

APS

Closeness Criterion:
0.05 0.1 0.15 0.2

Figure E12: ACSIncome. Comparing Base APS, BatchGCP, and CF framework under Demographic Parity.
For the CF framework, we vary c ∈ {0.05, 0.1, 0.15, 0.2}. We observe that the CF Framework achieves the
smallest disparity for every value of c (seen on the right figure) with a small cost to the efficiency (as seen on
the left figure). In the figure, Base APS = Black lines, BatchGCP = Red lines, and the CF framework is the bar
charts. The black dots are the desired disparity level for the CF framework, which the CF framework achieves,
while neither Base APS nor BatchGCP meets these thresholds.
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Figure E13: ACSEducation. Comparing Base APS, BatchGCP, and CF framework under Demographic
Parity. For the CF framework, we vary c ∈ {0.05, 0.1, 0.15, 0.2}. We observe that the CF Framework achieves
the smallest disparity for every value of c (seen on the right figure) with a small cost to the efficiency (as seen
on the left figure). In the figure, Base APS = Black lines, BatchGCP = Red lines, and the CF framework is
the bar charts. The black dots are the desired disparity level for the CF framework, which the CF framework
achieves, while neither Base APS nor BatchGCP meets these thresholds.
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(a) ACSIncome. (b) ACSEducation.

Figure E14: To dissect the poor performance of BatchGCP seen in Figures E12 and E13, we present the per-
group conditional coverages for both datasets and see that certain groups are significantly undercovered (i.e.,
groups 4, 5, and 7 in both figures).
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