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Abstract
Large Language Models enable dynamic game interactions but
struggle with rule-governed trading systems. Current implementa-
tions suffer from rule violations, such as item hallucinations and cal-
culation errors, that erode player trust. Here, State-Inference-Based
Prompting (SIBP) enables reliable trading through autonomous
dialogue state inference and context-specific rule adherence. The
approach decomposes trading into six stateswithin a unified prompt
framework, implementing context-aware item referencing and place-
holder-based price calculations. Evaluation across 100 trading di-
alogues demonstrates >97% state compliance, >95% referencing
accuracy, and 99.7% calculation precision. SIBP maintains computa-
tional efficiency while outperforming baseline approaches, estab-
lishing a practical foundation for trustworthy NPC interactions in
commercial games.

CCS Concepts
• Computing methodologies→ Discourse, dialogue and prag-
matics; Natural language generation; •Human-centered com-
puting → Natural language interfaces.

Keywords
Large Language Models (LLMs), Game AI, Natural Language Inter-
action, Prompt Engineering, State-Inference-Based Prompting

1 Introduction
Large Language Models (LLMs) are revolutionizing non-player
character (NPC) interactions in games, enabling natural language-
driven experiences that transcend traditional script constraints
[1, 2]. These capabilities have spurred research and development of
dynamic NPCs that enhance player immersion across diverse gam-
ing contexts [3–8]. Commercial implementations already demon-
strate this potential in titles such as Relu Games’ ‘Magical Mic Duel:
Senpai, Hear My Spell’, ‘Uncover the Smoking Gun’ and Krafton’s
‘inZOI’ [9–11].

Trading mechanics represent a critical test case for LLM-driven
interactions, integrating economic systems, social dynamics, and
∗Co-corresponding authors.
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narrative progression under structured rule systems. Role-playing
games particularly depend on merchant interactions as core experi-
ences that bridge exploration, combat, and character development.
Yet most games implement trading through static inventories, fixed
pricing, and limited dialogue options [12]—constraints that prevent
dynamic commercial interactions and limit emergent gameplay
potential.

Recent research explores LLM-powered merchant NPCs but typ-
ically addresses isolated aspects rather than comprehensive inter-
action flows. Critical issues persist: item hallucinations, inventory
inconsistencies, and rule violations that systematically undermine
system reliability [6, 12]. Current LLM-based NPC research empha-
sizes social interactions [3, 4], leaving rule-governed trading as a
fundamental challenge [13].

This work develops a comprehensive framework that balances
natural language flexibility with systematic rule adherence for ro-
bust trading systems. The framework enables LLMs to infer dialogue
states autonomously from the dialogue context without external
state management. This is achieved by decomposing trading into
six distinct states with comprehensive guidelines within a unified
prompt architecture.

The proposed methodology leverages LLMs’ generative capa-
bilities while implementing robust control mechanisms to address
hallucinations and ensure game system integrity. The approach
enhances trading with three core innovations: structured state pro-
gression rules preventing accidental transactions, dynamic item
reference adjustment based on dialogue context, and placeholder-
based post-processing ensuring mathematical accuracy without
computational overhead.

Empirical evaluation conducted in an operational role-playing
game environment demonstrates the methodology’s effectiveness
through comprehensive metrics, including rule compliance rates,
item reference accuracy, and price calculation precision. The results
demonstrate practical viability in commercial game environments.

This work makes the following key contributions:

• This study proposes a State-Inference-Based Prompting (SIBP)
methodology that enables autonomous dialogue state infer-
ence and rule compliance through four key prompt design
elements.

• The methodology decomposes trading into six states, en-
suring procedural integrity while preventing unintended
behaviors.
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• The evaluation provides empirical validation through quan-
titative assessment demonstrating over 97% state transition
compliance and deployment potential.

• The SIBP methodology facilitates context-aware data refer-
encing mechanisms that achieve over 95% accuracy through
dynamic adjustment while preventing hallucinations.

• The SIBPmethodology enables state-specific post-processing
that ensures 99.7% price calculation accuracy through place-
holder-based mechanisms.

The system architecture and prompt design principles offer broad
generalizability for LLM-based interactive systems beyond gaming
contexts, contributing fundamental advances to prompt engineer-
ing for rule-governed interactions. The implications extend to in-
teractive kiosks, customer support systems, and educational tools,
demonstrating how sophisticated interaction design can transform
LLM capabilities into reliable task-oriented systems suitable for
commercial deployment.

The remainder of this paper is organized as follows: Section 2
reviews related work; Section 3 details the proposed methodology;
Section 4 provides experimental evaluation; Section 5 discusses sig-
nificance and implications; Section 6 concludes with contributions
and future directions.

2 Related Work
LLMs have transformed interactive entertainment, creating new op-
portunities for dynamic player experiences [1, 2]. Traditional NPCs
operate through pre-written dialogues and finite state machines,
resulting in predictable interactions that reduce immersion. Re-
cent research explores LLM-driven approaches for naturalistic and
adaptive NPC dialogues, demonstrating how language models can
drive agents with sophisticated social interactions and persistent
memory capabilities.

Park et al. pioneered Generative Agents, demonstrating that
LLMs can generate believable human-like behavior through inte-
grated long-term memory, reflection, and planning mechanisms [3].
Marincioni et al. investigated how emotional states expressed by
LLM-based NPCs affect player responses using emotion extraction
methods [14]. Recent studies have also examined NPC interactions
in VR environments, comparing different communication meth-
ods with LLM-based characters [15]. However, these studies focus
primarily on open-ended conversations rather than structured, goal-
oriented interactions requiring strict rule adherence.

Several studies have examined commercial interactions and ne-
gotiation dynamics using LLMs. Abdelnabi et al. proposed a bench-
mark for evaluating LLMs in multi-agent negotiation scenarios [16].
Chatterjee et al. introduced AgreeMate, a framework for teaching
LLMs strategic price haggling [17], focusing primarily on bargain-
ing aspects rather than broader procedural requirements. Kim et al.
developed the MART framework for active merchant NPCs capable
of dynamic pricing [12]. While MART achieved progress in natu-
ral language trading, persistent challenges remain in maintaining
consistent protocol adherence, preventing item hallucination, and
ensuring accurate calculations.

Previous research has contributed valuable innovations across
multiple dimensions of interactive system design. However, exist-
ing approaches typically focus on specific functionalities such as

price negotiation [12] or emotion expression [14], rather than ad-
dressing comprehensive requirements of dynamic trading dialogues
involving multiple rule-based states including inventory browsing,
item selection, and multi-step confirmation procedures.

Such comprehensive trading systems require strict adherence
to inventory constraints, pricing rules, and procedural protocols
throughout entire dialogue flows while maintaining natural con-
versational patterns. A significant research gap exists in prompt en-
gineering methodologies that enable LLMs to infer current trading
states from dialogue context alone—essential for reliable dynamic
trading interactions that maintain compliance with complex game
system rules. While Dialogue State Tracking research [18] is cru-
cial for this state inference, it often does not extend to controlling
rule-governed dialogue flow.

The State-Inference-Based Prompting methodology introduced
in this study systematically addresses these limitations through a
unified approach to structured dialogue management. This method-
ology enables LLMs to autonomously infer trading states from
dialogue context and maintain adherence to game system rules
throughout complete trading processes without requiring external
state management systems.

3 Proposed System
This section details the system architecture and core prompting
methodology developed for natural language trading with game
NPCs. The proposed State-Inference-Based Prompting approach
guides LLMs to follow predefined dialogue stateswithin goal-oriented
interactions, with in-game trading serving as the primary applica-
tion domain.

3.1 LLM-Driven Interaction Framework
The system enables players to naturally converse and trade with
NPC merchants through a multi-stage process: (1) collect player
input, (2) combine with game information including NPC inventory
and dialogue history to construct contextual prompts, (3) call LLM
API, (4) parse responses and update the game state, (5) present NPC
dialogue to the player.

The most challenging aspect is the fundamental unpredictabil-
ity of dialogue. Unlike menu-based trading in traditional games,
natural language conversations allow players to change context
dynamically at any time. Representative examples include:

• While an NPC is explaining item lists, suddenly asking "How
much is this?" (immediate price inquiry)

• After getting price information, immediately proposing "Can
you make it 50 gold?" (direct negotiation attempt)

• During active trade negotiations, suddenly asking "Are there
many monsters around lately?" (casual conversation)

• Even abrupt "Goodbye" statements (conversation termina-
tion)

Since predicting player utterances is impossible, NPCs must
judge the current situation autonomously after listening
to player input. However, if the LLM misjudges the situation,
inappropriate responses may occur, such as suddenly proceeding
to payment during casual chat or failing to maintain transaction
state consistency.

AgreeMate
MART
MART
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To achieve this capability, the prompt is structured to enable
LLMs to accurately judge situations and respond according to game
rules. Key components include:

• System Instructions: Guidelines defining the NPC’s per-
sona, role, and behavioral directives.

• Game World Data: Lists of all items available in the game
and the NPC’s inventory with item ID, name, quantity, and
price.

• Situational Context: Information about the NPC’s profile
and current in-game environment such as current location
and time.

• Dialogue History: A record of preceding dialogue turns
between player and NPC, including the latest player input
and inferred context from previous NPC turns.

• Contextual and Trade Guidelines: Rules and guidelines
to infer states and identify when to transition between states
(<CONTEXT_GUIDELINES> and
<TRADE_GUIDELINES>; the full prompt is provided in Appen-
dix A).

• Expected Response Format: Instructions for the LLM to
structure its response in a format that facilitates system
integration.

As guided by the Expected Response Format instructions, the
LLM generates output as a single, well-formed JSON object. This
approach relies on the LLM’s capability to adhere to formatting
instructions provided through prompting, rather than utilizing
specialized structured output functionalities. The resultant JSON
response facilitates seamless parsing and integration with game
systems.

Key fields in the response structure include:
• context_reason (string): A summary or reasoning behind
the LLM’s understanding of the current context.

• context_type (string): The conversational context inferred
by the LLM.

• context_details (object): Contains finer-grained context
information, particularly for TRADE context. This includes
the trade subcontext and an array of items pertinent to the
current trade interaction.

• npc_dialogue (string): The natural language dialogue spo-
ken by the NPC to the player.

This framework ensures that LLMs receive rich contextual infor-
mation through detailed prompts and provide structured, actionable
responses, enabling goal-oriented and rule-consistent NPC interac-
tions that maintain both game world integrity and conversational
naturalness.

3.2 State-Inference-Based Prompting
To address the dialogue unpredictability problem mentioned above,
this work proposes State-Inference-Based Prompting (SIBP).
The core innovation of SIBP is enabling LLMs to determine "what
situation is happening right now?" autonomously from the dialogue
context alone.

The system defines three main situational contexts:
• NONE (general conversation): Casual interactions such as
"Hello," "Nice weather," "Monster news," etc.

• TRADE (trading conversation): Commercial interactions such
as "I want to buy a sword," "How much?" "Can you lower the
price?" etc.

• END_CONVERSATION (conversation ending): Termination phrases
such as "Goodbye," "I’ll come back later," etc.

The LLM learns the characteristics of each situation from the
<CONTEXT_GUIDELINES> section in the prompt, judges the appro-
priate situation based on player utterances, and then responds
following rules appropriate for that situation.

For example, if a player suddenly asks "Are there many mon-
sters around lately?" the LLM judges this as a NONE situation and
responds with monster-related casual conversation instead of trade-
related responses. This solves the "sudden context changes" problem
mentioned in Section 3.1.

3.2.1 Trade Subcontexts. However, simply having one TRADE state
is insufficient for implementing proper trading systems. For ex-
ample, when a player says "I want to buy a sword," "How much is
that sword?" and "Yes, I’ll buy it," the NPC’s responses should be
completely different for each case, requiring distinct behavioral
guidelines.

If all these situations were handled with just a simple TRADE
state:

• "I want to buy a sword" → Unclear whether NPC should
immediately state the price or ask which sword

• "How much?" → Cannot determine which item’s price is
being asked or if negotiation is possible

• "Yes, I’ll buy it" → It is unknown whether to proceed directly
to payment or require additional confirmation

Therefore, the trading process must be decomposed more granu-
larly to clearly define how NPCs should behave at each stage. For
the scope of this study, focusing on player buying from an NPC,
the following five trade subcontexts (i.e., sub-states) are defined:

• SHOW_INVENTORY: The state where the NPC displays or men-
tions items available for sale to the player.

• OFFER_SELL: The state where the NPC proposes selling spe-
cific items and states their price.

• NEGOTIATE_PRICE: The state where the player attempts to
negotiate the price, and the NPC responds based on their
character traits.

• CHECK_CONFIRMATION: A state where the NPC seeks final
confirmation from the player before finalizing a purchase,
designed to prevent abrupt transaction completion.

• CONFIRM_SELL: The state where the player confirms their
purchase intent, leading to the final update of game data
(e.g., deducting currency, removing items from inventory).

These states are not strictly sequential and can transition dynam-
ically based on player input. For instance, a player might return
to requesting other items while confirming a purchase, or switch
between general conversation (NONE) and trade interaction (TRADE)
to discuss the rarity or demand of specific items. This dynamic be-
havior requires an LLM approach capable of robust state inference.

3.2.2 Prompt Design Elements. But how can the systemmake LLMs
properly distinguish and manage multiple trading states? Simply
instructing "respond appropriately to the situation" leads to problems:

<CONTEXT_GUIDELINES>
<TRADE_GUIDELINES>
context_reason
context_type
context_details
TRADE
npc_dialogue
NONE
TRADE
END_CONVERSATION
<CONTEXT_GUIDELINES>
NONE
TRADE
TRADE
SHOW_INVENTORY
OFFER_SELL
NEGOTIATE_PRICE
CHECK_CONFIRMATION
CONFIRM_SELL
NONE
TRADE
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Figure 1: State-Inference-Based Prompting (SIBP) enables context-aware NPC responses. The same player utterance "That
sounds good!" triggers different behaviors depending on the previous dialogue state: SHOW_INVENTORY → OFFER_SELL (price
proposal) vs. OFFER_SELL → CHECK_CONFIRMATION (purchase confirmation). SIBP autonomously infers states from dialogue
context while maintaining game system consistency.

• State confusion: When a player says "Yes, that sounds good,"
the LLM cannot distinguish whether this is accepting a price
offer or simply a positive reaction to an item description

• State skipping: Players saying "I’ll buy it" immediately
jumps to payment, skipping final confirmation steps

• Inaccurate state inference: LLMs failing to correctly iden-
tify the previous trading state from dialogue context alone,
leading to inappropriate state transitions

• Unclear reasoning: Unable to understand why the LLM
made certain state judgments, making debugging and im-
provement difficult

To solve these problems, SIBP incorporates four key design ele-
ments into the prompt within the <TRADE_GUIDELINES> sections.
These elements are: (1) Basic State Definitions, (2) State Transition
Conditions with Previous Context, (3) Directive to Identify Previous
State, and (4) Directive to Respond including Previous State.

Element 1: Basic State Definitions. Provides foundational def-
initions for each trading state by establishing two aspects. First, it
establishes the context of each state—what situation each state rep-
resents. For example, SHOW_INVENTORY is defined as "the state where
NPCs present available items to players," while OFFER_SELL is char-
acterized as "the state where NPCs propose specific items with pricing."
Second, it specifies the behavioral rules for each state—what ac-
tions should be taken within that state. This foundational definition
ensures that LLMs understand both the situational context and
appropriate behavioral guidelines for each state.

Element 2: State Transition Conditions with Previous Con-
text. Solves both the state confusion and state skipping prob-
lems by defining the prerequisite conditions for entering each trad-
ing state, emphasizing the dependency on previous states. This
element addresses state confusion by providing context-aware tran-
sition rules—for example, when a player says "Yes, that sounds
good," the appropriate response depends on whether the previous
state involved item description (SHOW_INVENTORY) or price offering
(OFFER_SELL). It prevents state skipping by establishing mandatory
sequential flows. For instance, CONFIRM_SELL is accessible only

when the previous state was CHECK_CONFIRMATION and the player
provides positive confirmation.

Element 3: Directive to Identify Previous State. Addresses the
inaccurate state inference problem by instructing the LLM to
identify the previous trading state before determining the current
response. The prompt includes commands such as "Before respond-
ing, identify what the last trading state was based on the dialogue
history." This directive addresses the core challenge where LLMs
may understand general conversation context but fail to accurately
recognize the specific state identifiers from previous interactions.

Element 4: Directive to Respond including Previous State.
Addresses both the inaccurate state inference problem and the
unclear reasoning problem by requiring the LLM to document
its identification of the previous trading state. While Element 3
focuses on INPUT processing ("identify the previous state"), Element
4 mandates OUTPUT transparency ("document your state identifi-
cation"). The JSON response must include a last_trade_context
field where the LLM records the identified previous state. This
documentation enables system monitoring of the LLM’s reasoning
process, facilitates debugging, and provides a foundation for the
improvement of state inference accuracy.

Figure 1 illustrates the core concept of SIBP through a concrete
example. The figure demonstrates how the same player utterance
"That sounds good!" triggers completely different NPC behaviors de-
pending on the previous dialogue state. In the upper scenario, when
the previous state was SHOW_INVENTORY, the LLM interprets the
player’s response as interest in an item and transitions to OFFER_
SELL, providing a price proposal. In the lower scenario, when the
previous state was OFFER_SELL, the same utterance is interpreted as
price acceptance and transitions to CHECK_CONFIRMATION, seeking
purchase confirmation. This context-aware state inference enables
NPCs to maintain coherent dialogue flows while autonomously
managing complex trading interactions without external state man-
agement systems.

SHOW_INVENTORY
OFFER_SELL
OFFER_SELL
CHECK_CONFIRMATION
<TRADE_GUIDELINES>
SHOW_INVENTORY
OFFER_SELL
SHOW_INVENTORY
OFFER_SELL
CONFIRM_SELL
CHECK_CONFIRMATION
last_trade_context
SHOW_INVENTORY
OFFER_SELL
OFFER_SELL
OFFER_SELL
CHECK_CONFIRMATION
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3.3 Additional State-specific Rules
The expansion of SIBP by adding state-specific guidelines yields ad-
vantages in implementing game system functionalities and ensuring
rule adherence. The system can achieve the following capabilities:

3.3.1 State-specific Data Referencing. This feature dynamically
adjusts the data that NPCs reference based on dialogue context,
addressing a challenge in maintaining both game world knowledge
and transaction accuracy.

How it works: By defining item reference conditions based on
states, the LLM responds differently:

• NONE state (general conversation): References the com-
plete game item list (<GAME_ITEMS_LIST>) for general world
discussions

• TRADE state (trading conversation): References only the
NPC’s inventory (<CHARACTER_INVENTORY>) for actual sell-
able items

Benefits: This enhances player immersion while ensuring ac-
curate transaction capabilities. NPCs can naturally discuss various
game world items during the general conversation but only propose
actually sellable items during trading, preventing item hallucina-
tions while maintaining conversational richness.

3.3.2 State-specific Post-processing. As highlighted in prior re-
search [12], LLMs, being language models, can face challenges
in precise mathematical computations. Even when correctly listing
item quantities and individual prices, errors may occur in final price
calculations, compromising transaction integrity.

Solution: SIBP implements accurate price calculations through
state-specific post-processing. In the OFFER_SELL state—the initial
price offering stage where price negotiation is not yet required—the
system works as follows:

(1) Placeholder usage: The prompt includes the rule "use __
PRICE__ for the final price amount"

(2) Accurate calculation: The system calculates the correct
price based on responded item information and replaces the
placeholder

(3) Error prevention: The accurately calculated price is in-
cluded in dialogue history, ensuring correct price references
in subsequent conversations

Response example:

• Original LLM response: "Two iron swords and an adven-
turer’s sleeping bag are __PRICE__ gold together."

• After system post-processing: "Two iron swords and an
adventurer’s sleeping bag are 150 gold together."

Advantages: This approach achieves 99.7% accurate price cal-
culation without additional computational overhead, eliminating
the need for complex schemas or Tool use mechanisms. The sin-
gle response processing maintains system efficiency while ensur-
ing mathematical precision. This state-based prompting approach
demonstrates how external system functionalities such as accurate
calculation and post-processing can be integrated into LLM-driven
interactions, providing a foundation for broader applications in
rule-governed interactive systems.

4 Experiments and Results
This section presents comprehensive empirical evaluations of the
State-Inference-Based Prompting (SIBP) methodology. The evalua-
tion systematically assesses how effectively NPC LLMs adhere to
predefined conversational flows during dynamic trading interac-
tions and then demonstrates additional advantages of this approach
through state-specific data referencing and post-processing.

4.1 Experimental Setting
All experiments employ conversations between a player-mimicking
LLM (virtual player) and an NPC LLM to ensure controlled, repro-
ducible evaluation conditions. One hundred independent trading
dialogues were conducted using fixed seeds ranging from 0 to 99.
In each dialogue, the virtual player initiated conversations with the
NPC LLM. While the NPC LLM’s prompt varied across different
experimental conditions as detailed in subsequent subsections, the
initial utterance from the virtual player remained consistent for
each seed, establishing controlled starting points for interactions.

The conversations were structured around two systematically
designed test scenarios:

(1) Request for Specific Item Purchase: Virtual players ini-
tiate conversations by requesting specific items. Items are
randomly selected from sellable and unsellable categories
up to six in total. Sellable items refer to items with sufficient
stock in the NPC’s inventory (20 items), while unsellable
items exist in the game world but are absent from the NPC’s
inventory (an additional 32 items, totaling 52 distinct items
in the game). Purchase quantities for each item are randomly
selected from 1 to 5. For example: “I’d like to purchase 3 basic
iron swords and 5 mana potions.”

(2) Request for Item Recommendation: Virtual players ini-
tiate conversations mentioning purchase purposes such as
“Could you recommend me some items for goblin battle?”

The virtual player prompts for each scenario are provided in
Appendices B and C. Virtual players and NPCs engage in alternating
dialogue turns. Conversation length is defined as the number of
interaction rounds, where each round consists of one player turn
followed by one NPC turn. Average conversation lengths were 5.17
rounds (SD=1.0, range: 3-8) for Scenario 1 and 6.05 rounds (SD=1.6,
range: 2-12) for Scenario 2.

Unless specified otherwise in individual experiment descriptions,
both virtual player LLMs and NPC LLMs utilized the gemini-2.5-
flash-preview-04-17 model with a temperature setting of 0.7
and a thinking budget of 0.

4.2 State Transition Compliance
A key advantage of SIBP lies in its ability to clearly define states
and transitions in goal-oriented dialogues and systematically guide
LLMs to follow them. SIBP achieves this through four core ele-
ments: (1) explanation of states, (2) explanation of state transition
conditions, (3) directive to identify the last previous state, and (4)
directive to include the last previous state in the response.

Experimental Design: To precisely measure the effect of each
element, experiments systematically activated/deactivated the four
elements to create multiple baselines. The complete SIBP includes
all elements, while baselines activate only some elements. Table

NONE
<GAME_ITEMS_LIST>
TRADE
<CHARACTER_INVENTORY>
OFFER_SELL
__PRICE__
__PRICE__
__PRICE__
gemini-2.5-flash-preview-04-17
gemini-2.5-flash-preview-04-17


Minkyung Kim, Junsik Kim, Hwidong Bae, Woongcheol Yang, Sangdon Park, and Sohee Bae

Table 1: State Transition Compliance Rate (STCR) for different prompt element combinations. STCR represents the proportion of
conversations that correctly followed the mandatory confirmation step before finalizing transactions, serving as a safeguard to
prevent unintended purchases. In this table, the SIBP configuration also includes placeholder post-processing (PPP). Experiments
in Section (4.4) will differentiate SIBP (not using PPP) from SIBP+PPP.

Scenario Method Prompt elements STCR [%](1) Explain States (2) Explain Transitions (3) Identify Prev. State (4) Response Prev. State

1

baseline1 O X X X 79.55
baseline2 O O X X 84.09
baseline3 O O O X 77.27
baseline4 O O X O 94.32
SIBP O O O O 97.73

2 SIBP O O O O 97.73

SS Non
e

T:S
I

T:O
S

T:N
P

T:C
C

T:C
S

EC SE

SS

None

T:SI

T:OS

T:NP

T:CC

T:CS

EC

SE

0 8 2 90 0 0 0 0 0

0 0 0 8 0 1 0 1 1

0 0 1 2 0 0 0 0 0

0 0 0 50 97 35 1 3 0

0 2 0 33 17 55 1 8 0

0 0 0 2 2 0 87 0 0

0 1 0 0 0 0 0 2 86

0 0 0 1 0 0 0 7 13

0 0 0 0 0 0 0 0 0

(a) Scenario 1: the conversation initiated by request-
ing to purchase specific items

SS Non
e

T:S
I

T:O
S

T:N
P

T:C
C

T:C
S

EC SE

SS

None

T:SI

T:OS

T:NP

T:CC

T:CS

EC

SE

0 19 81 0 0 0 0 0 0

0 10 12 21 0 2 0 6 0

0 20 17 85 1 0 0 0 0

0 1 6 15 79 38 2 1 0

0 1 7 21 11 48 0 3 0

0 0 0 0 0 0 88 0 0

0 0 0 0 0 0 0 1 89

0 0 0 0 0 0 0 9 11

0 0 0 0 0 0 0 0 0

(b) Scenario 2: the conversation initiated by asking for
item recommendations based on a purchase purpose

Figure 2: State transition patterns in 100 dialogues. Cell values at row 𝑖 and column 𝑗 represent transitions from state 𝑖 to state
𝑗 . Abbreviations; SS(Session Start), T:SI(Show Inventory), T:OS(Offer Sell), T:NP(Negotiate Price), T:CC(Check Confirmation),
T:CS(Confirm Sell), SE(Session End).

1 shows which elements are activated (‘O’) or deactivated (‘X’)
for each method and their corresponding performance. This al-
lows analysis of each element’s individual contribution and the
synergistic effects of their combinations.

Evaluation Metric: State Transition Compliance Rate (STCR)
serves as the evaluation metric in this experiment. STCR is the
proportion of conversations that correctly followed the “CHECK_
CONFIRMATION→ CONFIRM_SELL” sequence. To ensure a fair com-
parison across methods with varying numbers of CONFIRM_SELL
state occurrences due to dialogue randomness, STCRwas calculated
based on the first 88 dialogues for each method where this state
was reached. This count represents the minimum number of such
occurrences observed across all methods within the 100 dialogues.
Adherence to this specific state progression sequence was a critical
rule intentionally enforced upon the LLM through the proposed
prompt design. This sequence serves as an important procedural

safeguard within game environments, designed to prevent unin-
tended transactions by ensuring explicit player confirmation before
purchase finalization.

Key Results: As shown in Table 1, SIBP with all elements
achieved a compliance rate of over 97%. Element 4 proved impactful,
improving the rate to 94% even without Element 3. Interestingly,
while Element 3 did not by itself yield an improvement over sim-
pler baselines (cf. baseline3 vs. baseline2), its combination with
Element 4 was crucial for achieving the optimal compliance rate.
This demonstrates that when LLMs identify previous states from di-
alogue history and explicitly include them in responses, adherence
to designed dialogue flows is greatly enhanced.

State Transition Analysis: Figure 2 shows the observed state
transitions as heatmaps. Each cell value matrix[i][j] represents the
number of transitions from state i (previous) to state j (current).
SS (Session Start) represents a conceptual point prior to the first

CHECK_CONFIRMATION
CHECK_CONFIRMATION
CONFIRM_SELL
CONFIRM_SELL
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Figure 3: An example of anNPC LLM response distinguishing
sellable items. The final output presented to the player con-
sists of the NPC’s post-processed dialogue and a structured
trade offer list.

dialogue turn. SE (Session End) signifies the conceptual termination
point occurring after the final NPC response.

Examining scenario-specific characteristics, Scenario 1 (direct
specific item purchase) primarily begins with OFFER_SELL (Figure
2a), while Scenario 2 (recommendation-based purchase) mainly
starts with SHOW_INVENTORY (Figure 2b). In both cases, valid state
transitionswere observed as designed, confirming that SIBP success-
fully induces natural dialogue flows appropriate to each situation.

4.3 State-specific Data Referencing
NPCs must balance natural conversation about the game world
with accurate trading behavior. In general conversation, they can
discuss all game items, but during trading, they should only propose
items they actually sell, addressing the fundamental challenge of
maintaining both world knowledge and transaction accuracy.

Experimental Design: This evaluation assesses SIBP’s ability
to reference different datasets based on dialogue state. The NPC
prompt includes two datasets: <GAME_ITEMS_LIST> (IDs and names
of all valid game items) and <CHARACTER_INVENTORY> (IDs, names,
quantities, and prices of NPC’s sellable items). The challenge is
making the LLM select the appropriate dataset based on context.

EvaluationMetric: Sellable Item Response Rate (SIRR) serves as
the evaluation metric. In this system, all NPC responses generated
within the TRADE state are designed to populate an items field with
relevant item data. SIRR is then calculated as the overall proportion
of these TRADE state responses where the items field correctly con-
tains only sellable item data. This calculation is aggregated across
all 100 dialogues and provides a global measure of accuracy at the
response level.

Key Results: The SIRR was 95.05% in Scenario 1 and 95.88%
in Scenario 2 out of 485 and 534 NPC responses within the TRADE
state, respectively. The most frequent error type involved the NPC
assigning a price of 0 or a null value for unsellable items. In rare
responses (0.4% and 0.2% in Scenario 1 and 2, respectively), the NPC
failed to provide any item information when expected within a
trade context. Overall, these high SIRR values, coupled with a clear
understanding of the failure cases, demonstrate SIBP’s effectiveness
in state-specific data referencing.

4.4 State-specific Post-processing
LLMs struggle with precise arithmetic operations, making simple
calculation errors like “2×50 + 30 = 120 gold.” This poses significant
problems for price calculations in trading, potentially undermining
player trust and transaction integrity.

Experimental Design: Utilizing dialogues from Scenario 1,
experiments compare 6 configurations (Table 2):

• SIBP variants: Basic SIBP, SIBP+PPP (with Placeholder Post-
Processing), SIBP+SO (with Structured Output)

• Model variants: 2.5-flash (baseline), 2.0-flash (lighter ver-
sion), 2.5-pro (high-performance)

Evaluation Metric: The evaluation measures price accuracy,
completion tokens, thought tokens, and response time in OFFER_
SELL state and other price-related states. Price accuracy is the per-
centage of NPC responses where the total price stated by the LLM
matches the sum calculated from the item details (i.e., prices and
quantities) also provided within the same LLM response.

Key Results: SIBP+PPP showed consistent improvements in
accuracy while maintaining computational efficiency across multi-
ple evaluation dimensions. First, in terms of accuracy, SIBP+PPP
reached 100.0% in the OFFER_SELL state, compared to 79.7% with
basic SIBP. This improvement also extended to subsequent states,
where SIBP+PPP achieved 99.7% accuracy versus 82.3% for basic
SIBP. These results suggest that accurate initial pricing may help
reduce downstream errors in multi-turn dialogues.

Second, these accuracy gains were achieved without notable
increases in computational cost. Token usage (398.6 vs 394.8) and
response time (2.3 seconds) remained comparable to basic SIBP,
while thought token usage was held at zero. By contrast, SIBP+SO
introduced additional complexity, requiring 371.8 thought tokens
and a longer response time of 4.1 seconds. Furthermore, the high
variability in thought tokens observed in other configurations (e.g.,
553.7 for SIBP+SO, 1013.6 for 2.5-pro) reflects the differing internal
reasoning needs across dialogue types, with simpler exchanges
requiring fewer resources and more complex negotiations involving
significantly more.

Third, SIBP+PPP also showed promising results with smaller
models. When tested with 2.0-flash, it achieved 100.0% accuracy in
OFFER_SELL and 91.8% in other states, outperforming the basic SIBP
setup, which achieved 49.4% and 67.3%, respectively. This indicates
the method’s potential for generalization across model variants.

Lastly, SIBP+PPP using 2.5-flash reached the same level of ac-
curacy as Basic SIBP with the 2.5-pro (100.0%) while requiring
significantly fewer resources: 0 vs 2398.5 thought tokens and 2.3 vs
27.7 seconds in response time. These findings suggest that incorpo-
rating state-specific post-processing may allow smaller models to
approximate the accuracy of larger ones, with considerably lower
computational demands.

5 Discussion
5.1 Hallucination Issues
The LLM-driven interaction framework developed in this work
requires strict consistency with the underlying game system. Even
small deviations, such as generating SHOW_INVENTOR instead of

OFFER_SELL
SHOW_INVENTORY
<GAME_ITEMS_LIST>
<CHARACTER_INVENTORY>
TRADE
items
TRADE
TRADE
OFFER_SELL
OFFER_SELL
OFFER_SELL
OFFER_SELL
SHOW_INVENTOR
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Table 2: Performance comparison across six system configurations. Data is presented for the OFFER_SELL state and for Others (a
collective of NEGOTIATE_PRICE, CHECK_CONFIRMATION, and CONFIRM_SELL states). The X/Y notation in each column header indicates
the total number of NPC responses within the OFFER_SELL state (X) and Others states (Y), respectively, over 100 dialogues. Price
accuracy is a percentage; Token usage and response time values are mean (standard deviation).

Metric State
SIBP

2.5-flash
(192/283)

SIBP+SO
2.5-flash
(209/294)

SIBP+PPP
2.5-flash
(186/296)

SIBP
2.0-flash
(174/284)

SIBP+PPP
2.0-flash
(194/281)

SIBP
2.5-pro
(211/288)

Price accuracy OFFER_SELL 79.7 82.3 100.0 49.4 100.0 100.0
Others 82.3 88.4 99.7 67.3 91.8 100.0

Completion tokens OFFER_SELL 394.8 (71.3) 375.4 (67.1) 398.6 (62.5) 448.5 (82.6) 453.0 (84.7) 422.0 (65.1)
Others 377.4 (71.0) 347.2 (64.8) 378.4 (61.0) 393.3 (67.9) 396.4 (71.2) 382.3 (48.8)

Thoughts tokens OFFER_SELL 0 (0) 371.8 (553.7) 0 (0) 0 (0) 0 (0) 2398.5 (1013.6)
Others 0 (0) 215.3 (366.6) 0 (0) 0 (0) 0 (0) 1715.0 (999.2)

Response time OFFER_SELL 2.3 (0.3) 4.1 (2.5) 2.3 (0.3) 2.8 (0.6) 2.8 (0.5) 27.7 (10.4)
Others 2.2 (0.4) 3.2 (1.8) 2.2 (0.3) 2.5 (0.7) 2.5 (0.4) 21.0 (10.5)

SHOW_INVENTORY, or referencing an item as sleeping_bag_01 in-
stead of the correct sleeping_bag, can lead to failures in state
transitions or item retrieval, compromising system integrity.

State Name and Item Information: No hallucinations were
observed in the generation of state names or item attributes during
the experiments. This reliability is attributed to deliberate prompt
design. State names were clearly defined and limited to a set of
eight valid options, making accurate selection easier for the model.
Item information, including ID, name, quantity, and price, was
represented as a JSON string, which effectively constrained the
LLM’s outputs.

Placeholder Keywords: Placeholder keywords used for post-
processing require careful selection. The concise keyword __PRICE_
_ consistently produced accurate and recoverable outputs. In con-
trast, more complex variants such as __PRICE_PLACEHOLDER__
occasionally resulted in malformed completions like __PRICE_
PLACEHOLDER_ or __PRICE_PLACEHOLDE__. These inconsistencies
highlight the importance of using short, unambiguous keywords
to minimize generation errors and ensure reliable post-processing.

5.2 Limitation and Future Works
Scalability and Generalizability: The current experiments were
conducted within a defined set of trading states and rules. Future
work should rigorously evaluate the scalability of this approach
across significantly larger numbers of conversational states, more
intricate and interdependent game rules, and substantially larger
item inventories that might challenge context window limits or
retrieval accuracy. Additionally, testing with longer, more nuanced
dialogue histories will be crucial for understanding the performance
envelope of this prompting technique under increased complexity.

LLM Model Diversity: The current implementation utilized a
specific LLM architecture. Investigating the adaptability and perfor-
mance of this prompting methodology across a range of different
LLMs is a critical next step. This should include not only other
large-scale models but also an exploration of effectiveness with
smaller language models (SLMs). If comparable adherence to com-
plex rule sets can be achieved with SLMs, it would significantly

enhance the feasibility of deploying sophisticated NPCs in resource-
constrained game environments, potentially reducing both latency
and computational costs.

Broader Applications Beyond Gaming: The core principles of
State-Inference-Based Prompting have significant potential beyond
the realm of game NPCs. Potential applications include creating
more natural and capable interactive kiosks for retail or information
services, where the system could seamlessly transition between
general queries, product information, and transaction processing.
Other potential areas include advanced customer support chatbots
that can follow complex troubleshooting or sales workflows, and
educational tools that guide users through learning modules in a
state-aware manner.

6 Conclusion
This work introduces State-Inference-Based Prompting (SIBP), a
comprehensive methodology that enables reliable LLM-driven trad-
ing through autonomous dialogue state inference and systematic
rule adherence. By decomposing trading interactions into five dis-
tinct states within a unified prompt framework, SIBP addresses
critical challenges that have hindered the deployment of LLM-based
NPCs in commercial games: item hallucinations, inventory incon-
sistencies, and calculation errors that erode player trust.

Empirical evaluation demonstrates SIBP’s effectiveness across
multiple dimensions. The methodology achieves >97% state transi-
tion compliance, >95% item referencing accuracy, and 99.7% price
calculation precision, eliminating major barriers to commercial
deployment. These results establish SIBP as a practical solution
that bridges the gap between LLM capabilities and game system
requirements while maintaining computational efficiency.

The broader implications extend beyond gaming. SIBP’s struc-
tured approach to prompt engineering provides fundamental ad-
vances for rule-governed interactive systems where reliability and
consistency are paramount. This methodology demonstrates how
sophisticated state management can transform LLM capabilities
into trustworthy, task-oriented systems, establishing a foundation
for the next generation of intelligent interactive agents that com-
bine natural language flexibility with structured system reliability.

OFFER_SELL
NEGOTIATE_PRICE
CHECK_CONFIRMATION
CONFIRM_SELL
OFFER_SELL
SHOW_INVENTORY
sleeping_bag_01
sleeping_bag
__PRICE__
__PRICE__
__PRICE_PLACEHOLDER__
__PRICE_PLACEHOLDER_
__PRICE_PLACEHOLDER_
__PRICE_PLACEHOLDE__
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