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ABSTRACT

Federated Learning (FL) is a privacy-preserving machine learning framework fa-
cilitating collaborative training across distributed clients. However, its perfor-
mance is often compromised by data heterogeneity among participants, which can
result in local models with limited generalization capability. Traditional model-
homogeneous approaches address this issue primarily by regularizing local train-
ing procedures or dynamically adjusting client weights during aggregation. Never-
theless, these methods become unsuitable in scenarios involving clients with het-
erogeneous model architectures. In this paper, we propose a model-heterogeneous
FL framework that enhances clients’ generalization performance on unseen data
without relying on parameter aggregation. Instead of model parameters, clients
share feature distribution statistics (mean and covariance) with the server. Then
each client trains a variational transposed convolutional neural network using
Gaussian latent variables sampled from these distributions, and use it to generate
synthetic data. By fine-tuning local models with the synthetic data, clients achieve
significant improvement of generalization ability. Experimental results demon-
strate that our approach not only attains higher generalization accuracy compared
to existing model-heterogeneous FL frameworks, but also reduces communication
costs and memory consumption.

1 INTRODUCTION

The prevalence of the Internet of Things (IoT) propels federated learning (FL) (McMahan et al.,
2017) as a widespread technique to process the dispersed data among end clients while ensuring
data privacy. Under the regulation of a central server, clients collaboratively train a global model
without revealing any personal data, and exchange the model parameters with the server. Abstaining
from data transmission, FL markedly alleviates communication overhead and the risk of data leak-
age. However, the inherent data heterogeneity of IoT clients presents significant challenges to FL.
Firstly, clients comprise edge devices distributed across various geographical locations, which nat-
urally collect non-identically-independent data (Abeysekara et al., 2023). Secondly, single clients
usually collect real-time data with frequent distribution shifts in practical scenarios, such as weather
forecasting (Mclaughlin & Su, 2024; Reddy et al., 2023) and healthcare (Saha et al., 2017).

To overcome both inter-client and intra-client data heterogeneities, improving the generalization
ability (i.e., the ability to predict unseen data correctly (Sun et al., 2024)) of clients has become a
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vital matter in FL (Huang et al., 2024). Existing solutions mainly focus on two aspects, including
regularization and weight modification. Regularization methods propose to debias the individual
training process by imposing a regularization term on the local objective function of clients (Dinh
et al., 2020; Li et al., 2021b; 2020b; Smith et al., 2017; Karimireddy et al., 2020; Acar et al., 2021;
Gao et al., 2022; Li et al., 2019). Weight modification methods aim to alleviate the negative impact
of biased clients on the global model, including assigning lower weights to biased entities in aggre-
gation (Pillutla et al., 2022; Cao et al., 2020; Mu et al., 2024; Li et al., 2020a; Tahmasebian et al.,
2022) or reducing the possibility of selecting these clients (Jee Cho et al., 2022; Li et al., 2022; Niu
et al., 2024; Zhang et al., 2023; Lai et al., 2021). As a result, the global model maintains signif-
icant robustness against the heterogeneous client data. Correspondingly, clients can improve their
generalization performance by incorporating the enhanced global model into their local models.

Despite the outstanding progress in addressing data heterogeneity, the aforementioned works are
developed based on the assumption that all clients share the same model architecture. In practice,
clients are likely to obtain personalized models with diverse and irrelevant architectures (Huang
et al., 2024), referred to as model-heterogeneous FL (see Appendix A for details), making traditional
aggregation-based methods prohibitive. In this case, clients cannot learn generalized information
through parameter sharing, which necessitates alternative strategies for enhancing the generalization
of local models with differing architectures.

Several attempts have been made to improve the generalization of model-heterogeneous FL through
knowledge distillation (Li & Wang, 2019; Itahara et al., 2023; Cho et al., 2022; Nguyen et al., 2023;
Cheng et al., 2021; Sun & Lyu, 2021; Sattler et al., 2021). These works utilize a shared public
dataset and enable clients to exchange knowledge by comparing each other’s predictions on the
dataset. However, the prerequisite of a public dataset severely restricts the deployment of these
works, as a public dataset is usually not available in real-world circumstances (Zhu et al., 2021).

To address this concern, data-free model-heterogeneous FL methods have been proposed, which can
mainly be divided into two categories. The first category employs generated feature representations
for knowledge distillation (Zhu et al., 2021; Luo et al., 2021), eliminating the dependence on public
datasets. However, unlike raw samples, knowledge distillation on feature space merely regularizes
the head classifier of a local model, while leaving the backbone feature extractor unmodified. The
second category involves circumventing knowledge distillation and enabling clients to communicate
through alternative messages, such as mean feature representations (Tan et al., 2022; Zhang et al.,
2024) and a mutual proxy model (Wang et al., 2024). Although (Tan et al., 2022; Zhang et al., 2024)
regularizes local feature extractors by enforcing them to derive unbiased feature representations, the
biased head classifiers are neglected in these works, which significantly limits the generalization
improvement. For (Wang et al., 2024), training and transmitting an overparameterized proxy model
(Wang et al., 2024) will result in substantial communication and memory overhead.

To overcome the disadvantages of prior methods, we expect a comprehensive FL framework that can
increase the generalization of model-heterogeneous clients without relying on any public dataset,
while maintaining communication and memory efficiency. To this end, we propose FedVTC (Fed-
erated Learning with Variational Transposed Convolution), a model-heterogeneous FL framework
that uses synthetic data to fine-tune local models, thus improving generalization without relying on
a public dataset. FedVTC achieves this by enabling each client to generate synthetic samples using a
variational transposed convolutional (VTC) neural network. The VTC model takes low-dimensional
Gaussian latent variables as input and produces corresponding synthetic samples by upsampling the
latent variables. Afterwards, clients fine-tune the local models with the synthetic samples to improve
the generalization ability. In communication, clients only exchange the local mean and covariance
with the server to mitigate the bias of local feature distributions, leading to substantial communica-
tion cost reduction. Compared with representation-based knowledge distillation (Zhu et al., 2021;
Luo et al., 2021) that only regularizes the head classifier, fine-tuning with synthetic images can
debias both the feature extractor and the classifier in a local model, thereby potentially achieving
higher generalization performance. In addition, FedVTC enables clients to train the VTC model and
local models alternately to avoid extra memory consumption.

Similar to a variational autoencoder (VAE), a VTC model is initially trained by maximizing the
evidence lower bound (ELBO) of local data (Kingma & Welling, 2013). Moreover, to strengthen
the robustness of VTC against variant input latent variables, we incorporate a Distribution Matching
(DM) loss (Zhao et al., 2023) into the objective function of VTC for regularization. This strategy
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helps FedVTC produce synthetic samples with better training quality, which notably improves the
performance of the fine-tuned local models. The contributions of this paper are summarized as
follows:

• We propose FedVTC, a model-heterogeneous FL framework based on variational trans-
posed convolution. FedVTC uses synthetic data to fine-tune local models for better gener-
alization, eradicating the dependence on pre-existing public datasets.

• We design a novel objective function to train the VTC model, which encompasses the stan-
dard negative ELBO loss and a DM loss. The DM loss regularizes the training procedure of
VTC, enabling VTC to consistently generate high-quality synthetic samples with varying
input latent variables.

• We conduct extensive experiments to validate the effectiveness of FedVTC. Experiment
results show that FedVTC obtains higher generalization accuracy than existing model-
heterogeneous FL frameworks over MNIST, CIFAR10, CIFAR100 and Tiny-ImageNet
datasets, as well as lower or equivalent communication costs and memory consumption.

2 LITERATURE REVIEW

2.1 IMPROVING THE GENERALIZATION OF MODEL-HOMOGENEOUS FEDERATED LEARNING

The endeavors of the state-of-the-art to enhance the generalization of model-homogeneous FL can
mainly be divided into two categories, which are regularization and weight modification. Regular-
ization approaches aim to debias the local training procedure by adding a regularization term onto
the clients’ local objective functions. For instance, (Dinh et al., 2020; Li et al., 2021b; 2020b; Karim-
ireddy et al., 2020; Acar et al., 2021; Gao et al., 2022) prevent client models from overfitting to local
optima by restricting the Euclidean distance between local and global parameters. Besides, (Smith
et al., 2017) employs a relationship matrix to enforce clients with higher similarities to learn close
parameter updates, and (Li et al., 2019) alleviates the bias of local training using ridge regression.

Weight modification methods enhance the generalization of the global model by deducting the pro-
portion of biased clients participating in global training. Subsequently, clients can also reinforce the
generalization ability by incorporating the well-generalized global model into their local models.
On one hand, (Pillutla et al., 2022; Cao et al., 2020; Mu et al., 2024; Li et al., 2020a; Tahmasebian
et al., 2022) replace weighted average with dynamic weighting strategies, and assign lower weights
to biased, anomalous and malicious parameter updates in aggregation. On the other hand, (Jee Cho
et al., 2022; Li et al., 2022; Niu et al., 2024; Zhang et al., 2023; Lai et al., 2021) design some heuris-
tic functions to evaluate the importance of each client, such as training loss and cosine similarity.
Moreover, pFedGen (Le et al., 2024) enables unseen clients to generate representation vectors us-
ing a feature extractor trained by previous clients, and only interacts with clients with the smallest
representation distance. Consequently, these works develop a selective client sampling strategy that
selects unimportant entities with lower possibilities to mitigate the negative effect of biased clients.
Weight modification methods enhance the generalization of the global model by deducting the pro-
portion of biased clients participating in global training.

Although these works have achieved remarkable progress in improving FL generalization, they are
developed based on the assumption that all clients share a universal model architecture. For model-
heterogeneous FL, where clients exhibit diverse model architectures, the aforementioned works be-
come infeasible.

2.2 MODEL-HETEROGENEOUS FEDERATED LEARNING

The most commonly used approach to improve the generalization of model-heterogeneous FL is
knowledge distillation (Li & Wang, 2019; Itahara et al., 2023; Cho et al., 2022; Nguyen et al., 2023;
Cheng et al., 2021; Sun & Lyu, 2021; Sattler et al., 2021). With the presence of a public dataset,
clients are able to acquire unbiased global knowldege by learning from each other’s predictions
on the dataset. However, the prerequisite of a public dataset can be a critical bottleneck for these
methods, as such a dataset is not usually available in practice.
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Figure 1: A comparison between: (a): a standard FL client and (b): a client in FedVTC. In (b), ”⊕”
and ”⊙” respectively standard for element-wise addition and product.

To overcome the dependence on a public dataset, (Zhu et al., 2021; Luo et al., 2021) propose to
use generative models, such as a generative adversarial network (GAN) and a multivariate Gaussian
sampler, to generate feauture representations for knowledge distillation. However, unlike raw sam-
ples that progress throuth all layers, feature representations merely go through the head classifier of
a neural network. Consequently, the distillation scheme in (Zhu et al., 2021; Luo et al., 2021) only
debiases the classifier of local models, which significantly limits the generalization improvement.
Additionally, instead of knowledge distillation, (Tan et al., 2022; Zhang et al., 2024; Wang et al.,
2024) allows clients to exchange model-architecture-independent messages for generalization, such
as the mean of feature representations (Tan et al., 2022; Wang et al., 2024) and a common proxy
model (Wang et al., 2024). For one thing, representation sharing (Tan et al., 2022; Wang et al.,
2024) regularizes the backbone feature extractors in local models by enforcing clients to derive un-
biased feature representations, while neglecting the head classifiers. For another thing, training and
transmitting a proxy model (Wang et al., 2024) might cause undesired communication and memory
costs.

2.3 FEDERATED TRAINING OF GENERATIVE MODELS

Most existing FL schemes for training a generative model have several practical limitations. For
instance, (Stanley Jothiraj & Mashhadi, 2024) and (Peng et al., 2025) propose to train a global dif-
fusion model in FL networks. However, they require a public dataset to facilitate knowledge distil-
lation among client models, which is not usually accessible. (Zhang et al., 2022) trains a global gen-
erative adversarial network (GAN) by maximizing the discrepancy between client models. Clients
use the downloaded GAN to produce training samples from unseen classes, thereby enhancing the
performance of zero-shot prediction. However, the transmission of client models might cause over-
whelming communication overhead. (Shi et al., 2024) utilizes a contrastive language-image pre-
training (CLIP) model to guide clients’ local training for better few/zero-shot performance, while a
pre-existing CLIP model is not usually available.

3 METHODOLOGY

3.1 PRELIMINARIES

Suppose a network consisting of a central server and a set of clients K = {1, 2, ...,K} with non-iid
local datasets {D1, ..., DK}. Each client k (1 ≤ k ≤ K) obtains a local model fk : Rd → R,
which can be decomposed into a backbone feature extractor gk : Rd → Rp and a head classifier
hk : Rp → R. In formula, fk = hk ◦ gk. Let {(xi, yi)}1≤i≤nk

denote the collection of data in
the local dataset Dk with a total of nk = |Dk| samples. As shown in Figure 1(a), for each sample
x ∈ Rd with the corresponding label y ∈ {1, 2, ......, C}, fk takes x as input and makes a prediction
ȳ, where C is the total number of all possible classes. Firstly, x is transformed to a latent variable
z ∈ Rp using the feature extractor gk (i.e., z = gk(x)). Secondly, z is forwarded to the classifier
hk to produce a prediction ȳ = hk(z).
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Figure 2: VTC is trained with loss function Le = Lrc + DKL. Lrc (blue) is the reconstruction
loss between the original samples and the generated samples, and DKL (red) is the KL-divergence
between the distributions of the local and global latent variables.

The objective of model-heterogeneous FL is to find the optimal set of local models {f∗1 , ......, f∗K}
minimizing the local empirical loss, that is:

f∗1 , ......, f
∗
K = argmin

f1,...,fK

1

K

K∑
k=1

1

|Dk|
∑

(x,y)∈Dk

L(y, fk(x)) (1)

L(y, fk(x)) is the classification loss (e.g., cross-entropy) of model fk on the sample (x, y). In
addition, to evaluate generalization performance, we run each fk on D0, which is a test dataset
consisting of unseen samples (Sun et al., 2024), that is, ∀k,D0 ∩Dk = ∅.

3.2 VARIATIONAL TRANSPOSED CONVOLUTION

As Figure 1(b) shows, aside from the fundamental local model fk, FedVTC introduces a variational
transposed convolution (VTC) model ψk : Rp → Rd to each client k. VTC is an upsampling
network that takes a latent variable z ∈ Rp as input to produce an enlarged data sample x′ ∈ Rd
(Dumoulin & Visin, 2016). Similar to a VAE (Kingma & Welling, 2013), for each sample x with
the corresponding z, client k samples a random variable v from the distribution N (v|z,Σk), and
forwards v to ψk to derive x′ (blue arrow in Figure 1(b)). The covariance matrix Σk ∈ Rp×p can
be learned via the gradient method. To make Σk differentiable, FedVTC applies the well-known
reparametrization trick as per VAE and lets v = z + σk ⊙ ϵ (red arrow in Figure 1(b)). ϵ ∈ Rp
is a random Gaussian noise with distribution ϵ ∼ N (ϵ|0, I), σk = [σ1, σ2, ......, σp]

⊤ indicates the
reparameterized standard deviation (SD), and ”⊙” represents element-wise product. In this case, for
each entry in Σk, we have (Σk)ii = σ2

i and (Σk)ij = 0 for any i ̸= j, and each σi (1 ≤ i ≤ p) can
be learned through gradient descent.

Following the design of VAE (Kingma & Welling, 2013), VTC is trained by maximizing the evi-
dence lower bound (ELBO), which is calculated as:

ELBO = log pψk
(x′|z,σk)−DKL(qgk(z|x)||p(z)) (2)

log pψk
(x′|z,σk) represents how ψk can generate real samples based on the latent variable

z + σk ⊙ ϵ. According to (Kingma & Welling, 2013), this term can be well approximated by
minimizing the empirical reconstruction loss Lrc(x′,x) = ∥x′ − x∥22 as Figure 2 shows. The
negative Kullback–Leibler (KL)-divergence −DKL(qgk(z|x)||p(z)) measures how qgk(z|x) (the
distribution of z learned by the feature extractor gk) approaches the real distribution p(z). Follow-
ing (Kingma & Welling, 2013), we can assume p(z) ∼ N (µ, I), with µ denoting the unbiased
mean of z which is usually 0 by default. In FL settings, we follow (Tan et al., 2022) and esti-
mate µ using cy , which is the global prototype of class y. As Figure 2 shows, a global prototype
cy = 1

|Ky|
∑
k∈Ky

cyk is calculated as the expectation of all local prototype cyk for all k ∈ Ky , with
Ky ⊂ K indicating the set of all clients containing data of class y. A local prototype of client k is
the mean of the local feature representations, i.e. cyk = 1

|Dy
k |
∑

(x,y)∈Dy
k
gk(x), where Dy

k ⊂ Dk in-
dicates the collection of all samples of class y in local datasetDk. In consequence, for two Gaussian
distributions qgk(x

′|z,σk) and p(z), the KL-divergence can be expressed analytically:
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DKL(qgk(x
′|z,σk)||p(z)) =

1

2

[
(z − cy)T (z − cy) + tr(Σk)− p− log|Σk|

]
(3)

Therefore, we derive a negative ELBO loss Le to optimize gk, ψk and σk:

Le =
∑
y∈Yk

1

|Dy
k|

|Dy
k |∑

i=1

Lrc(x′
i,xi) +DKL(qgk(zi|xi)||p(z))

=
∑
y∈Yk

1

|Dy
k|

|Dy
k |∑

i=1

∥x′
i − xi∥22 +

1

2

[
(zi − cy)T (zi − cy) + tr(Σk)− p− log|Σk|

] (4)

Yk = {y : Dy
k ̸= ∅, 1 ≤ y ≤ C} indicates all possible classes from client k’s data.

As Figure 2 shows, to mitigate the bias of the local distribution N (z,Σk), each client k will update
the local class-wise prototypes {cyk}y∈Yk

and the SD σk to the server. In response, the server obtains
the global prototypes {cy} and SD σ through aggregation, and sends {cy},σ back to clients.

3.3 REGULARIZING VTC FOR BETTER GENERALIZATION

Owing to the randomness of the VTC process, ψk is likely to generate variant synthetic samples
{x′} with unknown training quality. To address this issue, we propose to regularize the training
procedure of VTC with a distribution matching (DM) loss Ldm:

Ldm =
∑
y∈Yk

1

|Dy
k |

|Dy
k |∑

i=1

∥gk(x′
i)− cy∥22 =

∑
y∈Yk

1

|Dy
k|

|Dy
k |∑

i=1

∥gk(ψk(vi))− cy∥22 (5)

This loss enforces ψk to generate high-quality samples in which gk can acquire a feature distribution
close to the unbiased global distribution (Zhao et al., 2023). Subsequently, the local model fk
will learn unbiased parameter updates from the synthetic data, resulting in better generalization
performance.

Overall, the loss function Ltc to train a VTC model is defined as:

Ltc = Le + λLdm (6)

λ > 0 is the coefficient of regularization.

3.4 FEDVTC OVERVIEW

The comprehensive FedVTC framework is presented in Algorithm 1. Specifically, for each iteration
t, every active client k regularly trains the local model fk as in traditional FL. In addition, k trains
ψk and σk using loss function Ltc (Equation 6). Afterwards, k uploads the local prototypes and
SD to the server for aggregation. The server averages the received results and returns the global
prototype and SD to clients.

For memory efficiency, FedVTC applies an alternating strategy in VTC training. For line 12 in
Algorithm 1, we first freeze ψk and σk and incorporate the step gk ← gk−η∇gkLtc into the standard
training of fk. In this case, line 11 in Algorithm 1 can be written as fk ← fk − η∇fk(L + Ltc)
(with gk included in fk). Then we freeze fk and optimize ψk and σk with Ltc. As a result, FedVTC
will not extend the maximum memory usage, as ψk and σk usually require less memory space than
fk for training. In contrast, if we optimize fk, ψk and σk simultaneously, the maximum memory
usage will be enlarged to their accumulated memory usage.

Once FL is complete, every client k uploads the local VTC ψk to the server, then the server derives
a global VTC ψ through aggregation, and broadcasts ψ along with {c1, ..., cC}, σk to all clients. In
order to aggregate VTC parameters, FedVTC lets all ψk’s have the same architecture. For each cy

(y ∈ {1, ..., C}), every client k samples S latent variables from distributionN (cy,Σ), and generates
the corresponding synthetic samples by forwarding these variables to ψ. Σ ∈ Rp×p is a diagonal
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Algorithm 1 FedVTC

Require: FL iterations T , fine-tuning rounds T , local epochs E, clients K = {1, ...,K}, local
models {f1, ..., fK}, datasets {D1, ..., DK}, local VTCs {ψ1, ..., ψK}, local SDs {σ1, ...,σK},
initial SD σ, initial prototypes {c1, ..., cC} learning rate η, number of generated samples S.

1: for t = 1, 2, ..., T do
2: server does:
3: randomly sample a set of participating clients Kt ⊂ K.
4: for y ∈ {1, ..., C}:
5: Kty ← Kt ∩ Ky .
6: broadcast cy to clients in Kty .
7: broadcast σ to clients in Kt.
8: every client k ∈ Kt does:
9: σk ← σ.

10: for epochs 1, ..., E:
11: fk ← fk − η∇fkL. ▷ Update fk with SGD.
12: gk ← gk − η∇gkLtc, ψk ← ψk − η∇ψk

Ltc, σk ← σk − η∇σk
Ltc .

13: for y ∈ Yk:
14: cyk ←

1
|Dy

k |
∑

x∈Dy
k
gk(x). ▷ Compute local prototype.

15: upload cyk to the server.
16: upload σk to the server.
17: server does:
18: for y ∈ {1, ..., C}:
19: cy ← 1

|Kt
y|
∑
k∈Kt

y
cyk. ▷ Update global prototype.

20: σ ← 1
|Kt|

∑
k∈Kt σk. ▷ Update global SD.

21: end for
22: every client k ∈ K does:
23: upload ψk to the server.
24: server does:
25: ψ ← 1

K

∑K
k=1 ψk. ▷ obtain global VTC.

26: broadcast ψ, {c1, ..., cC} and σ to every client k ∈ K.
27: for every k ∈ K do
28: create synthetic dataset D′

k with S samples using ψ,σ and {c1, ..., cC}.
29: for rounds 1, ..., T :
30: L′ ← 1

S

∑S
i=1(y

′
i, f(x

′
i)).

31: fk ← fk − η∇fkL′. ▷ fine-tuning with the synthetic dataset.
32: end for
33: return wt

matrix with Σii equal to the squared i−th element in σ. Afterwards, each client fine-tunes its local
model by running classification tasks on the total S × C synthetic samples. In this stage, all local
fine-tuning processes run in isolation, and no communication occurs between clients and the server.

One noteworthy point in FedVTC is that, clients only need to upload the local VTC models once
instead of every FL iteration (see line 23 in Algorithm 1). In the experiment, we compare the
performance of FedVTC in cases of singular VTC transmission and per-round VTC transmission.
The results show that these two modules exhibit marginal differences in terms of accuracy (see
Table 3). Therefore, in the ultimate FedVTC framework, local VTCs are only communicated once
for communication efficiency.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate FedVTC on the following datasets: MNIST (LeCun, 1998) contains a train-
ing set with 60,000 samples and a validation set with 10,000 samples from 10 classes. CIFAR10

7



Published as a conference paper at ICLR 2026

Dir FedProto FedTGP FedGen CCVR FedType pFedAFM FedVTC

MNIST 0.1 83.4±0.4 85.4±0.5 81.1±1.0 85.5±0.4 83.9±0.3 85.6± 0.5 88.7±0.7
1.0 86.1±0.3 86.8±0.4 81.9±0.3 86.2±0.3 86.7±0.5 87.2± 0.4 90.1±0.1

CIFAR10 0.1 39.3±0.7 40.9±0.2 39.1±0.2 39.3±0.2 39.7±0.3 38.9± 0.9 46.9±0.6
1.0 41.1±0.2 42.1±0.7 39.7±0.5 41.0±0.1 40.2±0.6 40.5± 0.5 51.7±0.7

CIFAR100 0.1 26.2±0.2 29.2±0.3 27.3±0.8 27.6±0.9 31.3±1.5 32.2± 1.0 36.3±0.8
1.0 30.4±0.2 31.8±0.5 30.8±0.3 29.3±0.4 34.4±0.6 34.9± 0.6 40.4±0.3

Tiny-
ImageNet

0.1 23.7±0.3 24.9±0.8 23.6±0.1 24.1±0.3 24.8±0.4 24.2± 0.8 30.2±0.3
1.0 26.4±0.2 27.2±0.3 26.1±0.1 26.6±0.8 31.6±0.4 27.3± 0.2 35.8±0.5

Table 1: The average generalization accuracy (in %) of each client’s local model on the global
validation dataset (with mean ± SD).

and CIFAR100 (Krizhevsky, 2009) contain a training set with 50,000 samples and a validation set
of 10,000 samples from 10 and 100 classes. Tiny-ImageNet (Chrabaszcz et al., 2017) contains a
training set with 100,000 samples and a validation set with 10,000 samples from 200 classes.

Comparative methods. We compare FedVTC with five state-of-the-art model-heterogeneous FL
frameworks. 1. FedProto (Tan et al., 2022) enables clients to regularize the local feature extractors
using class-wise global prototypes. 2. FedTGP (Zhang et al., 2024) extends the design of Fed-
Proto by optimizing the decision boundary between inter-class prototypes using gradient descent. 3.
FedGen (Zhu et al., 2021) and 4. CCVR (Luo et al., 2021) utilizes virtual feature representations
to fine-tune the classifiers of clients, with FedGen using a generative adversarial network (GAN)
and CCVR using a Gaussian distribution to generate the representations. 5. FedType (Wang et al.,
2024) allows clients to collaboratively train a proxy model using conformal prediction and enhance
generalization by distilling knowledge through the proxy model. 6. pFedAFM (Yi et al., 2025)
clients employ a proxy feature embedding model for knowledge distillation.

System implementation. We simulate a virtual network consisting of K = 100 clients with a
participation rate of 0.1 (i.e. |Kt| = 10). Both the server and all clients operate on one NVIDIA
Geforce RTX 4070 GPU with 12 GB of RAM space. For heterogeneous client models, we follow the
settings in (Zhang et al., 2024; Wang et al., 2024), where clients are divided into five uniform clus-
ters with five model architectures: ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152
(He et al., 2016). For non-iid local data distribution, we follow (Luo et al., 2021) and distribute the
training sets of MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet unevenly among clients using
two Dirichlet (Dir) distributions with parameters 0.1 and 1.0. The experiment platform is imple-
mented with PyTorch 2.0 (Paszke et al., 2019). The VTC model has a simple architecture with four
transposed convolution layers (see Appendix B.2).

Parameter settings. Following (Tan et al., 2022; Wang et al., 2024), the total number of iterations
is set to T = 100. For FedVTC, the number of additional fine-tuning rounds is set to T = 5.
For fairness, we also let the baselines train extra T rounds with full client participation so that all
methods have the same training rounds. The learning rate η is set to 1e-4 for MNIST (Luo et al.,
2021) and 0.01 for others (Tan et al., 2022). The local epoch E is set to five, and the batch size is
set to 16 universally (Wang et al., 2024). For fairness, the number of synthetic samples S is set to
500 for MNIST and CIFAR10, and 1000 for CIFAR100 and Tiny-ImageNet, which is identical to
the amount of generated representations in (Luo et al., 2021). We set the regularization parameter
as λ = 0.1 (see Appendix B.4). The settings of p and d can be found in Appendix B.1.

4.2 EXPERIMENT RESULTS

Generalization accuracy. We evaluate each client model with the global validation sets in the
aforementioned four datasets for generalization accuracy. Each method runs for three independent
trials, and the average results are recorded. As shown in Table 1, FedVTC consistently outperforms
the comparative methods across all datasets and distributions, demonstrating a remarkable general-
ization ability over non-iid data. As a supplementary, the graphs depicting accuracy per iteration are
included in Appendix B.3.
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FedProto FedTGP FedGen CCVR FedType pFedAFM FedVTC
MNIST 0.94 0.94 13.15 46.61 12.37 1.94 0.70
CIFAR10 3.93 3.93 54.58 807.46 37.45 5.88 2.90
CIFAR100 39.32 39.32 91.07 825.16 72.85 41.27 26.49
Tiny-ImageNet 78.64 78.64 844.82 923.46 179.61 147.10 52.71

Table 2: The total volume of data transmission (in GB).

MNIST CIFAR10 CIFAR100 Tiny-ImageNet
Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0)

* 1⃝ 88.7(0.7) 90.1(0.1) 46.9(0.6) 51.7(0.7) 36.3(0.8) 40.4(0.3) 30.2(0.3) 35.8(0.5)
2⃝ 89.7(0.2) 92.3(0.3) 45.4(0.3) 54.3(0.5) 37.7(0.4) 39.6(0.6) 31.8(0.7) 38.0(1.0)

** 1⃝ 0.70 2.90 26.49 52.71
2⃝ 5.63 8.77 32.36 123.22

Table 3: The (*)generalization accuracy (%) and (**)communication cost (GB) of 1⃝FedVTC with
singular VTC transmission and 2⃝FedVTC with regular VTC transmission per round.

MNIST CIFAR10 CIFAR100 Tiny-ImageNet
Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0) Dir(0.1) Dir(1.0)

Le 87.2(0.4) 89.9(0.3) 39.7(0.5) 45.4(0.4) 28.9(0.5) 35.2(0.2) 28.1(0.1) 33.4(0.3)
Ltc 88.7(0.7) 90.1(0.1) 46.9(0.6) 51.7(0.7) 36.3(0.8) 40.4(0.3) 30.2(0.3) 35.8(0.5)

Table 4: The generalization accuracy of two training modules of FedVTC. The first module uses the
standard Le loss, and the second module uses the regularized Ltc = Le + λLdm loss.

Communication efficiency. As shown in Table 2, FedVTC obtains the least overall communication
cost among all methods. Specifically, for CCVR, clients share the local prototypes and covariates
with the server. Although transmitting the p−dimensional prototypes introduces marginal com-
munication cost, this cost grows exponentially for transmitting the covariance matrices of a p × p
dimension. For FedGen and FedType, the server respectively broadcasts a generator (2-layer per-
ception (Zhu et al., 2021)) and a proxy model (ResNet-18 (Wang et al., 2024)) to clients, while these
overparametrized models usually consume massive communication resources in transmission. In
comparison, FedProto and FedTPG only transmit prototypes with significantly less communication
costs. Although FedVTC transmits additional messages other than prototypes, including SDs and
VTC models, it still reduces the total communication costs compared with FedProto and FedTGP,
as no information is transmitted in the phase of fine-tuning.

Memory requirement. We calculate the required memory space of each method by accumulating
the magnitudes of parameter weights, gradients and activations involved in training (Pfeiffer et al.,
2023). As depicted in Figure 3, compared with other methods, FedVTC accounts for an equivalent
or less memory space across all model architectures. We attribute this to the strategy of alternately
training local models and VTC models in FedVTC. In contrast, FedType, which simultaneously
trains local models and the proxy model, demands a much higher memory space for training.
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Figure 3: FedVTC (green) has an equivalent or less memory requirement compared with others.
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Ablation study. We compare the performance of FedVTC with two modules of VTC transmission,
including singular (TC models are communicated only once) and regular (TC models are commu-
nicated every round) transmissions. As shown in Table 3, the generalization accuracy of singular
VTC transmission is slightly lower (sometimes even higher) than regular VTC transmission, while
the latter causes much higher communication cost than the former. Therefore, we apply the sin-
gular VTC transmission strategy in the ultimate FedVTC framework for communication efficiency.
Furthermore, we compare two training modules of FedVTC, where the VTC is trained with Le and
Ltc = Le + λLdm respectively. As shown in Table 4, the DM-based regularization effectively
increases the generalization performance of FedVTC in all scenarios.

MNIST CIFAR10

Figure 4: A fraction of raw images (top) and synthetic images (bottom) on MNIST and CIFAR10.

Privacy preservation. FedVTC transmits prototypes, SDs and VTC models, which brings no ad-
ditional privacy concerns according to (Luo et al., 2021; Tan et al., 2022). The reason is that, it is
almost impossible to recover the raw data from prototypes and SDs without accessing the raw rep-
resentations. As Figure 4 shows, the VTC-generated images diverge drastically from real images,
making it extremely difficult to capture any sensitive information from these images.

5 CONCLUSION

This paper proposes FedVTC, a model-heterogeneous FL framework based on variational trans-
posed convolution (VTC). By fine-tuning local models with VTC-generated samples, FedVTC ef-
fectively overcomes the low-generalization bottleneck of FL clients in model-heterogeneous settings
without relying on any public datasets. In the future, we aim to consolidate FedVTC with the early-
stopping technique (Niu et al., 2024) to mitigate the additional computation cost of training a VTC.
We also plan to amplify the adaptability of FedVTC to data from unseen classes with techniques
like zero-shot learning (Chen et al., 2024) and model diffusion (Croitoru et al., 2023).
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A DEFINITION OF MODEL HETEROGENEITY

To our best knowledge, the definitions of ”model-heterogeneous federated learning” in the state-of-
the-art can be divided into the following two categories.
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A.1 SUB-MODEL-BASED MODEL HETEROGENEITY

Sub-model-based model heterogeneity, also named partial model heterogeneity (Ye et al., 2023), is
developed based on the assumption that all local models are a subset of the global model. Specifi-
cally, the server preserves a global model and employs the typical dropout technique (Caldas et al.,
2018) to extract a fraction of the global model’s parameters, i.e., a sub-model, and allocates the sub-
models to clients. For example, (Caldas et al., 2018) generates sub-models by randomly pruning
neurons in the global model. (Horváth et al., 2021) and (Diao et al., 2021) consistently extract the
left-most neurons of the global model to form sub-models. (Alam et al., 2022) dynamically extracts
sub-models using a sliding window across the neurons in the global model. (Jiang et al., 2023; Li
et al., 2021a; Jiang et al., 2022) selectively prune the unimportant neurons in the global model with
the least heuristic scores (like parameter norms). (Kim et al., 2023) vertically extracts sub-models
by pruning the top layers in the global model.

In these works, although clients have different model architectures due to different dropout strate-
gies, the parameters between clients are usually co-dependent, and can be aggregated using sub-
model aggregation as shown in Figure 5.
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Figure 5: The sub-model aggregation scheme for sub-model-based model-heterogeneous FL (”WA”
stands for weighted average).

A.2 COMPLETE MODEL HETEROGENEITY

In completely model-heterogeneous FL (shown in Figure 6), the server no longer maintains a global
model, and clients obtain isolated local models with diverse, independent, and irrelevant architec-
tures (Ye et al., 2023). In this scenario, clients can no longer acquire generalized parameter updates
through model aggregation. As a replacement, clients apply alternative strategies to learn gener-
alization information, such as sharing knowledge over a public dataset or transmitting parameter-
independent messages, as discussed in Section 2.2.

Without ambiguity, in this paper, the definition of ”model heterogeneity” refers to complete
model heterogeneity (Appendix A.2) where all aggregation (e.g., standard aggregation and
sub-model aggregation) methods become prohibitive. Correspondingly, the goal of FedVTC is
to improve the generalization performance of clients in the settings of complete model hetero-
geneity without parameter aggregation involved.

B EXPERIMENT DETAILS

B.1 FOUNDAMENTAL SETTINGS

The fundamental experimental settings are summarized in Table 5.

B.2 STRUCTURE OF THE TRANSPOSED CONVOLUTION MODEL

The detailed information on the structure of the VTC model ψ is listed in Table 6.
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Server

Client i Client j Client k

PIM PIM PIM
. . . . . .

Figure 6: In complete model-heterogeneous FL, the model architectures between clients are inde-
pendent, irrelevant, and cannot be aggregated altogether. Alternatively, clients communicate some
Parameter-Independent Messages (PIM) with the server for knowledge sharing, such as prototypes
and feature covariates.

Channel Input dimension d Latent dimension p Class C Initial SD σ

MNIST 1 1× 28× 28 980 10

1 ∈ RpCIFAR10 3 3× 32× 32 4096 10
CIFAR100 3 3× 32× 32 4096 100

Tiny-ImageNet 3 3× 64× 64 12768 200

Table 5: Fundamental experimental settings.

B.3 ACCURACY GRAPHS

The graphs reflecting the generalization accuracy against the FL iterations are shown in Figure 7.

B.4 HYPERPARAMETER TUNING

As stated previously, the number of synthetic samples per class S is set to 500 for MNIST and 1000
for CIFAR10, CIFAR100 and Tiny-ImageNet following (Luo et al., 2021) for fairness. Despite this,
we additionally tune S on the MNIST dataset to study the impact of different S values. As shown
in Figure 8a, when S is too small, the generalization accuracy is low as the effect of fine-tuning
is weak. When S is too large, many redundant synthetic samples will be generated, which may
degrade the effectiveness of fine-tuning.

In addition, we evaluated the coffecient λ of the DM loss (Eq. (5)). As shown in Figure 8b, it turns
out that λ = 0.1 is the optimal setting based on the empirical results.
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MNIST
Index Components Input shape Output shape

1
TransposeConv2d(kernel=3, padding=1, stride=1)

20× 7× 7 16× 7× 7BatchNorm2d()
LeakyReLU(0.01)

2
TransposeConv2d(kernel=4, padding=1, stride=2)

16× 7× 7 32× 14× 14BatchNorm2d()
LeakyReLU(0.01)

3
TransposeConv2d(kernel=3, padding=1, stride=1)

32× 14× 14 32× 14× 14BatchNorm2d()
LeakyReLU(0.01)

4
TransposeConv2d(kernel=4, padding=1, stride=2)

32× 14× 14 1× 28× 28BatchNorm2d()
Sigmoid()

CIFAR10 & CIFAR100
Index Components Input shape Output shape

1
TransposeConv2d(kernel=3, padding=1, stride=1)

64× 8× 8 32× 8× 8BatchNorm2d()
LeakyReLU(0.01)

2
TransposeConv2d(kernel=4, padding=1, stride=2)

32× 8× 8 64× 16× 16BatchNorm2d()
LeakyReLU(0.01)

3
TransposeConv2d(kernel=3, padding=1, stride=1)

64× 16× 16 64× 16× 16BatchNorm2d()
LeakyReLU(0.01)

4
TransposeConv2d(kernel=4, padding=1, stride=2)

64× 16× 16 3× 32× 32BatchNorm2d()
Sigmoid()

Tiny-ImageNet
Index Components Input shape Output shape

1
TransposeConv2d(kernel=3, padding=1, stride=1)

128× 16× 16 64× 16× 16BatchNorm2d()
LeakyReLU(0.01)

2
TransposeConv2d(kernel=4, padding=1, stride=2)

64× 16× 16 64× 32× 32BatchNorm2d()
LeakyReLU(0.01)

3
TransposeConv2d(kernel=3, padding=1, stride=1)

64× 32× 32 64× 32× 32BatchNorm2d()
LeakyReLU(0.01)

4
TransposeConv2d(kernel=4, padding=1, stride=2)

64× 32× 32 3× 64× 64BatchNorm2d()
Sigmoid()

Table 6: Structural information on the transposed convolutional neural network.
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(b) CIFAR10 - Dir (0.1).
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(c) CIFAR100 - Dir (0.1).
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(d) MNIST - Dir (1.0).
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(e) CIFAR10 - Dir (1.0).
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(f) CIFAR100 - Dir (1.0).
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(g) Tiny-ImageNet - Dir (0.1).

0 20 40 60 80 100
Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Tiny ImageNet

FedProto
FedTGP
FedGen
FedType
CCVR
FedVTC
FL & Fine-tune split

(h) Tiny-ImageNet - Dir (1.0).

Figure 7: The per-round average generalization accuracy (i.e., the mean of each local model’s accu-
racy on the global validation set). The vertical dashed line splits the standard FL iterations and the
local fine-tuning procedure.
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(a) Generalization accuracy on MNIST with Dir(1.0)
vs. the number of synthetic samples per class.
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(b) Generalization accuracy on MNIST with Dir(1.0)
vs. the regularization coffecient λ.

Figure 8: The generalization accuracy with different values of λ.

Before fine-tuning After Fine-tuning Improvement
MNIST Dir(0.1) 84.9% 88.7% ↑ 3.8%
MNIST Dir(1.0) 86.8% 90.1% ↑ 3.3%

CIFAR10 Dir(0.1) 40.5% 46.9% ↑ 6.4%
CIFAR10 Dir(1.0) 41.6% 51.7% ↑ 10.1%

CIFAR100 Dir(0.1) 27.6% 36.3% ↑ 8.7%
CIFAR100 Dir(1.0) 32.8% 40.4% ↑ 7.6%

Tiny-ImageNet Dir(0.1) 25.1% 30.2% ↑ 5.1%
Tiny-ImageNet Dir(1.0) 29.8% 35.8% ↑ 6.0%

Table 7: The generalization accuracies of FedVTC before and after fine-tuning with the synthetic
samples.

B.5 QUALITY OF SYNTHETIC SAMPLES

In this paper, the objective of generating synthetic samples is to produce training data for fine-tuning
instead of generating realistic images. Therefore, traditional metrics measuring how generated im-
ages resemble real images (like FID score Heusel et al., 2017) do not accurately reflect the quality
of the synthetic samples. As a replacement, we compare the accuracy of FedVTC before and after
fine-tuning to examine the quality of the synthetic samples. As depicted in Figure 7 and Table 7, the
accuracy of FedVTC significantly increases after fine-tuning, demonstrating a good quality of the
synthetic samples.

C USE OF LARGE LANGUAGE MODELS

Large Language Models are only used to correct spelling and grammatical mistakes in this paper.
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