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Abstract
Existing multimodal large model-based image
compression frameworks often rely on a frag-
mented integration of semantic retrieval, latent
compression, and generative models, resulting
in suboptimal performance in both reconstruc-
tion fidelity and coding efficiency. To address
these challenges, we propose a residual-guided ul-
tra lowrate image compression named ResULIC,
which incorporates residual signals into both se-
mantic retrieval and the diffusion-based gener-
ation process. Specifically, we introduce Se-
mantic Residual Coding (SRC) to capture the
semantic disparity between the original image
and its compressed latent representation. A per-
ceptual fidelity optimizer is further applied for
superior reconstruction quality. Additionally,
we present the Compression-aware Diffusion
Model (CDM), which establishes an optimal
alignment between bitrates and diffusion time
steps, improving compression-reconstruction syn-
ergy. Extensive experiments demonstrate the ef-
fectiveness of ResULIC, achieving superior ob-
jective and subjective performance compared to
state-of-the-art diffusion-based methods with -
80.7%, -66.3% BD-rate saving in terms of LPIPS
and FID. Project page is available at https:
//njuvision.github.io/ResULIC/.

1. Introduction
In recent years, learning-based image compression tech-
niques (Ballé et al., 2018; Minnen et al., 2018; Chen et al.,
2021; Lu et al., 2022; Duan et al., 2023) have gained consid-
erable attention and shown superior performance compared
to traditional codecs, such as JPEG2000 (Taubman et al.,
2002) and VVC Intra Profile (ITU-T & ISO/IEC, 2020),
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Figure 1. (a) The separate design for existing frameworks. The
MLLM indicates the Multimodal Large Vision-Language Model.
The latent coding represents the compression of features within the
latent space. (b) Our pipeline with proposed Semantic Residual
Coding and Compression-aware Diffusion Model. (c) Comparison
with existing diffusion-based ultra lowrate image compression
methods on CLIC2020 dataset.

in both objective metrics and subjective evaluations. How-
ever, at lower bitrates, these methods often struggle with
excessively smooth textures or the loss of fine details and
structural information.

In response to these challenges, extensive research has been
conducted on optimizing perceptual quality. Among them,
Generative Adversarial Network (Goodfellow et al., 2014)
(GAN)-based approaches (Mentzer et al., 2020; Muckley
et al., 2023) demonstrated competitive performance with
visually-pleasing reconstruction. Some works have further
attempted to enhance the visual reconstruction quality by in-
corporating text guidance. Within the conventional encoder-
decoder framework, they have integrated semantic infor-
mation into either the encoding process (Lee et al., 2024)
or both the encoding and decoding processes (Jiang et al.,
2023) to improve the perceptual quality of reconstruction.

More recently, the advent of diffusion models (Ho et al.,
2020; Rombach et al., 2022) has provided a turning point
for this predicament. Existing diffusion model-based im-
age compression methods (Careil et al., 2024; Lei et al.,
2023a; Li et al., 2024a) have shown more impressive results
than GAN-based methods, achieving high visual quality
reconstruction at extremely low bitrates (< 0.01 bits per
pixel (bpp)). However, the reconstruction reliability (indi-
cating consistency and fidelity) remains unsatisfactory, with
significant differences from the original inputs.
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Figure 2. Visual comparison at extremely low bitrates. The bitrate is averaged over samples for each tested method. The major structure
on the left (< 0.005 bpp) and the details of the text, hand, and clock on the right (< 0.05 bpp) are better preserved.

From a compression standpoint, the objective is to extract
compact and accurate information with minimal bitrate con-
sumption, while ensuring the reconstructed images with
balanced perceptual realism and fidelity. However, two
key challenges hinder the effective integration of generative
models into image compression tasks:

• Multimodal Semantic Integration: The effective inte-
gration of multimodal semantic information, minimiz-
ing redundancy while ensuring high perceptual fidelity
at extremely low bitrates.

• Compression-Generation Alignment: Modeling the
compression ratio with the noise scale in the diffusion
process, enabling efficient and consistent reconstruc-
tions across varying compression levels.

For challenge 1, as shown in Figure 1(a), existing Multi-
modal Large Language Models (MLLM)-based methods
primarily focus on simply integrating information from both
texts and other content (such as sketches, color maps, or
structures) to reconstruct images, overlooking the semantic
information already embedded in both sources, leading to
semantic redundancy. To address this problem, we propose
to implement a semantic residual coding module as in Fig-
ure 1(b) into our multimodal image compression framework,
aiming to achieve overall minimal bitrate consumption. Be-
sides, to optimize the perceptual fidelity, we propose a dif-
ferential prompt optimization strategy to find the optimal
text prompts for improving the reconstruction consistency.

For challenge 2, the degradation introduced by compression
and the diffusion noising process share a common character-
istic: as noise increases (or the compression ratio becomes
higher), less information is preserved in the degraded image.
Consequently, the compression ratio aligns inherently with
the diffusion time steps. In this context, we aim to model
this correlation. As illustrated in Figure 1(b), we incorporate
the latent residual into the diffusion process and propose a

Compression-aware Diffusion Process, which effectively en-
hances reconstruction fidelity while significantly improving
decoding efficiency.

Experimental results show that our model achieves both
objectively and subjectively pleasing results compared to
current state-of-the-art approaches, with significantly re-
duced decoding latency. The contributions of our work can
be summarized as follows:

• We propose the Semantic Residual Coding (SRC), im-
plementing multimodal large models as the residual
extractor to remove the redundant semantic informa-
tion between the original image and the compressed
latent features, achieving joint bitrate reduction with
efficient token index coding. A differential prompt op-
timization method can be further applied to efficiently
search for text prompts with improved fidelity.

• We propose the Compression-aware Diffusion Model
(CDM), which modeling the relationship between dif-
fusion time steps and the bitrate of compressed im-
ages, significantly enhancing the reconstruction fidelity
while reducing decoding latency.

• Based on the above key modules, a high-fidelity
Residual-guided Ultra Lowrate Image Compression
framework named ResULIC is proposed, achieving
impressive visual quality at ultra-low bitrates, outper-
forming existing SOTA method PerCo by -80.7% and
-66.3% BD-rate saving in terms of LPIPS and FID.

2. Background
Recent advancements in learned image compression, such as
Ballé et al. (2017) and subsequent works (Ballé et al., 2018;
Minnen et al., 2018; Chen et al., 2021; He et al., 2022; Lu
et al., 2022; Duan et al., 2023), have showcased the potential
of neural networks and advanced features like hyperpriors
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Figure 3. ResULIC Overview: (1) The feature compressor transforms the original image x into the compressed latent feature zc. (2) The
Semantic residual retrieval (Srr) generates optimized captions by analyzing both the decoded image x′ and the original x, with the
plugin play module Perceptual fidelity optimizer (Pfo) to further improve reconstruction quality. (3) Text tokens are embedded into c
and combined with zc as conditions for the Compression-aware Diffusion Model (CDM) to generate the final image xr .

and context models to significantly improve rate-distortion
performance. Meanwhile, GAN-based approaches (Mentzer
et al., 2020; Pan et al., 2022; Muckley et al., 2023) have
focused on optimizing the reconstruction fidelity, especially
for low-bitrate scenarios. Most Recently, compression algo-
rithms leveraging large-scale pre-trained generative models,
such as Diffusion, have emerged, demonstrating highly com-
petitive performance.

Diffusion-based Generative Models. Diffusion mod-
els, inspired by non-equilibrium statistical physics (Sohl-
Dickstein et al., 2015), have achieved great success in visual
tasks through advancements like DDPM (Ho et al., 2020)
and LDM (Rombach et al., 2022), while strategies such as
adding trainable networks (Zhang et al., 2023; Mou et al.,
2023; Zavadski et al., 2024) enable efficient fine-tuning of
pretrained models to reduce resource requirements.

While diffusion models and their fine-tuning strategies have
shown significant promise, an additional challenge lies in
ensuring the reliability of generated content, particularly
for tasks like compression. Previous works, such as textual
inversion (Gal et al., 2023) and Dreambooth (Ruiz et al.,
2023), use soft prompts (continuous, learnable vectors op-
timized for specific tasks) optimized for visual similarity,
but these are not suitable for compression due to their high-
dimensional nature. Other approaches, like PEZ (Wen et al.,
2023), utilize discrete prompt optimization by projecting
learnable continuous embeddings into the space of discrete
embedding vectors to perform prompt optimization. The
final optimized hard prompts remain in textual form and are
capable of producing highly consistent images.

In recent years, there has been a notable increase in the
use of diffusion models for image restoration. Prominent
works such as ResShift (Yue et al., 2024) and RDDM (Liu
et al., 2024b) enhance the diffusion process by incorporat-
ing the residuals between the original and degraded data.
This approach significantly enhances reconstruction quality.
Additionally, some works like PASD (Yang et al., 2024),
StableSR (Wang et al., 2024a), start the diffusion process
from low-quality images instead of pure noise to enhance
efficiency and accelerate sampling. PASD relies solely on

low-quality initialization during inference, resulting in a
decoupled and suboptimal process. Methods like ResShift
and RDDM introduce custom noise schedulers, which re-
quire full retraining and are incompatible with off-the-shelf
diffusion models. Taking a step further, we propose a bitrate-
aware residual diffusion scheme specifically designed for
image compression, retaining the original noise scheduler
for compatibility. Additionally, our evaluation demonstrates
that dynamically adjusting diffusion time steps based on
compression ratios enables a more efficient framework.

Diffusion-based Compressors. Several diffusion-based
image codecs have been proposed recently (Theis et al.,
2022; Ghouse et al., 2023; Hoogeboom et al., 2023; Yang &
Mandt, 2023; Ma et al., 2024; Xu et al., 2024). These meth-
ods utilize diffusion models to achieve good performance
at relatively high bitrates (bpp > 0.1). With the emergence
of latent LDMs (Rombach et al., 2022), Lei et al. (2023b);
Li et al. (2024a;b) employed it for low-bitrate compres-
sion, further enhancing reconstruction quality. Similarly,
Careil et al. (2024) integrated vector-quantized image fea-
tures and captions generated by a feed-forward model (Li
et al., 2022) to improve compression performance. Overall,
current diffusion-based codecs have begun to show outstand-
ing performance, but the fidelity gap between AI-generated
and original content persists, and the coding efficiency of
these frameworks has not been fully explored at low-bitrate
scenarios.

3. Framework Overview
The framework is illustrated in Figure 3. It can be divided
into three major parts: the feature compressor, the seman-
tic residual coding (Sec. 4) and the bitrate-aware diffusion
model (Sec. 5).

The overall compression target consists of two interrelated
parts: the latent features, which contain information such
as structures, textures, and contours, and the extracted texts,
which capture the remaining semantic information in the im-
age. Two compressors are proposed to handle these compo-
nents in a coordinated framework. The Feature Compressor
first map the image x to latent space, obtaining the latent
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feature z0 = E(x). A neural compression network with
similar architecture like (He et al., 2022) with encoder Eϕ

and decoder Dθ is then implemented to compress the latent
features.

zc = CΘ(z0) = Dθ(Eϕ(z0)) (1)

The reconstructed zc will serve as a guiding condition for
Visual Adapter to control the diffusion to produce the final
high-quality reconstruction. Detailed description can be
found in the Appendix C.1.

x′ = D(zc), c = fmllm(x, x
′),

R = Rc +Rzc ,

xr = D(fdm(c, zc, N)).

(2)

Here R represents the overall bitrates combining texts and
latents. The texts c is retrieved through MLLM model fmllm.
x′ represents the intermediate reconstruction by the latent
decoder D. Final reconstructed image xr is obtained by a
diffusion model fdm and the latent decoder.

4. Semantic Residual Coding (SRC)
As aforementioned, existing methods usually rely on MLLM
to extract full-text descriptions of the original image as
conditional guidance for compression or post-processing.
Take postprocessing-based frameworks as an example: no
bits are needed to transmit the text, as it is reconstructed
on the decoder side. However, lost semantics cannot be
accurately restored.

c = fmllm(x
′), Rc = 0. (3)

Meanwhile, many existing attempts based on diffusion sep-
arately transmit two bitstreams for image and text, the re-
trieved texts can be redundant since much of the information
is already contained in x′, resulting in unnecessary bitrate
overhead.

c = fmllm(x), Rc ̸= 0. (4)

It would become an obvious drawback for compression
tasks especially when the total bitrate is low. Two modules
are proposed to address this issue.

4.1. Semantic residual retrieval (Srr)
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Figure 4. The process of Semantic Residual Retrieval (Srr) in-
volves implementing the MLLM to remove redundant text and
correct inconsistencies.

In Figure 4, we redesign the caption retrieval pipeline. In
addition to using the original image to obtain full caption as

common practice, we also get the caption from the decoded
image directly from the decoded compressed latent feature.
Subsequently, we input both captions into an LLM, which
outputs semantic information present in the original image
but missing in the compressed image as

cres = fmllm(x)⊖mllm fmllm(x
′), (5)

where ⊖mllm indicates the residual retrieval process real-
ized by LLM. This process enables the extraction of pre-
cise and compact textual conditions, allowing for adaptive
optimization of bitrate allocation between text and latent
representations. A detailed demonstration is provided in Sec-
tion 6.2 in Figure 10. As the latent bitrate Rzc increases,
x′ → x and Rc → 0, our framework approaches pure
postprocessing. Conversely, as Rzc decreases, x′ → 0 and
Rcres → Rc, requiring more information to be encoded
within the semantic representation.

4.2. Perceptual fidelity optimization (Pfo)
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Figure 5. Demonstration of Pfo optimized prompts and correspond-
ing reconstruction. The prompts after optimization are human-
readable with mixed real words and gibberish (non-word token
sequences).

Although captions generated by MLLM assist reconstruc-
tion, they often fail to capture detailed textures and struc-
tures, creating a consistency gap between the reconstructed
and original images. This limitation hinders fidelity. To
address this, we propose a differential optimization process
tailored for the diffusion model. Our goal is to find the
prompt that is most suitable for the entire ResULIC with the
best perceptual fidelity.

Formally, input captions are first converted into token in-
dices using a tokenizer, referencing a predefined vocabulary
E|V |×d used in CLIP (Radford et al., 2021), where |V | is
the vocabulary size of the model and d is the dimension
of the embeddings. Instead of random initialization as in
PEZ, here we initialize the learnable continuous embedding
P = [ei, ..., eM ] by previously obtained cres, where M is
the number of tokens worth of vectors to optimize. The sub-
sequent optimization process can be seen in Algorithm 1.

The optimization is driven by the loss function:

Lpfo = λlEzt,ϵ

[
∥ϵ− ϵθ(zn, n, zc, Eclip-c(P

′))∥22
]

+ λcLaux(P
′, x), (6)
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Algorithm 1 Pfo: Perceptual fidelity optimization
Input: Diffusion model: θ, CLIP model: Ω, Target image:

x, Initialed embedding: P , Added Timesteps: Nr, De-
noising steps: Nd, Selected Timesteps: n; Learning
rate: λ, Optimization steps: i

1: for 1, ..., i do
2: # Forward Projection:
3: P ′ ← ProjE(P )
4: # Select time step n:
5: n← random({Nd/Nr, 2Nd/Nr, . . . , Nr})
6: # Calculate the gradient w.r.t. the projected embed-

ding:
7: g ← ∇P′(Lpro(θ,Ω, zn, n, P

′, x))
8: # Update the embedding:
9: P ← P − λg

10: end for
11: return P ← ProjE[P ]

where the first term represents the denoising loss for pre-
dicting the noise at timestep n, to stabilize the optimiza-
tion process, we also incorporate Equation Laux(P

′, x) =
1 − S(Eclip-c(P

′), Eclip-v(x)) as an auxiliary loss function
with a small weighting factor λc, Eclip-c and Eclip-v denote
the text and visual encoders of the CLIP model, S is the
cosine similarity between two embedding vectors. During
optimization, the embedding P is projected into the dis-
crete space using the ProjE function, which finds the nearest
embedding P ′ = ProjE(P ) in the CLIP embedding space.
Euclidean distance is used for this projection, ensuring that
the learned embeddings stay aligned with the vocabulary
space of the CLIP model. The final optimized texts can be
obtained from the updated P = P − γ

dLpro

dP ′ after several
iterations with learning rate γ.

Index Coding. In addition, we propose an efficient text
encoding method that replaces zlib-based character encod-
ing by encoding text embedding indices, with the decoding
side using CLIP’s text encoder to map these indices back
to embeddings, significantly reducing bitrate consumption.
See Appendix A.3 for details.

5. Compression-aware Diffusion Model (CDM)
During the forward process for typical diffusion models,
Gaussian noise is gradually added to the clean latent feature
z0. The intensity of the noise added at each step is controlled
by the noise schedule βt. This process can be written as:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, t ∈ {1, 2, . . . , T}, (7)

where ϵ ∼ N (0, I) is a sample from a standard Gaussian
distribution. Here, αt = 1 − βt and ᾱt =

∏t
i=1 αi. As

t increases, the corrupted representation zt gradually ap-
proaches a Gaussian distribution.
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In image compression, efficiency and reliability take prece-
dence over the diversity of reconstructed images. Starting
from standard Gaussian noise introduces unnecessary un-
certainty. Therefore, we aim to avoid scenarios where the
endpoint of noise addition (i.e., the starting point of denois-
ing) is purely random noise. To address this, we define the
following formulation:

zN =
√
ᾱNr

zc +
√
1− ᾱNr

ϵ, Nr < T. (8)

Existing works (Yang et al., 2024; Wang et al., 2024a) em-
ploy similar strategies for tasks like deblurring and super-
resolution typically, assuming fixed degradation levels (e.g.,
upsampling ratios). In contrast, we jointly explore the cor-
relation among bitrate, distortion, and diffusion steps, as
shown in Figure 7. A significant challenge lies in under-
standing how varying levels of compression noise, quanti-
fied by the compressed latent residual ρres = zc−z0, impact
the diffusion process.

5.1. Modeling Diffusion Steps with Compression Levels

DDPM (Ho et al., 2020) already provided a very prelimi-
nary prototype on modeling the bitrates and the reconstruc-
tion quality under the scenario of lossy image compression.
In diffusion models, the information entropy RN at each
timestep N can be approximately quantified using the KL
divergence between the true posterior q(zN−1|zN , z0) and
the model posterior pθ(zN−1|zN ) reflects the information
entropy of zN as:

RN ∼ DKL(q(zN−1 | zN , z0) ∥ pθ(zN−1 | zN )). (9)

This brutal correlation mapping between Rate and Diffusion
steps provides the intuition that: At larger N (near the end
of the diffusion process with high noise), zN carries less
information about z0. Thus, the KL divergence and RN

are smaller, enabling higher compression rates but lower
reconstruction quality. In contrast, at smaller N (near the
start of the diffusion process with low noise), zN retains
more information about z0, leading to larger KL divergence
and RN , resulting in lower compression rates but higher
reconstruction quality.

Figure 6 visually illustrates this principle. To address these
variations, we need to dynamically adjust N based on the
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(a) (b) (c)

Figure 7. Correlation between Bitrates and Diffusion Steps. (a)
Reconstruction quality reaches the peak at different diffusion steps
for different bitrates. (b) Peak Projection Curve where optimal
Nr decreases as bpp increases. (c) The adaptive strategy in (b)
performs notably better (red curve) than fixed diffusion steps.

compression ratio. In Figure 7, we present a three-factor
analysis of rate (bpp), Nr, and quality (LPIPS). As observed,
reconstruction quality varies with bitrate. Fixing the denois-
ing steps, as shown in Figure 7(c), results in suboptimal
performance. Guided by the observation in Figure 7, we
propose to adapt the fixed N into a compressed bitrate-
adaptive Nr. Specifically, for different compression ratios,
our method selects varying noise-adding endpoints while
retaining the original noise schedule of the diffusion model.
CDM overcomes the limitation of modifying noise sched-
ules in the pre-trained models, achieving visually pleasing
reconstruction without the need for retraining. Details of
the diffusion process is provided in the following parts. Rel-
evant proofs and derivations are provided in the subsequent
sections and the Appendix B.

5.2. Noise Adding Process

Existing methods that utilize residual diffusion, such as
ResShift (Yue et al., 2024) and RDDM (Liu et al., 2024b),
typically employ new noise schedules and design a Marko-
vian forward process. Here, to implement Equation (8),
we adopt the noise schedule of Stable Diffusion (Rombach
et al., 2022) and design a non-Markovian forward process
that does not rely on q(zn|zn−1).

Definition 5.1 (Noise Addition Mechanism).

q(zn|z0, ρres) ∼ N
(√

ᾱnz0 +
√
1− ᾱnγnρres, (1− ᾱn)I

)
(10)

where zn can be sampled using the following equation:

zn =
√
ᾱnz0+

√
1− ᾱn (γnρres + ϵn) , n ∈ {1, . . . , Nr}

(11)

5.3. Reverse Sampling Process

Theorem 5.2 (Conditional Independence of zn and zn−1).
Given the distributions defined in Equation (11), we have
zn ⊥ zn−1 | z0, zc,

Proof. Under the given model, zn is determined solely by
(z0, zc) and the noise term ϵn, which is independent of

ϵn−1. Consequently, conditioning on zn−1 provides no addi-
tional information about zn, implying q(zn|zn−1, z0, zc) =
q(zn|z0, zc). Hence, zn ⊥ zn−1

∣∣ z0, zc.

Based on Theorem 5.2, the conditional probability
simplifies to q(zn−1|zn, z0, zc) = q(zn−1|z0, zc) ∼
N (
√
ᾱn−1z0 +

√
1− ᾱn−1γn−1ρres, (1− ᾱn−1)I).

Assumption 5.3. Assume that the conditional probability
can also be expressed as:

q(zn−1 | zn, z0, zc) ∼ N
(
zn−1; ιnzn + ζnz0, σ

2
nI
)
.

(12)
Substituting Equation (11) into Equation (12), we obtain:

ιn =

√
1− ᾱn−1√
1− ᾱn

, (13)

ζn =
√
ᾱn−1 −

√
ᾱn · ιn, (14)

γn = γn−1 =

√
ᾱNr√

1− ᾱNr

. (15)

Here, we set σn to the same as in DDIM (Song et al., 2021),

σn = η
√

1−ᾱn−1

1−ᾱn

√
1− ᾱn

ᾱn−1
where η is a hyperparame-

ter. By setting η = 0 or η = 1, we correspond to dif-
ferent sampling strategies, i.e., deterministic sampling or
stochastic sampling. In the following experiments, η is
set to 0 unless stated otherwise. Comprehensive deriva-
tions and experiments are available in Appendix B.5 and
B.6. During directional sampling, samples are drawn from
the model-predicted distribution pθ(zn−1|zn, z̃0, zc), i.e.,
zn−1 = ιnzn + ζnz̃0 + σnϵ, as illustrated in Algorithm 2 in
the Appendix B.6.

5.4. Training Objective

While keeping the diffusion model fixed, we need to train the
encoder and decoder in the latent space as well as the visual
adapter. We derive the following simplified loss function
for training, detailed proofs are provided in Appendix B.7:

LVis = ω2
n · Ez0,c,zc,n,ϵ ∥ϵ− ϵθ(zn, c, zc, t)∥2 (16)

where ω2
n =

(
ζn

√
1−ᾱn√

ᾱn−
√
1−ᾱn·γn

)2

and c is the condition

from texts. During training, we omitting the ω2
n parameter to

stabilize training. Furthermore, we followed Equation (36)
in the Appendix to estimate the original data ẑ0, decode it
into the pixel domain x̂0, and performed further perceptual
optimization using a weighted combination of LPIPS and
MSE. Then we can rewrite Equation (16) as:

LVis = Ez0,c,zc,n,ϵ ∥ϵ− ϵθ(zn, c, zc, t)∥2

+ λd MSE(x0, x̂0) + λp LPIPS(x0, x̂0) (17)

Combining the LVis with feature compressor, we define the
total loss function as:

L = LVis + LD + λRLR (18)
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Figure 8. Quantitative comparision with state-of-the-art methods
on CLIC-2020 dataset.

LD = λD(z0, zc) here is the distortion between z0 and zc.
LR = R(zc) indicates the rate of the compressed latent. We
adjust λR to control the trade-off between rate, distortion,
and the diffusion prediction loss.

6. Experiments
6.1. Experimental Setup

Stable diffusion v2.1 (Rombach et al., 2022) is used as the
backbone diffusion model. And the MLLM GPT4o (Ope-
nAI, 2024) is applied to capture the image caption and their
corresponding residual information. See Appendix C.4 for
training details.

For evaluation, we tested several widely used datasets in-
cluding CLIC-2020 (Toderici et al., 2020) in the main pa-
per, and Kodak (Kodak, 1993), DIV2K (Agustsson & Tim-
ofte, 2017), Tecnick (Asuni & Giachetti, 2014) and MS-
COCO (Caesar et al., 2018) in Appendix A. Multiple met-
rics are evaluated including PSNR, MS-SSIM (Wang et al.,
2003), LPIPS (Zhang et al., 2018), DISTS (Ding et al.,
2020) FID (Heusel et al., 2017) and KID (Bińkowski et al.,
2018). Among them, FID and KID are used to evaluate
perceptual realism by matching the feature distributions
between the original and reconstructed image sets. In con-
trast, LPIPS and DISTS balance realism and fidelity, with
relatively greater emphasis on the latter.

We compare our method to state-of-the-art codecs, includ-
ing the traditional codec VTM (Bross et al., 2021), GAN-
based neural compressors HiFiC (Mentzer et al., 2020),
MS-ILLM (Muckley et al., 2023), as well as diffusion-
based compressors Text-sketch (Lei et al., 2023a), Dif-
fEIC (Li et al., 2024a), CDC (Yang & Mandt, 2022) and
PerCo (Careil et al., 2024). PerCo evaluated here is a repro-
duced version1, as the official implementation is not publicly
available. The diffusion model in this version has been fully
refined for the compression task. Additionally, we provide
comparisons with the original paper’s reported results in

1https://github.com/Nikolai10/PerCo
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Appendix D.

6.2. Main Results

Figure 8 presents a quantitative comparison across multiple
metrics on the CLIC-2020 dataset. The results demonstrate
that our method, ResULIC, consistently outperforms state-
of-the-art approaches on perceptual realism metrics such as
FID and KID. Moreover, for perceptual fidelity metrics like
DISTS, ResULIC achieves superior performance, while for
LPIPS, it excels at relatively low bitrates, highlighting its
effectiveness in improving fidelity. Additional comparisons
on datasets including Kodak, DIV2K, Tecnick, and MS-
COCO are provided in Appendix A.1.

In addition, we performed a BD-Rate (Bjontegaard, 2001)
comparison with existing methods using MS-ILLM as the
anchor, as shown in Table 1. Our method achieves the best
performance in terms of perceptual realism and perceptual
fidelity, while outperforming existing diffusion-based ultra-
low bitrate compression methods on distortion metrics.

Table 1. BD-Rate (%) ↓ comparison with state-of-the-art methods
on CLIC-2020 datasets. ResULIC w/o Pfo is a faster variant with
the Pfo module disabled, while still maintaining good performance.

Type Methods Perceptual Realism Perceptual Fidelity Distortion

FID KID DISTS LPIPS PSNR MS-SSIM

GAN based MS-ILLM 0 0 0 0 0 0
HiFiC 65.0 154.7 39.0 75.7 122.3 46.2

Diffusion based

DiffEIC -28.4 -21.9 1.7 9.5 392.3 133.8
PerCo -17.9 -25.7 -0.77 113.4 1092.2 244.1
ResULIC w/o Pfo -54.9 -64.7 -45.7 -18.8 120.4 41.8
ResULIC -62.9 -68.5 -51.6 -26.9 120.3 37.2

Complexity. The average encoding time for a 768×512
Kodak image is 0.10s for the latent compressor, 5.77s for
semantic residual coding using Srr (+180s if Pfo is enabled).
Decoding averages 0.60s/0.43s for 4/3 denoising steps.
More detailed complexity analysis is in Appendix C.3.
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Table 2. Ablation experiments comparing each module on the
CLIC-2020 dataset using PerCo as the anchor.

Method w/
CDM

w/
Index Coding

w/
Srr

w/
Pfo

BD-Rate (%) ↓

LPIPS DISTS FID KID PSNR MS-SSIM

PerCo
– × – × 0 0 0 0 0 0
– ✓ – × -6.7 -6.6 -6.8 -7.7 -6.1 -6.6
– ✓ – ✓ -15.9 -14.6 –15.7 -14.1 -5.9 -7.0

ResULIC-VQ – × – × 2.8 -2.1 -10.5 -9.6 -36.0 -18.8

ResULIC

× × × × -15.6 -12.3 -15.1 -13.8 -74.4 -22.7
✓ × × × -53.1 -46.9 -36.1 -38.4 -76.2 -48.8
✓ ✓ × × -60.7 -58.1 -46.7 -48.4 -87.0 -59.0
✓ ✓ ✓ × -71.6 -68.2 -57.9 -59.1 -96.8 -69.1
✓ ✓ ✓ ✓ -80.7 -77.3 -66.3 -66.8 -96.2 -70.2

6.3. Evaluation

Table 2 presents a comprehensive ablation study on the
performance impact of each proposed module.

Case 1: Detailed comparison with PerCo. To more clearly
demonstrate the advantages of our method over PerCo, we
used PerCo as an anchor for comparison. (1) The results in
Table 2 demonstrate that the Pfo module and Index Coning
integrate seamlessly into the PerCo framework, consistently
improving reconstruction quality. (2) To solely evaluate the
impact of the latent compressor, we provide a special ver-
sion, ResULIC-VQ, which replaces our latent compressor
with the same VQ compressor used in PerCo and disables
all newly introduced modules. These comparisons highlight
that the stable gains originate from our proposed modules.

Case 2: Effectiveness of Semantic Residual Coding.

To quantify the gains of SRC, we conducted comprehen-
sive experiments on the CLIC-2020 dataset. The results
in Table 2 demonstrate that the Srr and Pfo module brings
consistent improvements in realism and fidelity to ResULIC.

Adaptiveness of Srr to different bitrates. In Figure 9, as
the bitrate decreases, semantic information in x′ diminishes,
leading to vague or incorrect descriptions, yet reconstruction
quality remains stable. Figure 10 further shows that as
total bpp decreases, the text bitrate proportion increases
significantly, highlighting Srr’s adaptivity at varying bitrates.
Additional visual examples are provided in the Appendix D.
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Figure 10. The relative text/latent bitrate ratio under different total
bitrates. The Srr effectively removes more redundancy at lower
bitrates.

The impact of different MLLMs. MLLM models have
been evolving rapidly. Existing methods may use differ-
ent MLLMs for text retrieval. Here, we evaluate several
models, including one offline model Llama-3.2-11B-Vision-

Table 3. Performance comparison of MLLM models on Kodak.

Method MLLM BD-Rate (%) ↓

LPIPS DISTS PSNR MS-SSIM

ResULIC w/o Pfo

GPT-4o 0 0 0 0
Llama-3.2-11B 1.5 0.1 1.5 -0.2

Qwen-VL-MAX -1.6 3.2 0.5 0.52
SenseChat-Vision 0.42 -1.1 0.3 0.8

ResULIC

GPT-4o -6.1 -3.8 0.8 3.1
Llama-3.2-11B –5.8 -4.2 1.2 3.5

Qwen-VL-MAX -6.0 -3.9 0.9 3.1
SenseChat-Vision -5.7 -4.0 1.1 3.4

Instruct (Dubey et al., 2024), and three online models gpt-4o
(OpenAI, 2024), SenseChat-Vision, and Qwen-VL-MAX
(Wang et al., 2024b). Table 3 demonstrates the flexibility of
our method across different MLLMs. The tested MLLMs
achieve stable and comparable performance, especially after
applying the Pfo module to optimize semantic retrieval.

Case 3: Effectiveness of Compression-aware Diffusion.

By integrating Definition 5.1, ResULIC leverages the exist-
ing noise schedule of Stable Diffusion. This approach elimi-
nates the computational overhead associated with retraining
a new latent diffusion model, as required by methods like
ResShift and RDDM when modifying the noise schedule. It
also significantly reduces denoising time redundancy while
achieving substantial improvements across all metrics.

Table 4 uses the Adjustable Noise Schedule (ANS) proposed
in PASD (Yang et al., 2024) as the baseline for comparison.
ANS affects only the inference stage by introducing signal
information from the low-quality input image. Compared to
w/o CDM (i.e., without using our Definition 5.1 for training,
and initializing from random noise during testing), ANS
shows some improvements, but it remains inadequate. In
contrast, our proposed CDM bridges training and inference,
effectively reducing the train-test discrepancy and achieving
superior performance.

Table 4. Bitrate-aware Diffusion enables both accelerated infer-
ence speed (with fewer steps) and improved BD-rate performance.

Method
w/

CDM
(Denoising Steps)

BD-Rate(%) ↓

LPIPS DISTS PSNR MS-SSIM

ANS ×(50/20) 0 0 0 0

ResULIC ×(50/20) 4.6 5.3 6.8 47.1
✓(4/3) -54.4 -65.8 -49.7 -23.9

7. Conclusion
In this paper, we proposed ResULIC, a residual-guided ultra
lowrate image compression with Semantic Residual Coding
and Biterate-aware Diffusion. Extensive experiments show
both promising perceptual quality and reliability under ul-
tra low bitrates. The proposed optimization strategy also
demonstrates flexibility in being quickly applied to existing
frameworks.
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Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. Variational image compression with a scale hyperprior.
In International Conference on Learning Representations,
2018.
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A. Additional Evaluation
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Figure 11. Perceptual realism vs. perceptual fidelity at 0.02 bpp on the CLIC2020 dataset.

A.1. Comparison on other dataset

In addition to the experiments on the CLIC2020 (Toderici et al., 2020) dataset, we conducted more detailed comparisons
on MS-COCO (Caesar et al., 2018), DIV2K (Agustsson & Timofte, 2017), Tecnick (Asuni & Giachetti, 2014), and
Kodak (Kodak, 1993). As shown in Figure 12, 13, 14, our method consistently outperforms state-of-the-art approaches
on perceptual realism metrics such as FID and KID, and achieves superior performance in perceptual fidelity metrics like
DISTS, while excelling in LPIPS at relatively low bitrates, demonstrating its effectiveness in improving fidelity. Since
CorrDiff (Ma et al., 2024) and GLC (Jia et al., 2024) are not open-source and tested differently on other datasets, we selected
two bitrate points from their Kodak experiments for comparison, as illustrated in Figure 15.

Evaluation details: For evaluation on the CLIC2020, DIV2K, and Tecnick datasets, we followed the approach of CDC (Yang
& Mandt, 2022) by resizing images to a short side of 768 and then center-cropping them to 768×768. For MSCOCO-3K, we
randomly selected 3,000 images from the MSCOCO dataset and, following PerCo, resized them to 512×512 for testing. The
FID and KID metrics for all datasets were calculated on 256×256 patches, as described in HiFiC (Mentzer et al., 2020).
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Figure 12. Quantitative comparision with state-of-the-art methods on MSCOCO-3K datasets.
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Figure 13. Quantitative comparision with state-of-the-art methods on DIV2K datasets.
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Figure 14. Quantitative comparison with state-of-the-art methods on Tecnick datasets.

A.2. Additional Experiments of Pfo

We also compared our method with existing approaches, such as the hard prompt method PEZ. Both visual and quantitative
results confirm that Pfo significantly enhances perceptual quality and objective metric performance, particularly under
low-bitrate conditions. For example, as shown in Table 5, the optimized textual information produced by Pfo improves
the fidelity of frameworks like PerCo and Text+Sketch, which employ entirely different architectures for compressing
low-level content. Notably, this enhancement is achieved without requiring additional retraining, as the Pfo module leverages
pretrained MLLM models, making it a flexible and efficient plug-in tool.

A.3. The Impact of Index Coding

Our proposed index coding is a simple yet effective method for text encoding. As illustrated in Figure 16, the text encoding
logic of CLIP first tokenizes the prompt into several words, matches these words to their corresponding indices in a
predefined vocabulary, and then maps these indices to their respective text embedding vectors. In contrast to directly
encoding text strings, our method encodes the indices corresponding to CLIP’s text embedding vectors. From Figure 16, we
can see that our method can save a lot of text bit rate consumption compared to zlib.
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Figure 15. Quantitative comparison with state-of-the-art methods on Kodak datasets.

Table 5. Evaluation of Pfo with different low-level content compressors. PerCO uses a “codebook+hyperprior” model for compression.
Text+Sketch compresses the binary contour maps and has already applied PEZ in its framework.

Compressor
(content)

bpp/LPIPS ↓
No optimizer w/ PEZ w/ Pfo

PerCo 0.0033/0.546 0.0035/0.532 0.0033/0.518
Text+Sketch - 0.0280/0.586 0.0280/0.565

ResULIC 0.0028/0.49 0.0028/0.49 0.0028/0.46

A.4. The impact of sampling method

As shown in Appendix B.5, when η = 0 and η = 1, the sampling process corresponds to deterministic sampling and
stochastic sampling, respectively. We conducted experiments on the CLIC2020 dataset, with the results presented in
the figure below. These results reveal that adding noise during sampling compromises the consistency of reconstruction.
Therefore, deterministic sampling (η = 0) is the better choice.
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Figure 16. Visualization of Index Coding.
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Figure 17. Quantitative comparision of deterministic sampling(η = 0) and stochastic sampling(η = 1) on CLIC2020 datasets.

B. Mathematical Framework
In this section, we formalize the noise addition mechanism integral to our model and derive the essential parameter
relationships. We begin by defining the distributions of the latent variables zn and zn−1, establish their independence, and
subsequently derive the conditional probabilities. Finally, we present the parameter settings for different sampling methods,
specifically DDIM and DDPM, and discuss the formulation of the training loss.

B.1. Noise Addition Mechanism

Definition B.1 (Noise Addition Mechanism). For each timestep n, the latent variables zn and zn−1 are defined by the
following Gaussian distributions:

zn ∼ N
(√

ᾱnz0 +
√
1− ᾱnγnρres, (1− ᾱn)I

)
, (19)

zn−1 ∼ N
(√

ᾱn−1z0 +
√
1− ᾱn−1γn−1ρres, (1− ᾱn−1)I

)
. (20)

Here, ᾱn denotes the cumulative product of αn up to timestep n, γn is a scaling factor, ρres represents a residual term, and I
is the identity matrix.
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B.2. Independence of Consecutive Latent Variables

Theorem B.2 (Conditional Independence of zn and zn−1). Given the distributions defined in Equations (11), we have
zn ⊥ zn−1 | z0, zc,

Proof. Under the given model, zn is determined solely by (z0, zc) and the noise term ϵn, which is independent of
ϵn−1. Consequently, conditioning on zn−1 provides no additional information about zn, implying q(zn|zn−1, z0, zc) =
q(zn|z0, zc). Hence, zn ⊥ zn−1

∣∣ z0, zc.

B.3. Conditional Probability Reduction

Based on Theorem B.2, the conditional probability simplifies to:

q(zn−1 | zn, z0, zc) = q(zn−1 | z0, zc) ∼ N
(√

ᾱn−1z0 +
√
1− ᾱn−1γn−1ρres, (1− ᾱn−1)I

)
. (21)

B.4. Derivation of Parameter Relationships

Assume that the conditional probability can also be expressed as:

q(zn−1 | zn, z0, zc) ∼ N
(
zn−1; ιnzn + ζnz0, σ

2
nI
)
. (22)

Theorem B.3 (Parameter Relationships). For Equations (21) and (22) to be equivalent, the following system of equations
must be satisfied: 

ιn
√
ᾱn + ζn =

√
ᾱn−1,

ι2n(1− ᾱn) + σ2
n = 1− ᾱn−1,√

1− ᾱn−1γn−1 = ιnγn
√
1− ᾱn.

(23)

Proof. Equate the expressions for zn−1 from Equations (21) and (22):

zn−1 = ιnzn + ζnz0 + σnϵ, (24)

zn−1 =
√
ᾱn−1z0 +

√
1− ᾱn−1 (γn−1ρres + ϵn−1) . (25)

Substitute the expression for zn from Equation (19) into the first equation:

zn−1 = ιn
(√

ᾱnz0 +
√
1− ᾱnγnρres +

√
1− ᾱnϵn

)
+ ζnz0 + σnϵ

=
(
ιn
√
ᾱn + ζn

)
z0 + ιn

√
1− ᾱnγnρres +

(
σnϵ+ ιn

√
1− ᾱnϵn

)
. (26)

Comparing coefficients with the second expression for zn−1, we obtain the system of equations in (23). The noise terms ϵ
and ϵn are mutually independent and follow standard normal distributions, leading to the condition on the variances.

B.5. Sampling Method Parameter Settings

The parameter σn varies depending on the chosen sample method. We present the parameter settings for two prominent
sampling methods: Deterministic Sampling and Stochastic Sampling.

B.5.1. DETERMINISTIC SAMPLING

When employing the Deterministic Sampling, the noise parameter is set to zero:

σn = 0. (27)

Substituting σn = 0 into the system of equations (23), we derive the specific parameter configurations for the sampler:

ιn =

√
1− ᾱn−1√
1− ᾱn

, (28)

ζn =
√
ᾱn−1 −

√
ᾱn ·

√
1− ᾱn−1√
1− ᾱn

, (29)

γn = γn−1. (30)
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To ensure consistency with Equation (19), we set:

γn =

√
ᾱNr√

1− ᾱNr

.

B.5.2. STOCHASTIC SAMPLING

For the Stochastic Sampling, the noise parameter is defined as:

σn =

√
1− ᾱn−1

1− ᾱn
·
√
1− ᾱn

ᾱn−1
. (31)

Substituting this σn into the system of equations (23), we obtain the parameter settings for the sampler:

ιn =
1− ᾱn−1

1− ᾱn
·
√
ᾱn√

ᾱn−1
, (32)

ζn =
√
ᾱn−1 −

√
ᾱn ·

(
1− ᾱn−1

1− ᾱn
·
√
ᾱn√

ᾱn−1

)
, (33)

γn = (

√
1− ᾱn√
ᾱn

/

√
1− ᾱn − 1√
ᾱn − 1

) · γn−1. (34)

To maintain consistency with Equation (19), we set:

γn =

√
1− ᾱn√
ᾱn

·
(

ᾱNr

1− ᾱNr

)
.

B.6. Sampling

Algorithm 2 Compression-aware Diffusion (Sampling)
Input: Diffusion model θ, compressed feature zc

1: Compute zNr
=
√
ᾱNr

zc +
√
1− ᾱNr

ϵNr

2: for n = Nr, · · · , 1 do
3: Compute z̃0 based on n:
4: if n = Nr then
5: z̃0 ← zc
6: else
7: z̃0 ←

√
ᾱnzn−

√
1−ᾱn(γnzc+ϵ̃n)√

ᾱn−
√
1−ᾱnγn

8: end if
9: Compute ιn, ζn, σn by ιn =

√
1−αn√
αn

, ζn =
√
αn−1 − αn√

αn−1
, σn = η

√
1−ᾱn−1

1−ᾱn

√
1− ᾱn

ᾱn−1
,

10: Compute zn−1 = ιnzn + ζnz̃0 + σnϵ
11: end for
12: return z0

B.7. Training Objective

For training, based on Equation (19), we can express zn as:

zn =
√
ᾱnz0 +

√
1− ᾱn (γnρres + ϵn)

=
√
ᾱnz0 +

√
1− ᾱnγnρres +

√
1− ᾱnϵn

=
√
ᾱnz0 +

√
1− ᾱnγn(zc − z0) +

√
1− ᾱnϵn

=
(√

ᾱn −
√
1− ᾱnγn

)
z0 +

√
1− ᾱnγnzc +

√
1− ᾱnϵn. (35)
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From Equation (35), we derive the expression for z0 as follows:

z0 =


1

√
ᾱn −

√
1− ᾱn · γn

(
zn −

√
1− ᾱn · (γnzc + ϵn)

)
, if n ̸= N,

zc, if n = N.
(36)

The optimization for visual adapter θ is achieved by minimizing the following negative ELBO, i.e.,∑
n

DKL [q(zn−1 | zn, z0, zc) ∥ pθ(zn−1 | zn, zc)] , (37)

By combining this with Equation (22), we derive the visual loss function as follows:

LVis = Ez0,c,zc,t,ϵ ∥ιnzn + ζnz0 − (ιnzn + ζnẑ0)∥2 ,

Thus, for n ̸= N , the training loss LVis can be reformulated as:

LVis = ζ2n ∗ Ez0,c,zc,t,ϵ∥z0 − ẑ0∥2

= ζ2n ∗ Ez0,c,zc,t,ϵ

∥∥∥∥ 1
√
ᾱn −

√
1− ᾱn · γn

(
zn −

√
1− ᾱn · (γnzc + ϵn)

)
− 1
√
ᾱn −

√
1− ᾱn · γn

(
zn −

√
1− ᾱn · (γnzc + ϵθ(zn, c, zc, t))

)∥∥∥∥2
=

(
ζn
√
1− ᾱn√

ᾱn −
√
1− ᾱn · γn

)2

Ez0,c,ẑc,t,ϵ ∥ϵ− ϵθ(zn, c, zc, t)∥2 . (38)

When n = N , the training loss LVis is set to zero. We define the coefficient ω2
n =

(
ζn
√
1− ᾱn√

ᾱn −
√
1− ᾱn · γn

)2

. To enhance

training stability, this coefficient ωn is omitted during training.

B.8. Conclusion

By formalizing the noise addition mechanism and deriving the requisite parameter relationships, we establish a robust
mathematical foundation for our model. The distinct parameter settings for deterministic and stochastic samplers facilitate
flexibility in sampling strategies while maintaining consistency with the underlying probabilistic framework. Furthermore,
the training objective LVis is meticulously formulated to minimize the discrepancy between the true noise ϵ and the predicted
noise ϵθ, thereby ensuring effective model training.

C. Experiment Details
C.1. Visual Adapter

We create a trainable copy of the pretrained UNet encoder and middle block, denoted as Ucopy. While ControlNet employs
an additional convolutional neural network to map control images (e.g., Canny edges or depth maps) from the pixel domain
to the latent space, our method eliminates the need for such an extra network due to the prior handling of latent features.
Additionally, following ControlNet-XS (Zavadski et al., 2024), we design the copied encoder and middle block in accordance
with the ControlNet-XS Type B architecture, as illustrated in Fig. 18.

C.2. Perceptual Fidelity Optimizer

The Pfo follows the completion of semantic residual retrieval. During optimization, we use the AdamW opti-
mizer (Loshchilov & Hutter, 2017) with a learning rate set to 0.3. We balance the time cost and reconstruction quality by
using 500 steps for optimization, which takes approximately 175s for a Kodak 768x512 image. During the optimization
process, the time steps n are not randomly selected from all 0 to 1000 as in the forward process of the diffusion model.
Instead, they are chosen based on our denoising steps. For instance, if we use 4-step DDIM sampling for denoising, our
optimization process specifically targets the noise levels at these 4 steps. For more visual results, see Figure 22. And, we
perform inference every 50 optimization steps and select the result with the lowest LPIPS (Zhang et al., 2018) to ensure the
fidelity.
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Table 6. Detailed complexity of each component.

Latent Semantic Residual retrieval Diffusion
(4steps/3steps)

Total
Srr (+Pfo) Index Coding

Enc (s) 0.10 5.77 (+175.29) 0.0015 - 5.87 (+175.29)
Dec (s) 0.06 - 0.0004 0.54/0.37 0.60/0.43

C.3. Complexity Evaluation

In Table 6, we provide the complexity results of each part. The Pfo module takes most of the encoding time for its iterative
updating process. The total decoding speed remains competitive with existing methods. As shown in Table 7, complexity
comparison with existing methods are listed. These data were all tested on the Kodak dataset using an RTX 4090 GPU.

zc

zn
… …

…

… …

Visual adapter

Concat

Figure 18. The architecture of Visual Adapter.

Table 7. Complexity Comparison of different methods based on denoising steps, encoding speed, decoding speed. ‘w/o SRC’ indicates
removing both MLLM and Pfo. * indicates the extra time required for retrieving the full image caption.

Type Method Denoising steps Encoding Speed (s) Decoding Speed (s)

VAE-based method Cheng2020 – 2.86 6.69
ELIC – 0.057 0.079

GAN-based method MS-ILLM – 0.038 0.059
HiFiC – 0.036 0.061

Diffusion-based method
DiffEIC 50 / 20 0.128 4.57/1.96
PerCo 20 / 5 0.08 (+ 0.32)* 2.13/0.64

Text-Sketch 25 62.045 12.028
Ours w/o SRC 4 / 3 0.10 (+ 3.24)* 0.60/0.43

Ours 4 / 3 181.16 0.60/0.43

C.4. Other Implementation Details

1) Details of Baseline Model: To ensure a fair comparison, we evaluated all methods as follows: For open-sourced
approaches (e.g., DiffEIC, PerCo, CDC, MS-ILLM, Text-Sketch), we used their publicly available pretrained models. For
non-open-sourced methods, we relied on the official results reported in their respective publications (e.g GLC, CorrDiff).
Additionally, since the open-sourced HiFiC model operates at a higher bitrate, our data was sourced from the reproduced
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version by the DiffEIC’s author. For PerCo, the performance of the open-sourced version is slightly different with the offical
results, so we provided comparison with both version.

2) Training: The Feature Compressor and the Visual Adapter models which is based on the stable diffusion v2.1 are trained
on the LSDIR (Li et al., 2023) and Flicker2w (Liu et al., 2020) dataset. We first preprocess this dataset using LLaVA (Liu
et al., 2024a) to obtain a caption corresponding to each image. Note that this training process is divided into two stages.
In the first stage, we set λd and λp to 0, and λR to {24, 14, 4, 2, 1}, training for 150K iterations. In the second stage, we
set λd to 1, λp to {0.4, 0.6, 0.8, 1, 1}, and λR to {36, 16, 6, 3, 1.5}, training for 100K iterations. During training, we
center-crop images to a dimension of 512 × 512 and randomly set 30% of the captions to empty strings to enhance the
model’s generative capabilities and sensitivity to prompts.

As shown in Eq. (18), the term LR = R(zc) is estimated by a probability estimation model with pŷ during training, which
is formulated as R = E[− log2(pŷ)]. Here, ŷ represents the output obtained by passing z0 through the feature encoder
followed by quantization.

3) Semantic Residual Retrieval. After the training of the Latent Compressor is finished. The decoded image x′ and its
corresponding original image x are used to extract the semantic residual.

The prompt for GPT4o to extract the raw captions is:

• “Please describe this picture in detail with 40 words. Do not provide any description about feelings.”

Then we use the captured fmllm(x) and fmllm(x
′) to further capture the residual information cres. The prompt used for GPT-4o

is:

• “Original Image: ‘fmllm(x)’; Compressed Image: ‘fmllm(x
′)’. Provide information that is in the original image

but not included in or mismatch with the compressed image. Don’t include information that is already in the
compressed image. Please use most compact words. Do not include the description for the compressed image. For
example: if input is Original Image: A red barn surrounded by trees, reflected in a pond. Compressed Image: red
house surrounded by trees. Residual caption is : A barn reflected in a pond. Please refer to this to output. Do not
appear words like ’compressed image’, ’original image’ and ’The semantic residual is’. If you think that the two
descriptions mean almost the same thing, please output an empty string. ”

D. More Results

(a)Original (b)PerCo (official), 0.011bpp (d)Ours, 0.011bpp(c)PerCo (SD2), 0.033bpp

Figure 19. Visual comparison with the official PerCo version.

In Figure 19, the reproduced version of PerCO (marked as PerCo(SD2)) provides better visual quality than the original
one. However, in terms of objective metrics in Table 8, the official PerCo version performs better. Therefore, we provide
comparisons with both versions to demonstrate our method’s efficiency.

In Figure 23, we also provide more examples of semantic residual by MLLM. In Figure ??, While each metric improves
with its respective optimization, PSNR-optimized results tend to produce smoother textures, such as in water and trees,
whereas LPIPS and MS-SSIM optimizations are better at preserving details.
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Table 8. Comparison with results in PerCo’s original paper in terms of BD-Rate. Note that the PerCo (official) is also LPIPS optimized.
Our method still shows significantly better performance.

Methods BD-Rate (%) / Kodak

LPIPS PSNR MS-SSIM

PerCo(official) 0 0 0
PerCo(SD2) 21.7 88.3 15.4
Ours w/o Pfo -34.5 -54.7 -33.4
Ours -41.5 -52.0 -32.7

In Figure 20, 21, and 24, we present visualizations for different bpp values. It can be observed that our method achieves
significantly impressive subjective quality.
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(a) Original (c) PerCo, 0.033bpp (d) Ours 0.023 bpp(b) MS-ILLM, 0.046bpp

(d) Text, 0.033bpp

Figure 20. Visual comparison at low bpp.
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(a) Original (c) PerCo, 0.125 bpp (d) Ours 0.129 bpp(b) MS-ILLM, 0.153bpp

(d) Text, 0.033bpp

Figure 21. Visual comparison at high bpp.
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Figure 22. Effectiveness of Pfo optimization and corresponding texts
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Figure 23. More visualization examples of MLLM-based Semantic Residual Retrieval.
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(a) original (b) PerCo

0.0033 Bpp

(c) Ours w/o Pfo 
0.0030 Bpp

(d) Ours

0.0030 Bpp

Figure 24. More subjective visual comparisons
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