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ABSTRACT

We consider the problem of optimizing by sampling under multiple black-box
constraints in nano-material design. We leverage the posterior regularization
framework and show that the constraint satisfaction problem can be formulated as
sampling from a Gibbs distribution. The main challenges come from the black-
box nature of the constraints obtained by solving complex and expensive PDEs.
To circumvent these issues, we introduce Surrogate-based Constrained Langevin
dynamics for black-box sampling. We devise two approaches for learning sur-
rogate gradients of the black-box functions: first, by using zero-order gradients
approximations; and second, by approximating the Langevin gradients with deep
neural networks. We prove the convergence of both approaches when the target
distribution is log-concave and smooth. We also show the effectiveness of our
approaches over Bayesian optimization in designing optimal nano-porous material
configurations that achieve low thermal conductivity and reasonable mechanical
stability.

1 INTRODUCTION

In many real-world design problems, optimal designs simultaneously satisfy multiple conflicting
constraints that can be expensive to evaluate. As an example, in computational material design the
main goal is to fabricate new material configurations that meet a series of physical constraints. These
constraints are often specified by Partial Differential Equations (PDEs) via black-box numerical
solvers. Such solvers are complex, expensive to evaluate, and often offer no access to the inner
variables or the gradients.

Black-box optimization. The black-box nature of the above problems prevents the use of gradient-
based optimization, and several alternative approaches have been proposed. The first common
approach is based on finite differences using Gaussian smoothing (or zero-order optimization) to
estimate gradients (Nesterov & Spokoiny, 2017; Duchi et al., 2015; Ghadimi & Lan, 2013). An
alternative for optimizing expensive black-box functions is Bayesian Optimization (BO) (Mockus,
1994; Jones et al., 1998; Frazier, 2018).

Black-box sampling. Similar to black-box optimization, the problem of sampling from a distribution
with unknown likelihood that can only be point-wise evaluated is called black-box sampling (Chen &
Schmeiser, 1998; Neal, 2003). Naturally, zero-order methods via Gaussian smoothing (Nesterov &
Spokoiny, 2017) can be extended to black-box sampling, for example using Langevin dynamics (Shen
et al., 2019). Compared with optimization, sampling approaches are natural for optimal design since
one might prefer a distribution of candidate designs over one single point. However, it is expensive to
repeatedly query the PDE solvers.

In this paper, we consider the problem of optimizing multiple black-box objectives as sampling from
a Gibbs distribution with compact support. We show that the sampling problem can be cast in the
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framework of constrained Langevin dynamics and extend the traditional Langevin dynamics to the
black-box case with constraints and compact support.

To alleviate the computational burden in zero-order methods, we propose Surrogate Model-Based
Langevin dynamics that consists of two steps: (i) Learning (using training data) a deep surrogate of the
gradient of the potential of the Gibbs distribution. (ii) Using the surrogate model in the constrained
Langevin dynamics in lieu of the black-box potential. The surrogate enables more efficient sampling.

To summarize, we make the following contributions: We cast the problem of optimizing a black-box
function under constraints as sampling from a Gibbs distribution. We introduce Constrained Zero-
Order Langevin Monte Carlo, using projection or proximal methods, and prove the convergence to
the target Gibbs distribution. We introduce Surrogate Langevin Monte Carlo by learning surrogate
gradient of the potential of the Gibbs distribution using deep neural networks. Finally we show the
effectiveness of our approach in nano-porous configurations design with improved thermoelectric
efficiency and mechanical stability.

2 CONSTRAINT SATISFACTION AS SAMPLING

Our goal is to find a posterior distribution q of samples satisfying a series of equality and inequality
constraints: ψj(x) = yk, j = 1 . . . Ce, and φk(x) ≤ bk, k = 1 . . . Ci where x ∈ Ω and Ω ⊂ Rd is
a bounded domain. We assume a prior distribution p0 whose analytical form is known. The main
challenge is that ψj and φk are black box functions obtained from solving complex PDEs. We choose
Lagrangian parameters λj > 0 and obtain the relaxation:

min
q,
∫
Ω
q(x)=1

L (q) (1)

where L (q) = KL(q, p0) +
∑Ce

j=1 λjEx∼q(ψj(x)− yk)2 +
∑Ci

k=1 λkEx∼q(φk(x)− bk)+.

Following the posterior regularization framework of Ganchev et al. (2010); Hu et al. (2018), we
obtain that the constraint satisfaction problem corresponds to sampling from a Gibbs distribution:
Lemma 1. The solution to the distribution learning problem given in Eq. 1 is given by:

π(x) =
exp(−U(x))

Z
1x∈Ω, (2)

where U(x) = − log p0(x) +
∑Ce

j=1 λj(ψj(x) − yk)2 +
∑Ci

k=1 λk(φk(x) − bk)+ and Z =∫
x∈Ω

exp (−U(x)) dx.

3 CONSTRAINED LANGEVIN DYNAMICS

Sampling from π(x) in Eq. 2 can be done using Langevin dynamics. The constrained white-box
setting was recently studied in (Dalalyan, 2017; Bubeck et al., 2015; Brosse et al., 2017; Durmus
et al., 2019). We give a quick review:

Assumption A: Ω is a convex set such that 0 ∈ Ω, Ω contains a Euclidean ball of radius r,
and Ω is contained in a Euclidean ball of radius R. (e.g., Ω might encode box constraints.) Let
R = supx,x′∈Ω ||x− x′|| <∞.
Assumption B: We assume that U is convex, β-smooth, and with bounded gradients:

‖∇xU(x)−∇yU(y)‖ ≤ β ‖x− y‖ , ∀x, y ∈ Ω.

‖∇U(x)‖ ≤ L, ∀x ∈ Ω (Boundedness).

The Total Variation (TV) distance between measures µ, ν is TV(µ, ν) = supA |µ(A)− ν(A)|. The
projection onto Ω, PΩ(x) is defined as follows: for all x ∈ Ω, PΩ(x)=arg minz∈Ω ‖x− z‖

2.

Projected Langevin dynamics. Similar to projected gradient descent, Bubeck et al. (2015) introduced
Projected Langevin Monte Carlo (PLMC) and proved its mixing propreties towards the stationary
distribution π. PLMC is given by the following iteration for k = 0 . . .K − 1 (PLMC):

Xk+1 = PΩ

(
Xk − η∇xU(Xk) +

√
2ληξk

)
, (3)

2



Published as a conference paper at ICLR 2020 DeepDiffEq Workshop

for k = 0 . . .K − 1, where ξk ∼ N (0, Id), η is the learning rate, and λ > 0 is a variance term.

Proximal Langevin dynamics. Similar to proximal methods in constrained optimization, Brosse et al.
(2017) introduced Proximal LMC (ProxLMC) that uses the iteration for k = 0 . . .K−1 (ProxLMC):

Xk+1 =

(
1− η

γ

)
Xk − η∇xU(Xk) +

η

γ
PΩ(Xk) +

√
2ληξk (4)

where η is the step size and γ is a regularization parameter.

We denote by µPLMC
K and µProxLMC

K the distributions of XK obtained by iterating Eq. 3 and Eq. 4
respectively. Under Assumptions A and B, both these distributions converge to the target Gibbs
distribution π in the total variation distance. In particular, Bubeck et al. (2015) showed that for
η = Θ̃(R2/K), we obtain:

TV(µPLMC
K , π) ≤ ε for K = Ω̃(ε−12d12). (5)

Likewise, Brosse et al. (2017) showed we can obtain the following for 0 < η ≤ γ(1 + β2γ2)−1:

TV(µProxLMC
K , π) ≤ ε for K = Ω̃(ε−6d5), (6)

where the notation αn=Ω̃(βn) means that there exists c ∈ R, C > 0 such that αn ≥ Cβn logc(βn).

4 BLACK-BOX CONSTRAINED LANGEVIN

We now introduce our variants of black-box constrained LMC. We explore two strategies for approxi-
mating the gradient of U(x) by (i) adopting derivative-free optimization and (ii) learning a surrogate
deep model that approximates the gradient of the potential. Let G : Ω→ Rd be a surrogate gradient
that approximates the true gradient∇xU .

Assumption C. The surrogate gradient G satisfies E ‖G(Yk)‖2 <∞,∀k = 0, 1, . . . .

Surrogate projected Langevin dynamics. Given Y0, the Surrogate Projected LMC (S-PLMC)
replaces the potential gradient∇xU in Eq. 3 with the surrogate gradient G:

Yk+1 = PΩ

(
Yk − ηG(Yk) +

√
2ληξk

)
, k = 0 . . .K − 1 (7)

Surrogate proximal Langevin dynamics. Similarly, the Surrogate Proximal LMC (S-ProxLMC)
replaces the unknown potential gradient ∇xU in Eq. 4 with the gradient surrogate G, for k =
0 . . .K − 1:

Yk+1 =

(
1− η

γ

)
Yk − ηG(Yk) +

η

γ
PΩ(Yk) +

√
2ληξk. (8)

We now present our main theorems. We bound the total variation distance between the trajectories of
the surrogate Langevin dynamics (S-PLMC, and S-ProxLMC) and the true LMC dynamics (PLMC
and ProxLMC).
Theorem 1 (S-PLMC and S-ProxLMC Mixing Properties). Under Assumption C, we have:

1. S-PLMC convergence. Let µPLMC
K be the distribution of the random variable XK obtained by

iterating PLMC Eq. 3, and µS-PLMC
K be the distribution of the random variable YK obtained by

iteration S-PLMC given in Eq. 7. We have TV(µS-PLMC
K , µPLMC

K ) is upper-bounded by:√
η

λ

(
K−1∑
k=0

E ‖G(Yk)−∇xU(Yk)‖2 +Kβ2R2

) 1
2

.

2. S-ProxLMC convergence. Let µProxLMC
K be the distribution of the random variableXK obtained by

iterating ProxLMC Eq. 4, and µS-ProxLMC
K be the distribution of the random variable YK obtained

by iterating S-ProxLMC given in Eq. 8. We have TV(µS-ProxLMC
K , µProxLMC

K ) is upper-bounded by:√
η

2λ

(
K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2
) 1

2

.
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From Thm. 1, we see that it suffices to approximate the potential gradient∇xU(X) (and not only
the potential U(X)) in order to guarantee convergence of surrogate LMC. Combining Theorem 1
and bounds in Eqs. 5 and 6 we obtain:

Theorem 2 (Convergence of Surrogate Constrained LMC). Under assumptions A, B and C we have:

1. Assume in S-PLMC that there exists δ > 0 such that E ‖G(Yk)−∇xU(Yk)‖2 ≤ δ, ∀k ≥ 0. Set
λ = 1, and η = Θ̃(min(R2/K,α/K2)) where α = 1/(δ + β2R2). Then for K = Ω̃(ε−12d12),
we have:

TV(µS-PLMC
K , π) ≤ ε.

2. Assume in S-ProxLMC that there exists δ > 0 such that E ‖G(Xk)−∇xU(Xk)‖2 ≤ δ, ∀k ≥ 0.
Set λ = 1, and η = min(γ(1 + β2γ2)−1, 1

δK2 ). Then for K = Ω̃(ε−6d5) we have:

TV(µS-ProxLMC
K , π) ≤ ε.

We defer the proofs of the Theorems in Appendix F.

5 LEARNING SURROGATE GRADIENTS

Next, we present two approaches to approximate ∇xU(x) with G(x) using (i) zero-order approxi-
mation and (ii) neural network-based Taylor learning (Mukherjee & Zhou, 2006; Mukherjee & Wu,
2006; Wu et al., 2010). We then use either Eq. 7 or Eq. 8 to perform Langevin dynamics. In what
follows, we refer to surrogate constrained LMC, as x-PLMC or x-ProxLMC where x is one of four
prefixes ({Zero-order, Taylor-2, Taylor-1, Taylor-Reg}).

1. Zero-order approximation via Gaussian smoothing (Nesterov & Spokoiny, 2017; Duchi
et al., 2015; Ghadimi & Lan, 2013; Shen et al., 2019):

G(x) =
1

n

n∑
j=1

(
U(x+ νgj)− U(x)

ν

)
gj ,

where g1, . . . gn are i.i.d. standard normal vectors.

2. Taylor-2: Given a training set S = {(xi, yi = ψ(xi)), x ∼ ρΩ, i = 1 . . . N}, we learn two
neural networks for the surrogate potential fθ and gradient GΛ as in Mukherjee & Zhou
(2006):

min
θ,Λ

1

N2

∑
i,j

wσij(yi − fθ(xj) + 〈GΛ(xi), xj − xi〉)2),

where wσij = exp
(
−‖xi−xj‖2

σ2

)
.

3. Taylor-1 simplifies the objective function of Taylor-2 by using only one network fθ and
learn the following:

min
θ

1

N2

∑
i,j

wσij(yi − fθ(xj) + 〈∇xfθ(xi), xj − xi〉)2,

4. Taylor-Reg uses the Taylor-expansion regularization:

min
θ

1

N

N∑
i=1

(yi − fθ(xi))2 + λR(fθ), where

R(fθ)=
1

N2

∑
i,j

wσij(yi−yj+〈∇xfθ(xi), xj − xi〉)2.

The advantage of the Taylor learning of gradients on zero-order estimation is its efficiency at sampling
time. Under several mild assumptions, we can show that E ‖G(Xk)−∇xU(Xk)‖2 ≤ δ, ∀k ≥ 0 for
each G above.
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Model Min κ / Respective σ Min κ / Resp. satisfied σ Per-sam. time (s)
Baseline Bayesian Opt 0.0552 / 0.5933 0.0846 / 0.4655 1614

Ours

Taylor-Reg-PLMC 0.0613 / 1.4037 0.0732 / 0.4401 952
Taylor-1-PLMC 0.0544 / 0.8004 0.0963 / 0.4677 852

Zero-order-PLMC 0.0471 / 0.5594 0.0697 / 0.4764 15677
Taylor-Reg-ProxLMC 0.0639 / 0.8789 0.0666 / 0.4467 856

Taylor-1-ProxLMC 0.0548 / 0.6549 0.0876 / 0.4481 972
Zero-order-ProxLMC 0.0354 / 0.6471 0.0808 / 0.4991 15080

Table 1: Result summary over 20 new samples obtained by our sampling methods on π(x) with κ and σ
constraints Eq. 6 and the BO baseline. The starting samples are reused from the single constraint case (min
κ = 0.0759, mean κ = 0.1268, and mean σ = 0.8181.)

κ = 0.0871 κ = 0.0802, κ = 0.0732
σ = 0.4826 σ = 0.6681 σ = 0.4401

Figure 1: Example of nano-porous structures with corresponding heat flux shown using a color gradient. Yellow
regions indicate high phonons flux. The thermal conductivity κ and von Mises stress σ are reported below each
structure. The arrows show the moving directions of the pores from their positions on the left structure. (Left)
A random sample. (Middle) The sample obtained by Taylor-Reg PMLC starting from the left structure with κ
constraint. (Right) The sample obtained by Taylor-Reg PMLC with both κ and σ constraints.

6 EXPERIMENTS: NANO-POROUS DESIGN

We demonstrate the usability of our proposed black-box Constrained Langevin sampling in nano-
configuration design under multiple constraints. To design better nano-configurations, we take
into account both thermal conductivity and mechanical stability. These physical constraints are
respectively specified by thermal conductivity κ(x) and mechanical von Mises stress σ(x), and they
can be obtained by solving the non-linear PDEs (Boltzmann Transport Equation and the continuum
linear elasticity Equation respectively). We aim at producing a series of samples x that minimize
κ(x) to achieve high thermoelectric efficiency while maintaining σ(x) lower than some threshold.
Based on the posterior regularization formulation in Section 2, we pose the constraint satisfaction as
sampling from the following Gibbs distribution:

π(x) = p0(x)
exp(−λ1κ(x)2 − λ2[σ(x)− τ ]+)

Z
1x∈[0,1]20 ,

where p0(x) is the uniform distribution over the unit square, which is equivalent to the Poisson
process of 10 pores on the square, and τ is a threshold on the maximum value of σ. Sampling from
this black box Gibbs distribution is challenging, so our first task is to have good surrogates for the
gradient of its potential.

Data. We generate a dataset of 50K nano-porous structures, each of size 100nm × 100nm. Number
of pores is fixed to 10 in this study and each pore is a square with a side length of 17.32nm. We
sample the pore centers uniformly over the unit square and construct the corresponding structure after
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re-scaling them appropriately. Then, using the solvers OpenBTE (Romano & Grossman, 2015) and
Summit (

∑
MIT Development Group, 2018), we obtain for each structure x a pair of values: thermal

conductivity κ and von Mises stress σ. We collect two datasets: {(xi, κi)}Ni=1 and {(xi, σi)}Ni=1, for
N = 50K samples.

Features. The pore locations are the natural input features to the surrogate models. Apart from the
coordinates, we derive other features based on physical intuitions. We also add pore-pore distances
along each coordinate axis as features.

Surrogate gradient methods. We use feed-forward neural networks to model the surrogate gradients,
since obtaining their gradients is efficient, thanks to automatic differentiation. We use networks
comprised of 4 hidden layers (with ReLu) with sizes 128, 72, 64, 32 and apply the same architecture
to approximate the gradients for κ and σ separately. The output layer is sigmoid. For the Taylor-2
variant , we have an additional output vector. The networks are trained using Adam optimizer with
learning rate 10−4 and decay 1.0. We fine-tune and select networks with grid-search .

Bayesian optimization as baseline. We use BOTorch library Balandat et al. (2019). The function
we wish to optimize is slightly different from the above potential E(x):

g(x) = −κ(x)−0.1 · [σ(x)− τ ]+ s.t. x ∈ [0, 1]20.

We optimize g(x) with BOTorch using QExpected Improvement (qEI) as the acquisition function.
We initialize using the same 20 random samples used by our Langevin sampling approach and return
20 new candidates each round. For optimizing the acquisition function, the number of restarts is 20
with 200 samples. The number of samples to estimate the qEI function is 2000. We run BO with 10
steps and report the best result.

Comparison metrics. Starting from 20 samples initialized from p0(x), we run our proposed black-
box Langevin MCs and BO to obtain 20 new realizations from the target distribution π(x). To
compare outcomes, we report the minimum value of κ and the corresponding σ. We also report the
minimum achieved κ when its corresponding σ is below τ .

Discussion. Results are summarized in Table 1. Note that all the surrogate Langevin MCs are
initialized from the same set of 20 samples as in BO. In this experiment, we set τ = 0.5, λ1 = 100,
λ2 = 1, the step size η = 1e−3 and the exponential decay rate 0.8. Our approach can effectively
sample new configurations under multiple competing constraints at a significantly low computational
cost. Taylor-Reg-ProxLMC achieves the best performance while offering 15x speedup over Zero-
order PLMC. Compared with BO, our approach achieves higher thermoelectric efficiency. The
running time of BO includes data generation and surrogate fitting; however, our approach only
requires to fit the surrogate once for all and hence has higher reusability.
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A SUPPLEMENTAL EXPERIMENTAL RESULTS

Surrogate gradient methods. We use feed-forward neural networks to model the surrogates because
obtaining gradients for such networks is efficient thanks to automatic differentiation frameworks. We
use networks comprised of 4 hidden layers with sizes 128, 72, 64, 32 and apply the same architecture
to approximate the gradients for κ and σ separately. The hidden layers compute ReLU activation
whereas sigmoid was used at the output layer (after the target output is properly normalized). For the
Taylor-2 variant (in Eq. 2), we have an output vector for the gradient prediction. The networks are
trained on the corresponding objective functions set up earlier by Adam optimizer with learning rate
10−4 and decay 1.0. We fine-tune the networks with simple grid-search and select the best models
for comparison.
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Figure 2: Comparison of the surrogate variants in testing RMSE. (Left) prediction accuracy for the thermal
conductivity κ. (Right) prediction accuracy for mechanical stability σ. Note the difference in scale of κ and σ.

As emphasized throughout, our focus is more on approximating the gradient rather than learning
the true function. However, we need to somehow evaluate the surrogate models on how well they
generalize on a hold-out test set. Like canonical regression problems, we compare the surrogate
variants against each other using root mean square error (RMSE) on the test set. Figures 2 and 3
shows the results. The left figure shows RMSE for predicting κ and the right one shows RMSE for
the von Mises stress σ. We can see that the Taylor-Reg generalizes better and also converges faster
than Taylor-1 and Taylor-2 to target RMSE for κ, while all methods result similarly for σ prediction.
This is reasonable because the objectives of Taylor-1 and Taylor-2 are not to optimize the mean
square error, which we evaluate on here. Figure 3 shows the learning in terms of sample complexity.
Again, Taylor-Reg outperforms Taylor-1 and Taylor-2 for κ prediction. In contrast, most models
work similarly for σ regression, particularly when the training size is reduced to 50% (25K).
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Figure 3: Comparison of the surrogate models in RMSE on the same test set when the training size is varied.
Note the scale difference in the figures due to the different range of values.

Additional generated samples. We show additional configurations generated by our sampling
approach (Taylor-Reg ProxLMC, Taylor-1 ProxLMC and Zero-order ProxLMC) in Fig. 4.

Examples of the samples generated by Zero-order PLMC, Taylor-1 PLMC and the hybrid method are
also depicted in Figure 5.
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κ = 0.0871, σ = 0.4826 κ = 0.0834, σ = 0.4638 κ = 0.0942, σ = 0.4566

Figure 4: Example of nano-porous structures with corresponding heat flux shown using a color gradient. Yellow
regions indicate high phonons flux. The thermal conductivity κ and von Mises stress σ are reported below each
structure. The arrows show the moving directions of the pores. (Left) A random sample. (Middle) The sample
obtained by Taylor-Reg ProxLMC starting from the left structure with κ constraint. (Right) The sample obtained
by Taylor-Reg ProxLMC with both κ and σ constraints.

κ = 0.063 κ = 0.090 κ = 0.076

Figure 5: Samples from by Zero-order PLMC (left), Taylor-1 PLMC (middle) and the hybrid algorithm of
Zero-order and Taylor-1 PLMC (right). All are run with the κ constraint.

B BACKGROUND ON MODELING NANOSCALE HEAT TRANSPORT

At the nanoscale, heat transport may exhibit strong ballistic behaviour and a non-diffusive model
must be used (Chen). In this work we use the Boltzmann transport equation under the relaxation time
approximation and in the mean-free-path (MFP) formulation (Romano & Grossman, 2015)

Λŝ · ∇T (Λ) + T (Λ) =

∫
α(Λ′)〈T (Λ′)〉dΛ′, (9)

where T (Λ) is the effective temperature associated to phonons with MFP Λ and direction ŝ; the
notation 〈.〉 stands for an angular average. The coefficients α(Λ′) are given by

α(Λ′) =
K(Λ′)

Λ′

[∫
K(Λ′′)

Λ′′
dΛ′′

]−1

, (10)

where K(Λ′) is the bulk MFP distribution. In general, such a quantity can span several orders of
magnitude; however, for simplicity we assume the gray model, i.e. all phonons travel with the same

9



Published as a conference paper at ICLR 2020 DeepDiffEq Workshop

MFP, Λ0. Within this approximation, we have K(Λ) = κbulkδ(Λ− Λ0). In this work we choose Λ0

= 10 nm, namely as large as the unit cell, so that significant phonons size effects occur. With no loss
of generality, we set κbulk = 1 Wm−1K−1 . Eq. 9 is an integro-differential PDE, which is solved
iteratively for each phonon direction over an unstructured mesh (Romano & Di Carlo, 2011). We
apply periodic boundary conditions along the unit cell while imposing a difference of temperature
of ∆T = 1 K along the x-axis. At the pores’ walls we apply diffusive boundary conditions. Upon
convergence, the effective thermal conductivity is computed using Fourier’s law, i.e.

κeff = − L

∆TA

∫
A

J · n̂dS, (11)

where J = (κbulk/Λ0)〈T (Λ0)̂s〉n̂ is the heat flux, L is the size of the unit cell, A is the area of the
cold contact (with normal n̂). Throughout the text we use the quantity κ = κeff/κbulk as a measure
of phonon size effects.

C BACKGROUND ON MODELING MECHANICAL STRESS

We model mechanical stress by using the continuum linear elasticity equations
∂

∂xj
σij = fi, (12)

where fi is the body force (which is zero in this case), and σij is the stress tensor. Note that we used
the Einstein notation, i.e. repeated indexes are summed over. The strain εkl is related to the stress via
the fourth-rank tensor elastic constant Cijkl

σij = Cijklεkl. (13)
The strain is then related to the displacement u via

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂uk

)
. (14)

We apply periodic boundary conditions along the unit-cell and applied solicitation is a small in-plane
expansion. Once the stress tensor is calculated, we compute the von Mises stress as

σVM =

√
1

2
(σ3 − σ2)

2
+ (σ3 − σ1)

2
+ (σ2 − σ1)

2
, (15)

where σi are the principal stress axis. As a mechanical stability estimator we use σ = maxx∈D(σVM )
where D is the simulation domain. To avoid material’s plasticity, σ needs to be smaller than the
yield stress of a given material. For mechanical simulation we used the SUMIT code (

∑
MIT

Development Group, 2018).

D BACKGROUND ON STOCHASTIC DIFFERENTIAL EQUATIONS (SDE):
CHANGE OF MEASURE AND GRISANOV’S FORMULA

Theorem 3 (Grisanov Theorem, Change of Measure for Brownian Motion (Lipster & Shiryaev,
2001), Theorem 6.3 page 257). Let (Wt,Ft) be a Wiener process (Brownian motion) and (βt,Ft) a
random process such that for any T > 0∫ T

0

‖βt‖2 dt <∞ a.s

Then the random process : dW̃t = dWt − βtdt or written equivalently: W̃t = Wt −
∫ t

0
βsds, is a

Wiener process with respect to Ft, t ∈ [0, T ]. Let PWT = L (W[0,T ]), and P W̃T = L (W̃[0,T ]) the

densities are given by: dP W̃
T

dPW
T

= exp
(∫ T

0
〈βs, dWs〉 − 1

2

∫ T
0
‖βs‖2 ds

)
. It follows that:

KL(PWT , P W̃T ) =
1

2
EPW

T

[∫ T

0

‖βs‖2 ds

]
(16)

10
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Theorem 4 (Grisanov Theorem, Change of Measure for Diffusion Processes, (Lipster & Shiryaev,
2001), ()). Let (Xt)t≥0 and (Yt)t≥0

dXt = αt(X)dt+ dWt

dYt = βt(Y )dt+ dWt

where X0 = Y0 is an F0 measurable random variable. Suppose that the non-anticipative functionals
αt(x) and βt(x) are such that a unique continuous strong solutions exits for both processes. If for
any T > 0:∫ T

0

‖αs(X)‖2 + ‖βs(X)‖2 ds <∞(a.s) and
∫ T

0

‖αs(Y )‖2 + ‖βs(Y )‖2 ds <∞(a.s).

Let PXT = L (X[0,T ]), and PYT = L (Y[0,T ]).

dPYT
dPXT

(X) = exp

(
−
∫ T

0

〈αs(X)− βs(X), dXs〉+
1

2

∫ T

0

(‖αs(X)‖ − ‖βs(X)‖2)ds

)
.

KL(PXT , P
Y
T ) =

1

2
EPX

T

[∫ T

0

‖αs(X)− βs(X)‖2 ds

]
. (17)

E BACKGROUND ON ZERO-ORDER OPTIMIZATION (GRADIENT-FREE)

Consider the smoothed potential Uν defined as follows:

Uν(x) = Eg∼N (0,Id)U(x+ νg)

its gradient is given by:

∇xUν(x) = Eg
U(x+ νg)− U(x)

ν
g,

A monte carlo estimate of∇xUν(x) is:

Ĝn(x) =
1

n

n∑
j=1

(
U(x+ νgj)− U(x)

ν

)
gj ,

where g1, . . . gn are iid standard Gaussians vectors.

Using known results in zero order optimization under assumptions on smoothness and bounded
gradients of the gradients we have for all x ((Nesterov & Spokoiny, 2017; Shen et al., 2019)):

Eg
∥∥∥Ĝ1(x)−∇xU(x)

∥∥∥2

≤
(
βν(d+ 2)3/2 + (d+ 1)

1
2 ‖∇xU(x)‖

)2

≤
(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

Finally by independence of u1, . . . un we have:

Eg1,...,gn

∥∥∥Ĝn(x)−∇xU(x)
∥∥∥2

≤

(
βν(d+ 2)3/2 + (d+ 1)

1
2L
)2

n
(18)

F PROOFS

Proof of Lemma 1. Define the Lagrangian:

L(q, η) =

∫
Ω

log

(
q(x)

p0(x)

)
q(x)dx+

Ce∑
j=1

λj

∫
Ω

(ψj(x)− yj)2q(x)dx

+

Ci∑
k=1

λk

∫
x∈Ω

(φk(x)− bk)+q(x)dx+ η

(
1−

∫
x∈Ω

q(x)

)

11
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Setting first order optimality conditions on q, we have for x ∈ Ω:

log

(
q(x)

p0(x)

)
+ 1 +

C∑
j=1

λj(ψj(x)− yj)2 +

Ci∑
k=1

λk(φk(x)− bk)+ − η = 0

Hence we have:

q(x) = p0(x)
exp

(
−
∑Ce

j=1 λj(ψj(x)− yj)2 −
∑Ci

k=1 λk(φk(x)− bk)+

)
e exp−η

, x ∈ Ω

and

q(x) = 0, x /∈ Ω,

First order optimality on η give us:
∫

Ω
q(x) = 1, we conclude by setting e exp(−η) = Z.

Proof of Theorem 1 1) Projected Langevin. Let us define the following continuous processes by
interpolation of Xk and YK (Piecewise constant):

dX̃t = PΩ(Ũt(X̃)dt+
√

2λdWt)

where Ũt(X̃) = −
∑∞
k=0∇xU(X̃kη)1t∈[kη,(k+1)η](t). Similarly let us define :

dỸt = PΩ(Gt(Ỹ )dt+
√

2λdWt)

where Gt(Ỹ ) = −
∑∞
k=0G(Ỹkη)1t∈[kη,(k+1)η](t).

It is easy to see that we have : Xk = X̃kη and Yk = Ỹkη .

Let πT
X̃

and πT
Ỹ

be the distributions of (X̃t)t∈[0,T ] and (Ỹ )t∈[0,T ].

Note that :

dỸt = PΩ

(
Ũt(X̃t)dt+

√
2λ(dWt +

1√
2λ

(Gt(Ỹt)− Ũt(X̃t))dt)

)
Let

dW̃t = dWt +
1√
2λ

(Gt(Ỹt)− Ũt(X̃t))dt

Hence we have :

dỸt = PΩ

(
Ũt(X̃) +

√
2λdW̃t

)
,

Assume that X0 = Y0 there exists Q such that , XT = Q({Wt}t∈[0,T ]) and YT = Q((W̃t)t∈[0,T ]).
Let µX̃T be the law of X̃t∈[0,T ]. Same for µỸT . The proof here is similar to the proof of Lemma 8 in
(Bubeck et al., 2015). By the data processing inequality we have:

KL(µX̃T , µ
Ỹ
T ) ≤ KL(Wt∈[0,T ], W̃t∈[0,T ]),

Now using Grisanov’s Theorem for change of measure of Brownian Motion (Theorem 3) we have:

KL(Wt∈[0,T ], W̃t∈[0,T ]) =
1

4λ
E
∫ T

0

|Gt(Ỹt)− Ũt(X̃t)|2dt

12
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Consider T = Kη, hence we have (with some abuse of notation we drop tilde as Yk = Ỹkη):

KL(µX̃T , µ
Ỹ
T ) ≤ 1

4λ
E
∫ Kη

0

|Gt(Ỹt)− Ũt(X̃t)|2dt

=
1

4λ
E
K−1∑
k=0

∫ (k+1)η

kη

‖G(Ykη)−∇xU(Xkη)‖2 dt

=
η

4λ

K−1∑
k=0

E ‖G(Ykη)−∇xU(Xkη)‖2

=
η

4λ

K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη) +∇xU(Ykη)−∇xU(Xkη)‖2

≤ η

2λ

K−1∑
k=0

(
E ‖G(Ykη)−∇xU(Ykη)‖2 + E ‖∇xU(Ykη)−∇xU(Xkη)‖2

)

where in the last inequality we used the fact that ||a− b||2 ≤ 2(||a||2 + ||b||2). Note that we have by
smoothness assumption on U :

‖∇xU(Ykη)−∇xU(Xkh)‖2 ≤ β2 ‖Xkh − Ykh‖2

Let R be the diameter of Ω, we can get a bound as follows:

KL(µX̃T , µ
Ỹ
T ) ≤ η

2λ


K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2︸ ︷︷ ︸
Gradient approximation error

+β2
K−1∑
k=0

E ‖Xkh − Ykh‖2


≤ η

2λ

(
K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)

Now using Pinsker inequality we have:

TV (µX̃T , µ
Ỹ
T )2 ≤ 2KL(µX̃T , µ

Ỹ
T ) ≤ η

λ

(
K−1∑
k=0

E ‖G(Ykη)−∇xU(Ykη)‖2 +Kβ2R2

)

Hence for T = Kη we have:

TV (µS-PLMC
K , µPLMC

K ) ≤
√
η

λ

(
K−1∑
k=0

E ‖G(Yk)−∇xU(Yk)‖2 +Kβ2R2

) 1
2

. (19)

Proof of Theorem 1 2) Proximal LMC. Let us define the following continuous processes by interpo-
lation of Xk and YK (Piecewise constant):

dX̃t = Ũt(X̃)dt+
√

2λdWt

where Ũt(X̃) = −
∑∞
k=0(∇xU(X̃kη) + 1

γ (X̃kη − PΩ(X̃kη)))1t∈[kη,(k+1)η](t). Similarly let us
define :

dỸt = Gt(Ỹ )dt+
√

2λdWt

13
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whereGt(Ỹ ) = −
∑∞
k=0(G(Ỹkη)+ 1

γ (Ỹkη−PΩ(Ỹkη)))1t∈[kη,(k+1)η](t). Now applying Grisanov’s
Theorem for diffusions (Theorem 4) we have:

KL(µX̃T , µ
Ỹ
T ) =

1

4λ
EPX

T

[∫ T

0

∥∥∥Ut(X̃)−Gt(X̃)
∥∥∥2

dt

]

=
1

4λ
E
K−1∑
k=0

∫ (k+1)η

kη

∥∥∥G(X̃kη)−∇xU(X̃kη)
∥∥∥2

dt

=
η

4λ

K−1∑
k=0

E
∥∥∥G(X̃kη)−∇xU(X̃kη)

∥∥∥2

=
η

4λ

K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2 .

Now using Pinsker inequality we have:

TV (µT
X̃
, µT
Ỹ

)2 ≤ 2KL(µT
X̃
, µT
Ỹ

).

Hence for T = Kη we have:

TV (µS-ProxLMC
K , µProxLMC

K ) ≤
√

η

2λ

(
K−1∑
k=0

E ‖G(Xk)−∇xU(Xk)‖2
) 1

2

. (20)

Proof of Theorem 2 . S-PLMC. If we set λ = 1, η ≤ α/K2, where α = 1/(δ + β2R2), in this
Corollary we obtain that : TV (µS−PLMC

K , µPLMC
K ) ≤ 1√

K
. Assuming A, B and C we consider

η ≤ min(R2/K,α/K2), and K = Ω̃(ε−12d12). Now using the triangle inequality together with the
bounds in Eq.s 5 we have: TV (µS−PLMC

K , π) ≤ TV (µS−PLMC
K , µPLMC

K ) + TV (µPLMC , π) ≤
ε+ 1√

K
.

S-ProxLMC. We conclude with a similar argument for TV (µS−ProxLMC
K , π) using Eq.s 6. Consid-

ering η = min(γ(1 + β2γ2)−1, 1
δK2 ), and K = Ω̃(ε−6d5), we obtain (ε+ 1√

K
) approximation in

TV of the target Gibbs distribution.
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