
Under review as a conference paper at ICLR 2024

DO NOT START WITH TREMBLING HANDS: IMPROV-
ING MULTI-AGENT REINFORCEMENT LEARNING WITH
STABLE PREFIX POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-agent reinforcement learning (MARL), the ϵ-greedy method plays an
important role in balancing exploration and exploitation during the decision-
making process in value-based algorithms. However, the ϵ-greedy algorithm can
be deemed as the concept of ”trembling hands” in game theory when the agents
are more in need of exploitation, which may result in the Trembling Hands Nash
Equilibrium solution, a suboptimal policy convergence. Besides, eliminating the
ϵ-greedy algorithm leaves no exploration and may lead to unacceptable local opti-
mal policies. To address this dilemma, we use the previously collected trajectories
to construct a Monte-Carlo Trajectory Tree, so that an existing optimal template,
a sequence of state prototypes, can be planned out. The agents start by following
the planned template and act according to the policy without exploration, Sta-
ble Prefix Policy. The agents will adaptively dropout and begin to explore by
following the ϵ-greedy method when the policy still needs exploration. We scale
our approach to various value-based MARL methods and empirically verify our
method in a cooperative MARL task, SMAC benchmarks. Experimental results
demonstrate that our method achieves not only better performance but also faster
convergence speed than baseline algorithms within 2M time steps.

1 INTRODUCTION

Recent research on multi-agent reinforcement learning (MARL) has a very wide range of applica-
tions in the real world such as autonomous vehicle teams (Cao et al., 2012) and sensor networks
(Zhang & Lesser, 2011). A number of MARL methods have been proposed to improve either value
decomposition (Sunehag et al., 2017; Rashid et al., 2018; 2020; Wang et al., 2020a) or cooperative
exploration (Yang et al., 2020; Mahajan et al., 2019; Wang et al., 2020b), among which value-based
MARL methods (Sunehag et al., 2017; Son et al., 2019; Wang et al., 2019b) have shown outstanding
performance on challenging tasks. e.g. StarCraft II (Samvelyan et al., 2019).

Moreover, most of the value-based MARL algorithms use ϵ-greedy (Sutton & Barto, 1998) method
to balance exploration and exploitation by choosing the greedy action with a probability 1 − ϵ or a
random choice action otherwise. However, such schemes are decision-making processes with Trem-
bling Hands in game theory, in which sub-optimal solutions are the Trembling Hand Perfect Nash
Equilibrium (THPNE).

Figure 1: A matrix game
showing sub-optimal solu-
tions with trembling hands.

In order to explain this phenomenon, we show a typical matrix game
as described in Figure 1. Two solutions (T, L) and (B, R) are the two
Nash Equilibrium results where (B, R) is the global-optimal solu-
tion and (T, L) is the sub-optimal one. If player 1 applies ϵ-greedy
method with ϵ = 0.2, choosing action L by 0.1 and action R by 0.9,
the expectation for player 2 to choose T is 1.81. The expectation of
action B is 1.8, which is smaller than that of choosing T. Therefore,
player 2 will always choose T when player 1 makes decisions with
trembling hands and player 2 always chooses L for the same reason.
In this case, the solution will fall into (T, L), the THPNE, which is
not optimal. In the mixing networks of MARL, the Q values of each

1

Under review as a conference paper at ICLR 2024

agent are often added into Qtot. Therefore, the calculation of Qtot is inaccurate and the errors are
cumulated and propagated through the transitions among a trajectory.

(a) (b) (c)

Figure 2: Two agents in the opposite are asked to reach the center goal simultaneously. Four obsta-
cles around the central goal stop agents from reaching the goal. The default policy is strictly moving
towards the center goal. The three figures above show the rollout traces that (a) agents choose ac-
tions greedily, (b) agents choose actions following ϵ-greedy method through the rollout process, and
(c) agents choose actions that start by stable prefix policy and follow ϵ-greedy method in later time
steps.

Figure 2 also shows the dilemma between the benefit of exploration and the sub-optimal solutions
ϵ-greedy method brings. Agents are trapped in local optima when greedy selections are applied only.
When using ϵ-greedy method, agents explore through the whole trajectories which makes them dif-
ficult to reach the goal. In contrast, if agents start with a stable policy for a few steps and apply
ϵ-greedy method afterward, the agents achieve a higher number of successful cases. Based on this,
we propose Stable Prefix Policy (SPP) to encourage agents to follow the existing optimal trajectory
planned from previously collected trajectory data. Specifically, we implement Monte-Carlo Trajec-
tory Tree (MCT2) to preserve the structure of previous trajectories. The existing optimal trajectory
template planned from MCT2 is used for guiding whether the agents are following the template dur-
ing rollouts and assembling target values in the training process. When the agents dropout from the
template, ϵ-greedy method is activated afterwards.

The main contributions of this work are as follows: 1) We propose the SPP method to rebalance
the exploration and exploitation process when the policy of agents is close to the optimal policy
during the training process. 2) Our proposed method can be adapted to other value-based MARL
algorithms with mixing networks with minor changes to existing MARL code-bases. 3) We validate
our methods empirically by extensive experiments on SMAC benchmarks. Experimental Results
indicate that existing MARL methods equipped with our method can compete with or outperform
original MARL methods in terms of the winning rates or cumulated rewards respectively within 2M
time steps.

2 RELATED WORK

2.1 MULTI-AGENT REINFORCEMENT LEARNING.

In multi-agent value-based algorithms, the centralized value function, usually a joint Q-function, is
decomposed into local utility functions. Many methods have been proposed to meet the Individual-
Global-Maximum (IGM) (Bu et al., 2020) assumption, which indicates the consistency between
the local optimal actions and the optimal global joint action. VDN (Lowe et al., 2017) and QMIX
(Rashid et al., 2018) introduce additivity and monotonicity to Q-functions. QTRAN (Son et al.,
2019) transforms IGM into optimization constraints. QPLEX (Wang et al., 2020a) uses duplex duel-
ing network architecture to guarantee IGM assumption. Instead of focusing on value decomposition,
multi-agent policy gradient algorithms provide a centralized value function to evaluate current joint
policy and guide the update of each local utility network. Most policy-based MARL methods ex-
tend RL ideas, including MADDPG (Lowe et al., 2017), MATRPO (Foerster et al., 2017), MAPPO
(Yu et al., 2022). FOP (Zhang et al., 2021) algorithm factorizes optimal joint policy by maximum
entropy and MACPF (Wang et al., 2023) is the latest algorithm that mixes critic values of each agent.

2

Under review as a conference paper at ICLR 2024

2.2 EXPLORATION IN MULTI-AGENT REINFORCEMENT LEARNING.

Extended from single-agent reinforcement learning, the ϵ-greedy method is widely applicable in
value-based MARL algorithms. In this paper, our approach is based on the ϵ-greedy exploration
method and QMIX algorithm for reward credit allocation. In policy-based algorithms, such as
MAPPO and COMA (Foerster et al., 2018), for exploration, multi-agent approaches rely on clas-
sical noise-based exploration in which agents explore local regions that are close to their individual
actor policy. Another line of coordinated exploration algorithms has been proposed. Multi-agent
variational exploration (MAVEN) (Mahajan et al., 2019) introduces a latent space for hierarchical
control. Agents condition their behavior on the latent variable to perform committed exploration.
Influence-based exploration (Wang et al., 2019a) captures the influence of one agent’s behavior on
others. Agents are encouraged to visit ‘interaction points’ that will change other agents’ behavior.

3 BACKGROUNDS

A fully cooperative multi-agent task is described as a Dec-POMDP (Oliehoek et al., 2016) task
which consists of a tuple G = ⟨S,A, P, r, Z,O,N, γ⟩ in which s ∈ S is the true state of the
environment and N is the number of agents. At each time step, each agent i ∈ N ≡ {1, . . . , n}
chooses an action ai ∈ A which forms the joint action a ∈ A ≡ AN . The transition on the
environment is according to the state transition function that P (·|s,a) : S ×A × S → [0, 1]. The
reward function, r(s,a) : S ×A → R, is shared among all the agents, and γ ∈ [0, 1) is the discount
factor for future reward penalty.

Partially observable scenarios are considered in this paper that each agent draws individual obser-
vations z ∈ Z of the environment according to the observation functions O(s, i) : S × N → Z.
Meanwhile, the action-observation history, τi ∈ T ≡ (Z × A)∗, is preserved for each agent and
conditions the stochastic policy πi(ai|τi) : T × A → [0, 1]. The policy π for each agent is de-
termined by a joint action-value function: Qπ(st,at) = Est+1:∞,at+1:∞ [Rt|st,at], in which the
accumulated reward is considered as a discounted return and formulated as Rt =

∑∞
i=0 γ

irt+i.
After the rollout process, the whole trajectory from the initial transition to terminated transition
< (s0,o0,a0, r0), ..., (sH ,oH ,aH , rH) > are stored in the replay buffer.

Deep q-learning algorithm aims to find the optimal joint action-value function Q∗(s,a; θ) =
r(s,a) + γEs′ [maxa′ Q∗ (s′,a′; θ)]. Due to partial observability, Q (τ,a; θ) is used in place of
Q (s,a; θ) and parameters θ are learnt by minimizing the expected TD error. Centralized train-
ing and decentralized execution (CTDE) enables agents to acquire global states during the training
and only individual observations during the testing execution. In multi-agent settings, VDN learns
a joint action-value function Qtot(τ,a) as the sum of individual value functions: QVDN

tot (τ,a) =∑n
i=1 Qi(τi, ai). QMIX introduces a monotonic restriction ∀i ∈ N ,

∂QQMIX
tot (τ,a)

∂Qi(τi,ai)
> 0 to the mixing

network to meet the IGM assumption. IGM asserts the consistency between joint and local greedy
action selections in the joint action-value Qtot(τ,a) and individual action-values [Qi(τi, ai)]

n
i=1:

argmax
a∈A

Qtot(τ,a) =

 argmaxa1∈A Q1(τ1, a1)
...

argmaxan∈A Qn(τn, an)

 .

4 METHOD

In this section, we introduce the overall architecture of our method and describe the generation of the
stable prefix policy. Our method divides the decision-making of the existing MARL methods into
two phases: our Stable Prefix Policy and vanilla policy. SPP balances the exploration and exploitation
during the trajectory planning process with UCT, with Dirichlet noise during the planning phase.
For planning, we establish a trajectory tree from data in the replay buffer in the Monte-Carlo Tree
structure, which we call Monte-Carlo Trajectory Tree (MCT2), to plan out the existing optimal
trajectory. Instead of selecting one action from MCT planning, our work uses MCT to preserve
trajectories across episodes to provide trajectory templates for utility network training. Additionally,
we describe the rollout process, the target value assembling method, and the training pipeline in this
section. The pseudo-code is provided in Appendix A.

3

Under review as a conference paper at ICLR 2024

4.1 ARCHITECTURE

The training process of value-based MARL algorithms is the Q value Temporal Difference (TD)
updating of each agent’s utility network. In QMIX and the algorithms derived from QMIX, TD up-
dates are applied to the mixed Qtot value. The utility network is composed of multi-layer perceptron
(MLP) layers and Gate Recurrent Unit (GRU) cells in which ht

i is the historical hidden state. Simi-
lar to QMIX algorithm, the utility network at time step t of agent i takes the observation oti and its
chosen action ati as an input and outputs the Qi(τi, ai) of each agent according to the encoded his-
tory state τi. Then, these Q values are fed into the mixing network which guarantees the monotonic
constraints by hyper-networks and the Qtot(τ,a) is used for TD learning.

Figure 3: The utility networks and the mixing networks are from original MARL algorithms. Our
method plans an existing optimal trajectory (EOT) by the trajectory tree (MCT2). During the train-
ing, the selective assemble function assembles Qtot of each sample in a batch by comparing the
template cluster ct with the input true state st. The Qassem is used for TD update.

As shown in Figure 3, our stable prefix policy is dependent on the time step t. To summarize the
states into a few categories, we train a KMeans classifier ϕ(c|s) periodically by the data sampled
from the replay buffer. To plan a potential optimal trajectory from MCT2, the state s0 (the initial
state) is classified into a cluster c0. Then the existing optimal trajectory is selected from the root
node c0 according to the probabilistic upper confidence bound (PUCB) value of each node and the
sequence of cluster IDs is generated. At time step t, ct is used to be compared with the true state
cluster and control the Q assembling process.

Based on the trained classifier ϕ(c|s) and the sequence of transitions from the replay buffer during
the training process, our classifier predicts the cluster ID of each state in each time step t. Whether
the agents are following the trajectory template can be determined by the comparison between the
predicted cluster IDs ĉt (from ϕ(st)) and the cluster from our stable prefix policy ct. Once confirm-
ing the agents are following the template, the target value calculated by Qtot(τn,an) is assembled
with other target values with the same cluster ID to calculate TD error. According to the CTDE
settings, during the testing execution phase, the actions are conditioned only on the utility networks
without SPP and without ϵ-greedy exploration.

4.2 STABLE PREFIX POLICY

As shown in Figure 4, to plan out an existing optimal trajectory as a template from previously
collected interactive data, our method generates trajectory trees by the data sampled from the replay
buffer in Monte-Carlo Tree structure. We randomly select tinter trajectories and apply clustering
methods to assign states s into a cluster c such that similar states can be assigned to the same cluster.
A transition (st,at, st+1, rt+1) can be regarded as a visit from a node with cluster ID ϕ(st) to
its child node with ϕ(st+1). Meanwhile, the expectation rewards from one cluster of states to its
subsequent clusters are stored in the tree. Apart from the IDs of clusters, the value of a node v(n) is
also stored in the node and is calculated by the following formula:

v(n) =λv(n) + (1− λ)×
∑

cn∈children(n)

π(cn|n)× (Rn→cn + γv(cn)). (1)

4

Under review as a conference paper at ICLR 2024

Figure 4: Left: Agents follow the template trajectory in the rollout process and encounter disagree-
ment on cluster c3. Then the transitions prior to c3 are updated and a new node with c3 is generated
in our MCT2. In the cji of MCT2, i is the time step of a state as well as the depth of a node and j is
the cluster ID. Right: A batch of transition sequences are converted to cluster transitions. For each
transition in each time step, Qt

tot of nodes that have the same cluster IDs as the existing optimal
trajectory are assembled. The transitions after the dropout process will not share the target value and
the Qtot will not be assembled. For example, Q3

tot of τ3 is not assembled because τ3 has already
dropped out in step 2.

In the formula above, v(n) is the value of the node n and cn are the children nodes of the node n.
π(cn|n) is the probability of visiting a child node cn from it parent node n and is usually calculated
by counting numbers. Rn→cn is the expectation of the historical rewards from node n to node cn.
γ is the discount factor and v(cn) is the value of child node cn. λ is dynamically changed with the
visit number of cluster Γn and empirically defined as 1/Γn.

During the establishment of the MCT2, we follow the procedure in Efficient Zero (Ye et al., 2021). A
newly selected node will be expanded with the average reward and policy as its prior. Additionally,
when the root node is to expand, we apply the Dirichlet noise to the policy prior to give more
explorations.

π(cn|n) := (1− ρ)π(cn|n) + ρND(ξ) (2)

, where ND(ξ) is the Dirichlet noise distribution, ρ and ξ is set to 0.25 and 0.3. However, we do not
use any nose and set ρ to 0 for the non-root node or during evaluations.

Based on the MCT2 implementation described above, we greedily select routes, a sequence of cluster
IDs, from the root node to a leaf according to the PUCB values from each parent node n to its
child node cn. Inside the formula below, cucb is the hyper-parameter for balancing exploration and
exploitation.

c = argmax
cn∈children(n)

(v(cn) + cucb · π(cn|n) ·
√
(
log Γcn

1 + Γn
)). (3)

After the selection, an optimal path of clusters is selected from the root node to a leaf node,
(c0, c1, ...cT) within time steps T , which will be used for training and rollout process.

During the rollout process, agents start by following the template trajectory generated by MCT2.
When the agents are following the template, the actions are selected greedily according to their Q
values for full exploitation. However, once the agents dropout from the template trajectory in a time
step t (ct ̸= ϕ(st)), actions are generated by ϵ-greedy for exploration in the latter rollout steps.

After the rollout processes, the trajectories from the environment interactions will be used to update
the MCT2. The states s are classified into clusters c which instead form the transition sequences
(c0, a0, c1, a1...cT). The values of the node before the dropout time step will be updated or created
in the MCT2. It is worth noting that MCT2 only concentrates on the cluster transitions without
actions. In such a way, our stable prefix policy only focuses on the optimal subsequent states no
matter what actions are taken by the agents.

5

Under review as a conference paper at ICLR 2024

4.3 TRAINING PIPELINE

The existing template trajectories are also used in the training process. A mini-batch of trajectories
is sampled from the replay buffer to train the utility network. Our MCT2 generates a template for
each sampled trajectory to find the time step that the agents dropout from the template. As shown in
Figure 3, the Qtot(τ, a) are calculated from the mixing network and the cluster ID ct is the output
of our stable prefix policy. The target values y are calculated by:

yt = rt + γ[1(ct+1 = ϕ(st+1)) ·Qt+1
assem(st+1) + (1− 1(ct+1 = ϕ(st+1))) ·Qtot(τ, a

t+1)] (4)

While calculating the target y, we also assemble the target values of the same cluster node among the
sampled batch of sequences such that the target values are close to the expectation of true discounted
returns from that state.

Qt
assem(st) =

(
∑bs

i=1 Qtot(τi, ai) · 1(ct = ϕ(st))∑bs
i=1 1(c

t = ϕ(st))
(5)

Inside the formula above, bs is the batch size of sampled data, Qtot(τi, ai) is calculated by adding
the rewards to the value of the subsequent node in the template, and the ct is the cluster node from
the trajectory. Because our method takes Qtot and trajectory tree into consideration, our method can
be adapted to other value-based MARL algorithms with mixing networks.

4.4 SAMPLE COMPLEXITY ANALYSIS

In this section, We linked our SPP method to the framework in Koenig & Simmons (1993), verifying
that our SPP method can achieve a polynomial sample complexity. As we need to calculate the
sample complexity of SPP method. Before that, since our SPP method uses the clustering method
for feature extraction, we also need to give a reasonable assumption for the feature extraction module
in our algorithm.

Assumption 1 Assume that the state is parametrized by some feature mapping (clustering mapping)
such that for any policy π, Qassem and π(s) depend only on ϕ(s), the stable prefix policy πspp cover
the states visited by the optimal policy:

sup
s,t

dπ
∗

t (ϕ(s))

dπ
spp

t (ϕ(s))
≤ C

Where π∗ is the optimal policy, dπt is the state visit distribution under a policy π in time step t,
ϕ(·) is a feature extractor of the policy, and the constant C denotes an upper bound on the coverage
ratioXie et al. (2022) between πspp and optimal policy π∗.

Assumption 1 indicates that the distributions of states being visited by each of the feature extractors
corresponding to SPP πspp and utility policy π should not be too different from each other. The ratio
is sometimes called the distribution mismatch coefficient in the literature of policy gradient methods
(Agarwal et al., 2021). We can show that given Assumption 1 our method explores the current time
step without dropout of any state which gives good performance guarantees for MDP with general
function approximation.

Theorem 1 (Uchendu et al. (2023) theorem 4.3) With an appropriate choice of training and eval-
uation process, our approach in algorithm 1 guarantees a near-optimal bound up to factor of
C × poly(H) for MDP with general function approximation.

At this point, we have obtained all the results we need, showing that our SPP method achieves a
polynomial sample complexity, providing a reasonable assumption 1 holds. Although polynomial
or near optimal-bound can be achieved by many optimism-based methods (Jin et al., 2018; Ouyang
et al., 2017), our approach further constructs a bonus for uncertainty, which improves the empirical
performance of our SPP method.

6

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We evaluate the performance of our method via the fully cooperative StarCraftII micro-management
challenges by the mean winning rate in each scenario. In this environment, we mainly present 9 out
of 23 scenarios with 3 levels of difficulty. Meanwhile, ablation studies are also presented to show
the adaptability of our approach to other value-based algorithms, the influence of effective horizons,
and the influence of cluster sizes during the training process. The details of other SMAC tasks are
shown in Appendix B.

5.1 EXPERIMENT SETTINGS

SMAC: We verify our proposed stable prefix policy methods on 9 subtasks of three difficulties,
a) simple tasks including 8m, 1c3s5z, and MMM, b) hard tasks including 3s vs 5z, 5m vs 96m,
2c vs 64zg, and c) super-hard scenarios 3s5z vs 3s6z, MMM2, and 6h vs 8z. The difficulty is set
as 7 by default. The winning rates of battles are calculated by the mean of 5 different seeds and
smoothed by 0.8 for better visualization within 2M time steps.

Baselines: We adapt our method to QMIX and W-QMIX algorithms and compare our methods
to the value-based QPLEX algorithm, popular policy-based algorithm MAPPO, and currently the
latest actor-critic algorithm MACPF. In the ablation study, we also adapt our method to QPLEX
algorithm. The QMIX, QPLEX, and W-QMIX in this paper are from pymarl codebase (Hu et al.,
2021). MACPF is from the codebase (Zhang et al., 2021; Wang et al., 2023) and MAPPO is provided
by Yu et al. (2022)

5.2 EXPERIMENT RESULTS

Figure 5: The winning rate curves evaluated on the nine SMAC tasks with three difficulties. The
x-axis represents the time steps (1e6) being evaluated and the y-axis is the mean of the winning rate.

7

Under review as a conference paper at ICLR 2024

Figure 6: The winning rate curves evaluated on 1c3s5z (Easy), 3s vs 5z (Hard), and MMM2 (Super-
hard) scenarios. The x-axis is the time steps (1e6) that algorithms are evaluated at and the y-axis is
the average value of the winning rate among 5 different seeds.

We mainly evaluate our proposed stable prefix policy method on QMIX algorithm on 9 benchmarks
of SMAC, which is composed of three easy tasks, three hard tasks, and three super-hard tasks. To
demonstrate the overall performance of each algorithm, Figure 5 plots the average test winning rate
across the 9 scenarios. In 8m, 1c3s5z, and MMM tasks, our method outperforms other baselines
but they almost achieve similar results due to the easy scenario. In hard tasks, including 5m vs 6m
and 2c vs 64zg, and 3s vs 5z, our proposed method can also compete with or outperform baseline
algorithms. In the 3s vs 5z scenario, our method has lower variance within 2M training steps. In
the MMM2 task, our method can compete with policy-based methods, however, our proposed stable
prefix policy still augments QMIX algorithm and outperforms other value-based methods. In the
6h vs 8z and 3s5z vs 3s6z tasks, not all the baselines show the winning rate and our method can
achieve acceptable results. It is worth noting that we adjust the parameter size of the mixing network
of QMIX and also apply both the original setting and the adjustment setting to other baselines. The
better results of the two settings are shown in the graph. Other hyper-parameters are in Appendix C.

5.3 ABLATION STUDIES

Compatibility: Because we implement a trajectory tree to provide current existing optimal trajec-
tories for training and rollout and our stable prefix policy module is entirely on the basis of mixing
networks, our method can be regarded as a plugin that can be adapted to other value-based MARL
methods with minor changes. To test the compatibility of our work, we apply our method on QPLEX,
and OW QMIX algorithms in 1c3s5z, 3s vs 5z, and MMM2 scenarios correspondingly.

According to Figure 6, in the 1c3s5z scenario and MMM2 task, both the QMIX with stable prefix
and QPLEX with stable prefix outperform their original algorithms and OW QMIX with stable
prefix can compete with its origin. In the 3s vs 5z scenario, all of the algorithms with our proposed
stable prefix policy outperform the algorithms without prefix policy.

Effectiveness: During the rollout process, our proposed MCT2 provides a potential optimal trajec-
tory for agents to follow. Agents select actions according to their utility network and might encounter
disagreements with the template in some time steps. Therefore, we record the portion of time steps
that agents drop out from the template with the average length of an episode and analyze the influ-
ence of the dropout time step on the performance in three scenarios.

According to Figure 7 and the task specifications, 1c3s5z is an easy task for agents to focus fire on
correct enemies, so agents have more probability to agree with the stable prefix trajectories. In the
3s vs 5z task, agents should walk and attack, which is difficult for stable prefix policy to predict
when to walk and attack. The important way to win MMM2 task is the control of Medivac and the
ally to sacrifice, so the ratio of dropout length is high. According to the trend from the graph, as the
policy network converges and the value of each node in our MCT2 becomes accurate, the dropout
ratio becomes higher in later training time steps.

6 DISCUSSION

Performance Enhancement: According to the main experiment result in Figure 5, our method can
compete with or outperform other baseline algorithms in most tasks. Our method can also outper-

8

Under review as a conference paper at ICLR 2024

Figure 7: The drop out time step ratio of our QMIX+SPP algorithm on the 1c3s5z, 3s vs 5z, and
MMM2 scenarios in 100k, 500k, and 1500k time steps.

form other value-based algorithms in environments where policy-based algorithms are dominant.
The existing optimal template trajectories provide agents currently the best route with the highest
return. The Q value assembling mechanism within a batch of trajectories reduces the error between
the assembled Qtot and its true value.

Adaptability: We adapt our method on value-based MARL algorithms with mixing networks and
assemble the Qtot for training. The essence of our work is providing a potential trajectory to agents
and assembling a more accurate Q value. Therefore, value-based MARL algorithms without cen-
tralized training, such as IQL, should also be suitable for our method. As for Actor-Critic MARL
algorithms, the training of the critic modules is a value-based process, so our proposed method might
be suitable for the critic training.

Effectiveness: We aim to find the optimal value without trembling hands when a sub-optimal policy
can be obtained from historical interactions. Therefore, the stability of the prefix policy influences
the dropout time step, the time step agents encounter disagreements with the provided template.
According to Figure 7, the dropout time step is lower in the task where agents need to explore more
during the early time steps. When the task is easy enough or agents do not need much exploration,
the dropout time step will rise during the rollout process. In summary, the dropout time step is
empirically positively correlated to training time steps and negatively correlated to the task difficulty.

Limitation Our proposed method restricts the early exploration process and allocates more explo-
ration budgets for later time steps so that the underlying algorithm can explore more on later time
steps which increases the opportunities to explore higher return states. However, in the tasks that
need too much agents’ exploration, in which agents cannot find a path to success in limited time
steps, the agents drop out of the prefix template quite early such that our method cannot contribute
to the overall training process. Further discussions are shown in Appendix D.

7 CONCLUSION AND FUTURE WORK

In this work, we consider the dilemma between the need for exploration and sub-optimal decision-
making with trembling hands. To solve the problem, we propose a plugin that consists of a stable
prefix trajectory provider, the Monte-Carlo Trajectory Tree, and a selective assemble function. We
show that the usage of our stable prefix policy can improve MARL algorithms’ performance when
their utility network is close to optimal. SMAC experimental results indicate that our method can
be adapted to any value-based MARL method in terms of implementation and offers significant
improvements to value-based MARL methods. Trembling Hand is the exploration dilemma in value-
based reinforcement learning, however, policy-based MARL algorithms generate actions from mix-
strategy policies. In the future, we might focus on the exploration dilemma from mixed strategies in
policy-based algorithms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

Yuxuan Bu, Xuechen Chen, T. D. Kulkarni, Amir Saeedi, and Joshua B. Tenenbaum. Individual-
global-maximum: A new framework for multi-agent reinforcement learning. arXiv preprint
arXiv:2006.07689, 2020.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1):
427–438, 2012.

Jakob Foerster, Guillaume Assael, Michael White, Timothy P. Lillicrap, and John D. Schul-
man. Learning to communicate with deep multi-agent reinforcement learning. arXiv preprint
arXiv:1706.03762, 2017.

Jakob Foerster, Guillaume Assael, Michael White, Timothy P. Lillicrap, and John D. Schulman.
Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1802.01561, 2018.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
2021.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Sven Koenig and Reid G Simmons. Complexity analysis of real-time reinforcement learning. In
AAAI, volume 93, pp. 99–105, 1993.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision
processes: A thompson sampling approach. Advances in neural information processing systems,
30, 2017.

Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python: Main develop-
ments and technology trends in data science, machine learning, and artificial intelligence. arXiv
preprint arXiv:2002.04803, 2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In International Conference on Machine Learning, pp. 4292–4301, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

10

Under review as a conference paper at ICLR 2024

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 1998.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032–15043, 2021.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized ex-
ecution: Multi-agent conditional policy factorization. In International Conference on Learning
Representations (ICLR), 2023.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent explo-
ration. arXiv preprint arXiv:1910.05512, 2019a.

Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decompos-
able value functions via communication minimization. arXiv preprint arXiv:1910.05366, 2019b.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in
online reinforcement learning. arXiv preprint arXiv:2210.04157, 2022.

Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang.
Multi-agent determinantal q-learning. In International Conference on Machine Learning, pp.
10757–10766. PMLR, 2020.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked
distributed pomdps. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 12491–12500. PMLR, 2021.

11

Under review as a conference paper at ICLR 2024

A PSEUDOCODE FOR OUR APPROACH

Algorithm 1 MARL with stable prefix policy

1: Warm-up tinter episodes
2: Train classifier ϕ(c|s)
3: Sample tinter trajectories from the replay buffer and generate MCT2

4: while within the maximum number of time steps do
5: Reset environment and obtain s0

6: Generate template trajectory (c0, c1, ...cn) by ϕ(s0)
7: Rollout without ϵ-greedy until ϕ(st) ̸= ct

8: Rollout with ϵ-greedy until terminated
9: Insert the rollout trajectory into the replay buffer and update MCT2

10: if Every training interval then
11: Sample a batch of trajectories from the replay buffer and generate templates by ϕ(c|s)
12: Assemble Q values by comparing ϕ(si,t) with ci,t

13: Train utility networks by TD error.
14: end if
15: if Every tinter episodes then
16: Destroy MCT2 and train a new classifier ϕ(c|s)
17: Reconstruct an MCT2 by trajectories from the replay buffer
18: end if
19: end while

B MORE EXPERIMENTS ON SMAC

Apart from the graphs shown in our main paper, we also operate experiments on other SMAC tasks.
The results are shown in Table 1 and Graph 8. The table shows the winning rate on different SMAC
tasks among 5 different seeds per task. The best performance is shown by bold font and the sec-
ond best performance is shown with underline. We also generate replays of the tasks and some of
the ”SC2Replay”s are shown in the attachments, all the other replays can be performed through
StarCraftII software downloaded from Battle.net.

C EXPERIMENTS HYPER-PARAMETERS

Most of the hyper-parameters used in this paper are the default parameters from the code-base py-
marl. The corresponding important parameters of SMAC and algorithms are listed below.

The QMIX algorithm we use is from pymarl code base (Samvelyan et al., 2019), the QPLEX and
OW QMIX are from pymarl2 code base (Hu et al., 2021), the MAPPO algorithm is from the official
code-base (Yu et al., 2021) and MACPF is from the open-sourced code from paper Wang et al.
(2023). The detailed hyper-parameters are listed as Table 4 and the modified hyper-parameter for
task 3s5z vs 3s6z is shown in Table 3:

Apart from the hyper-parameters in pymarl codebase. The hyper-parameters of MAPPO algorithm
are the default settings provided by the codebase. This codebase specifies corresponding hyper-
parameters for each scenario. We change the total training time steps to 2M and the evaluation
episodes to 6.

D MORE DISCUSSION ON SMAC TASKS

The influence of cluster size The number of clusters influences the establishment of the trajectory
tree. A larger number of clusters provides more precise state classifications and larger computational
consumption. Additionally, the number of states in one cluster also influences the precision of the
assembled Q value. Therefore, we empirically record the test winning rates of different numbers of
clusters in Figure 9.

12

Under review as a conference paper at ICLR 2024

Figure 8: The winning rate curves evaluated on the 12 SMAC tasks with 5 different difficulties. The
x-axis represents the time steps (1e6) being evaluated and the y-axis is the mean of the winning rate.

Figure 9: The testing winning rates of QMIX+SPP with different numbers of clusters and QMIX
algorithm. The x-axis is the time steps (1e6) that algorithms are evaluated at and the y-axis is the
average value of the winning rate.

According to the experimental results, the result of size 150 achieves the highest winning rate. A
smaller number of clusters may classify states with larger variations into one group, which may

13

Under review as a conference paper at ICLR 2024

Table 1: Final performance in SMAC tasks

tasks Our Approach QMIX QPLEX OW QMIX MAPPO MACPF
8m 0.978 0.929 0.971 0.961 0.946 0.978
1c3s5z 0.983 0.974 0.955 0.967 0.987 0.979
MMM 0.986 0.966 0.976 0.942 0.931 0.988
8m vs 9m 0.884 0.919 0.635 0.877 0.756 0.393
3s vs 5z 0.914 0.383 0.327 0.656 0.962 0.163
3s5z 0.920 0.863 0.934 0.834 0.418 0.968
2c vs 64zg 0.931 0.922 0.823 0.901 0.954 0.945
3s5z vs 3s6z 0.538 0.015 0.074 0.009 0.110 0.061
MMM2 0.823 0.382 0.263 0.808 0.436 0.898
corridor 0.430 0.250 0 0 0.330 0.374
3m 0.989 0.981 0.988 0.960 0.989 0.994
25m 0.954 0.872 0.530 0.949 0.969 0.930
5m vs 6m 0.670 0.339 0.445 0.387 0.495 0.445
10m vs 11m 0.873 0.921 0.645 0.906 0.702 0.271
27m vs 30m 0.586 0.512 0.105 0.191 0.582 0.817
2s3z 0.965 0.948 0.974 0.871 0.933 0.985
3s vs 3z 0.979 0.972 0.992 0.967 0.987 0.982
3s vs 4z 0.965 0.892 0.368 0.812 0.962 0.632
2m vs 1z 0.995 0.980 0.986 0.985 0.999 0.992
6h vs 8z 0.170 0.119 0.008 0.006 0.001 0.010
2s vs 1sc 0.993 0.982 0.991 0.932 0.999 0.992
so many baneling 0.974 0.926 0.953 0.925 0.967 0.981

Table 2: SMAC task default settings

continuing episode False
difficulty 7
move amount 2
obs all heath True
obs last action False
obs own health True
obs terrain height False
reward death value 10
reward defeat 0
reward negative scale 0.5
reward only positive True
reward scale True
reward scale rate 20
reward win 200
state last action True
step mul 8
heuristic ai False

introduce extra bias when assembling the Q values. In contrast, a larger number of clusters slows
down the convergence speed because of the lack of samples in a cluster when assembling Q values.
Therefore, the cluster size should be balanced according to the size of the replay buffer and in this
paper is set as nstate/1000, where the nstate is the total number of states for training the classifier.

Performance on tasks with single type of agents According to the learning curves in Appendix B
and main paper our method can compete with baseline algorithms without too much promotion in
the tasks with single type of agents. The method for winning such a scenario is that agents should
form a fan-shaped team formation and catch fire on enemies without damage overflows. In addition,
agents should also move back when their health values are low. However, this strategy is easy to be

14

Under review as a conference paper at ICLR 2024

Table 3: Different hyper-parameters of 3s5z vs 3s6z

epsilon start 1.0
epsilon finish 0.05
epsilon anneal time 100000
batch size 128
rnn hidden dim 256
hypernet layers 1
hypernet embed 256
optim Adam

Table 4: hyper-parameters for baseline algorithms

parameter QMIX+SPP QMIX QPLEX OW QMIX MACPF

gamma 0.99 0.99 0.99 0.99 0.99
batch size 32 32 32 32 32
buffer size 5000 5000 5000 5000 5000
lr 0.001 0.0005 0.0005 0.001 0.0005
critic lr - - - - 0.0005
optim alpha 0.99 0.99 0.99 0.99 0.99
optim eps 0.00001 0.00001 0.00001 0.00001 0.00001
rnn hidden dim 64 64 64 64 64
optim RMSprop RMSprop RMSprop RMSprop RMSprop
action selector eps-greedy eps-greedy eps-greedy eps-greedy multinomial seq
epsilon start 1.0 1.0 1.0 1.0 1.0
epsilon finish 0.05 0.05 0.05 0.05 0.05
epsilon anneal time 50000 50000 50000 100000 50000
agent output type q q q q pi logit
mixer qmix qmix dmaq qmix dfop
mixing embed dim 32 32 32 32 64
hypernet layers 2 2 - 2 -
hypernet embed 64 64 64 64 64
adv hypernet layers - - 3 - 1
adv hypernet embed - - 64 - 64
td lambda 0.4 0.4 0.4 0.6 0.8
double q True False True True False
num kernel - - 10 - -
is minus one - - True - -
weighted head - - True - -
is adv attention - - True - -
is stop gradient - - True - -
central mixing embed dim - - - 256 -
central action embed - - - 1 -
central agent - - - central rnn -
central rnn hidden dim - - - 64 -
central mixer - - - ff -
n head - - - - 4
attend reg coef - - - - 0.001
burn in period - - - - 100
dep n head - - - - 4
dep embed dim - - - - 64
dep kv dim - - - - 64
dep output dim - - - - 64

explored and easy to be fulfilled in the former time steps. Therefore, most baseline algorithms and
currently state-of-the-art algorithms have similar performances on theses scenarios.

Performance on tasks with multi-type of agents In the task with multi-type of agents, such as
3s5z, 1c3s5z, and MMM, our method outperforms other baseline algorithms. The conditions of
winning the battle is much more complex. For example, one type of unit may counter another type
of unit and some of agents should sacrifice themselves to be caught fire on for their allies to attack.

15

Under review as a conference paper at ICLR 2024

These strategies are difficult yet possible to be explored and agents may achieve high performance
when following these strategy. In these scenarios, our method freezes the former policy for agents to
follow and enables exploration afterwards. Therefore, in these scenarios, our method has significant
improvements compared with other baseline algorithms.

Performance on super-hard tasks In super-hard tasks, baseline algorithms and currently state-of-
the-art algorithms hardly have acceptable results. In the 6h vs 8z scenario, none of the algorithms
mentioned in this paper converges to optimal policy within 2M time steps. In the 3s5z vs 3s6z
scenario, we carefully adjust the hyper-parameters as shown in Table 3, which provides larger ex-
ploration opportunities to agents to find a path towards winning results. The agents’ drop out length
during the rollout process before finding a winning trajectory is quite short. The contribution of our
work is finding an optimal solution without trembling hands when a sub-optimal solution can be
found in historical interaction data. Without the sub-optimal paths, it is also difficult for our algo-
rithm to achieve amazing results without carefully hyper-parameter adjustment.

According to Table 1, among 22 different tasks, our method achieves 6 best performances and 12
second best performances. The currently state-of-the-art algorithm, MACPF, achieves 7 best per-
formances and 3 second best performances. However, some of the easy scenarios cannot distin-
guish the performances among all the scenarios. In the 5 super-hard subtasks including 2c vs 64zg,
3s5z vs 3s6z, MMM2, corridor, and 6h vs 8z, our method achieves 3 best and 1 second best per-
formances and MAPPO as well as MACPF achieves 1 best and 1 second best performances cor-
respondingly, which indicates that our method can compete with and outperform sota actor-critic
algorithms. As for value-based MARL baseline algorithms, our method achieves sota performances.

E HARDWARE FOR TRAINING

We operate our experiments on servers with 3.9 python version, AMD EPYC 7543 32-Core Pro-
cessor CPU and NVIDIA GeForce RTX 3090 GPU. The maximum interaction time steps is 2.05M
including test episodes and the StarCraftII version is 4.10. We set up 5 experiments with different
seeds simultaneously and the actual time spent is about 6 hours and 30 minutes per task.

In our work, we cluster states into groups by KMeans provided by scikit-learn package, which
needs extra time when training the classifier and constructing the trajectory tree. To deal with this
problem, we install cupy and cuml (Raschka et al., 2020) which has compatible APIs with scikit-
learn package. In this way, the classifier training and prediction process are calculated in GPU.
Additionally, we also store the replay buffer inside GPU such that CPUs are fully responsible for
running SMAC environment and GPUs are fully responsible for calculations.

F MPE

We also evaluate our method on three MPE (Terry et al., 2021) tasks, including spread, tag, and
reference environment with 300k time steps. As shown in table 5, our method outperforms the
baselines in the three tasks. However, little margin appeared in the performance on 300k time steps
except tag environment. This result may indicate that MPE tasks are too simple and may not be
challenging enough for a strong MARL algorithm.

Table 5: Average rewards per episode on three MPE tasks.

Scenario QMIX+SPP QMIX QPLEX OW QMIX FOP MACPF

Spread -92.662 -95.133 -95.212 -93.691 -96.182 -92.974
Tag 248.99 112.202 195.294 237.19 205.13 242.74
Reference -39.479 -41.375 -47.158 -41.258 -45.459 -40.062

16

	Introduction
	Related Work
	Multi-agent reinforcement learning.
	Exploration in Multi-agent Reinforcement Learning.

	Backgrounds
	Method
	Architecture
	Stable Prefix Policy
	Training Pipeline
	Sample Complexity Analysis

	Experiments
	Experiment Settings
	Experiment Results
	Ablation Studies

	Discussion
	Conclusion and Future work
	Pseudocode for our approach
	More experiments on SMAC
	Experiments hyper-parameters
	More discussion on SMAC tasks
	Hardware for training
	MPE

