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Abstract

Large Pre-trained Language Models (PLMs)
have become ubiquitous in the development
of language understanding technology and lie
at the heart of many artificial intelligence ad-
vances. While advances reported for English
using PLMs are unprecedented, reported ad-
vances using PLMs for Hebrew are few and
far between. The problem is twofold. First,
so far, Hebrew resources for training large lan-
guage models are not of the same magnitude
as their English counterparts. Second, there
are no accepted benchmarks to evaluate the
progress of Hebrew PLMs on, and in particular,
sub-word (morphological) tasks. We aim to
remedy both aspects. We present AlephBERT,
a large PLM for Modern Hebrew, trained on
larger vocabulary and a larger dataset than any
Hebrew PLM before. Moreover, we introduce
a novel language-agnostic architecture that can
recover all of the sub-word morphological seg-
ments encoded in contextualized word embed-
ding vectors. Based on this new morphological
component we offer a new PLM evaluation
suite consisting of multiple tasks and bench-
marks, that cover sentence level word-level and
sub-word level analyses. On all tasks, Aleph-
BERT obtains state-of-the-art results beyond
contemporary Hebrew baselines. We make our
AlephBERT model, the morphological extrac-
tion mode, and the Hebrew evaluation suite
publicly available, providing a single point of
entry for assessing Hebrew PLMs.

1 Introduction

We presents a case study of PLM development for
a morphologically-rich and medium-resourced lan-
guage. Specifically, we address Modern Hebrew,
a Semitic language, long known to be notoriously
hard to process (Tsarfaty et al., 2019). The chal-
lenges posed to automatically processing Hebrew
and obtaining good accuracy on downstream tasks
stem from (at least) two main factors. The first is
the internal-complexity of word-tokens, resulting

from the rich morphology, complex orthography,
and lack of diacritization in Hebrew written texts.
Space-delimited tokens have non-transparent de-
composition and are highly ambiguous, making
even the simplest of the tasks in the pipeline very
challenging (Tsarfaty et al., 2019). The second
factor is the fact that Modern Hebrew, with only a
few dozens of millions of native speakers, is often
studied in resource-scarce settings.

Contextualized word representations, provided
by models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), were shown in recent
years to be critical for obtaining state-of-the-art
performance on a wide range of Natural Language
Processing (NLP) tasks — such as tagging and
parsing, question answering, natural language infer-
ence, text summarization, natural language genera-
tion, and many more. These contextualized word
representations are obtained by pre-training a large
language model on massive quantities of unlabeled
textual data, aiming to optimize simple yet effec-
tive objectives such as masked word prediction and
next sentence prediction.

While advances reported for English using such
models are unprecedented, in Modern Hebrew, pre-
viously reported results using PLMs are far from
satisfactory. Specifically, the BERT-based Hebrew
section of multilingual-BERT (Devlin et al., 2019)
(henceforth, mBERT), did not provide a similar
boost in performance as observed by the English
section of mBERT. In fact, for several reported
tasks, the mBERT model results are on a par with
pre-neural models, or neural models based on non-
contextualized embedding (Tsarfaty et al., 2020;
Klein and Tsarfaty, 2020). An additional Hebrew
BERT-based model, HeBERT (Chriqui and Yahav,
2021), has been recently released, yet without em-
pirical evidence of performance improvements on
key components of the Hebrew NLP pipeline.

The deficiency in Hebrew resources is problem-
atic for PLM development in at least two ways.



First, the amount of raw text published and avail-
able for training PLMs is relatively small. To wit,
the Hebrew Wikipedia used for training mBERT
is of orders of magnitude smaller than the English
Wikipedia (See Table 1). Secondly, there are no
commonly accepted benchmarks for evaluating the
performance of Hebrew PLMs on NL processing
and understanding tasks. Translation of the English
NLU benchmarks into Hebrew is a feasible solution
for initial PLM evaluation. However no such effort
has been undertaken to date, and, more importantly,
such tasks do not address morphological-level eval-
uation, which is critical for Morphologically Rich
Languages (MLRS).

Evaluating BERT-based models on morpheme-
level tasks is non trivial. PLMs employ sub-word
tokenization mechanisms such as WordPiece and
Byte-Pair Encoding, for the purposes of minimiz-
ing Out-Of-Vocabulary words. These sub-word
tokens are generated in a pre-processing step and
passed as input to the PLM. In particular they are
generated in a statistical manner without utiliza-
tion of linguistic information, and consequently
these sub-word tokens are assigned contextualized
vectors by PLMs but they do not reflect morpholog-
ical segments in any way. Extracting morphologi-
cal units from contextualized vectors provided by
PLMs is thus challenging, yet necessary in order to
enable morphological level evaluation. To address
this we introduce a novel language-agnostic archi-
tecture that recovers the morphological sub-word
segments encoded in the contextualized embed-
dings output by PLMs.

We propose an evaluation setup for PLMs cover-
ing various processing levels tailored to fit MRLs,
i.e. test on sentence, word and most importantly
sub-word morphological tasks. These tasks in-
clude: Segmentation, Part-of-Speech Tagging,
full Morphological Tagging, Dependency Pars-
ing, Named Entity Recognition and Sentiment
Analysis.

We present AlephBERT, a Hebrew pre-trained
language model, larger and trained on more data
than any Hebrew PLM before, and confirm SOTA
results on all existing Hebrew benchmarks and
scheme variants. We make our PLM and online
demo publicly available' allowing to qualitatively
assess present and future Hebrew PLMs.

'www.anonymous.org

2 Previous Work

Contextualized word embedding vectors are a ma-
jor driver for improved performance of deep learn-
ing models on many NLU tasks. Initially, ELMo
(Peters et al., 2018) and ULMFit (Howard and
Ruder, 2018) introduced contextualized word em-
bedding frameworks by training LSTM-based mod-
els on massive amounts of texts. The linguistic
quality encoded in these models was demonstrated
over 6 NLU tasks: Question Answering, Textual
Entailment, Semantic Role labeling, Coreference
Resolution, Name Entity Extraction, and Sentiment
Analysis. The next big leap was obtained with
the introduction of the GPT-1 framework by Rad-
ford and Sutskever (2018). Instead of using LSTM
layers, GPT is based on 12 layers of Transformer
decoders with each decoder layer is composed of
a 768-dimensional feed-forward layer and 12 self-
attention heads. Devlin et al. (2019) followed along
the same lines as GPT and implemented Bidirec-
tional Encoder Representations from Transformers,
or BERT in short. BERT attends to the input tokens
in both forward and backward directions while op-
timizing a Masked Language Model and a Next
Sentence Prediction objective objectives.

BERT Benchmarks An integral part involved in
developing various PLMs is providing NLU multi-
task benchmarks used to demonstrate the linguistic
abilities of new models and approaches. English
BERT models are evaluated on 3 standard major
benchmarks. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is used
to test paragraph level reading comprehension abil-
ities. Wang et al. (2018) selected a diverse and
relatively hard set of sentence and sentence-pair
tasks which comprise the General Language Un-
derstanding Evaluation (GLUE) benchmark. The
SWAG (Situations With Adversarial Generations)
dataset (Zellers et al., 2018) presents models with
partial description of grounded situations to see if
they can consistently predict relevant scenarios that
come next thus indicating the ability for common-
sense reasoning. When evaluating Hebrew PLMs,
one of the key pitfalls is that there are no Hebrew
versions for these benchmarks. Furthermore, none
of the suggested benchmarks account for examin-
ing the capacity of PLMs. In particular, currently
there is no standard accepted way for evaluating the
word-internal morphological structures which are
inherent for MRLs and for the Hebrew language.



2.1 Multilingual vs Monolingual BERT

Devlin et al. (2019) produced 2 BERT models for
English and Chinese. To support other languages
they trained a multilingual BERT (mBERT) model
combining texts covering over 100 languages. They
hoped to benefit low resourced languages with
the linguistic information obtained from other lan-
guages with large dataset sizes. In reality however
mBERT performance on specific languages have
not been as successful as English.

Consequently several research efforts focused
on building monolingual BERT models as well
as providing language specific evaluation bench-
marks. Liu et al. (2019) trained CamemBERT, a
French BERT model evaluated on syntactic and
semantic tasks in addition to natural language infer-
ence tasks. Rybak et al. (2020) trained HerBERT,
a BERT PLM for Polish. They evaluated it on a
diverse set of existing NLU benchmarks as well
as a new dataset for sentiment analysis for the e-
commerce domain. Polignano et al. (2019) created
Alberto, a BERT model for Italian, using a massive
tweet collection. They tested it on NLU tasks - sub-
jectivity, polarity (sentiment) and irony detection
in tweets. In order to obtain a large enough training
corpus in low-resources languages such as Finnish
(Virtanen et al., 2019) and Persian (Farahani et al.,
2020) a great deal of effort went into filtering and
cleaning text samples obtained from web crawls.

Languages with rich morphology introduce an-
other challenge involving identification and ex-
traction of sub-word morphological information.
Nguyen and Tuan Nguyen (2020) applied a special-
ized segmenter on the training data and normalized
all the syllables and words before training their
Vietnamese PheBERT model. In Arabic, like in
Hebrew, words are composed of sub-word mor-
phological units with each morpheme acting as
a single syntactic unit (the way words are in En-
glish). Antoun et al. (2020) acknowledged this by
pre-processing the training data using a morpho-
logical segmenter producing segments that were
used instead of the actual words to train AraBERT.
Doing so they were able to produce output vectors
that correspond to morphological segments as op-
posed to the original words. On the other hand,
this approach requires the application of the same
segmenter at inference time as well.

Like any pipeline approach, this setup is sus-
ceptible to error propagation stemming from the
fact that words can be morphologically ambiguous

Language H Oscar Size  Wikipedia Articles

English 23T 6,282,774
Russian 1.2T 1,713,164
Chinese 508G 1,188,715
French 282G 2,316,002
Arabic 82G 1,109,879
Hebrew 20G 292,201

Table 1: Corpora Size Comparison: High-resource (and
Medium-resourced) languages vs. Hebrew.

‘ Corpus H File Size Sentences = Words ‘
Oscar (deduped) 9.8GB 209M 1,043M
Twitter 6.9GB 71.5M 774M
Wikipedia 1.1GB 6.3M 127M
Total 17.9GB 98.7M 1.9B

Table 2: Data Statistics for AlephBERT’s training sets.

and the predicted segments in fact might not rep-
resent the correct interpretation of the words. As
a result, the quality of the PLM depends on the
accuracy achieved by the segmenting component.
We, on the other hand, do not make any changes
to the input, letting the PLM encode relevant mor-
phological information associated with complete
Hebrew words. Rather, we post-process the output
by transforming contextualized word vectors into
morphological-level segments to be used by the
downstream tasks.

Across all of the above-mentioned language-
specific PLMs, evaluation was performed on the
token-,sentence- or paragraph-level. Non of these
benchmarks examine the capacity of PLMs to en-
code sub-word morphological-level information
which we focus on in this work.

3 AlephBERT Pre-Training

Data The PLM termed here AlephBERT is
trained on a larger dataset and a larger vocabu-
lary than any Hebrew BERT instantiation before.
The Hebrew portions of Oscar and Wikipedia pro-
vides us with a training set size order of magnitude
smaller compared with resource-savvy languages,
as shown in Table 1. In order to build a strong
PLM we need a considerable boost in the amount
of sentences the PLM can learn from, which in our
case comes form massive amounts of tweets added
to the training set. We acknowledge the potential
inherent concerns associated with this data source
(population bias, behavior patterns, bot masquerad-
ing as humans etc.) and note that we have not
made any explicit attempt to identify these cases.



Honoring ethical and legal constraints we have not
manually analyzed nor published this data source.
While the free form language expressed in tweets
might differ significantly from the text found in
Oscar and Wikipedia, the sheer volume of tweets
helps us close the resource gap substantially with
minimal effort. Data statistics are provided in Ta-
ble 2.

Specifically, we employ the following datasets
for pre-training:

e Oscar: A deduplicated Hebrew portion of
the OSCARCcorpus which is “extracted from
Common Crawl via language classification,
filtering and cleaning” (Ortiz Sudrez et al.,
2020).

o Twitter: Texts of Hebrew tweets collected be-
tween 2014-09-28 and 2018-03-07. We man-
ually cleaned up the texts by removing mark-
ers (such “RT:”, user mentions (e.g. “@user-
name’), and URLSs), and eliminating dupli-
cates.

* Wikipedia: The texts in all of Hebrew
Wikipedia, extracted using Attardi (2015)?

Configuration We used the Transformers train-
ing framework of Huggingface (Wolf et al., 2020)
and trained two different models — a small model
with 6 hidden layers learned from the Oscar portion
of our dataset, and a base model with 12 hidden
layers which was trained on the entire dataset. The
processing units used are wordpieces generated
by training BERT tokenizers over the respective
datasets with a vocabulary size of 52K in both cases.
Following the work on RoBERTa (Liu et al., 2019)
we optimize AlephBERT with a masked-token pre-
diction loss. We deploy the default masking config-
uration - 15% of word piece tokens are masked, In
80% of the cases, they are replaced by [MASK], in
10% of the cases, they are replaced by a random to-
ken and in the remaining cases, the masked tokens
are left as is.

Operation To optimize GPU utilization and de-
crease training time we split the dataset into 4
chunks based on the number of tokens in a sen-
tence and consequently we are able to increase
batch sizes, resulting in dramatically shorter train-
ing times.

We trained for 5 epochs with learning rate set
to le-4 followed by an additional 5 epochs with

2We make the corpus available on www.anonymous.com .

chunkl | chunk2 | chunk3 chunk4
max tokens 0>32 | 32>64 | 64>128 | 128>512
num sentences 70M 20M SM 2M

learning rate set to 5e-5 for a total of 10 epochs. We
trained AlephBERTy, . Over the entire dataset on
an NVidia DGX server with 8 V100 GPUs which
took us 8 days. AlephBERT . was trained over
the Oscar portion only using 4 GTX 2080ti GPUs
taking 5 days in total.

4 Experimental Setup

Our two AlephBERT variants allow us to empiri-
cally gauge the effect of model size and data size
on the quality of the language model. In addition,
we compared the performance of all Hebrew BERT
instantiations on various Hebrew NLP tasks using
the following benchmarks:

* Word Segmentation, Part-of-Speech Tag-
ging, Full Morphological Tagging, Depen-
dency Parsing:

— The Hebrew Section of the SPMRL Task
(Seddah et al., 2013)

— The Hebrew Section of the UD? tree-
banks collection (Sadde et al., 2018)

* Named Entity Recognition:

— Token-based NER evaluation based on
the Ben-Mordecai (henceforth BMC)
corpus (Ben Mordecai and Elhadad,
2005)

— Token-based and Morpheme-based NER
evaluation based on the Named Entities
and MOrphology (henceforth NEMO)
corpus (Bareket and Tsarfaty, 2020)

* Sentiment Analysis:

— Sentiment Analysis evaluation based on
a fixed version of the Facebook (hence-
forth FB) corpus of Amram et al. (2018).

4.1 Sentence-Based Modeling

Sentiment Analysis We first report on a classifi-
cation task, assigning a sentence with one of three
values: negative, positive, neutral. By appending
a classification head we turn a BERT model into
a sentence level classifier (utilizing sentence level

*https://universaldependencies.org
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Raw input 1257 mab

Space-delimited tokens 1251 ‘ n"ab

Index 5 3 2 1
Segmentation '[25 nma hi

POS ADJ DET NOUN DET ADP
Morphology Gender=Masc|Number=Sing | PronType=Art | Gender=Masc|Number=Sing | PronType=Art -
Dependencies 3/amod 5/det 1/obj 3/def 0/ROOT
Token-level NER E-ORG B-ORG

Morpheme-level NER E-ORG | I-ORG I-ORG | BORG | O

Table 3: Illustration of Evaluated Token and Morpheme-Based Downstream Tasks. The input is the two-word input
phrase “]:'an n"ab” (to the White House). Sequence and Hebrew text goes from right to left.

embedded vector representation associated with the
special [CLS] BERT token).

We used a version of the Hebrew Sentiment
dataset which we corrected by removing the leaked
samples and re-partitioned to add a development
set. This version has a total of 8,465 samples.*. We
fine-tuned all models for 15 epochs with 5 different
seeds and report the mean accuracy.

4.2 Token-Based Modeling

Named Entity Recognition Here we assume a
token-based sequence labeling model. The input
comprises of the sequence of tokens in the sentence,
and the output contains BIOSE tags indicating en-
tity spans. By appending a token-classification
head we predict NER class labels for each word
vector provided by the PLM (in cases of multiple
word pieces we use the first one).

We evaluate this model on two corpora. We first
evaluate on the BMC corpus which provides token-
level annotations. It contains 3294 sentences and
4600 entities, and has seven different entity cate-
gories (DATE, LOC, MONEY, ORG, PER, PER-
CENT, TIME). To remain compatible with the orig-
inal work we train and test the models on the 3
different splits as in Bareket and Tsarfaty (2020).
We then move to evaluate on the NEMO corpus
which is an extension of the SPMRL dataset with
Named Entities, marked by BIOSE tags. This cor-
pus provides both token and morpheme based entity
annotations, where the latter contains the accurate
(token-internal) entity boundaries. The NEMO cor-
pus has nine categories (ANG, DUC, EVE, FAC,
GPE, LOC, ORG, PER, WOA). It contains 6220
sentences and 7713 entities, and we used the stan-
dard SPMRL train-dev-test. All sequence labeling
models were trained for 15 epochs.

“www.anonymous.org
Swww.anonymous.org

4.3 Morpheme-Based Modeling

Modern Hebrew is a Semitic language with rich
morphology and complex orthography. As a re-
sult, the basic processing units in the language are
typically smaller than a given token’s span. To
probe AlephBERT’s capacity to accurately predict
such token-internal linguistic structure, we test our
models on five tasks that require knowledge of the
internal morphology of the raw tokens. The input
to all these tasks is a Hebrew sentence contam
raw space-delimited tokens:

* Segmentation
Output: A sequence of morphological seg-
ments representing basic processing units.®

* Part-of-Speech Tagging
Output: Segmentation of the tokens to basic
processing units as above, where each seg-
ment is tagged with its single disambiguated
part-of-speech tag.

* Morphological Tagging
Output: Segmentation of the tokens to basic
processing units as above, where each seg-
ment is tagged with a single POS tag and a set
of morphological features.’

* Dependency Parsing
Output: Segmentation of the tokens to basic
processing units as above, where each seg-
ment is tagged with a single POS tag and a set
of morphological features and assigned with
labeled dependency relations.

®These units comply with the 2-level representation of
tokens defined by UD, where each basic unit corresponds to a
single POS tag. https://universaldependencies.
org/u/overview/tokenization.html

"Equivalent to the AllTags evaluation metric
defined in the CoNLL18 shared task. https:
//universaldependencies.org/conlll18/
results—alltags.html
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¢ Morpheme-Based NER
Output: Segmentation of the tokens to basic
processing as above, where each segment is
tagged with a BIOSE tag indicating entity
spans, along with the entity-type label.

An illustration of these tasks is given in Table 3.

In order to provide proper segmentation and la-
beling for the aforementioned tasks we developed
a model designated to produce the morphological
segments of each word in context. This morpho-
logical segmentation model consumes words and
their associated contextualized embedded vectors
(produced by a PLM), feeds them into a char-based
seq2seq module and produces sub-token morpho-
logical segments as output. The seq2seq module is
composed of an encoder implemented as a simple
char-based BiLSTM, and a decoder implemented
as a char-based LSTM generating the output char-
acter symbols, or a space symbol signalling the end
of a morphological segment. We train the model
for 15 epochs, optimized with next-character pre-
diction loss. For tasks involving both segmentation
and labeling (POS, Features, NER) we deploy an
MTL (multi-task learning) setup. That is, when
generating an end-of-segment symbol, the morpho-
logical model then predicts task labels which can
be one or more of the following: POS-tag, NER-
tag, morphological features. In order to guide the
training we optimize the combined segmentation
and label prediction loss values.

For the NER task, we design another setup in
which we first segment the text, and feed the mor-
phological segments into the PLM to produce con-
textualized embedded vectors for the segments. We
are then able to perform fine-tuning with a token
classification attention head directly applied to the
PLM output (similar to the way we fine-tune the
PLM for the token-based NER task described in
the previous section). We acknowledge the fact that
we are fine-tuning the PLM using morphological
segments even though it was originally pre-trained
without any morphological knowledge but, as we
shall see shortly, this seemingly unintuitive strategy
performs surprisingly well.

Finally, we set up a dependency parsing eval-
uation pipeline. For this purpose we choose the
standalone Hebrew parser offered by More et al.
(2019) (a.k.a YAP) which was trained and produces
SPMRL dependency labels. The morphological in-
formation encoded in the PLMs is recovered for
each word by our morphological extraction model

and used as input features to the YAP standalone
parser.

4.3.1 Morpheme Level Evaluation

Aligned Segment The CoNLL18 Shared Task
evaluation campaign® reports scores for segmen-
tation and POS tagging® for all participating lan-
guages. For multi-segment words, the gold and pre-
dicted segments are aligned by their Longest Com-
mon Sub-sequence, and only matching segments
are counted as true positives. We use the script
to compare aligned segment and tagging scores
between oracle (gold) segmentation and realistic
(predicted) segmentation.

Aligned Multi-Set In addition we compute F1
scores similar to the aforementioned with a slight
but important difference as defined by More et al.
(2019) and Seker and Tsarfaty (2020). For each
word, counts are based on multi-set intersections of
the gold and predicted labels ignoring the order of
the segments while accounting for the number of
each segment. Aligned mset is based on set differ-
ence which acknowledges the possible undercover
of covert morphemes which is an appropriate mea-
sure of morphological accuracy.

Discussion To illustrate the difference between
aligned segment and aligned mset, let us take for
example the gold segmented tag sequence: b/IN,
h/DET, bit/NOUN and the predicted segmented tag
sequence b/IN, bit/NOUN. According to aligned
segment, the first segment (b/IN) is aligned and
counted as a true positive, the second segment how-
ever is considered as a false positive (bit/NOUN)
and false negative (#//DET) while the third gold seg-
ment is also counted as a false negative (bit/NOUN).
On the other hand with aligned mulit-set both b/IN
and bit/NOUN exist in the gold and predicted sets
and counted as true positives, while #~/DET is mis-
matched and counted as a false negative. In both
cased the total counts across words in the entire
datasets are incremented accordingly and finally
used for computing Precision, Recall and F1.

5 Results

Sentence-Based Tasks Sentiment analysis accu-
racy results are provided in Table 4. All BERT-
based models substantially outperform the original

8https://universaldependencies.org/conll18/results.html
“respectively referred to as ’Segmented Words’ and
"UPOS’ in the CoNLL18 evaluation script



Table 4: Token-based NER F1. Previous SOTA on both
corpora reported by the NEMO models of Bareket and
Tsarfaty (2020). Sentiment Analysis accuracy on the

Task NER (Token) || Sentiment Task | Segment POS  Features
Corpus NEMO BMC FB Prev. SOTA NA 94.02 NA
Prev. SOTA || 77.75 85.22 NA mBERT 97770 9476  90.98

mBERT || 79.07 87.77 79.07 HeBERT 98.05 96.07 92.53

HeBERT || 81.48 8941 81.48 AlephBERTman 97.86 9558  92.06
AlephBERTman || 78.69  89.07 78.69 AlephBERTp,e || 98.20 9620  93.05
AlephBERT, || 8491  91.12 84.91

Table 6: Morpheme-Based Aligned MultiSet (mset) F1
results on the UD corpus. Previous SOTA reported by
(Seker and Tsarfaty, 2020) (POS)

corrected version of the Facebook corpus. ‘ Task ‘ Segment POS  Features

Prev. SOTA 96.03 93.75 91.24

\ Task | Segment POS Features UAS LAS | mBERT 97.17 9427 90.51

Prev. SOTA NA 90.49 85.98 75.73  69.41 HeBERT 97.54 95.60 92.15
mBERT || 9736 9337 8936 80.17 749

HeBERT | 97.97 9461 9093 81.86 76.54 AlephBERT || 9731 9513 91.65

AlephBERTgman | 9771 9411 9056 815 176.07 AlephBERTp.e | 97.70 95.84  92.71
AlephBERTpye | 98.10 9490 9141 8207 76.9

Table 5: Morpheme-Based results on the SPMRL cor-
pus. Aligned MultiSet (mset) F1 for Segmentation, POS
tags and Morphological Features - previous SOTA re-
ported by (Seker and Tsarfaty, 2020) (POS) and (More
et al., 2019) (features). Labeled and Unlabeled Accu-
racy Scores for morphological-level Dependency Pars-
ing - previous SOTA reported by (More et al., 2019)
(uninfused/realistic scenario)

CNN Baseline reported by Amram et al. (2018).
AlephBERTy, is setting new SOTA.

Token-Based Tasks On our two NER bench-
marks, we report F1 scores on the token-based
fine-tuned model in Table 4. Although we see no-
ticeable improvements for the mBERT and HeBert
variants over the current SOTA, the most significant
increase is achieved by AlephBERT};sc.

Morpheme-Based Tasks As a particular nov-
elty of this work, we report BERT-based results
on sub-token (segment-level) information. Specif-
ically, we evaluate segmentation, POS, Morpho-
logical Features, NER and dependencies compared
against morphologically-labeled test sets. In all
cases we use raw space-delimited tokens as input
and produce morphological segments with our new
morphological extraction model which uses BERT-
based output as features.

Table 5 presents evaluation results for the
SPRML dataset as done in previous work on He-
brew (More et al., 2019). We report aligned multi-
set F1 scores for 3 tasks: segmentation, POS tag-
ging, and morphological features extraction. In
addition we report labeled and unlabeled accuracy

Table 7: Morpheme-Based Aligned (CoNLL shared
task) F1 on the UD corpus. Previous SOTA reported by
Minh Van Nguyen and Nguyen (2021)

scores of the dependency trees produced by our
dependency parsing pipeline setup. We see that
segmentation results for all BERT-based models
are similar, in the high range of 97-98 F1 scores,
which are hard to improve further.'® For POS tag-
ging and morphological features, all BERT-based
models considerably outperform previous SOTA.

The most impressive improvement is observed
in dependency parsing attachment scores where
we observe a large gain compared to the previous
SOTA joint morpho-syntactic framework. It con-
firms the impact that morphological errors early
in the pipeline have on downstream tasks, and
highlight the importance of morphologically-driven
benchmark as part of any PLM evaluation.

In all tasks of the SPMRL dataset, we notice
a repeating trend placing AlephBERTy, as the
best model for all morphological tasks, indicating
that the improvement provided by the depth of the
model and a larger dataset does improve the ability
to capture token-internal structure.

These trends are replicated on the UD Hebrew
corpus, for two different evaluation metrics — the
Aligned MultiSet F1 Scores as in previous work on
Hebrew (More et al., 2019), (Seker and Tsarfaty,
2020), and the Aligned Segment F1 scores metrics
as described in the UD shared task (Zeman et al.,
2018) — reported in Tables 6 and 7 respectively.

10Some of these errors are due to annotation errors, or truly
ambiguous cases.



Architecture Pipeline Pipeline MultiTask
Segmentation (Oracle) (Predicted)

Task Seg | NER | Seg | NER | Seg | NER
Prev. SOTA | 100.00 | 79.10 | 95.15 | 69.52 | 97.05 | 77.11
mBERT | 100.00 | 77.92 | 97.68 | 72.72 | 97.24 | 72.97
HeBERT | 100.00 | 82 | 98.15 | 76.74 | 97.92 | 74.86
AlephBERTpay | 100.00 | 79.44 | 97.78 | 73.08 | 97.74 | 72.46
AlephBERT},e | 100.00 | 83.94 | 98.29 | 80.15 | 98.19 | 79.15

Table 8: Morpheme-Based NER F1 on the NEMO cor-
pus. Previous SOTA reported by Bareket and Tsarfaty
(2020) for the Pipeline (Oracle), Pipeline (Predicted)
and a Hybrid (almost-joint) scenarios, respectively.

Morpheme-Based NER Earlier in this section
we considered NER as a token-based task that sim-
ply requires fine-tuning on the token level. How-
ever, this setup is not accurate enough and less
useful for downstream tasks, since the exact entity
boundaries are often token internal (Bareket and
Tsarfaty, 2020). We hence report morpheme-based
NER evaluation, respecting exact boundaries of en-
tity mentions. To obtain morpheme-based labeled-
span of Named Entities we could either employ
a pipeline, first predicting segmentation and then
applying a fine tuned labeling model directly on the
segments, or employ multi-task model and predict
NER labels while performing segmentation.

Table 8 presents segmentation and NER results
for three different scenarios: (i) pipeline assuming
gold segmentation (ii) pipeline assuming predicted
segmentation (iii) segmentation and NER labels ob-
tained jointly in multi-task setup. AlephBERT,ge
consistently scores highest in all 3 setups.

Looking at the Pipeline-Predicted scores, there
is a clear correlation between a higher segmenta-
tion quality of a PLM and its ability to produce
better NER results. Moreover, the differences
in NER scores are considerable (unlike the sub-
tle differences in segmentation, POS and morpho-
logical features scores) and draw our attention to
the relationship between the size of the PLM, the
size of the pre-training data and the quality of
the final NER models. Specifically, HeBERT and
AlephBERT .1 were both pre-trained on similar
datasets and comparable vocabulary sizes (heBERT
with 30K and AlephBERT-small with 52K) but
HeBERT, with its 12 hidden layers, performs bet-
ter compared to AlephBERTy,;; which is com-
posed of only 6 hidden layers. It thus appears that
semantic information is learned in those deeper
layers helping in both discriminating entities and
improving the overall morphological segmenta-
tion capacity. In addition, comparing HeBERT
to AlephBERT},,5. we point to the fact that they

are both modeled with the same 12 hidden layer
architecture, the only differences between them are
in the size of their vocabularies (30K vs 52K re-
spectively) and the size of the training data (Oscar-
Wikipedia vs Oscar-Wikipedia-Tweets). The im-
provements exhibited by AlephBERTp,s, com-
pared to HeBERT, suggests that it is a result of
the large amounts of training data and larger vo-
cabulary. By exposing AlephBERT}, to a sub-
stantially larger amount of text we increased the
ability of the PLM to encode syntactic and seman-
tic signals associated with Named Entities. Finally,
our NER experiments suggest that a pipeline com-
posed of our near-perfect morphological segmenta-
tion model followed by AlephBERT},s augmented
with a token classification head is the best strategy
for generating morphologically-aware NER labels.

6 Conclusion

Modern Hebrew, a morphologically-rich and
medium-resource language, has for long suffered
from a gap in the resources available for NLP ap-
plications, and lower level of empirical results than
observed in other, resource-rich languages. This
work provides the first step in remedying the situ-
ation, by making available a large Hebrew PLM,
nicknamed AlephBERT, with larger vocabulary and
larger training set than any Hebrew PLM before,
and with clear evidence as to its empirical advan-
tages. Crucially, we propose a language-agnostic
pipeline with a morphological disambiguation com-
ponent that does not require any particular (possi-
bly noisy) pre-processing. This opens the door for
developing an entire suite of morphological bench-
marks for testing PLMs for MRLs. AlephBERT,se
obtains state-of-the-art results on the tasks of mor-
phological segmentation, part-of-speech tagging,
morphological feature extraction, dependency pars-
ing, named-entity recognition, and sentiment analy-
sis outperforming both multilingual (mBERT) and
language-specific (HeBERT) PLMs. Our proposed
morphologically-driven test benchmarks serve as a
solid foundation for future development and evalu-
ation of Hebrew and MRLs in general.
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