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Abstract: We present DexUMI - a data collection and policy learning framework1

that uses the human hand as the natural interface to transfer dexterous manip-2

ulation skills to various robot hands. DexUMI includes hardware and software3

adaptations to minimize the embodiment gap between the human hand and var-4

ious robot hands. The hardware adaptation bridges the kinematics gap using a5

wearable hand exoskeleton. It allows direct haptic feedback in manipulation data6

collection and adapts human motion to feasible robot hand motion. The soft-7

ware adaptation bridges the visual gap by replacing the human hand in video data8

with high-fidelity robot hand inpainting. We demonstrate DexUMI’s capabilities9

through comprehensive real-world experiments on two different dexterous robot10

hand hardware platforms, achieving an average task success rate of 86%.11
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Figure 1: DexUMI transfer dexterous human manipulation skills to various robot hand by using wearable
exoskeletons and a data processing framework. We demonstrate DexUMI’s capability and effectiveness on
both underactuated (e.g., Inspire) and fully-actuated (e.g., XHand) robot hand for a wide variety of manipulation
tasks.

1 Introduction14

Human hands are incredibly dexterous in a wide range of tasks. Dexterous robot hands are designed15

with the hope of replicating this capability. However, it remains a significant challenge to transfer16

skills from human hands to robotic counterparts due to their substantial embodiment gap. This17

gap manifests in various forms, such as differences in kinematic structures, contact surface shape,18

available tactile information, and visual appearance.19

What further complicates this challenge is the diversity of dexterous hand hardware designs available20

today. Each robotic hand presents different engineering trade-offs in degrees of freedom, motor21
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ranges, actuation mechanisms, and overall dimensions. The solution for reducing the embodiment22

gap must handle the vast hardware design space. Teleoperation has become a popular manipulation23

interface for dexterous hands. However, teleoperation can be difficult due to the spatial observation24

mismatch and the lack of direct haptic feedback. These problems do not exist when human hand can25

perform the manipulation task directly. In other words, human hand itself is a better manipulation26

interface. In this paper, we ask the following question:27

How can we minimize the embodiment gap, so that we can use the human hand28

as the universal manipulation interface for diverse robot hands?29

To answer this question, we propose DexUMI, a framework with hardware and software adaptation30

components that is designed to minimize the action and observation gaps.31

The hardware adaptation takes the form of a wearable hand exoskeleton. A user can directly32

collect manipulation data while wearing it. The exoskeleton is designed for each target robot hand33

through a hardware optimization framework that refines exoskeleton parameters (e.g., link lengths)34

to closely match the robot finger trajectories while maintaining wearability for the human hand. The35

hardware adaption provides the following benefits:36

• Intuitive demonstration with direct haptic feedback: Unlike teleoperation systems, the wear-37

able exoskeleton has no spatial mismatch and allows users to directly contact objects during38

manipulation, making the demonstration intuitive and doable without a robot.39

• Records feasible motion for the robot hand: The exoskeleton constrains human hand motions40

to match the kinematics of the target hand, ensuring the recorded motion is transferable.41

• Capturing precise joint action: Unlike retargeting methods, our exoskeleton reads precise joint42

angles directly from encoders, eliminating inaccuracies due to visual fingertip tracking.43

• Matching tactile information for learning: Most handheld grippers for data collection [1–3] do44

not record the tactile information. Our design includes additional tactile sensors on the fingertip45

to record the same tactile info as what the robot hand would record.46

Our software adaptation takes the form of a data processing pipeline that bridges the visual ob-47

servation gap between human demonstration and robot deployment. This processing pipeline first48

removes the human hand and exoskeleton from the demonstration video using video segmentation,49

then inpaints the video with the corresponding robot hand and environment backgrounds that match50

the target action. This adaptation ensures visual input consistency between training and robot de-51

ployment, despite visual differences between human and robotic hands.52

With both hardware and software adaptation layers, DexUMI allows us to collect data on various53

tasks with minimal kinematic and visual gaps then transfer skills to robots. Comprehensive real-54

world experiments demonstrate DexUMI’s capability on two different dexterous hand types: a 6-55

DoF Inspire hand [4] and a 12-DoF XHand [5]. Our approach achieves 3.2 times greater data56

collection efficiency compared to teleoperation and an average success rate of 86% across four tasks57

, including long-horizon and complex tasks requiring multi-finger contacts.58

2 Related Work59

Although extensive work has studied how to enable learning in simulated environments [6–20], we60

focus on reviewing real world data collection methods.61

Teleoperation: Teleoperation is a popular interface for dexterous manipulation. Hand control is62

achieved with motion capture gloves [21–25], virtual-reality devices [26–28], or camera-based track-63

ing [29–35]. Most approaches employ optimization-based retargeting to map human fingertips to64

robot hand. While being adaptable to different robot platforms, retargeting struggles with fundamen-65

tal morphological differences between human and robot hands, especially the thumb flexibility [36].66

Recent work by Zhou et al. [37] introduced a hand exoskeleton for direct joint mapping, but the me-67

chanical structural differences limit the mapping accuracy. Additionally, teleoperation or kinesthetic68

teaching [38] require the robot hardware to be present, limiting the flexibility of data collection. In69

contrast, DexUMI collects manipulation data without physical robots.70
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Figure 2: Exoskeleton Design. The optimized exoskeleton design shares the same joint-to-fingertip position
mapping as the target robot hand while maintaining the wearability. The exoskeletons utilizes the encoder to
precisely capture the joint action and 150° DFoV camera to record the information-rich visual observation. An
iPhone is rigidly mounted to track the wrist pose through the ARKit.

Human hand video: Learning manipulation skills from human hand video is an attractive direction.71

Prior works have explored learning affordance [39–42] or extracting human and object pose [43–72

47] from video. Though showing promising results, many of these works either require additional73

real-world robot data or need to learn the policy in simulation and depend on privileged information,74

such as object pose, to deploy the policy in the real world.75

Wearable devices: Another line of work focuses on designing wearable devices for data collection,76

such as portable hand-held grippers [1–3, 48–57]. These approaches have demonstrated promising77

results in scaling real-robot manipulation skills. However, these systems primarily target simple par-78

allel/pinch grippers and cannot be easily adapted to multi-fingered systems. Alternatively, Dexcap79

[58] uses motion capture gloves for in-contact data collection. However, it still relies on retargeting80

methods and human-correction data through teleportation. In contrast, our method eliminates these81

requirement, enabling direct policy deployment with data collected through DexUMI. Recently, Wei82

and Xu [59] and Fang et al. [60] proposed hand-over-hand systems for dexterous hands. These works83

require the actual robot hand to be available and lifted by the human hand.84

3 Hardware Adaptation to Bridge the Embodiment Gap85

This section introduces our hardware adaptation, which is a wearable exoskeleton design that adapts86

human motion to feasible robot actions. While the final exoskeleton design is robot-specific, the87

principles of the design framework can be shared. We introduce the design framework in two parts:88

mechanism design optimization (§3.1) and sensor integration (§3.2).89

3.1 Exoskeleton Mechanism Design90

Modern robot hands often closely mimic human hands anatomically, meaning that a hand exoskele-91

ton would compete for space with the human hand wearing it. The biggest challenge is for the92

thumb, whose pronation–supination movement can sweep a large volume and cause significant col-93

lision between the human thumb and a naively designed exoskeleton. Our exoskeleton design has94

two goals to achieve:95

1. Shared joint-action mapping: The exoskeleton and the target robot hand must share the same96

joint-to-fingertip position mapping, including their limits, so the action can transfer.97

2. Wearability: The exoskeleton must allow sufficient natural movements of the user’s hand.98

While the first goal can be mathematically defined, the wearability goal is hard to write down con-99

cretely. Our solution is to parameterize the exoskeleton design and formulate the wearability require-100

ments as constraints on the design parameters, then find a solution that accommodates wearability101

while preserving kinematic relationships by solving an optimization. To make the optimization fea-102

sible, we prioritize the exact kinematics of fingertip links, while allowing greater flexibility in the103

kinematics of links less likely to contact objects.104
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E.1 Design initialization: We initialize the design with parameterized robot hand models based on105

URDF files (See Fig. 3). When such detailed designs are unavailable (e.g., the Inspire-Hand’s finger106

mechanisms), we substitute them with equivalent general linkage designs with the same DoFs (e.g.,107

a four-bar linkage) and allow optimization to find parameters that best match the observed kinematic108

behavior. Please see Appendix for details.109

28.85mm

Identical Fingertips Workspace

Move Thumb 
Backward

Identical Fingertips Workspace

50mm

Inspire Hand Exoskeleton XHand Exoskeleton

Initialization (URDF) After Optimization 

Figure 3: Mechanism Optimization. To avoid thumb
collision between human hand and exoskeleton, the
hardware optimization step allows us to move the ex-
oskeleton thumb backward while still preserving the
original fingertip and joint mapping in SE(3) space.

E.2 Bi-level optimization objective: Our110

optimization objective maximizes the fol-111

lowing similarity: maxp S(W tip
exo(p),W tip

robot),112

where W tip
exo and W tip

robot represent the finger-113

tip workspaces (set of all possible fingertip114

pose in SE(3)) for the exoskeleton and robot115

hand, respectively. p = {j1, ..., jn, l1, ..., lm}116

is the exoskeleton design parameters including117

joint positions ji ∈ R3 in the wrist coordi-118

nate (i.e., flange) and linkage lengths lj . The119

function S(·, ·) represents a similarity metric120

between the two workspaces, which quantifies121

how closely the exoskeleton’s fingertip pose distribution matches that of the robot hand. In practice,122

the S(·, ·) is implemented as minimization by sampling configurations from both workspaces. Given123

a set of K robot hand configurations θrobot,k and N exoskeleton configurations θexo,n:124

S(W tip
exo(p),W tip

robot) = −
( K∑

k=1

min
θexo

∥F tip
exo(p,θexo)−F tip

robot(θrobot,k)∥2

+

N∑
n=1

min
θrobot

∥F tip
exo(p,θexo,n)−F tip

robot(θrobot)∥2
)

(1)

125
where F tip

exo and F tip
robot are the forward kinematics for the exoskeleton and robot hand respectively.126

Optimizing the first term encourages the exoskeleton to cover the robot hand’s workspace by finding127

exoskeleton configurations closest to the sampled robot hand configurations. The second term re-128

quires W tip
exo(p) ⊆ W tip

robot, ensuring the exoskeleton’s fingertip workspace remains within the robot129

hand’s capabilities, preventing generation of unreachable poses outside the robot hand’s workspace.130

E.3 Constraints: We apply bound constraints ji ∈ Ci and lmin
j ≤ lj ≤ lmax

j , which are empirically131

selected to ensure that the exoskeleton can be comfortably worn. For example, we want to move132

the thumb swing joint closer to the wrist along the x-axis under MANO [61] convention to avoid133

collision between the human thumb’s pronation–supination movement and that of the exoskeleton.134

3.2 Sensor Integration135

Sensors on the exoskeleton need to satisfy the following design objectives:136

1. Capture sufficient information: the sensors need to capture ALL the information necessary for137

policy learning, which includes: robot action such as joint angle (S.1) and wrist motion (S.2), as138

well as observations in both vision (S.3) and tactile (S.4).139

2. Minimize embodiment gap: the sensory information should have minimal distribution shift be-140

tween human demonstration and robot deployment.141

S.1 Joint capture & mapping. To precisely capture joint actions, our exoskeleton integrates joint142

encoders at every actuated joint – using resistive position encoders for both the XHand and Inspire-143

hand. We choose the Alps encoder [62] for its size and precision. Due to the joint friction and144

motor backlash, the mapping between exoskeleton joint encoder θiexo and robot hand motor Mi
robot145

values is often non-linear, therefore, we train a simple regression model for each joint to obtain this146

mapping. To calibrate the regression model, we collect a set of paired data by uniformly sampling K147

motor values on the physical robot for each finger and then find the corresponding exoskeleton joint148

value by overlaying the visual observation between the robot hand and exoskeleton. This process149

creates a paired dataset for us to train the regression model.150
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Figure 4: Bridging the Visual Gap. To convert the visual observation into policy training data, we first segment
the exoskeleton using SAM2 (b) and inpaint the missing background (c). The corresponding joint action (a) is
replayed on the dexterous hand to obtain the robot hand image (d). SAM2 is applied to obtain the robot mask
(e). The intersection (f) of the exoskeleton mask (b) and robot mask (e) identifies the visible part of the hand
during interaction. Finally, we replace pixels in the inpainted background (c) with the visible robot hand (g).

S.2 Wrist pose tracking. We use iPhone ARKit to capture the 6DoF wrist pose, as smartphones151

represent the most accessible devices capable of providing precise spatial tracking. This tracking152

device is only needed for data collection, not for robot deployment.153

S.3 Visual observation. We mounted a 150° diagonal field of view (DFoV) wide-angle camera154

OAK-1 [63] under the wrist for both the exoskeleton and the target robot dexterous hand. This155

positioning was chosen to effectively capture hand-object interactions. Critically, the camera poses156

in the wrist frame were identical for the exoskeleton and the robot hand, which maintains visual157

consistency between training and deployment.158

S.4 Tactile sensing. The wearable exoskeleton allows users to directly contact objects and receive159

haptic feedback. However, this human haptic feedback cannot be directly transferred to the robotic160

dexterous hand. Therefore, we install tactile sensors on the exoskeleton to capture and translate these161

tactile interactions. To ensure consistent sensor readings, we install the same type of tactile sensors162

on the exoskeleton as those used on the target robot hand. For XHand, we use the electro-magnetic163

tactile sensor that comes with the hand. For the Inspire-Hand, we install the same resistive tactile164

sensor Force Sensitive Resistor [64] for both the exoskeleton and the robot hand.165

4 Software Adaptation to Bridge the Visual Gap166

Fig. 4 shows the visual gap between human demonstration (a) and robot deployment (h). To bridge167

this visual gap, we developed a data processing pipeline to adapt the demonstration image into168

what the robot will see as if the robot hand was collecting data. This adaptation uses off-the-shelf169

pretrained models to ensure generalizability. The adaptation takes four steps:170

V.1 Segment human hand and exoskeleton. Firstly, we segment (Fig. 4b) the human hand and171

exoskeleton on observation videos using SAM2 [65]. Since SAM2 requires initial prompt points,172

we established a protocol where the human operator always begins with the same hand gesture,173

allowing us to reuse the same prompt points for all demonstrations.174

V.2 Inpaint environment background. With segmentation, we remove the human hand and the175

exoskeleton pixels from the image data. Then we use ProPainter [66], a flow-based inpainting176

method, to fully refill (Fig. 4c) the missing areas [67–69].177

V.3 Record corresponding robot hand video. Next, to render robot hand properly into the video, we178

replay the recorded joint action on the robot hand and record another video with only the robot hand179

(Fig. 4d). This step does not involve the robot arm. We then used SAM2 again to extract the robot180

hand pixels (Fig. 4e) and discard the background. Notice, it is possible to train an image generation181

model to output the robot hand image based on the actions, but it requires additional model training.182

V.4 Compose robot demonstrations. The last step is to merge the inpainted-background-only video183

with robot-hand-only video. It is crucial to maintain proper occlusion relationships: the robot hand184
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Figure 5: Policy Rollout: We evaluate DexUMI’s capabilities across challenging real-world tasks. The Cube
task tests basic picking precision. The Egg Carton task evaluates multi-finger coordination. The Tea Picking
task assesses performance on contact-rich manipulation requiring millimeter-level fine-grained fingertip ac-
tions. Finally, the Kitchen task tests capabilities on long-horizon high-precision actions to manipulate a knob,
move a pan using both the side of thumb and index finger (beyond just fingertips), and utilize tactile sensing
for visually challenging salt picking tasks.

does not always appear on top. We developed an occlusion-aware compositing approach leveraging:185

(1) our consistent under-wrist camera setup, and (2) the kinematic and shape similarity between the186

exoskeleton and robot hand. We compute a visible mask (Fig. 4f) by intersecting the exoskeleton187

mask and robot hand mask. Rather than naively overwriting pixels, we selectively replace pixels in188

the inpainted observation with robot hand pixels only if those pixels are present in the visible mask.189

This preserved natural occlusion relationships between the hand and objects when viewed from190

our under-wrist camera perspective. This approach generated visually coherent robot manipulation191

demonstrations that maintained proper spatial relationships.192

Imitation learning. Our imitation learning policy p(at|ot, ft) takes processed visual observation193

ot and tactile sensing ft as input. The output is a sequence of actions {at, . . . , at+L} of length L,194

starting from the current time t, denoted as at. The robot action at includes a 6-DOF end-effector195

action and N-DOF hand action where N depends on the specific robot hand hardware.196

5 Evaluation197

Target robot hands: We evaluate DexUMI across two different robot hands:198

• Inspire Hand (IHand): A twelve-DoF (six active DoFs) underactuated hand. The thumb has two199

active and two passive DoFs, while each remaining finger has one active and one passive DoF.200

• XHand: A fully-actuated hand with twelve active DoFs. The thumb contains three DoFs, the201

index finger has three DoFs, and each of the remaining fingers has two DoFs.202
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Method Inspire Hand XHand

Action Tactile Visual Cube Carton Tea Tea Kichen
tool leaf tool leaf knob pan salt

Rel Yes Inpaint 1.00 0.85 1.00 0.85 1.00 0.85 0.95 0.95 0.75
Abs Yes Inpaint 0.10 0.35 0.80 0.00 1.00 0.25 0.50 0.45 0.00
Rel No Inpaint 0.95 0.90 1.00 0.90 0.95 0.80 0.95 0.95 0.15
Abs No Inpaint 0.90 0.85 0.90 0.60 1.00 0.75 0.60 0.60 0.0
Rel No Mask 0.60 0.10 0.90 0.50 / / / / /
Rel No Raw 0.20 0.05 0.85 0.05 / / / / /

Table 1: Evaluation Results. We report stage-wise accumualted success rate. The experiments compare
different combinations of finger action representation (Absolute vs Relative), tactile feedback (Yes vs No), and
visual rendering approaches (Inpaint vs Mask/Raw).Abs Action
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Figure 6: Comparisons. a) The policy outputs relative hand actions yield more precise action and demonstrate
better multi-finger coordination. Note, we draw a sketch for the knob closing for better visualization. b) Even
with noisy tactile sensor reading, the tactile significantly improve tasks which is visually challenging.

Tasks: We evaluate DexUMI across four different real-world tasks:203

• Cube [IHand]: Pick up a 2.5cm wide cube from a table and place it into a cup. This evaluates204

the basic capabilities and precision of the DexUMI system.205

• Egg Carton [IHand]: Open an egg carton with multiple fingers: the hand needs the index, mid-206

dle, ring, and little fingers to apply downward pressure on the carton’s top while simultaneously207

using the thumb to lift the front latch.208

• Tea [IHand & XHand]: Grasp tweezers from the table and use them to transfer tea leaves from209

a teapot to a cup. The main challenge is to stably operate the deformable tweezers with multi-210

finger contacts.211

• Kitchen [XHand]: The task involves four sequential steps: turn off the stove knob; transfer the212

pan from the stove top to the counter; pick up salt from a container; and lastly, sprinkle it over213

the food in the pan. The task tests DexUMI’s capability over long-horizon tasks with precise214

actions, tactile sensing and skills beyond using fingertips.215

Comparison: We evaluate the impact of policy action space choices, tactile sensing, and software216

adaptation on system performance.217

• Relative vs. Absolute finger action: We compare the form of finger action trajectory: absolute218

position or relative trajectory proposed by [1]. We always use relative position for wrist action.219

• With vs. Without tactile sensing: We trained policies with and without tactile sensor input.220

• With vs. Without software adaptation: We examine two variants without software adaptation:221

(1) Mask, which replaces pixels occupied by the exoskeleton (during training) or robot hand222

(during inference) with a green color mask, and (2) Raw, which simply passes unmodified images223

containing the exoskeleton as policy input.224

Evaluation protocol: For each evaluation episode, the test objects are randomly placed on the table225

at initialization. We conduct 20 evaluation episodes per task, maintaining consistent initial object226

configurations across our method and all baselines. For long horizon tasks, we report stage-wise227

accumulated success rate in Tab. 1.228
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5.1 Key Findings229

DexUMI framework enables efficient dexterous policy learning: As shown in Tab. 1, the Dex-230

UMI system achieves high success rates across all four tasks on two robot hands. The system231

handles precise manipulation, long-horizon tasks, and coordinated multi-finger contact, while effec-232

tively generalizing across diverse manipulation scenarios.233

Relative finger trajectories are more robust to noise and hardware imperfections: Tab. 1 shows234

relative finger trajectory consistently achieves better success across all tasks. Fig. 6 shows more235

insights: relative trajectory can make critical contact events more reliable. We hypothesize two rea-236

sons for this difference: 1. Relative action has a simpler distribution than absolute and is thus easier237

to learn; 2. Relative action learns a reactive behavior where the delta action keeps accumulating238

until a key event is reached (e.g. fingers close on contact). However, the absolute action learns a239

static mapping and would stall if the mapping has errors.240

Only relative finger trajectories can benefit from the noisy tactile feedback: An interesting241

observation in Tab. 1 is how having tactile affects the results differently. The tactile sensor on the242

XHand can drift and become inconsistent after experiencing high pressure. Therefore, in most cases,243

having tactile makes the results worse. We observed that only with relative trajectory can the policy244

benefit from having such tactile sensing. For the Inspire hand, the tactile sensors we manually245

installed are even more noisy (See section §3.2 for details), then all methods become worse after246

adding tactile sensor as input. However, policies with relative trajectory still suffer less performance247

drop compared with the ones with absolute trajectory.248

Tactile feedback improves performance on tasks with clean force profiles: We try to understand249

what kind of task would benefit from having tactile sensing. We focused on the XHand as its250

tactile sensors provide cleaner readings. We observed that tactile feedback significantly improved251

performance on picking up salt. This task highlights the effect of tactile because 1) The tactile252

sensors give a clear, large reading when the fingers touch the bowl of salt. 2) There is little useful253

visual information close to grasping as the camera view is mostly blocked by the bowl. In this254

case, we found that tactile feedback completely changes policy behavior. With tactile sensors, the255

fingers always insert into the salt first then close the fingers. Without tactile feedback, the fingers256

attempt to grasp the salt sometimes in the air. On the contrary, tactile info does not help in tweezer257

manipulation, which lacks strong correlation between hand motion and force feedback. Holding a258

tweezer only triggers minimal tactile sensor readings.259

36

51

11

Figure 7: Efficiency: Collection throughput
(CT) within 15-minute. Though DexUMI
still slower than bare hand, it achieves sig-
nificant higher efficiency than teleportation.

DexUMI framework enables efficient dexterous hand260

data collection: We compared data collection efficiency261

across three ways: DexUMI, bare human hand, and tele-262

operation on the tea-picking-with-tool task. The same hu-263

man operator collected data using each approach within264

15-minute sessions. We computed the collection through-265

put (CT) based on the number of successful demonstra-266

tions acquired. As illustrated in Fig. 7, while DexUMI267

remains slower than direct human hand manipulation, it268

achieves 3.2 times greater efficiency than traditional tele-269

operation methods, significantly reducing the time re-270

quired for dexterous manipulation data collection.271

6 Conclusion272

We present DexUMI, a scalable and efficient data collection and policy learning framework that273

uses the human hand as an interface to transfer human hand motion to precise robot hand actions274

while providing natural haptic feedback. Through extensive challenging real-world experiments, we275

demonstrate DexUMI’s capability in learning dexterous manipulation policies for precise, contact-276

rich, and long-horizon tasks. Our work establishes a new approach to collecting real-world dexterous277

hand data efficiently and at scale beyond traditional teleoperation.278
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7 Limitation and Future Work279

We would like to discuss DexUMI’s limitations from three different aspects: hardware adaptation,280

software adaptation, and existing robot hand hardware.281

Hardware Adaptation:282

• Per robot hand exoskeleton design: Although DexUMI demonstrates generalizability across283

underactuated and fully-actuated hands, our optimization framework still requires hardware-284

specific tuning, especially for wearability. One future work direction is fully automated opti-285

mization formulation given robot hand model and some description of the human hand. Further,286

our hardware optimization framework can potentially leverage generative models [70] to increase287

efficiency and accuracy when design space grows.288

• Fingertips Matching: Our current formulation focuses only on matching the fingertip workspace289

between the designed exoskeleton and target robot hand. It would be interesting for future work290

to also model remaining potential contact geometries such as the palm.291

• Wearability: The hardware optimization pipeline makes the exoskeleton wearable and allows292

humans to operate it relatively easily for extended periods. However, wearability could be further293

improved by integrating soft materials, such as TPU for parts that contact the human hand.294

Additionally, constrained by both the design of the target hand and 3D printing material strength,295

users might still experience limitations in fully stretching certain fingers.296

• Reliability of Tactile Sensors: Throughout our experiments, we found that reliable tactile sensors297

are key to maintaining consistent tactile observation between the exoskeleton and corresponding298

robot hand, thereby reducing the embodiment gap. In our implementation, the resistive tactile299

sensors added to the Inspire hand and its exoskeleton proved sensitive to their attachment way300

on fingers. Meanwhile, the electromagnetic tactile sensors on the XHand and its exoskeleton301

showed a tendency to drift after exposure to high pressure. Since the human hand generates302

more force than the robot hand, tactile sensor readings frequently drift when humans operate the303

exoskeleton. Future work can also incorporate other types of tactile sensors, such as vision-based304

tactile sensors [71–73] and capacitive F/T sensors [74].305

• Material Limitations: Our experiments demonstrate that DexUMI is able to capture fine-grained306

fingertip actions such as closing tweezers. However, we sometimes found that encoders cannot307

precisely capture human motion due to 3D printing material strength limitations; occasionally,308

the human hand slightly distorts the exoskeleton linkage when manipulating objects. In such309

cases, encoders are unable to capture this distortion.310

Software Adaptation:311

• Robot Hand Image: Currently, we still require real-world robot hardware to obtain robot hand312

images. However, this requirement could be eliminated by implementing an image generation313

model that receives motor values as input and produces corresponding hand pose images as314

output.315

• Inpainting Quality: Throughout our experiments, we found that the current software adaptation316

pipeline can already yield high-fidelity robot hand images. Nevertheless, we observed that il-317

lumination effects on the robot hand cannot be fully reproduced, and some areas in the image318

appear blurred due to limitations in the inpainting process.319

• Camera Location: DexUMI currently requires the camera to be rigidly attached to the robot320

hand/exoskeleton and does not support a moving camera. However, it would be feasible to321

collect a dataset and train an image generation model that receives the relative pose between the322

camera and hand, along with hand pose information, to generate the corresponding hand pose323

image from any given camera position.324

Existing Robot Hand Hardware:325

• Precision: Throughout our experiments, we found that both the Inspire Hand and XHand lack326

sufficient precision due to backlash and friction. For example, the fingertip location of the Inspire327

Hand differs when moving from 1000 to 500 motor units compared to moving from 0 to 500328
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motor units. Although the desired motor value is the same in both cases, the final fingertip329

position varies. We observed this phenomenon in both robot hands. Consequently, when fitting330

regression models between encoder and hand motor values, we can typically ensure precision in331

only “one direction”—either when closing the hand or opening it. This inevitably causes minor332

discrepancies in the inpainting and action mapping processes. Further, we found that the XHand333

mapping between motor command and fingertip location slightly differs across time shifts or334

after each reboot.335

• Size Discrepancy: The size difference between the robot hand and the human hand may cause336

wearability issues. For example, if the robot hand is twice as large as the human hand, it becomes337

difficult for both the human hand and the exoskeleton to reach the joint configurations required338

by the robot hand.339

• Co-design: Many of these wearability issues arise from design constraints in existing commer-340

cial hardware. An interesting direction would be to explore a reverse design paradigm: first341

designing an exoskeleton that is comfortable and fully operable for humans, and then using that342

exoskeleton as the foundation for designing the robot hand.343
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Appendix560

A Additional Experiment Results561

We show the processed visual observation by the software adaptation layer in policy training data in562

Fig. 8. Our software adaptation bridges the visual gap by replacing the human hand and exoskeleton563

in visual observations recorded by the wrist camera with high-fidelity robot hand inpainting. Though564

the overall inpainting quality is good, we found there are still some deficiencies in the output caused565

by:566

• Imperfect Segmentation from SAM2: In most cases, SAM2 can segment the human hand and567

exoskeleton effectively. However, we notice SAM2 sometimes misses some small areas on the568

exoskeleton.569

• Quality of inpainting method: We use flow-based inpainting to replace the human and ex-570

oskeleton pixels with background pixels. Though the overall quality is high, some areas remain571

blurry. We add Gaussian blur augmentation to the images during policy training to make the572

policy less sensitive to this blurriness.573

• Robot hand hardware limitations: Throughout our experiments, we found that both the Inspire574

Hand and XHand lack sufficient precision due to backlash and friction. For example, the finger-575

tip location of the Inspire Hand differs when moving from 1000 to 500 motor units compared to576

moving from 0 to 500 motor units. Consequently, when fitting regression models between en-577

coder and hand motor values, we can typically ensure precision in only ”one direction”—either578

when closing the hand or opening it. This inevitably causes minor discrepancies in the inpainting579

and action mapping processes.580

• Inconsistent illumination: Similar to prior work [69], we found that illumination on the robot581

hand might be inconsistent with what the robot experiences during deployment. Therefore, we582

add image augmentation including color jitter and random grayscale during policy training to583

make the learned policy less sensitive to lighting conditions.584

• 3D-printed exoskeleton deformation: The human hand is powerful and can sometimes cause585

the 3D-printed exoskeleton to deform during operation. In such cases, the encoder value fails586

to reflect this deformation. Consequently, the robot finger location might not align with the587

exoskeleton’s actual finger position.588

B Evaluation Details589

B.1 Initial State Selection590

For each task, we manually select a set of initial states for the environment. Objects are placed as591

diversely as possible within the environment. This set of initial states is shared across all methods.592

We achieve consistency by placing an additional side camera to record images of all selected initial593

states. When starting a new evaluation episode, we visualize an image overlay between the recorded594

pre-selected initial state and the current initial state. We carefully adjust the current setup until it595

matches the pre-selected initial state with near pixel-perfect alignment.596

Note that due to differences in wrist camera placement relative to the robot flange between the597

XHand and Inspire Hand, some initial states viable for the Inspire Hand cannot be completed by the598

XHand. For example, if the tea cup is positioned more than 45◦ to the left of the tea pot (image599

space), the XHand’s wrist camera cannot capture the tea cup after grasping the tea due to its camera600

positioning (the XHand thumb has a larger range of motion, requiring us to rotate the wrist camera601

more toward the thumb direction to obtain clearer visual observations). Consequently, the XHand602

and Inspire Hand do not strictly share the same set of initial states for the Tea Picking Using Tool603

task. Nevertheless, we ensure their initial states remain within similar distributions and maintain as604

much diversity as possible.605

For the kitchen task, the large workspace presents challenges for a fixed-base single UR5 to cover606

diverse initial states, particularly regarding the seasoning bowl location, as the stove and knob posi-607
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Figure 8: Inpainting Results. The visual observations in the original collected dataset contain exoskeletons
and human hands. The software adaptation layer replaces these pixels with corresponding robot hand images
while preserving the natural occlusion relationships during hand-object interactions.

tions are fixed. Despite these constraints, we maximize the diversity of bowl placement within the608

kinematically feasible workspace.609

B.2 Success Criteria610

Cube Picking: The robot must pick up the red cube and place it into the yellow cup. If the cup falls611

over after the cube is already placed in it, we still count the episode as successful.612

Egg Carton: We define task success as when the lid is lifted up with its box at an angle greater than613

30◦ and the egg box remains stable on the shelf.614

Tea Picking Using Tool: This task consists of two sub-tasks. We define tool picking success as the615

robot’s ability to steadily hold the tweezers and move them to the tea pot. We define leaf picking616
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success as the robot’s ability to use tweezers to 1) grasp at least one tea leaf from the pot and 2)617

transfer at least half of the grasped tea leaf into the cup. Subsequent sub-tasks automatically count618

as failures if the previous sub-task fails, even if the robot can successfully complete the later sub-619

tasks.620

Kitchen Manipulation: This task consists of three sub-tasks. We define knob closing success as the621

robot hand rotating the knob by at least 60◦ from its initial position. We define pan moving success622

as the robot moving the pan from the stove to the counter without dropping it during transfer. We623

define the salt task success as the robot 1) grasping some seasoning from the bowl and 2) sprinkling624

it inside the pan. Subsequent sub-tasks automatically count as failures if the previous sub-task fails,625

even if the robot can successfully complete the later sub-tasks.626

B.3 Policy Execution627

The learned policy predicts 16 steps of future actions, but the robot only executes the first 8 steps628

and discards the rest. The policy executes at 10 Hz, while the UR5 executes commands at 125 Hz.629

The Inspire Hand executes at 10 Hz, and the XHand executes at 60 Hz. The 10 Hz policy commands630

are linearly interpolated to match the desired hardware execution frequency.631

The action output by the policy contains two components: relative UR5 end-effector action and hand632

action. The relative end-effector action from the learned policy is converted to absolute by adding633

the relative action to the current UR5 absolute position in the UR5 base frame. For hand actions, if634

the action type is absolute, the desired motor value is sent directly to the robot hand for execution. If635

the hand action type is relative, we first read the current hand motor position, add the relative hand636

action to it, and then send the result for execution.637

For the XHand, we found that creating a virtual current hand motor position improves performance638

compared to reading the current position directly from hardware. Unlike the Inspire Hand motor,639

which is self-locking, the XHand finger position slightly drifts after encountering external forces640

(such as the restoring force of tweezers). The 10 Hz policy isn’t reactive enough to adjust for this641

real-time drifting. Consider the following scenario: the robot hand attempts to close the tweezers642

to grasp tea leaves. The current motor value obtained by calling the hardware API might already643

be outdated due to the restoring force of the tweezers (causing fingers to spread wider) when robot644

execution begins. To address this issue, we initialize a virtual current hand motor position by reading645

the actual motor position at the beginning of the evaluation. Once the evaluation begins, we update646

this virtual hand motor position by adding the executed relative hand actions. With this virtual hand647

motor position approach, finger actions become less impacted by physical drifting, resulting in more648

precise and reliable grasping operations.649

C Exoskeleton Design Details650

C.1 Inspire Hand651

Underactuated hands like the Inspire Hand typically incorporate closed-loop kinematics, such as652

four-bar linkages, which cannot be directly represented in URDF. As a result, we cannot initialize653

the exoskeleton design for the Inspire Hand directly from its URDF model. Instead, our approach654

is to capture the finger kinematic behavior—specifically, the fingertip poses—and use equivalent655

general linkage designs with the same degrees of freedom (DoFs) as an initial template for the656

finger mechanisms. This allows the optimization process to identify parameters that best match the657

observed kinematics.658

To achieve this, we employed a motion capture system (see Fig. 9) to record the fingertip poses in659

SE(3) space. We 3D-printed marker mounting components for each finger and flange and installed660

them on the Inspire Hand. For the index, middle, ring, and pinky fingers, each of which has a single661

DoF, we uniformly sampled 16 motor command values from the lower limit (0) to the upper limit662

(1000), sent the commands to the fingers, and recorded the corresponding fingertip poses.663
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For the thumb, which has 2 DoFs—swing and bend—we first fixed the swing value and then uni-664

formly sampled the bend motor values. For example, as shown in Fig. 9d, we set the swing motor665

to 400 and recorded the fingertip poses by varying the bend motor command. We repeated this666

procedure for swing values of 0, 200, 400, 600, 800, and 1000.667

Pinky RingMiddle
Index

Swing = 0

Swing = 1000

Swing = 400 Flange

(a) Index/Middle/Ring/Pinky 
Markers

(b) Thumb Markers (c) Flange Markers

(d) Recorded Mocap Trajectories

Figure 9: Inspire Mocap: We use motion capture sys-
tem to record fingertips trajectories in the flange coor-
dinate. We attached marker on fingers and flange to
capture the fingertip pose in flange coordinate.

After obtaining the fingertip poses in the flange668

coordinate system, we applied the same bi-level669

optimization formulation defined in Equation 1670

in main paper to determine design parameters671

for each finger. For all five fingers, we em-672

ployed four-bar linkages as the linkage designs.673

For each sampled design parameter, We simu-674

late the fingertip poses using PlaCo [75]. For675

thumb, we minimized the overall loss across676

all swing motor values, since the thumb’s struc-677

tural configuration should remain consistent re-678

gardless of the swing motor value.679

From the optimized design parameters to the680

physical implementation, we apply three addi-681

tional steps to ensure that the exoskeleton mask682

consistently covers the real Inspire Hand. First,683

we extend the length of the last link of each fin-684

ger in the exoskeleton design by 3 mm beyond685

the optimized value. This guarantees that the686

exoskeleton mask always fully covers the last link of the actual Inspire Hand. Second, we increase687

the width of the thumb’s four-bar linkage to eliminate any hollow regions in the camera’s field of688

view, thereby maintaining the visual integrity of a continuous exoskeleton mask. Third, we conser-689

vatively tighten the joint limits by 5◦ at each joint to ensure the mask continues to cover the real690

Inspire Hand even when structural deformation occurs due to the limited strength of the 3D-printed691

PLA-CF material.692

C.2 XHand693

Since the URDF file of the XHand is well-organized, with each joint origin defined at the location of694

its corresponding rotary joint, we can directly extract link lengths from the URDF structure. In cases695

where the exact values are not specified, we can perform reverse modeling using the STL meshes696

from URDF file to recover geometric features near each joint and manually measure link lengths in697

CAD software.698

Joint limits are also specified in the URDF file and are implemented in the exoskeleton design by699

physically constraining the link motion to prevent rotation beyond the specified range. Similar to the700

Inspire Hand exoskeleton design, we adopt a conservative strategy when applying these limits setting701

slightly tighter bounds on each joints. For example, if the actual joint rotation range is −110◦ to 20◦,702

the corresponding exoskeleton limit is set to −105◦ to 15◦. This precaution accounts for possible703

deformation of the 3D-printed exoskeleton links under human-applied torque, which can introduce704

unintended joint deflection. Without this buffer, the exoskeleton might deform beyond the physical705

limits of the XHand, leading to an embodiment gap.706

When converting the link lengths to the actual exoskeleton design, two primary constraints must be707

considered. The first is wearability. To ensure that the human operator can comfortably wear the708

exoskeleton, the structure must be hollowed out as much as possible, allowing the finger to pass709

through unobstructed. The second constraint is material strength. Through empirical testing, we710

determined that the optimal minimum structural width for 3D-printed PLA-CF material is 4 mm.711

Therefore, any part expected to experience significant stress is reinforced to be at least 4 mm thick712

in the final design.713
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D Sensor Details714

D.1 Joint Encoder715

Figure 10: Joint Encoder Circuit: The ro-
tary sensor acts as a variable resistor with
three output pins. As it rotates with the joint,
the voltage on the ADC line changes approx-
imately linearly.

Our exoskeleton uses Alps RDC506018A rotary sensors716

as encoders at every joints. These are resistive sensors717

whose resistance varies approximately linearly with ab-718

solute angular position.719

As shown in Fig. 10, when the joint rotates, the voltage on720

the ADC line changes proportionally. This analog voltage721

signal is then sampled by an Analog-to-Digital Converter722

(ADC) on a microcontroller unit (MCU). Then the joint723

angle αjoint can be estimated as:724

αjoint =
VADC

3.3V
× 360◦

However, this simple voltage divider circuit has a sig-725

nificant failure mode: if the power supply (3.3 V in our726

case) is unstable due to temperature drift in semiconduc-727

tor components or ripple from DC-DC converters and LDOs, the joint angle reading will drift ac-728

cordingly. To mitigate this issue, we simultaneously measure the supply voltage through another729

ADC channel. Instead of dividing by a fixed 3.3 V, we normalize the sensor voltage using the mea-730

sured supply voltage when computing the joint angle:731

αjoint =
VADC

Vsupply
× 360◦

This voltage normalization runs in real time on the MCU. After computing the joint angles, the MCU732

packs all joint values into a single data packet with a fixed 2-byte header and a checksum tail. The733

header simplifies decoding by allowing the receiver to locate a known keyword in variable-length734

data streams, while the checksum ensures packet integrity. The final data packet is transmitted to735

the host computer via a Universal Asynchronous Receiver-Transmitter (UART) interface.736

D.2 Tactile737

Figure 11: Voltage Divider Circuit: This
simple voltage divider circuit converts the
resistance change of the FSR sensor into an
analog voltage on the ADC line.

For commercial dexterous hands without built-in tactile738

sensors (e.g., the Inspire Hand in our evaluation), we use739

a simple and low-cost Force-Sensitive Resistor (FSR) as740

the tactile sensor. When no force is applied, the FSR ex-741

hibits a resistance of several megaohms, while under sig-742

nificant force, the resistance drops to the kiloohms range.743

As shown in Fig. 11, the FSR is incorporated into a sim-744

ple voltage divider circuit to produce an analog voltage745

signal. The divider resistor R1 is selected to be compara-746

ble to the minimum resistance of the FSR. Since the FSR747

resistance is approximately inversely proportional to the748

applied force, we can express the force using a constant749

scale factor k as:750

F = k

(
Vsupply

VADC
− 1

)
In our experimental setup, the same FSR sensor is mounted on both the dexterous hand and the751

exoskeleton. For simplicity, we directly use the VADC reading as a proxy for tactile input.752

For hands equipped with onboard tactile sensors (e.g., the XHand), we install the same type of753

sensor as used in the hand. In our setup, this sensor is a magnet-based tactile array capable of754

measuring three-dimensional forces across 120 points on its surface. The force data is output via755

an SPI communication interface using a proprietary protocol. By configuring this interface on our756

embedded system, the force array can be successfully transmitted to the host machine.757
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E Data Collection and Policy Training details758

E.1 Data Collection759

We collected 310 trajectories for Cube Picking task policy training, 175 trajectories for Egg Carton760

Opening task policy training, and 400 trajectories for Tea Picking Using Tools policy training (for761

both Inspire Hand and XHand). For the kitchen task, we collected 370 trajectories covering all four762

sub-tasks, plus an additional 100 trajectories focused solely on knob closing.763

For the Inspire Hand, all data types—including wrist position from ARKit, policy visual obser-764

vations from the wrist-mounted camera, joint angles from encoders, and tactile feedback—were765

recorded at 45 FPS. For the XHand, we recorded at 30 FPS, as the tactile sensor readings became766

unstable at higher recording frequencies. For each data type, we recorded the receive timestamp767

treceive when the data arrived at the recording buffer.768

We wear green gloves when collecting data with exoskeleton as we use green PLA-CF to 3D-printed769

the exoskeleton. We found consistent color helps SAM2 to yield better segmentation results.770

E.2 Training Data Latency Management771

There is an inherent latency between the time when sensors capture data and when that data actually772

arrives in the recording buffer. To ensure our imitation learning policy receives properly aligned773

observations (visual observations, tactile sensor readings) and actions (joint encoder readings), we774

calculate the actual data capture time using tcapture = treceive − lsensor, where lsensor refers to the775

latency from capture to receive for a particular sensor. We measure the iPhone and OAK camera776

latency by reading a rolling QR code displayed on a computer monitor showing the current computer777

system time, as proposed in UMI [1]. The camera and iPhone latency is calculated as lcamera =778

treceive − tdisplay − ldisplay, where ldisplay represents the monitor refresh rate.779

The encoder latency is adjusted by examining the overlay image between the recorded exoskeleton780

image and the corresponding robot hand image from action replay. If the encoder latency is set781

too high, the robot hand fingers will execute future actions and lead in the overlay image. If the782

encoder latency is set too low, the robot hand fingers will lag behind the exoskeleton fingers in783

the overlay image. We tune the encoder latency until the exoskeleton fingers and robot fingers are784

perfectly aligned. Once all data timestamps are adjusted, we linearly interpolate the joint angles785

and tactile readings to obtain data points properly aligned with the camera timestamps. Finally, We786

downsample the data by a factor of 3 to reduce the policy training time.787

E.3 Policy Training788

We process the visual observations with pretrained DINO-V2 [76, 77]. Before passing the visual789

observations into DINO-V2, we augment it with random crop, color jitter, random grayscale and790

Gaussian Blur. We concatenate the CLS token from DINO-V2 with tactile sensor readings as input791

to the diffusion policy [78, 79]. The policy predicts 16 steps of robot actions, which contain both792

6-DoF robot end-effector relative actions and hand actions (6-DoF for Inspire Hand and 12-DoF for793

XHand). We train the models for 400 epochs across all tasks for both types of hands. The pretrain794

DINO-V2 is not frozen and updated during the policy training.795
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