
Avoiding Spurious Correlations: Bridging Theory
and Practice

Thao Nguyen∗
University of Washington

thaottn@cs.washington.edu

Vaishnavh Nagarajan
Google Research

vaishnavh@google.com

Hanie Sedghi
Google Research, Brain team

hsedghi@google.com

Behnam Neyshabur
Google Research, Blueshift team

neyshabur@google.com

Abstract

Distribution shifts in the wild jeopardize the performance of machine learning
models as they tend to pick up spurious correlations during training. Recent work
[11] has characterized two specific failure modes of out-of-distribution (OOD)
generalization, and we extend this theoretical framework by interpreting existing
algorithms as solutions to these failure modes. We then evaluate them on different
image classification datasets, and in the process surface two issues that are central
to existing robustness techniques. For the algorithms that require access to group
information, we demonstrate how the existing annotations included in standard
OOD benchmarks are unable to fully capture the spurious correlations present.
For methods that don’t rely on group annotations during training, the validation
set they utilize for model selection carries assumptions that are not realistic in
real-world settings. This leads us to explore how the choice of distribution shifts
represented by validation data would affect the effectiveness of different OOD
robustness algorithms.

1 Introduction
Neural networks are commonly trained and evaluated with the assumption that the training distribution
matches the test distribution. However, when this assumption does not hold because of distribution
shifts in real-world deployments, machine learning models can perform in unexpected and undesirable
ways [5, 17]. Previous work has shown how models can utilize different shortcuts to perform well
on the task [4], a notable example of which is the presence of spurious correlations — features that
correlate with the labels but are actually not causal, such as image backgrounds [16, 18, 23].

The explanation for why empirical risk minimization (ERM) approaches tend to rely on spurious
correlations can be summarized by two lines of work. The first [1, 19, 21] assumes that both invariant
and spurious features are only partially predictive of the label. As a result, both will be used to
maximize accuracy. The other line of work [6, 20, 13] demonstrates how spurious features are simpler
to learn than invariant ones and thus are preferred by gradient descent (i.e. simplicity bias), even
when both kinds of features are fully predictive of the labels. To provide a concrete framework for
understanding OOD generalization failures, [11] uses a series of tasks that are easy to succeed at to
pinpoint fundamental mechanisms by which spurious correlations affect gradient-descent-trained
linear classifiers: they induce geometric and statistical skews in the data.

Applying this theoretical framework to existing techniques for improving OOD generalization,
we seek to tackle both types of skews in practice. We start by characterizing the algorithms in
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consideration based on the failure mode that they address, and empirically evaluate their effectiveness
when they are used alone or in conjunction with another, on several standard OOD benchmarks.
Through this comparison, we find that there is no single solution that works best for all the datasets
we examined. As the algorithms chosen for our investigation rely on the availability of group labels,
we also investigate how well the official spurious feature annotations from these widely adopted OOD
benchmarks encapsulate all the spurious correlations present in the data distribution. We find that
even when different subgroups are balanced (in terms of the number of datapoints) by undersampling,
there still exist substantial performance gaps among the groups. This suggests the presence of more
complicated subgroup structures that cannot be captured by a single feature annotation alone.

In addition to the algorithms we examined, other existing robustness methods [10, 12] that don’t
require group labels at training time are often tuned with validation data that is representative of
the distribution shift found at test time, in terms of group information. This prompts us to design a
new validation set that closely resembles the degree of spurious correlation found in the training set
instead, and explore how this affects the relative effectiveness of different algorithms.

In summary, our contributions are:

• We revisit existing algorithms for OOD generalization, and show how they could be used alone or
in combination with each other to address the geometric and statistical skews defined in [11].

• We empirically evaluate the effectiveness of these methods on 3 image classification datasets with
varying properties (dataset size, degree of spurious correlations, difficulty of learning the spurious
feature). We find that no single approach consistently yields the best performance.

• We also repeat these evaluations in a more realistic setting that assumes no knowledge of distribu-
tion shifts at test time, as this information is currently implied in the official validation sets that
most existing robustness algorithms use for hyperparameter tuning.

• We demonstrate that undersampling the training sets to balance the representation of different
subgroups is not sufficient in capturing all the spurious correlations present — in each of the
downsampled datasets, certain groups still appear to be intrinsically harder to learn than the rest.

2 Experimental Setup and Background

2.1 Failure Modes and Solutions

For the sake of our discussion, consider a simplified binary classification setting where any datapoint
can be written as (xinv, xsp) denoting the invariant feature (potentially high-dimensional) and a
spurious feature. The label y of any point is either +1 or −1. While the label can be perfectly
predicted by looking at xinv, we also have that the spurious feature is partially correlated with the
label, i.e., PrD[xsp · y > 0] > 0.5, where D is the data distribution. In other words, in a majority
of points, the spurious feature is positively aligned with the label and in a minority of points, it is
negatively aligned. By analyzing gradient descent on linear classifiers and its infinite-time-equivalent
max-margin, [11] show that there are two main kinds of failure modes caused by the presence of
spurious features. We briefly summarize these below.

2.1.1 Statistical skews

One mode of failure arises from the slow convergence rate of gradient descent (on the cross-entropy
loss), relative to the max-margin classifier. That is, even in datasets where the max-margin classifier
succeeds in using only the invariant features, finite-time (stochastic) gradient descent (SGD) still
relies on spurious features unless trained for an exponentially long time. This is a purely statistical
effect in that, in principle, it can be straightforwardly countered if we upweight or oversample the
minority datapoints (through duplication) while running GD. This is in contrast to the second type of
failure mode below which cannot be addressed by such statistical tricks.

2.1.2 Geometric skews

Another kind of failure mode is one that can occur to both GD and max-margin classifiers due to
certain geometric effects in the dataset. Refer to Figure 1, which is taken from [11], for an illustration
of the 2D setting. In particular, it is often the case that the “invariant margin” (i.e., the margin of
separation in the purely-invariant feature subspace) of the minority group is much larger than that of
the majority group. This arises from a property of the invariant features: when there are more uniquely
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sampled points, we are likely to see more difficult points that make the data harder to separate. As
a result of this imbalance of margins across groups, any classifier with a margin-maximizing bias
can be shown to make use of the spurious features. Note that simply upsampling the minority group
cannot address this issue since it does not affect the number of unique datapoints, and thereby the
margins of minority and majority groups.

2.1.3 How do different algorithms address these skews?

Figure 1: Geometric
failure mode (from
[11]).

As already noted above, the idea of upsampling the minority can only address
statistical skews. If we were to however downsample the majority (to equal
the size of the minority), we would not only nullify statistical skews, but also
roughly equalize the margins in the majority and minority groups, thereby
nullifying any geometric skews as well.

An alternative way to address geometric skews is to directly scale down the
margins of the minority datapoints, in effect making it equal to those of the
majority, so models are encouraged to separate majority and minority groups
using only the invariant feature. Formally, let Smaj and Smin be the majority
and minority groups respectively. Then, we seek a classifier that maximizes
the following notion of margins:

arg max
w,‖w‖=1

min ({c · y(w · x)|x ∈ Smin}, {y(w · x)|x ∈ Smaj}) , (1)

where c is a small multiplicative constant intended to scale down the minority margins. A formal
setup of this algorithm can be found in Appendix D of [11] or in related work [8, 14, 2]. As [8]
propose, one can extend this approach for max-margin classifiers to deep neural networks trained
with cross-entropy loss, by multiplying the logits of minority datapoints with a small constant (to be
tuned) before computing the loss. Theoretical expansion of this case is beyond the scope of our work,
given our focus on connecting robustness methods to real-world evaluations.

Another popular algorithm to address spurious correlations is group DRO [7, 15]. Here the objective
is to minimize the worst-case cross-entropy loss of different groups of points. This should eventually
converge to the standard max-margin and therefore not help with geometric skews. On the other hand,
an alternative called group-adjusted DRO proposed in [18] makes the minority group’s objective
harder by adding a constant to its loss (we use this version in the tables of results). By doing so, we
believe this mechanism should help address geometric skews as it makes all the groups equally hard
to learn. However, it remains uncertain how groupDRO counters the effect of statistical skews.

2.2 Datasets

We experiment with 3 datasets that have served as popular benchmarks for OOD generalization
algorithms [10, 3, 19]. They are chosen for their varying dataset sizes, degrees of spurious correlation
(both natural and artificially induced), as well as levels of difficulty for learning the spurious feature:

• Colored MNIST[1]: the task is to classify the digit images into 2 classes (digits < 5 and digits ≥
than 5). The label is spuriously correlated with the color of the digit, which could be either “red”
or “green”. We modify the procedure from [1] to remove the noise introduced to the labels.

• Waterbirds [18]: the task is to classify bird images as either “landbird” or “waterbird”. The label is
spuriously correlated with the image background which could be either “land” or “water” places.

• CelebA [18]: the task is to classify celebrity pictures as having either “blond” or “black” hair. The
label is spuriously correlated with the gender which is either “male” or “female”. We modify the
original setup in [18] by using only a fraction of the data from the (female, dark hair) group to
keep the size of this “minority” group small.

For each dataset, we use the official group annotations that come with the dataset to split the training
data into 4 groups, 2 minority and 2 majority. More details on the construction and composition of
each dataset can be found in Appendix A.

3 Results

The algorithms of interest have been described and linked to the respective skews in Section 2.1.3.
Refer to Appendix B for further details on hyperparameters and model choices. For upsampling
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(downsampling), we follow the standard practice and oversample (undersample) datapoints from each
group to match the size of the biggest (smallest) group in the original dataset. Hyperparameter tuning
is done based on the worst-group accuracy of the validation set, given previous work [10] which
shows that worst-group test accuracies are significantly lower when average validation accuracy is
used for model selection instead of worst-group validation accuracy.

Table 1: Comparison of models trained with different methods, tuned on the official validation set,
which mirrors the distribution shift found at test time. The table is sectioned based on the skew(s) that each
approach addresses. The numbers in brackets capture the performance changes compared to the baseline (ERM).
We observe that the best-performing approach is not consistent across all datasets, and methods that address
complementary skews when combined often yield complementary performance benefits.

Algorithm ColoredMNIST Waterbirds CelebA
ERM 93.1 71.7 53.3

Upsampling 96.1 (+3.0) 86.0 (+14.3) 85.0 (+31.7)
Margin Scaling 95.2 (+2.1) 81.9 (+10.2) 57.7 (+4.4)

GroupDRO 97.4 (+4.3) 91.1 (+19.4) 88.4 (+35.1)
Downsampling 96.1 (+3.0) 87.6 (+15.9) 88.9 (+35.6)

Margin Scaling + Upsampling 96.2 (+3.1) 85.0 (+13.3) 87.8 (+34.5)
GroupDRO + Upsampling 96.5 (+3.4) 87.6 (+15.9) 86.7 (+33.4)

We report worst-group test accuracy from the best performing model trained with each method in
Table 1. Across all 3 datasets, we tend to obtain larger performance boosts from tackling geometric
skews (e.g. through GroupDRO) than statistical skews (e.g. through upsampling).

We also observe that no method reliably yields the best performance for all the settings that we
studied. Those that target different skews (e.g. margin scaling and upsampling, or groupDRO and
upsampling) offer complementary performance gains when used in combination on some datasets
(e.g. CelebA and ColoredMNIST), but this is not always the case (e.g. Waterbirds). This suggests
an opportunity for future work to study the implications of combining different OOD robustness
methods on the optimization process and generalization.

Given the dependence of the algorithms on spurious feature annotations, we analyze how well the
provided group information behaves in accordance with the theoretical framework [11], by looking
at the individual group validation accuracies when models are trained on downsampled datasets, an
approach that is expected to get rid of most geometric and statistical skews in the original data. In
ColoredMNIST, where the spurious correlation is synthetically introduced and controlled, all groups
now indeed exhibit similar performance. However, in the case of Waterbirds and CelebA, given the
same number of datapoints, certain groups — which are not always the minority — still appear to be
harder to learn than the rest (see Figure 2). This suggests the presence of more complex subgroup
structures beyond the official annotations that come with these 2 widely used OOD benchmarks.

In addition, we note that the existing validation sets from these benchmarks reflect the distribution
shifts at test time, which should not be expected in real-world settings. This issue is also applicable
to algorithms that don’t require group information during training (e.g. [10, 12]), as they still rely on
annotated validation data for hyperparameter tuning. Thus, we investigate what Table 1 would look
like in a more “in-the-wild" setting where we have no knowledge of future distribution shifts, and
models are selected based on information related to the training distribution alone. We construct a
new validation set with similar degrees of spurious correlation as the training set by subsampling from
the original validation set (see Appendix A for the group breakdown). Consequently, we find that the
relative effectiveness of the robustness methods in consideration could be sensitive to the choice of
distribution shifts represented by the validation data (Table 2). For instance, on the Waterbirds dataset,
GroupDRO + Upsampling is now much less effective compared to the other methods, and on the
ColoredMNIST dataset, Margin Scaling + Upsampling no longer offers complementary performance
gains compared to using each method by itself. This observation illustrates the importance of
designing OOD generalization techniques that could do without group annotations completely.

4 Conclusion

Based on the theoretical framework introduced in [11], our work connects different techniques for
boosting OOD generalization to the types of skews (i.e. geometric or statistical) induced by spurious
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Table 2: Comparison of models trained with different methods, tuned on a new validation set we con-
structed that follows the training group distribution instead. We consider a more practical setting that
carries no assumption about future distribution shifts: the validation set should resemble the training set in terms
of group distribution. When hyperparameters are tuned on this new validation set, the relative effectiveness of
certain methods varies substantially from that in Table 1.

Algorithm ColoredMNIST Waterbirds CelebA
ERM 92.1 50.0 53.3

Upsampling 95.1 (+3.0) 83.0 (+33.0) 81.1 (+27.8)
Margin Scaling 94.6 (+2.5) 66.5 (+16.5) 56.7 (+3.4)

GroupDRO 97.0 (+4.9) 83.5 (+33.5) 88.3 (+35.0)
Downsampling 94.0 (+1.9) 85.1 (+35.1) 88.4 (+35.1)

Margin Scaling + Upsampling 94.2 (+2.1) 77.3 (+27.3) 87.8 (+34.5)
GroupDRO + Upsampling 95.8 (+3.7) 62.5 (+12.5) 88.3 (+35.0)
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Figure 2: Validation accuracies of subgroups in the downsampled datasets (rows), across differ-
ent hyperparameter settings (columns) used. While training with ColoredMNIST downsampled
data (top row) results in the ideal scenario of having the same performance across different sub-
groups — suggesting that the skews induced by spurious correlations are completely eliminated —
performance gaps between subgroups are still discernible when training on Waterbirds and CelebA
downsampled datasets (bottom 2 rows). We hypothesize that this is because the spurious feature
(i.e. “color”) is synthetically introduced and thus carefully controlled in ColoredMNIST, whereas
the group information that comes with the other 2 datasets (and widely adopted in existing OOD
benchmarks) doesn’t fully capture all sources of spurious correlations present in the data.

features that they address. We look at how these methods perform in practice on 3 standard image
classification datasets with different extents of spurious correlations, as well as how effectively they
work in combination to address both types of skews. We then increase the resemblance to real-world
setups further, by tuning models on a new validation set that doesn’t assume any knowledge of
distribution shifts at test time. In the process, we find that the best approach varies by dataset, and
the structure of the validation set plays an important role in the effectiveness of different approaches
(relative to the ERM baseline). This necessitates further study into a more thorough way to evaluate
existing OOD robustness methods, even those that don’t require group labels at training time. Last
but not least, we also demonstrate how performances across subgroups still vary substantially even
when all the groups are represented equally in the training set. This presents an opportunity for future
work to study automatic group structure detection, or explore other possible sources of spurious
correlations that may be present in standard OOD benchmarks beyond the given annotations.
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Appendix
A Dataset Details

A.1 ColoredMNIST

We extract 12000 random images from the official MNIST training set [9] to create a validation set,
on which hyperparameters are tuned. Following previous work [1], to construct ColoredMNIST
dataset, we divide the MNIST images into 2 classes: y = 0 for digits 0-4 and y = 1 for digits 5-9.
We then color all images in the first class red and the second class green. With probability 0.1, we
flip the color of each training image. We perform a similar procedure for validation and test data, but
with probability 0.9.

Table 3: Group breakdown (in terms of number of images) for ColoredMNIST dataset.

Dataset Digit < 5, Green Digit < 5, Red Digit ≥ 5, Green Digit ≥ 5, Red
Train 2454 21758 21365 2423
Validation (same as
train domain)

70 621 604 69

Validation (same as
test domain)

5324 621 604 5451

Test 4545 523 465 4467

A.2 Waterbirds

The dataset is constructed from placing segmented bird images from the Caltech-UCSD Birds-200-
2011 dataset [22] on top of backgrounds taken from the Places dataset [24]. Each bird image is
broadly classified as either waterbird or landbird, and background images are divided into land
and water backgrounds, with waterbirds (landbirds) appearing more frequently on water (land)
backgrounds.

Table 4: Group breakdown (in terms of number of images) for Waterbirds dataset.

Dataset Landbird, Land
background

Landbird, Water
background

Waterbird, Land
background

Waterbird, Water
background

Train 3498 184 56 1057
Validation (same
as train domain)

467 25 7 133

Validation (same
as test domain)

467 466 133 133

Test 2255 2255 642 642

A.3 CelebA

In this dataset, the label (“blond” or “dark” hair color) is spuriously correlated with the demographic
information (“male” or “female” gender), with blond females and dark-hair males appearing more
frequently. We modify the group composition in [18] to make sure the infrequent associations
(“dark-hair females” in particular) also have much fewer datapoints in the dataset.
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Table 5: Group breakdown (in terms of number of images) for CelebA dataset.

Dataset Blond, Female Blond, Male Dark Hair, Female Dark Hair, Male
Train 22880 1387 4297 66874
Validation (same as
train domain)

2874 174 532 8276

Validation (same as
test domain)

2874 182 8535 8276

Test 2480 180 9767 7535

B Training Details

All models are trained with stochastic gradient descent (SGD) with momentum 0.9. Specific details
about architecture and training hyperparameters are deferred to the individual subsections. For
margin scaling, we tune the multiplicative factor c for logits of minority examples over the values
in [0.01, 0.05, 0.1, 0.25, 0.5, 0.75]. For GroupDRO objective, we tune the group adjustment term C
over the values in [1, 2, 3, 4, 5], following [18].

B.1 ColoredMNIST

For the ColoredMNIST task, we use a multi-layer perceptron that consists of 2 hidden layers with
512 neurons in each. All methods are trained with batch size 128, for 50 epochs. We tune learning
rate and l2 regularization strength with the following configurations: [(1e− 2, 1e− 3), (1e− 2, 1e−
2), (1e− 2, 1e− 1), (1e− 3, 1e− 3), (1e− 3, 1e− 2), (1e− 3, 1e− 1)].

B.2 Waterbirds

All methods are trained with ResNet-50 for 300 epochs, using batch size 64. The model weights
are pretrained on ImageNet. We tune the hyperparameters over the 3 pairs of learning rate and l2
regularization strength used by [18]: [(1e− 3, 1e− 4), (1e− 4, 1e− 1), (1e− 5, 1)].

B.3 CelebA

We use ResNet-50 pretrained on ImageNet for CelebA models, with batch size 128 and 50 epochs of
training. Similar to Waterbirds, we also use the 3 pairs of learning rate and l2 regularization strength
from previous work [18] to tune hyperparameters: [(1e−4, 1e−4), (1e−4, 1e−2), (1e−5, 1e−1)].
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