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ABSTRACT

While Reinforcement Learning with Verifiable Reward (RLVR) significantly ad-
vances image reasoning in Large Vision-Language Models (LVLMs), its application
to complex video reasoning remains underdeveloped. This gap stems primarily
from a critical data bottleneck: existing datasets lack the challenging, multi-hop
questions and high-quality, video-grounded Chain-of-Thought (CoT) data nec-
essary to effectively bootstrap RLVR. To address this, we introduce ReWatch,
a large-scale dataset built to foster advanced video reasoning. We propose a
novel multi-stage synthesis pipeline to synthesize its three components: ReWatch-
Caption, ReWatch-QA, and ReWatch-CoT. A core innovation is our Multi-Agent
ReAct framework for CoT synthesis, which simulates a human-like "re-watching"
process to generate video-grounded reasoning traces by explicitly modeling infor-
mation retrieval and verification. Building on this dataset, we develop ReWatch-R1
by post-training a strong baseline LVLM with Supervised Fine-Tuning (SFT) and
our RLVR framework. This framework incorporates a novel Observation &
Reasoning (O&R) reward mechanism that evaluates both the final answer’s
correctness and the reasoning’s alignment with video content, directly penalizing
hallucination. Our experiments show that ReWatch-R1 achieves state-of-the-art
performance on five challenging video reasoning benchmarks. Project Page.
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Figure 1: Performance comparison of our ReWatch-R1 with previous state-of-the-art LVLMs
on five video reasoning benchmarks. Except for Qwen2.5-VL-7B, all other models use thinking
mode. All models were evaluated at 192 frames.
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1 INTRODUCTION

While the training paradigm of Supervised Fine-Tuning (SFT) combined with Reinforcement Learning
with Verifiable Reward (RLVR) [18; 42] significantly advances image reasoning in Large Vision-
Language Models (LVLMs) [52; 22; 51], its application to complex video reasoning remains nascent.
Recent open-source video models [16; 30; 45; 10; 39] trained with SFT+RLVR still underperform on
high-difficulty benchmarks, especially for multi-step temporal tasks such as causality, state tracking,
and counting events across long videos [40; 38; 11; 41; 36].

Recent efforts to apply the SFT+RLVR paradigm to video [16; 30; 45; 10; 39] typically bootstrap
the SFT phase with CoT data synthesized from existing simple video QA datasets, before applying
RLVR. However, this approach is fundamentally undermined by the quality of the underlying data.
As illustrated in Figure 2(left), prevailing open-source data [16] suffers from three flaws: (1) holistic,
untimestamped captions that erase temporal structure; (2) simple, perception-based QA that
can be answered from short clips or textual priors; and (3) visually unfaithful CoT that relies
on commonsense knowledge and process of elimination. This data bottleneck prevents SFT from
teaching true video-grounded reasoning, and the subsequent RL phase, lacking a reliable reward
signal for process correctness, struggles to penalize hallucination and improve logical fidelity [12; 23].

To address these limitations, we introduce ReWatch, a large-scale dataset explicitly designed to foster
advanced video reasoning. ReWatch is constructed through a multi-stage synthesis pipeline and
comprises three tightly coupled components: ReWatch-Caption, ReWatch-QA, and ReWatch-CoT.
First, ReWatch-Caption provides temporally dense video descriptions. We employ a hierarchical
captioning method to generate detailed, timestamped narratives that form a high-fidelity foundation for
complex reasoning. Second, ReWatch-QA features high-difficulty question-answer pairs. We use
a contrastive generation strategy, creating questions from detailed captions that cannot be answered
by concise summaries, and apply a three-tier filter to guarantee video dependency. Finally, ReWatch-
CoT promotes video-grounded reasoning. We employ a novel Multi-Agent ReAct framework
to synthesize CoT that simulates a human-like "re-watching" process. This generates reasoning
traces that explicitly document information retrieval and verification against the video content. As
shown in Figure 2(right), our ReWatch data delivers high-fidelity captions, high-difficulty QAs,
and video-grounded CoTs.

Building on ReWatch, we post-train a strong LVLM in two stages to obtain ReWatch-R1. After an
initial SFT phase that teaches step-by-step reasoning, we employ RLVR augmented with a novel

Question: After the man with blonde, curly hair is seen driving a jet ski at [01:30-01:31] 
and later approaching the camera at [01:50-01:52], what specific food item does he pass 
to his passenger at an earlier point while on the jet ski?
A: Energy gel B: Fruit bar
C: Sandwich D: Water bottle
Answer: C

I need to idenMfy a specific food item passed by the man on the jet ski to his passenger at 
a point earlier than the given Mmestamps. This means I‘ll start by looking for the earliest 
instance of the man on the jet ski interacMng with a passenger, specifically searching for 
food-related exchanges. So, I’ll <ac$on>retrieve segments focusing on the man with 
blonde, curly hair on a jet ski interacMng with a passenger</ac$on>. <observa$on>I‘ve 
found a segment from 01:09 to 01:13</observa$on>. Now that I have a relevant Mme 
segment, I need to examine it closely for any objects being passed or consumed. I’ll 
<ac$on>query the segment from 01:09 to 01:13, specifically looking for interacMons 
between the man and passenger, and any objects being passed or consumed</ac$on>. 
<observa$on>During this $me, the man on the jet ski passes a sandwich to the 
passenger, who then takes a bite</observa$on>. This directly answers the quesMon. The 
food item passed was a sandwich.
<answer>C: Sandwich</answer>

Question: What natural phenomenon appears in the mist as a person paddles on a 
surfboard?  
A: A sunset B: A rainbow
C: A lightning bolt D: A starry sky
Answer: B

<think>Let me think for a moment. The question is asking about a natural phenomenon 
that appears in the mist while someone is paddling on a surfboard. Hmm, first, let‘s 
break it down. The setting is likely near water, given the surfboard, and the presence of 
mist suggests humid or rainy conditions. Now, a sunset could be beautiful, but it’s not 
typically associated with mist. A lightning bolt is quite rare and not something you‘d 
expect to see regularly in mist. A starry sky requires clear, dark skies, which is 
contradictory to misty conditions. Wait, what about a rainbow? Rainbows often appear 
in misty or rainy conditions when the sunlight is refracted through water droplets. 
This fits the scenario perfectly. Oh, I see, the most fitting natural phenomenon in mist is 
indeed a rainbow.</think>
<answer>B</answer>

Our ReWatch DatasetVideo-R1 Dataset

QA

CoT

Caption

[01:09-01:12] Two men are on a jet ski. The driver (with the blonde, curly hair) is 
holding a sandwich, which he passes to the man behind him (wearing a black wetsuit), 
who then takes a bite.
[01:30-01:31] The blonde, curly-haired man, now in a wetsuit …
[01:50-01:52] The two men on the jet ski, one driving and…

The next part of the video begins with a towering rock …
As the wave builds, a faint rainbow appears in the mist.
The video then shows a person in a black wetsuit surfing down …...
The video concludes with a person in a black wetsuit surfing down the face of a 
massive wave …

QA

CoT

Caption Temporal, Fine-grainedNon-temporal, Coarse

Simple, Perception-based

Single-hop, Perceptual reasoning

Complex, Timestamp-driven 
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Figure 2: A comparative of ReWatch dataset and Video-R1 dataset on the same source video.
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Observation & Reasoning (O&R) reward. Unlike rewards that score only the final answer, O&R
also evaluates whether intermediate observations are factually supported by the video and whether
the reasoning is sufficient to recover the correct answer from those observations. This dual emphasis
on process and outcome explicitly incentivizes verifiable, evidence-linked reasoning, reducing
hallucinations and improving logical consistency. As summarized in Figure 1, ReWatch-R1 sets
new state of the art on five challenging video reasoning benchmarks, substantially outperforming
models trained on alternative open-source data.

In summary, our contributions are:

• A novel, multi-stage agentic pipeline for synthesizing a large-scale, high-quality video reasoning
dataset (ReWatch).

• A new Observation & Reasoning (O&R) reward for RLVR that improves reasoning by rewarding
both final-answer correctness and the factual grounding of intermediate steps in video content.

• ReWatch-R1, a post-trained LVLM that achieves state-of-the-art results on five complex video
reasoning benchmarks.

2 DATA CONSTRUCTION: THE REWATCH DATASET

To address the above data bottlenecks, we introduce ReWatch, a large, high-fidelity, high-difficulty,
and video-grounded dataset for advanced video reasoning. As shown in Figure 3, it is constructed in
three stages: Hierarchical Video Captioning, High-Difficulty QA Generation, and Multi-Agent
CoT Synthesis. The dataset contains 10k captions, 170k QA pairs, and 135k CoTs. More details and
statistics are in Appendix B.

2.1 STAGE 1: HIERARCHICAL VIDEO CAPTIONING

To address the hallucination issue in LVLMs when processing long videos and to generate high-
fidelity video descriptions, we propose a Hierarchical Dynamic Frame-Rate Generation pipeline
for our ReWatch-Caption-10k dataset. The process is applied to our video corpus V , sourced from
five public datasets [24; 19; 32; 16; 59].

Semantic Segmentation. For each video V ∈ V , we first partition V into k semantically coherent
segments S using LVLM Mseg, at a low-frame-rate. To strictly preserve long-term contextual
integrity, we apply this segmentation only to videos exceeding 10 minutes in duration. Unlike
fixed-interval splitting, our approach leverages the LVLM to perform semantic-based partitioning,
ensuring that each segment si retains a complete narrative structure with an approximate duration of
10 minutes. Each segment si corresponds to a temporal interval [tstart

i , tend
i ], preserving event integrity.

S = {s1, . . . , sk} = Mseg(V ) (1)

Detailed Description Generation. We use a powerful LVLM Mcap to process each segment si at
a high frame rate and generate a detailed description Drel

i , which includes mi distinct events {cij}
along with their relative timestamps {τij}.

Drel
i = {(cij , τij)}mi

j=1 = Mcap(si) (2)

Timestamp Realignment. Finally, a function P converts relative timestamps τij to absolute ones
tij by adding the segment’s start time.

tij = P(τij , t
start
i ) = tstart

i + τij (3)

The final video caption Cdetail(V ) is the union of all timestamped descriptions.

Cdetail(V ) =

k⋃
i=1

{(cij , tij)}mi
j=1 (4)

This hierarchical approach generates temporally precise and semantically rich descriptions while
avoiding the hallucination issues associated with LVLMs processing long videos.
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Figure 3: The data construction pipeline. (a) Caption Construction. Long videos are semantically
segmented to produce detailed, temporally-aware captions. (b) QA Pair Generation. A contrastive
method using detailed and summary captions generates complex questions, which are then purified
by a three-layer filtering mechanism. (c) CoT Synthesis. A ReAct framework with a Reasoner Agent
and an Observer Agent simulates a "re-watching" process by performing targeted queries on the
video caption to generate video-grounded reasoning traces.

2.2 STAGE 2: HIGH-DIFFICULTY QA PAIR GENERATION

To create our ReWatch-QA-170k dataset, we design a pipeline to generate challenging QA pairs
requiring fine-grained video analysis. It combines Contrastive Prompting with Three-Layer
Filtering.

Contrastive QA Generation. Given a detailed caption Cdetail, we first generate a concise summary
Csum = Msum(Cdetail) using a lightweight LLM. Then, inspired by previous work [73; 5], our QA
generator Mqa processes both Cdetail and Csum to create QA pairs (Q,A) that are explicitly answerable
from the detailed caption but not from the summary alone. This ensures questions probe fine-grained
details while excluding trivial ones.

(Q,A)raw = Mqa(Cdetail, Csum) (5)

To guide generation and ensure diversity, we pre-define 10 question types.

Three-Layer Filtering. Raw pairs undergo a three-layer filtering cascade to ensure quality and
video-dependency:

• Filter 1: Answer Verification, F1: A verifier Mverify confirms the factual correctness of the
answer based on Cdetail.

(Q,A) passes F1 ⇐⇒ Mverify(Q,A,Cdetail) = True (6)

• Filter 2: Text Bias Elimination, F2: Ensures the question is unanswerable from general knowledge
by probing a set of LLMs Mprobe.

(Q,A) passes F2 ⇐⇒ 1

|Mprobe|
∑

M∈Mprobe

1(M(Q) ≈ A) < θtext (7)

• Filter 3: Summary Bias Elimination, F3: Similarly ensures the question is unanswerable using
the summary Csum.

(Q,A) passes F3 ⇐⇒ 1

|Mprobe|
∑

M∈Mprobe

1(M(Q,Csum) ≈ A) < θsum (8)

Where θtext and θsum are threshold for consensus. The 85k pairs passing all filters are then rewritten
by LLM Mrewrite into multiple-choice questions, yielding a total of 170k QA pairs.
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2.3 STAGE 3: MULTI-AGENT CHAIN-OF-THOUGHT SYNTHESIS

To generate our ReWatch-CoT-135k dataset, we introduce a multi-agent ReAct-based framework that
explicitly construct the video-grounded CoT. This method externalizes the observation process for
active information retrieval.

We define two agents: a Reasoner AR that produces thoughts T and actions Act, and an Observer
AO that executes actions on the video caption Cdetail to return observations Obs.

For a given question Q, the agents interact in a loop. At each step t, the Reasoner uses the history
Ht−1 = (Q,T1, Act1, Obs1, . . . , Tt−1, Actt−1, Obst−1) to decide the next step:

(Tt, Actt) = AR(Ht−1) (9)

The Observer executes the action to retrieve information from the video context:

Obst = AO(Actt, Cdetail) (10)

It is important to clarify that our Observer Agent AO retrieves observations from the detailed textual
captions (Cdetail) rather than processing raw video frames during synthesis. Through manual inspec-
tion, we confirmed that our hierarchical captions from Stage 1 are sufficiently fine-grained to serve as
a high-fidelity proxy for visual content. This text-based simulation drastically improves the efficiency
and scalability of data synthesis compared to pixel-based methods. While our current pipeline is text-
based, the synthesized ’Thought-Action-Observation’ trajectories provide a foundational resource for
training future ’thinking-with-video’ models that can directly query visual encoders.

This process continues until the Reasoner produces a final answer. The core actions Actt simulate
visual lookup:

• segment_retrieval(query): Finds the timestamp of an event from a natural language query.
• segment_query(timestamp): Retrieves the detailed description of an event from a timestamp.

This entire text-based simulation is highly efficient. The structured execution trajectory T =
{(T1, Act1, Obs1), . . . , (Afinal)} is then converted by LLM Mconvert into a natural language CoT
string R with explicit <action> and <observation> tags, making it ready for supervised fine-tuning
and O&R reward calculation.

3 POST-TRAING ON REWATCH DATASET

As shown in Figure 4, we use the SFT+RL paradigm to train Qwen2.5-VL. In the SFT stage, we use
multi-task objectives to train to obtain ReWatch-R1-SFT. In the RL stage, based on the GRPO [18]
algorithm and a novel O&R reward mechanism we propose, we obtain ReWatch-R1.

3.1 SUPERVISED FINE-TUNING STAGE

In this stage, we perform multi-task SFT on a base LVLM using our three datasets: ReWatch-Caption-
10k (DCap), ReWatch-QA-170k (DQA), and ReWatch-CoT-135k (DCoT). The goal is to jointly instill
three core abilities: foundational video-text alignment, direct question-answering ("non-thinking"
mode), and step-by-step reasoning ("thinking" mode). Crucially, we train the model to switch between
these response modes using distinct instruction prompts. For detailed prompt setting during SFT,
please refer to Appendix E.2.

The SFT objective is to minimize a composite loss function, LSFT, which is the sum of the losses
from these three tasks. Let the LVLM be denoted by a policy πθ with parameters θ. The total loss is
defined as:

LSFT(θ) = LCap + LQA + LCoT (11)

where each component corresponds to a specific learning objective:

Video-Text Alignment. We train the model to generate detailed captions (Cdetail) from videos (V ).

LCap = −E(V,Cdetail)∈DCap [log πθ(Cdetail|V )] (12)

5



Published as a conference paper at ICLR 2026

(a) SFT

Base
Model

SFT
Model

ReWatch-
Caption-10k

ReWatch-
QA-170k

ReWatch-
CoT-135k

LVLM
Policy

𝑟!
𝑟"
⋮
𝑟#

𝐴!
𝐴"
⋮
𝐴#

ReWatch-QA-170k

KL

Rollout Reward Advantage

+
Video

Question

LVLM 
Policy

(b) RL

(c) Rollout (Purely Textual CoT ) (d) Reward Calculation

Reference
Model

Reward
Calculation

𝑦!
𝑦"
⋮
𝑦#

Group
Computation

Thought Action Observation Answer

Answer

Action

Observation

Question

Caption

Answer

Reasoning Reward

Observation Reward

Accuracy Reward

Format Reward

Figure 4: Our two-stage Post-Training framework. (a) A Base Model is first fine-tuned (SFT) on
all ReWatch datasets, (b) then further refined as a policy via Reinforcement Learning (RL) using
the ReWatch-QA dataset. (c) The "Rollout" panel illustrates the generative process of the policy:
producing a purely textual chain-of-thought that simulates a Thought-Action-Observation reasoning
loop through self-generated text segments. (d) We employ four verifiable reward mechanisms.

Direct Question-Answering (Non-thinking). We train the model to output a concise answer (A)
when given a direct-answer instruction Idirect.

LQA = −E(V,Q,A)∈DQA [log πθ(A|V, Idirect, Q)] (13)

Chain-of-Thought Reasoning (Thinking). We train the model to generate the full reasoning trace
(R) when given a think-step-by-step instruction Ithink.

LCoT = −E(V,Q,R)∈DCoT [log πθ(R|V, Ithink, Q)] (14)

By optimizing these objectives concurrently, we produce a versatile SFT Model that is proficient in
both direct answering and complex reasoning. This model then serves as the proficient initial policy
for the subsequent Reinforcement Learning stage.

3.2 REINFORCEMENT LEARNING STAGE

Previous LVLMs of video reasoning [10; 16] directly utilize the accuracy of the final answer racc as
the reward signal for reasoning enhancement through reinforcement learning. Formally,

racc = Mjudge(A,Agt), (15)

where Mjudge(·) is the judge model used to assess the consistency of inputs, which can be a
rule-based verifier or an LLM. However, the foundation of video reasoning lies in the ability to
reason grounded in video content. Such reward for mere accuracy overlooks the capabilities of
video content-oriented reasoning, which may lead to potential visual or linguistic hallucinations. To
address this limitation, we design the Observation & Reasoning (O&R) reward mechanism, which
encourages the model to perform appropriate reasoning grounded in the accurate understanding of
video content, rather than relying on potential visual or linguistic hallucinations. Specifically, we
model the video reasoning QA process as a sequential flow:

Video+Question → Observations+Reasoning → Answer

On one hand, the model should base its reasoning on accurate observations of the video content.
Thus, we first assess the accuracy of video observations in CoT by comparing them with the detailed
video caption, and use this evaluation as the observation reward. Formally,

{Acti, Obsi}Ni=1 = Parse(R), (16)

robs = mean({Mjudge(Cdetail, {Acti, Obsi})}Ni=1). (17)

Here, Parse(·) denotes parsing the actions and observations from the model output.

On the other hand, the model should reason out appropriate observational actions according to the
question. Therefore, we design the reasoning reward by evaluating the accuracy of directly answering
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questions using the actions and observations. If the model can provide a correct answer based on
these actions and observations, the reasoning process is deemed valid and sufficient. This reward
guides the model to reason appropriate observation actions that effectively address the question.
Formally,

Aao = Minfer(Q, {Acti, Obsi}Ni=1), (18)
rrea = Mjudge(Aao, Agt). (19)

Here, Minfer(·) is an LLM used to answer the question based on the given actions and observations.
The final reward can be expressed as,

rO&R = racc × (1 + robs + rrea) + rfmt, (20)

rfmt =

{
1, correct format
0. otherwise

(21)

Here, rfmt denotes the format reward, enabling the model to output responses in the for-
mat we desire. For example, we expect the model to enclose its actions and observations
with <action>...</action> and <observation>...</observation> tags, and the answer with
<answer>...</answer> tag. Finally, we employ the GRPO [18] algorithm for model optimization.

4 EXPERIMENTS

We train Qwen2.5-VL-7B [4] on the ReWatch dataset to obtain Rewatch-R1, and then compare it
with other LVLMs on five video reasoning and four video understanding benchmarks. For detailed
experimental settings, please refer to the Appendix C.1.

4.1 MAIN RESULTS

Table 1 shows the superior video reasoning performance of our model, yielding following key insights.

SOTA Performance among models of a comparable size. In both 192-frame and 384-frame
settings, the average scores of ReWatch-R1 across five reasoning benchmarks significantly surpass
those of all other comparison models. This validates the effectiveness of our dataset and training
methodology.

High-Quality CoT Data is Critical. The SFT-only model ReWatch-R1-SFT (33.25%) already
surpasses most competitors like Video-R1-SFT (29.74%) and LongVideoReason-SFT (26.31%),
which use the same training configuration. This proves the superiority of our CoT training data.

RL Unlocks Further Potential. Reinforcement learning further boosts performance. Our final
ReWatch-R1 model improves upon the SFT version (33.25% to 35.51%). This shows that while
SFT teaches the form of CoT, our RL phase imparts the spirit, enabling more logical and factually
grounded reasoning.

The Efficacy of "Thinking" is Contingent on Learning "How to Think". Enabling CoT ("Think-
ing" mode) is detrimental for an untrained base model (27.54% vs. 30.71%), as it can induce
hallucinations. In contrast, our fully trained ReWatch-R1 excels with CoT. This proves our method
successfully teaches the model how to reason.

We further evaluate performance on video understanding benchmarks in Table 4 and performance on
videos of varying durations in Figure 9. For detailed analysis, please refer to Appendix C.2 and C.3.

4.2 ANALYSIS RESULTS

High-Quality SFT Data is Foundational for RL. An ablation study in Figure 5a shows two key
findings. First, SFT is an indispensable prerequisite for RL, training without it (w/o SFT) causes
a catastrophic performance drop, as RL needs a strong initial policy. Second, high-quality CoT
data is vital. Replacing our ReWatch-CoT data with that from Video-R1 significantly degrades
performance. This validates that our multi-agent framework produces a superior training corpus for
complex reasoning.
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Table 1: Performance comparison on Video Reasoning tasks. ∗ indicates that we reproduced the
model using a training configuration with 192 frames. † indicates that reinforcement learning is
conducted using exactly the same data as ReWatch-R1. The best results among models of the same
size are indicated in bold.

Models Thinking VCR
Bench MINERVA Video

Holmes
Video

MathQA
CG-AV

Counting Average

192 Frames

Qwen2.5-VL-32B ✗ 39.85 38.15 43.28 33.33 23.95 35.71

Qwen2.5-VL-7B ✗ 36.75 33.19 38.87 24.76 19.96 30.71
Qwen2.5-VL-7B ✓ 34.72 29.15 34.78 24.52 14.51 27.54
GLM4.1V-9B ✓ 34.53 33.75 38.98 27.38 21.32 31.19
InternVL3.5-8B ✓ 30.17 33.12 35.11 27.86 22.30 29.71

Video-R1 ✓ 32.69 32.36 41.97 25.95 22.01 31.00
Video-Chat-R1 ✓ 32.79 30.33 36.31 22.62 14.51 27.31
VideoRFT ✓ 34.53 32.22 41.37 25.00 21.03 30.83
VersaVid-R1 ✓ 36.56 31.45 39.09 24.05 23.27 30.88
TW-GRPO ✓ 26.11 34.38 42.19 26.90 19.47 29.81
GRPO-CARE ✓ 35.49 31.87 38.27 25.48 19.57 30.14

Video-R1-SFT∗ ✓ 33.85 31.45 37.29 26.43 19.67 29.74
Video-R1-RL∗† ✓ 34.24 31.45 37.18 27.38 21.13 30.28
LongVideoReason-SFT∗ ✓ 24.37 29.71 38.60 23.10 15.77 26.31
LongVideoReason-RL∗† ✓ 35.30 35.01 43.49 23.57 20.55 31.58

ReWatch-R1-SFT ✓ 35.78 35.43 39.52 30.00 25.51 33.25
ReWatch-R1 ✓ 40.14 35.70 43.00 30.71 24.73 34.86

+ O&R ✓ 40.43 36.05 43.88 31.67 25.51 35.51

384 Frames

Qwen2.5-VL-32B ✗ 39.75 38.63 44.04 33.81 25.71 36.39

Qwen2.5-VL-7B ✗ 34.91 34.59 39.90 24.76 20.16 30.86
Qwen2.5-VL-7B ✓ 32.45 31.10 34.89 24.00 16.57 27.80
GLM4.1V-9B ✓ 38.59 36.54 41.10 33.10 23.08 34.48
InternVL3.5-8B ✓ 30.56 29.43 32.55 28.57 23.27 28.88

Video-R1 ✓ 32.40 35.77 41.37 23.57 20.84 30.79
Video-Chat-R1 ✓ 31.72 31.66 36.47 22.62 14.61 27.42
VideoRFT ✓ 34.62 34.38 41.26 25.24 20.93 31.29
VersaVid-R1 ✓ 33.46 33.75 39.74 23.57 21.32 30.37
TW-GRPO ✓ 25.82 35.43 42.24 27.86 19.96 30.26
GRPO-CARE ✓ 36.46 33.05 38.11 25.00 20.64 30.65

Video-R1-SFT∗ ✓ 33.95 35.56 37.29 25.24 21.91 30.79
Video-R1-RL∗† ✓ 35.69 32.29 37.83 26.67 20.06 30.51
LongVideoReason-SFT∗ ✓ 24.18 30.20 38.49 23.33 6.04 24.45
LongVideoReason-RL∗† ✓ 34.91 37.24 43.88 24.29 22.01 32.47

ReWatch-R1-SFT ✓ 36.17 35.50 39.09 30.48 22.78 32.80
ReWatch-R1 ✓ 39.56 38.15 43.98 30.95 25.32 35.59

+ O&R ✓ 38.78 36.54 44.26 32.62 26.68 35.78

High-quality QA data is crucial for RL. A comparative analysis in Figure 5b shows that the quality
of QA data used for RL determines final performance. Training on only baseline QA data (Video-
R1-QA [16] (10k) and LongVideoReason-QA [10] (10k)) yields the lowest scores (42.0% all, 34.3%
reasoning, 51.7% understanding), whereas our ReWatch-QA data provides notable improvements.
This confirms that ReWatch-QA, due to its challenging nature, offers a more potent reward signal that
guides the model toward robust reasoning abilities instead of overfitting to simpler patterns.

Dataset Complexity & Video Dependency. Figure 6a presents a quantitative analysis of the com-
plexity comparison between the ReWatch-QA and Video-R1-QA datasets. The detailed experimental
design can be found in Appendix C.4. The results show that the ReWatch-QA dataset elicits more
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Figure 5: Ablation results of our synthesized data against baselines.
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Figure 6: Analysis on QA complexity and Evolution of action count.

profound reasoning than Video-R1-QA. ReWatch requires nearly double the reasoning steps (3.31
vs. 1.82) and significantly longer responses (398.75 vs. 205.74). Critically, Video-R1 has a high
Text-Only Accuracy of 68.9%, indicating questions are often solvable from text alone. In contrast, the
accuracy of ReWatch is only 29.4%, near the 25% random-guess baseline. This proves our three-stage
filtering is effective, eliminating textual shortcuts and forcing genuine video understanding.

RL optimizes the reasoning process, leading to more efficient yet more accurate responses.
Figure 6b shows a two-stage evolution. First, SFT teaches the model a structured reasoning format,
increasing action counts and accuracy. Then, during RL, accuracy continues to improve while the
average number of actions decreases. This indicates RL refines the policy to be more effective
and efficient, pruning redundant steps to focus on critical actions. The model thus transitions from
learning reasoning’s form (SFT) to mastering its function with efficiency (RL).

The thinking mode, while converging more slowly during training, ultimately achieves a
significantly higher performance ceiling than the non-thinking mode. As shown in Figure 7, the
two modes exhibit different learning dynamics. During the SFT phase (solid lines), the direct-answer
"non-thinking" mode improves rapidly, whereas the "thinking" mode develops slowly. This suggests
SFT primarily teaches the format of reasoning, not its logic. The subsequent RL phase (dashed lines)
acts as a catalyst, causing a dramatic performance leap in the thinking mode by forcing the model to
learn the causal links between reasoning and correct answers. Ultimately, the final model’s "thinking"
performance surpasses the "non-thinking" mode in all tasks. This empirically proves that an explicit,
step-by-step reasoning process, cultivated via our SFT-RL regimen, is optimal for complex video
tasks.

Scalability of the ReWatch Framework. To verify whether our proposed pipeline generalizes
to larger parameters, we scaled up the base model to Qwen2.5-VL-32B. As presented in Table 2,
the performance trajectory remains consistent with the 7B experiments. The post-trained ReWatch-
R1-32B achieves an average accuracy of 38.08% on reasoning benchmarks, surpassing both the
strong base model (35.71%) and the SFT variant (36.17%). Notably, the inclusion of the O&R
reward mechanism continues to yield performance gains (improving from 37.66% to 38.08%), further
validating that our data synthesis pipeline and SFT+RLVR strategy are model-agnostic and effective
at unlocking reasoning capabilities in larger-scale LVLMs.

9



Published as a conference paper at ICLR 2026

0k 10k 20k 30k 40k 50k
SFT Steps

36

38

40

42

44
A

cc
ur

ac
y 

(%
)

ReWatch-R1 (non-thinking)

ReWatch-R1 (thinking)

All Tasks

0k 10k 20k 30k 40k 50k
SFT Steps

26

28

30

32

34

36

ReWatch-R1 (non-thinking)

ReWatch-R1 (thinking)

Reasoning Tasks

0k 10k 20k 30k 40k 50k
SFT Steps

47

48

49

50

51

52

53

54

55

ReWatch-R1 (non-thinking)

ReWatch-R1 (thinking)

Understanding Tasks

ReWatch-R1-SFT (non-thinking) ReWatch-R1-SFT (thinking)

Figure 7: Impact of SFT and RL on different prompting methods. The plots show the accuracy of
our ReWatch-R1 model with "thinking" (ReAct) vs. "non-thinking" (direct answering) prompting.
Solid lines show performance progression during the SFT phase, dashed lines show the final perfor-
mance after RL.

Table 2: Performance comparison on Video Reasoning tasks of Qwen2.5-VL-32B. The best
results among models of the same size are indicated in bold.

Models Thinking VCR
Bench MINERVA Video

Holmes
Video

MathQA
CG-AV

Counting Average

Qwen2.5-VL-32B ✗ 39.85 38.15 43.28 33.33 23.95 35.71

ReWatch-R1-SFT-32B ✓ 40.81 37.52 43.11 34.29 25.12 36.17
ReWatch-R1-32B ✓ 44.68 38.08 45.56 36.43 23.56 37.66

+ O&R ✓ 45.55 38.35 45.78 37.62 23.08 38.08

5 CONCLUSION

In this work, we address the critical data bottleneck in complex video reasoning by introducing
ReWatch, a large-scale dataset synthesized via a novel multi-stage agentic pipeline that generates
temporally-dense captions, challenging multi-hop questions, and video-grounded Chain-of-Thought
traces. We then develop ReWatch-R1 by post-training a strong LVLM using an SFT and RLVR
framework, featuring our innovative Observation & Reasoning (O&R) reward that uniquely evaluates
both the correctness of the final answer and the factual grounding of the reasoning process itself. The
resulting model establishes a new state-of-the-art on five challenging video reasoning benchmarks.
This demonstrates that our integrated approach of superior data synthesis and process-oriented
reinforcement learning provides a robust and effective paradigm for complex temporal reasoning
in LVLMs. In future work, we plan to extend our framework to a ’thinking-with-video’ paradigm,
where the model and agents directly interact with visual encoders to retrieve information, further
closing the gap between textual reasoning and visual perception.

ETHICS STATEMENT

The videos used to construct the ReWatch dataset are sourced exclusively from publicly available
academic datasets [24; 19; 32; 16; 59], which are intended for research purposes. We do not collect
any new data involving human subjects, and therefore, no Institutional Review Board (IRB) approval
is required. We do not attempt to re-identify any individuals who may appear in these public videos.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide a
comprehensive description of our methodology, data, and experimental setup.
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Code: The source code for our data synthesis pipeline, the Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL) training procedures, and our evaluation scripts will be released upon
publication.

Dataset Construction: Our primary contribution, the ReWatch dataset, is synthesized using a
novel pipeline. The complete methodology for this pipeline, including the multi-stage process for
captioning, QA generation, and CoT synthesis, is described in detail in Section 2 and illustrated in
Figure 3. The specific foundation models used at each stage of the synthesis process are explicitly
listed in Appendix B.2.

Experimental Setup and Hyperparameters: All experimental details required to reproduce our
results are provided in the appendix. Appendix C.1 contains a complete breakdown of the training
parameters for both the SFT and RL stages, including learning rates, batch sizes, context lengths, and
the specific models used for reward calculation.

Evaluation: Our evaluation protocol is clearly defined to ensure fair and consistent comparison. We
detail the benchmarks used in Appendix C.1, the exact prompts used to elicit "thinking" and "non-
thinking" responses from all models in Appendix E.1 and E.2, and the prompt for our GPT-4.1-based
answer judging in Appendix E.3.
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A LLM USAGE STATEMENT

We disclose that Google’s Gemini 2.5 Pro is utilized during the preparation of this manuscript. Its
role was strictly limited to that of a general-purpose writing assistance tool. Specifically, the LLM
is employed for tasks such as translating initial drafts and polishing the English text to improve
grammar, clarity, and conciseness. All core research ideas, including the conceptualization of the
ReWatch dataset, the design of the multi-stage synthesis pipeline, the development of the O&R
reward mechanism, the experimental setup, and the analysis of the results, are conceived and executed
entirely by the human authors. The LLM does not contribute to the intellectual content or the scientific
contributions of this paper and is therefore not considered a contributor.

B DETAILS OF DATASET CONSTRUCTION

B.1 DATASET STATISTIC

Table 3 and Figure 8 provide detailed statistical and distribution information of our dataset. Table 8
defines the 10 types of questions that we have manually defined.

Table 3: Statistics of our dataset.

Statistic Number

Total Videos 10994
- Video Source

MiraData 1748 (15.9%)
VideoEspresso 1977 (18.0%)
VideoMarathon 3296 (30.0%)
Video-R1 1982 (18.0%)
Vript 1991 (18.1%)

- Video Duration
Short (< 3 min) 3970
Medium (3 ∼ 20 min) 5473
Long (20 ∼ 60 min) 1551

Caption Token (avg/max) 4375.2/68279
Summary Token (avg/max) 504.8/16370

Total Questions 170944
- Dimensions

Event Localization 21121 (12.4%)
Temporal Localization 17765 (10.4%)
Counting 18756 (11.0%)
Cause and Effect 16296 (9.5%)
Reading 14480 (8.5%)
Spatial Perception 16425 (9.6%)
Object Recognition 18342 (10.7%)
State Changes 15184 (8.9%)
Numerical Reasoning 19260 (11.3%)
Counterfactual Reasoning 13315 (7.8%)

- Types
Multiple-choice 85833 (50.2%)
Open-ended 85111 (49.8%)

Question Token (avg/max) 70.6/256
Answer Token (avg/max) 6.2/256

Total Chain of Thought 135400
Reasoning Steps (avg/max) 2.3/11
Reasoning Token (avg/max) 332.5/2045
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Figure 8: Distribution of our dataset.

B.2 MODEL SETTINGS FOR DATA SYNTHESIS

When synthesizing ReWatch-Caption, the Semantic Segmentation model Mseg and the Detailed
Description Generation model Mcap are all Gemini2.5-Flash (Non-Thinking) [13].

When synthesizing ReWatch-QA, the Summary Generation model Msum is Gemini2.5-Flash-Lite
(Non-Thinking) [13]. The Contrastive QA Generation model Mqa is Gemini2.5-Flash (Thinking) [13].
The Answer Verification model Mverify is GPT4.1 [1]. The LLMs set Mprobe for Text Bias Elimination
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and Summary Bias Elimination includes Qwen3-235B-A22B-Instruct [58] and Qwen2.5-VL-72B-
Instruct [4]. Threshold θtext and θsum are equal to 1. The rewritten model Mrewrite for multiple-choice
questions is Gemini2.5-Flash (Non-Thinking).

When synthesizing ReWatch-CoT, Reasoner model AR is Gemini2.5-Flash (Thinking) [13], and
Observer model AO is GPT4.1 [1]. The model Mconvert used for converting structured trajectories is
Gemini2.5-Flash-Lite (Non-Thinking).

C DETAILED EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Benchmarks We evaluate the model on five video reasoning benchmarks (VCR Bench [40], MIN-
ERVA [38], Video Holmes [11], Video MathQA [41], CG-AV Counting [36]) and four video general
understanding benchmarks (MMVU [72], LVBench [46], VideoMME [17], VideoMMMU [21]).

We classify these benchmarks based on the task definitions provided in their original papers and the
performance characteristics of base models.

Reasoning Benchmarks: Focus on complex, multi-step temporal logic, such as: Causality &
Counterfactuals (e.g., VCR-Bench), State Tracking & Counting (e.g., CG-AV Counting), Information
Retrieval across long contexts (e.g., Video Holmes), Characteristic: Base models typically exhibit
low accuracy (often <30%), indicating a failure of logic rather than just perception.

General/Understanding Benchmarks: Focus on broad capabilities, primarily: Holistic summa-
rization (e.g., VideoMME Synopsis), Entity Recognition & Attribute Perception (e.g., MMVU),
Characteristic: Base models already perform relatively well, relying on pattern matching and semantic
recognition.

Training Dataset Configuration Our primary model, ReWatch-R1, is derived from Qwen2.5-VL-
7B-Instruct [4] via a two-stage training pipeline. First, we create an intermediate model, ReWatch-
R1-SFT, by performing SFT using a mixture of three datasets: ReWatch-Caption, ReWatch-QA, and
ReWatch-CoT. Subsequently, ReWatch-R1-SFT is further refined using RL to produce ReWatch-R1.
The RL phase leverages a total of 40k QA pairs, which are randomly sampled from ReWatch-QA
(20k), Video-R1-QA [16] (10k), and LongVideoReason-QA [10] (10k).

Training Parameter Configuration In the SFT stage, the length of the model context is 16k.
The default fps is 2.0, with a maximum sampling of 192 frames, and the maximum resolution of
each frame is 128*28*28. The train batch_size (per device) to be 1 and the gradient cumulative to
be 4. The learning rate is 1e-6, max_grad_norm is 1.0, and the optimizer is AdamW. The number
of epochs is 10. 16 H800 Gpus are used. In the RL stage, the length of the model context is 16k.
The default fps is 2.0, with a maximum sampling of 192 frames. The maximum resolution of each
frame is 128*28*28. The number of rollouts is 8. The sampling temperature is 0.8 and top_p is
0.9. Both train_batch_size and ppo_mini_batch_size are 14. ppo_micro_batch_size_per_gpu is
1. The learning rate is 1e-5, max_grad_norm is 5.0, and the optimizer is AdamW. The number of
epoch is 1. 16 H800 Gpus are used. In the reward mechanism of reinforcement learning, we use
Qwen3-30B-A3B-Instruct [58] as inference model Minfer and judge model Mjudge.

Baselines We compare the performance with that of the most advanced video reasoning models in
the current literature, including Qwen2.5-VL-7B [3], GLM4.1V-9B [44], InternVL3.5-8B [47], Video-
R1 [16], Video-Chat-R1 [30], VideoRFT [45], VersaVid-R1 [7], TW-GRPO [14], GRPO-CARE [8].
In addition, We also use two open-source datasets, Video-R1-CoT [16] and LongVideoReason-
CoT [10], to reproduce Video-R1-SFT and LongVideoReason-SFT under the same training configu-
ration of ReWatch-R1-SFT. The RL stage for Video-R1-RL and LongVideoReason-RL utilizes an
identical dataset of 40k QA pairs with ReWatch-R1.

Evaluation We employ GPT-4.1 [1] to assess if model responses align with ground truth using
Prompt 20, with accuracy as the metric for all benchmarks. During inference, the maximum resolution
for each frame is limited to 128*28*28 pixels, and the maximum number of frames is 192 or 384.
Greedy decoding is used for Qwen2.5-VL-7B, Video-R1, Video-Chat-R1, VideoRFT, Video-R1-SFT,
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Table 4: Performance comparison on Video Understanding tasks. ∗ indicates that we reproduced
the model using a training configuration with 192 frames. † indicates that reinforcement learning is
conducted using exactly the same data as ReWatch-R1. The best results among models of the same
size are indicated in bold.

Models Thinking MMVU LVBench VideoMME VideoMMMU Average

192 Frames

Qwen2.5-VL-32B ✗ 62.30 43.83 68.52 61.56 59.05

Qwen2.5-VL-7B ✗ 53.10 41.19 63.59 49.67 51.89
Qwen2.5-VL-7B ✓ 52.20 36.93 58.19 50.78 49.53
GLM4.1V-9B ✓ 57.90 40.99 61.81 54.67 53.84
InternVL3.5-8B ✓ 50.70 36.86 61.19 55.00 50.94

Video-R1 ✓ 53.20 40.28 64.41 50.33 52.06
Video-Chat-R1 ✓ 50.70 37.83 60.07 46.44 48.76
VideoRFT ✓ 55.30 42.48 64.81 49.89 53.12
VersaVid-R1 ✓ 52.90 40.15 61.67 45.11 49.96
TW-GRPO ✓ 43.40 41.96 64.48 49.56 49.85
GRPO-CARE ✓ 55.50 36.67 63.93 52.56 52.17

Video-R1-SFT∗ ✓ 53.50 37.31 58.59 47.67 49.27
Video-R1-RL∗† ✓ 55.40 37.64 63.89 50.00 51.73
LongVideoReason-SFT∗ ✓ 37.90 35.96 55.67 45.56 43.77
LongVideoReason-RL∗† ✓ 57.20 41.12 61.59 51.00 52.73

ReWatch-R1-SFT ✓ 53.40 41.58 62.41 46.33 50.93
ReWatch-R1 ✓ 55.80 42.74 64.96 52.22 53.93

+ O&R ✓ 57.80 42.54 64.93 51.33 54.15

384 Frames

Qwen2.5-VL-32B ✗ 62.20 46.22 68.89 60.44 59.44

Qwen2.5-VL-7B ✗ 53.70 42.80 64.19 48.11 52.20
Qwen2.5-VL-7B ✓ 51.33 36.22 57.50 48.33 48.35
GLM4.1V-9B ✓ 57.60 44.35 66.44 57.33 56.43
InternVL3.5-8B ✓ 48.20 38.02 56.41 45.89 47.13

Video-R1 ✓ 52.90 40.61 64.19 49.11 51.70
Video-Chat-R1 ✓ 50.90 37.38 59.52 45.67 48.37
VideoRFT ✓ 55.30 40.74 64.15 48.67 52.22
VersaVid-R1 ✓ 52.00 40.67 62.85 44.33 49.96
TW-GRPO ✓ 42.80 42.74 65.41 50.89 50.46
GRPO-CARE ✓ 55.00 37.06 65.52 52.00 52.40

Video-R1-SFT∗ ✓ 53.90 38.02 59.96 48.44 50.08
Video-R1-RL∗† ✓ 55.40 38.35 65.41 51.67 52.71
LongVideoReason-SFT∗ ✓ 38.10 36.54 57.33 47.67 44.91
LongVideoReason-RL∗† ✓ 56.60 41.19 62.56 51.56 52.98

ReWatch-R1-SFT ✓ 54.80 42.22 62.22 48.22 51.87
ReWatch-R1 ✓ 54.90 42.87 64.48 51.22 53.37

+ O&R ✓ 57.70 43.25 65.56 51.89 54.60

Video-R1-RL, LongVideoReason-SFT, LongVideoReason-RL, ReWatch-R1-SFT, and ReWatch-R1.
The decoding temperature is set to 0.8 for GLM4.1V-9B and 0.6 for InternVL3.5-8B. Models utilize
different prompts in "Thinking" and "Non-Thinking" modes, as detailed in the Appendix E.1.

C.2 PERFORMANCE COMPARISON ON VIDEO UNDERSTANDING BENCHMARKS

Table 4 presents a comparative analysis of the performance of our model against other models on
video understanding benchmarks. The key experimental findings and insights are as follows.
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Table 5: Performance comparison on Video Understanding tasks of Qwen2.5-VL-32B. The best
results among models of the same size are indicated in bold.

Models Thinking MMVU LVBench VideoMME VideoMMMU Average

Qwen2.5-VL-32B ✗ 62.30 43.83 68.52 61.56 59.05

ReWatch-R1-SFT ✓ 59.90 43.51 66.26 57.44 56.78
ReWatch-R1 ✓ 62.60 45.97 69.33 62.44 60.09

+ O&R ✓ 62.40 46.68 69.44 62.89 60.35

Synergistic Improvement in Reasoning and Understanding Without Catastrophic Forgetting.
ReWatch-R1 achieves state-of-the-art (SOTA) performance among models of a comparable size,
with an average score of 54.15% at 192 frames across four general video understanding benchmarks.
This demonstrates that specialized training for complex reasoning does not impair the model’s
foundational abilities. On the contrary, it enhances general understanding by facilitating a more
profound analysis of video content. This positive outcome is likely attributable to the multi-task
learning design implemented during the Supervised Fine-Tuning (SFT) phase. The ReWatch-Caption
task preserves the model’s fundamental video-text alignment, while the ReWatch-QA (direct-answer
mode) and ReWatch-CoT (reasoning mode) tasks train distinct response pathways. Together, these
tasks cultivate a comprehensively capable model rather than one with a specialized or biased skill set.

RL-driven Alignment of "Thinking" and "Non-thinking" Performance. After SFT with Chain-
of-Thought, the performance of the ReWatch-R1-SFT variant still lags behind the direct-answer
("non-thinking") performance of the base model. However, with the application of RL, the resulting
ReWatch-R1 model not only exhibits further performance gains on video understanding tasks but also
surpasses the direct-answer performance of the base model. This indicates that the enhancements
in reasoning capabilities successfully generalize to foundational understanding tasks. This finding
suggests that "deep reasoning" and "shallow understanding" are not entirely discrete processes. A
model proficient in complex logical thought may consequently develop more reliable fundamental
observation and recognition abilities.

Generalization to Larger Models. Table 5 details the performance of the Qwen2.5-VL-32B
model on video understanding tasks. Consistent with our findings on the 7B model, the RL stage
proves critical for larger models as well. While the intermediate SFT model (ReWatch-R1-SFT)
experiences a slight performance regression compared to the base model (56.78% vs. 59.05%),
the subsequent Reinforcement Learning stage effectively recovers and enhances these foundational
capabilities. The final ReWatch-R1-32B model achieves a state-of-the-art average score of 60.35%,
outperforming the base model. This confirms that our RLVR framework, augmented with the O&R
reward, successfully balances the trade-off between complex reasoning and general understanding,
ensuring robust performance across model scales.

C.3 PERFORMANCE COMPARISON ACROSS DIFFERENT VIDEO DURATIONS

Figure 9 presents a comparative analysis of model performance on videos of varying durations. The
findings highlight two primary conclusions regarding long-video reasoning.

Superior Performance in Long-Video Reasoning. The proposed method demonstrates a significant
advantage in long-video reasoning. ReWatch-R1 substantially outperforms all other models of
comparable size on reasoning tasks for long videos (>20 min). For instance, ReWatch-R1 achieves
27.46%, an absolute improvement of over 3.4 percentage points compared to the next-best model,
LongVideoReason-RL (24.03%). This result provides strong evidence for the efficacy of the overall
methodology. The ReWatch dataset, with its hierarchical subtitles and contrastive QA, is specifically
designed to create challenges that require reasoning across extended temporal spans. The model’s
success indicates that this specialized training endows it with a superior ability to locate, associate,
and reason with key information embedded within lengthy and often noisy video streams.

Robustness to Performance Degradation on Long Videos. An analysis of all models reveals
a consistent trend: performance on reasoning tasks declines as video duration increases. This

20



Published as a conference paper at ICLR 2026

Short Medium Long

Video Duration

20

25

30

35

40
A

cc
ur

ac
y 

(%
)

Reasoning Benchmarks

Short Medium Long

Video Duration

40

45

50

55

60

65

A
cc

ur
ac

y 
(%

)

Understanding Benchmarks

ReWatch-R1 Video-R1-RL LongVideoReason-RL Qwen2.5-VL-7B

Figure 9: Performance comparison across different video durations. Short: 0-3 minutes, Medium:
3-20 minutes, Long: over 20 minutes. We averaged the performance of the benchmarks for reasoning
and understanding respectively, and all results were evaluated at 192 frames.

observation confirms that long-video reasoning is a pervasive and yet-unsolved challenge for current
LVLMs, a phenomenon that can be described as a "Long Video Tax." However, the key advantage
of ReWatch-R1 lies in its more attenuated rate of performance degradation. For example, while
its own performance drops from 40.38% (short videos) to 27.46% (long videos), its decline is less
severe relative to its high baseline. This indicates that the model not only establishes a superior
starting performance but also demonstrates greater resilience when confronted with the challenges
of extended durations, further substantiating the robustness of the proposed method in handling
long-term temporal dependencies.

C.4 COMPARATIVE ANALYSIS OF DATASET-INDUCED REASONING COMPLEXITY AND VIDEO
DEPENDENCY

Figure 6a presents a quantitative analysis of the reasoning characteristics elicited by the ReWatch and
Video-R1 datasets. The experiment involves using the ReWatch-R1-SFT model to perform inference
on the ReWatch training set and the multiple-choice subset of the Video-R1 training set. From the
outputs for each dataset, 5,000 correctly answered samples are randomly selected for analysis. Three
metrics are computed for these samples: the average number of reasoning steps (<action> tags),
the average response length, and the degree of video dependency. Video dependency is specifically
quantified as "Text-Only Accuracy"—the accuracy of the powerful Qwen2.5-VL-7B model when
answering questions with only textual input and no video. The results show that the ReWatch dataset
demands more profound, multi-step inference, eliciting nearly double the number of reasoning steps
(3.31 vs. 1.82) and significantly longer responses (398.75 vs. 205.74 characters). Most critically, the
Text-Only Accuracy for Video-R1 is 68.9%, indicating that questions can often be answered from
textual cues alone. In stark contrast, the accuracy for the ReWatch dataset is merely 29.4%, a figure
close to the 25% random-guessing baseline. This provides compelling evidence that the dataset’s
three-stage filtering mechanism is highly effective, successfully eliminating spurious shortcuts and
ensuring that problems are solvable only through genuine video understanding.

C.5 PERFORMANCE ANALYSIS OF DIFFERENT TASK TYPES

To provide a deeper understanding of where our method yields the most significant gains, we analyze
performance across specific task types on VCR-Bench (Table 6) and VideoMME (Table 7).

On VCR-Bench, ReWatch-R1 equipped with the O&R reward demonstrates exceptional proficiency
in tasks requiring precise evidence retrieval. Most notably, in Video Temporal Grounding, our model
achieves a substantial improvement, jumping from the base model’s 25.87% to 37.76%. This sharp
increase validates that the "re-watching" mechanism and O&R reward successfully teach the model
to verify intermediate reasoning steps against specific video segments. We also observe strong gains
in Video Temporal Counting (improving from 40.99% to 49.07%), suggesting that the model’s ability
to track state changes over time is significantly enhanced.
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On VideoMME, the results illuminate the distinction between "reasoning" and "perception." ReWatch-
R1 excels in categories demanding logical inference, achieving its highest gains in Spatial Reasoning
(rising from 71.43% to 78.57%) and Temporal Reasoning (rising from 48.59% to 53.11%). This
confirms that our SFT+RLVR pipeline specifically boosts the model’s deductive capabilities. However,
performance on holistic tasks such as Information Synopsis remains unchanged (79.57% for both
base and ours), and Spatial Perception sees no improvement. This indicates that while our method
significantly unlocks complex reasoning potential, tasks relying purely on global video summarization
or static spatial awareness remain a challenge or have reached a saturation point with the current base
model architecture.

Table 6: The detailed performance of different models on the VCR-Bench dataset. Performance is
presented according to different task types. All the models in this table are evaluated at 192 frames.

Qwen2.5-VL-7B ReWatch-R1-SFT ReWatch-R1 w/ O&R

Thinking ✗ ✓ ✓ ✓

Temporal Spatial Reasoning 48.89 42.22 44.44 48.89
Video Plot Analysis 40.29 38.13 45.32 42.45
Fundamental Temporal Reasoning 49.69 46.54 49.06 48.43
Video Temporal grounding 25.87 31.47 35.66 37.76
Video Temporal Counting 40.99 37.27 49.69 49.07
Video Knowledge Reasoning 49.67 52.94 54.25 54.25

Overall 36.75 35.78 40.14 40.43

Table 7: The detailed performance of different models on the VideoMME dataset. Performance is
presented according to different task types. All the models in this table are evaluated at 192 frames.

Qwen2.5-VL-7B ReWatch-R1-SFT ReWatch-R1 w/ O&R
Thinking ✗ ✓ ✓ ✓

Counting Problem 43.66 42.54 45.52 45.90
Information Synopsis 79.57 79.88 79.57 79.57
Object Recognition 69.21 68.08 72.03 69.77
Action Reasoning 56.84 52.63 53.33 55.09
Object Reasoning 59.69 57.93 60.79 60.35
Temporal Perception 74.55 72.73 76.36 78.18
Attribute Perception 76.13 76.13 75.68 76.58
Temporal Reasoning 48.59 51.98 55.37 53.11
Action Recognition 61.66 59.11 65.50 65.81
OCR Problems 70.50 69.78 71.22 71.94
Spatial Perception 70.37 64.81 66.67 70.37
Spatial Reasoning 71.43 73.21 78.57 78.57

Overall 63.59 62.41 64.96 64.93

C.6 CASE STUDY

To qualitatively demonstrate the superiority of ReWatch-R1, we present two case studies comparing
its reasoning process with baseline models.

Mitigating Hallucinations via Active Retrieval. Figure 10 illustrates a scenario where the model
must determine how a character monitors a scene. The baseline Video-R1 relies on internal "thinking"
driven by textual priors and common sense, incorrectly hallucinating a "surveillance camera in a desk
lamp" simply because it aligns with common spy tropes. In contrast, ReWatch-R1 leverages its agentic
capability to actively query the video content. By executing a targeted retrieval action (locating the
segment 00:29-00:32), it correctly observes the fine-grained visual detail of a "transparent smartphone
screen" displaying a live feed. This demonstrates that our "re-watching" mechanism enables the
model to bypass textual shortcuts and ground its reasoning in specific visual evidence.
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Enhancing Faithfulness with O&R Reward. Figure 11 highlights the critical impact of our
Observation & Reasoning (O&R) reward on complex temporal tasks. In this counting problem,
the model must track objects appearing over time. The model trained without the O&R reward
(ReWatch-R1 w/o O&R) adopts the correct reasoning format but fails to observe the subtle addition of
a "brown puppy statue," leading to an incorrect count. However, the full ReWatch-R1 model, refined
by the O&R reward, exhibits superior visual faithfulness. It explicitly notes the object’s appearance
at timestamp 00:01 and updates its count to 4 accordingly. This confirms that the O&R mechanism
effectively incentivizes the model to perform rigorous, evidence-based verification, significantly
reducing visual oversight.

Question: How did the man holding the phone see the situation on site?
A: Installed surveillance in others' eyes.
B: A surveillance camera was installed in the desk lamp on site.
C: Through television broadcast.
D: His phone can connect to global satellites.

Ground Truth Answer: A

Video-R1-7B: <think>Let me think about this for a moment. The 
question is asking how the man holding the phone saw the situation on 
site. Let‘s break it down step by step. First, let’s consider the options: A: 
Installed surveillance in others‘ eyes. - This seems quite extreme and 
unlikely. It’s not something that would be easily done without 
detection. B: A surveillance camera was installed in the desk lamp on 
site. - This is a plausible option. It‘s common for surveillance cameras 
to be hidden in everyday objects like desk lamps. C: Through television 
broadcast - While possible, it’s not specified in the scene that there 
was a television broadcast. It‘s less likely than the other options. D: His 
phone can connect to global satellites. - This is also possible, but it’s 
not mentioned in the scene. It‘s a bit of a stretch without any evidence.
Now, let’s focus on the most logical and detailed option. The scene 
shows a desk lamp, which is a common place for surveillance cameras. 
It‘s a small, inconspicuous object that could be easily hidden. The man 
holding the phone is likely using his phone to view the footage from 
the camera in the desk lamp. Hmm, it seems that the most reasonable 
and detailed option is B. The surveillance camera was installed in the 
desk lamp on site. This aligns with the common practice of using 
everyday objects for surveillance purposes. Oh, I see. The most logical 
and detailed answer based on the scene and common practices is B.
Let’s verify one last time. The scene does not show any signs of global 
satellite connection, so D is less likely. The presence of a desk lamp 
suggests B is the most plausible. Final answer: B Let's break it down 
one last time to ensure. The desk lamp is a common place for 
surveillance cameras, and the man is using his phone to view the 
footage. This aligns perfectly with option B.</think>
<answer>B</answer>

ReWatch-R1-7B: I need to determine how the man with the phone 
observed the situation on site. First, I‘ll examine his interaction with the 
phone. <action> I’ll look at the segment from 00:00 to 00:30, focusing 
on his phone‘s function. </action> <observation> I observe that 
between 00:00 and 00:30, the man is holding a phone, but its specific 
function isn’t detailed; it‘s just present. </observation> Since the 
phone’s function wasn‘t clear, I need to find out how he saw the 
situation. <action> I’ll search for any indication of how he viewed the 
scene or communicated with someone else. </action> <observation> I 
notice that from 00:29 to 00:32, the man is shown looking through a 
transparent smartphone screen, which clearly displays a live feed of the 
scene. This suggests his phone is being used as a surveillance device. 
</observation> This directly answers the question. Therefore,
<answer>A</answer>

Figure 10: Case Visualization. Our model can notice more fine-grained information during the
reasoning process.

Question: In the video, how many different objects are already on the 
table before the book is picked up to show the back?
A: 0
B: 2
C: 4
D: 6
Ground Truth Answer: C

ReWatch-R1-7B w/o O&R: To determine the number of objects on the table before the 
book is picked up, I first need to pinpoint when that event occurs. <action> I‘ll search for 
the segment where “the book is picked up to show the back.” </action> <observation> I 
observe that this happens from 00:03 to 00:07. </observation> Now that I know the 
timeframe, I need to count the distinct objects present on the table during that period. 
<action> I’ll examine the segment from 00:00 to 00:07, focusing on unique items on the 
table. </action> <observation> I observe that there are three distinct objects: a head of 
green lettuce, a small red toy car, and a blue-handled knife. These are clearly visible and 
remain stationary throughout this time frame. </observation> Therefore, the total 
number of different objects on the table before the book is picked up is three.
<answer>B</answer>

ReWatch-R1-7B: To determine the number of items on the table before 
picking up the book, I first need to determine the time when the event 
occurred. <action> I will search for the clip where “the book was picked 
up to show the back”. </action> <observation> I observed that this 
action began approximately at 00:03. </observation> Now that I know 
the time frame, I need to calculate the different objects that appeared 
on the table before that moment. <action> I will review the videos 
from 00:00 to 00:03, with a focus on all the unique items placed on the 
table. </action> <observation> I observed that at the beginning (00:00), 
there were three objects on the table: a green lettuce, a small red toy 
car, and a blue-handled fork. At 00:01, a brown puppy statue was 
added to the table. </observation> These four objects are still on the 
table. Therefore, before picking up the book, the total number of 
different objects on the table was 4.
<answer>C</answer>

Video-R1-7B: <think>Let me think about this carefully. The question asks for the number 
of objects already on the table before the book is picked up to show the back. First, let‘s 
identify the objects that are visible on the table: 1. There is a knife with a blue handle. 2. 
There is a bunch of lettuce. 3. There is a small toy car. That’s three objects right there. 
Now, let‘s consider if there are any other objects that might be present but not 
immediately obvious. Hmm, I don’t see anything else that stands out. The tablecloth itself 
isn‘t considered an object, and the person’s hands aren‘t objects either. So, we have three 
distinct objects: the knife, the lettuce, and the toy car. Wait, let’s break it down one more 
time to make sure. The knife is clearly there, the lettuce is there, and the toy car is there. 
No other objects are mentioned or visually apparent. Oh, I see. The question is asking for 
the count of objects that are already on the table before the book is picked up. The book 
is not yet on the table when the question is being asked, so it doesn‘t count in the initial 
count. Therefore, the correct answer should be the count of the objects that are already 
on the table, which is 3. Let’s verify one last time. Yes, the count is indeed 3. The book is 
not part of the initial count because it hasn‘t been placed on the table yet. Final answer: B
Let’s double-check the options. A is 0, which is incorrect. C is 4, which is incorrect. D is 6, 
which is incorrect. B is 2, which is also incorrect. The correct answer is indeed B. </think>
<answer>B</answer>

Figure 11: Case Visualization. Adding O&R rewards makes the reasoning process more faithful to
the original video.
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D RELATED WORK

D.1 VIDEO QA DATASETS AND BENCHMARKS

A growing body of video reasoning benchmarks reveals that current LVLMs struggle on
complex, multi-step temporal reasoning. Recent evaluations [40; 38; 11; 41; 36; 56; 54; 57; 55; 53]
target causal attribution, temporal ordering, state tracking, counting, and cross-modal grounding,
and consistently report large performance gaps even for strong models [3; 44; 47; 16; 30; 45].
Long-video understanding suites [72; 46; 17; 21] further underscore the challenge by emphasizing
hour-scale contexts and dense event structure. Collectively, these benchmarks confirm that multi-hop,
evidence-driven video reasoning remains underdeveloped in LVLMs.

In contrast, the available training corpora offer limited support for developing such capabilities.
Large open sources provide long videos and captions but predominantly yield holistic or coarse
descriptions that lack precise temporal annotations [24; 19; 32; 59; 71; 6], or perception-centric QA
that only requires simple single-step reasoning [71; 9; 8; 68; 64]. Recent video-reasoning efforts
augment these resources with step-by-step traces, yet their Chain-of-Thought (CoT) is typically
distilled from text-only LLMs and often resorts to commonsense or elimination rather than verifiable,
video-grounded retrieval [16; 45; 49]. Such supervision is ill-suited for Reinforcement Learning
with Verifiable Reward (RLVR), which requires challenging, multi-hop questions and checkable,
content-grounded processes to produce reliable reward signals [12; 23]. This mismatch leaves RL
methods data-starved: they can optimize answer formats and surface patterns but struggle to learn
evidence-linked temporal reasoning [31].

To close this gap, we synthesize ReWatch, a dataset that couples (i) temporally precise, hierarchical
captions preserving event order, (ii) high-difficulty QA generated by contrasting detailed captions
against summaries to remove shortcuts, and (iii) multi-agent, video-grounded CoT that explicitly
records retrieval and verification steps. This design aims to provide the process-level supervision and
question difficulty necessary to unlock RLVR for complex video reasoning.

D.2 VIDEO REASONING IN LARGE VISION-LANGUAGE MODELS

Reinforcement Learning for video reasoning emerges as a complementary path. Recent
works [16; 30; 45; 10; 39] adopt RL/RFT-style training to improve reasoning, generally using
final-answer accuracy as the primary reward and relying on the above training data. While promising,
these pipelines inherit the limits of their supervision: weakly grounded CoT and shortcut-prone QA.
Rewards remain coarse, focusing on outcomes rather than verifying intermediate observations or
the sufficiency of the reasoning process. As a result, models can overfit to answer patterns, exhibit
hallucinations, and fail to align intermediate steps with evidence in the video.

Agentic methods integrate reasoning with tool use to improve grounding. Recent work extends
agentic paradigms like ReAct [61] to long video understanding, enabling models to dynamically
interact with video during inference to produce grounded reasoning chains [63; 69; 60; 15; 48; 25;
37; 50; 2; 20; 70; 65; 66]. However, these methods are often training-free, failing to internalize
such reasoning abilities within the base model. Other approaches [43; 35; 29; 28; 27; 26; 33; 34]
use agents to synthesize video-based Chain-of-Thought data and then train models with SFT, but
they typically generate fixed tool-use trajectories from a single planning phase, lacking the iterative
"think-and-act" capability. Concurrently, the "think with video" paradigm emerges [67; 62], which
dynamically retrieves and injects video segments into the model’s context. This strategy, however,
places excessive demands on context length and involves complex model context management and
agentic RL training, severely limiting training efficiency.

Our work combines the strengths of the above lines while addressing their limitations: we couple
agentic data synthesis with RLVR, and while maintaining dynamic interaction with long videos and
evidence verification, we internalize efficient, grounded reasoning into the multimodal model, thereby
overcoming key limitations of current video reasoning.
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E PROPMTS

E.1 THINKING PROMPTS

We use different prompts to activate the thinking mode of different models. The detailed Settings are
as follows: Qwen2.5-VL is not a reasoning model, so we use the CoT Prompt 12. GLM4.1V itself
has the thinking mode enabled by default, so we use the direct QA Prompt 18. InternVL3.5 requires
additional hints to activate the thinking mode, so we use the Prompt 17. Video-R1 and VideoRFT
use the Prompt 14. Video-Chat-R1 uses the Promp 15. LongVideoReason uses the Prompt 16. Our
model ReWatch-R1 uses the Prompt 13.

Prompt for the Thinking mode of Qwen2.5-VL

You are a video understanding expert. You are given a video and a question. You need to
answer the question based on the video content. Please provide a step-by-step solution to the
given question. And provide the final answer in the end.

Question: {question}

Figure 12: Prompt for the Thinking mode of Qwen2.5-VL.

Prompt for the Thinking mode of ReWatch-R1

You are a video understanding expert. You are given a video and a question. You need to
answer the question based on the video content. Please answer the question step by step.
When you need more video details, you will re-watch the relevant clips and use <action> and
</action> to mark the actions, and use <observation> and </observation> to mark the visual
details you observe. When you have enough information to determine the final answer, you
will wrap the final answer in <answer> and </answer>.

Video Information and Question:
- Video Duration: {video_duration}
- Question: {question}

Figure 13: Prompt for the Thinking mode of ReWatch-R1.

Prompt for the Thinking mode of Video-R1 and VideoRFT

{Question}
Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’, ’wait’, ’Hmm’, ’oh, I
see’, ’let’s break it down’, etc, or other natural language thought expressions
It’s encouraged to include self-reflection or verification in the reasoning process.
Provide your detailed reasoning between the <think> and </think> tags, and then give your
final answer between the <answer> and </answer> tags.
{Output_Template}

Output_Template:
"multiple choice": " Please provide only the single option letter (e.g., A, B, C, D, etc.) within
the <answer> </answer> tags.",
"numerical": " Please provide the numerical value (e.g., 42 or 3.14) within the <answer>
</answer> tags.",
"OCR": " Please transcribe text from the image/video clearly and provide your text answer
within the <answer> </answer> tags.",
"free-form": " Please provide your text answer within the <answer> </answer> tags.",
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"regression": " Please provide the numerical value (e.g., 42 or 3.14) within the <answer>
</answer> tags."

Figure 14: Prompt for the Thinking mode of Video-R1 and VideoRFT.

Prompt for the Thinking mode of Video-Chat-R1

{question}
Output your thought process within the <think> </think> tags, including analysis with either
specific timestamps (xx.xx) or time ranges (xx.xx to xx.xx) in <timestep> </timestep> tags.

Then, provide your final answer within the <answer> </answer> tags.

Figure 15: Prompt for the Thinking mode of Video-Chat-R1.

Prompt for the Thinking mode of LongVideoReason

You are a helpful assistant. The user asks a question, and then you solves it.

Please first think deeply about the question based on the given video, and then pro-
vide the final answer. The reasoning process and answer are enclosed within <think> </think>
and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>.

Question: {question}

Figure 16: Prompt for the Thinking mode of LongVideoReason.

Prompt for the Thinking mode of InternVL3.5

You are an AI assistant that rigorously follows this response protocol:

1. First, conduct a detailed analysis of the question. Consider different angles, po-
tential solutions, and reason through the problem step-by-step. Enclose this entire thinking
process within <think> and </think> tags.

2. After the thinking section, provide a clear, concise, and direct answer to the
user’s question. Separate the answer from the think section with a newline.

Ensure that the thinking process is thorough but remains focused on the query. The
final answer should be standalone and not reference the thinking section.

You are given a video and a question. You need to answer the question based on
the video content. Please directly provide your answer.

Question: {question}

Figure 17: Prompt for the Thinking mode of InternVL3.5.
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E.2 NON-THINKING PROMPTS

In the evaluation, all the models in this paper use the same Prompt 18 when applying the non-thinking
mode.

When training ReWatch-R1-SFT, we apply Prompt 19, Prompt 18, and Prompt 13 on datasets
ReWatch-Caption, ReWatch-QA, and ReWatch-CoT respectively.

Prompt for the Non-Thinking mode

You are a video understanding expert. You are given a video and a question. You need to
answer the question based on the video content. Please directly provide your answer.

Question: {question}

Figure 18: Prompt for the Non-Thinking mode of all models in this paper.

Prompt for the video-text alignment

Analyze the provided video and generate a brief, chronologically ordered set of dense
descriptions. Divide the video into some meaningful segments based on its storyline. Each
segment should be as long as possible and encompass a relatively complete event or core
scene. Each segment must be accompanied by its corresponding start and end timestamps.
**Importantly**, ensure that the timestamps for all segments are continuous and cover the
entire duration ({duration}) of the video, from beginning to end.

For each segment:
1. Provide a precise start and end timestamp (format: [MM:SS-MM:SS]).
2. Write a concise but informative description of what is happening in that segment.
3. Focus on actions, key objects, and interactions.

Please format the output as:
[MM:SS-MM:SS] Description of the segment.
[MM:SS-MM:SS] Description of the next segment.
(and so on, until the end of the video)

Figure 19: Prompt for the video-text alignment.

E.3 ANSWER JUDGE PROMPT

Prompt for Answer judge

You are an AI assistant who will help me to judge whether the answer generated by a model
is consistent with the standard answer.

Input Illustration:
Standard Answer is the standard answer to the question
Model Answer is the answer generated by a model to this question.

Task Illustration:
Determine whether Standard Answer and Model Answer are consistent.
Consistent Criteria:
If the meaning is expressed in the same way, it is also considered consistent.
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Output Format:
1. If they are consistent, output 1; if they are different, output 0.
2. DIRECTLY output 1 or 0 without any other content.

Question: {question}
Model Answer: {extract_answer}
Standard Answer: {gt_answer}
Your output:

Figure 20: Prompt for Answer judge.

Table 8: Definitions of the 10 synthesized QA types.

Task Type Definition

Event Localization This task requires the LVLM to output the precise start and end times of a
specific event in the video, based on a natural language query.

Temporal Localization This task provides a timestamp or time interval from the video and requires
the LVLM to describe what happened within that specific time.

Counting This task requires the LVLM to calculate the frequency of events or actions
and to perceive the number of occurrences of specific objects.

Cause and Effect
This task requires the LVLM to identify direct causal relationships between
specific events in the video, meaning one event directly led to the occur-
rence of another.

State Changes This task requires the LVLM to identify temporal changes in the attributes,
position, behavior, or emotions of specific objects or characters in the
video.

Reading (OCR)
This task requires the LVLM to identify and understand textual information
appearing in the video frame (e.g., signs, subtitles, screen displays, docu-
ment content).

Spatial Perception
This task requires the LVLM to understand the relative spatial positions,
distances, and movement trajectories between objects, people, and their
environment within the video.

Numerical Reasoning
This task requires the LVLM to perform all mathematical operations other
than simple counting, including but not limited to comparison, calculating
speed, estimating time, calculating proportions, etc.

Object Recognition This task requires the LVLM to identify and name specific objects, people,
or animals appearing in the video.

Counterfactual Reasoning

This task requires the LVLM, given the video context, to hypothesize a
scenario where a certain event did not occur or occurred differently, and
then infer the likely objective, verifiable consequences. This does not
involve subjective feelings or pure speculation but is based on physical
laws, logic, or established patterns shown in the video.
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