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ABSTRACT

In-context Learning (ICL) is an emerging few-shot learning paradigm on
Language Models (LMs) with inner mechanisms un-explored. There are already
existing works describing the inner processing of ICL, while they struggle to cap-
ture all the inference phenomena in large language models. Therefore, this paper
proposes a comprehensive circuit to model the inference dynamics and try to ex-
plain the observed phenomena of ICL. In detail, we divide ICL inference into 3
major operations: (1) Input Text Encode: LMs encode every input text (demon-
strations and queries) into linear representation in the hidden states with sufficient
information to solve ICL tasks. (2) Semantics Merge: LMs merge the encoded
representations of demonstrations with their corresponding label tokens to pro-
duce joint representations of labels and demonstrations. (3) Feature Retrieval
and Copy: LMs search the joint representations similar to the query represen-
tation on a task subspace, and copy the searched representations into the query.
Then, language model heads capture these copied label representations to a cer-
tain extent and decode them into predicted labels. The proposed inference circuit
successfully captured many phenomena observed during the ICL process, making
it a comprehensive and practical explanation of the ICL inference process. More-
over, ablation analysis by disabling the proposed steps seriously damages the ICL
performance, suggesting the proposed inference circuit is a dominating mecha-
nism. Additionally, we confirm and list some bypass mechanisms that solve ICL
tasks in parallel with the proposed circuit.

1 INTRODUCTION

In-Context Learning (ICL) (Radford et al., 2019; Dong et al., 2022) is an emerging few-shot learning
paradigm: given the demonstrations {(xi, yi)}ki=1 consisting of [input text]-[label token] pairs and
a query xq , Language Models (LMs) take the sequence [x1][s1][y1] . . . [xk][sk][yk][xq][sq]

1 (Fig. 1)
as input and then predicts the label for xq by causal language modeling operation. Typically, the
label tokens yi are preceded by and also predicted by forerunner tokens si (e.g., the colon in “Label:
”). ICL has aroused widespread interest, but its underlying mechanism is still unclear.

There have been theoretical or empirical trials to characterize and explain the inference process of
ICL (Xie et al., 2021; Dai et al., 2023; Wang et al., 2023; Han et al., 2023a; Jeon et al., 2024;
Zheng et al., 2024). However, to capture all the operating dynamics and the observed interesting
phenomenon of ICL in Large Language Models2(LLMs), a more comprehensive characterization
is still necessary. Therefore, this paper proposes a unified inference circuit and measures various
properties in LLMs for a conformation to the observed ICL phenomenon.

As shown in Fig. 1, we decompose ICL dynamics into 3 atomic operations on Transformer layers.
Step 1: INPUT TEXT ENCODE: LMs encode each input text xi into linear representations in the
hidden state of its corresponding forerunner token si. Step 2: SEMANTICS MERGE: For demon-
strations, LMs merge the encoded representations of si with the hidden state of its corresponding
label tokens yi. Step 3: FEATURE RETRIEVAL AND COPY: LMs retrieve merged label repre-
sentations y1:k from Step 2 similar to the query representation sq in a task-relevant subspace and

1In this paper, we denote tokenization as [·], and token concatenating as [·][·].
2Large refers to scaled LMs trained by natural language data, such as Llama 3 (AI@Meta, 2024), contrast

to simplified work that uses simple models trained and test on well-embedded input in toy models.
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then merge them with the query representation. Finally, LM heads predict the label for xq using the
label-attached query representation sq . Steps 2 and 3 form a typical induction circuit, which is a
key mechanism of ICL but only examined in synthetic scenarios (Elhage et al., 2021; Singh et al.,
2024b; Reddy, 2024).

Figure 1: The 3-phase inference diagram of ICL.
Step 1: LMs encode every input text into repre-
sentations, Step 2: LMs merge the encoded text
representations of demonstrations with their cor-
responding label semantics, Step 3: LMs retrieve
merged label-text representations similar to the
encoded query, and copy the retrieved represen-
tations into the query representation.

We empirically find evidence for the existence
of each proposed step in LLMs, and conduct
more fine-grained measurements to gain in-
sights into some phenomena observed in ICL
scenarios, such as (1) positional bias: the pre-
diction is more influenced by the latter demon-
stration (Zhao et al., 2021), (2) noise robust-
ness: the prediction is not easy to be affected
by demonstrations with noisy labels (Min et al.,
2022), while larger models are less robust
to noise (Wei et al., 2023), and (3) demon-
stration saturation: the accuracy improve-
ments plateau when sufficient demonstrations
are given (Agarwal et al., 2024; Bertsch et al.,
2024), etc. (discussed in §5.3). Moreover, we
find multiple bypass mechanisms for ICL with
the help of residual connections, while the 3-
phase dynamics remains dominant.

Our contributions can be summarized as:
(1) We propose a comprehensive 3-step infer-
ence circuit to characterize the inference process of ICL, and find empirical evidence of their ex-
istence in LLMs. (2) We conduct careful measurements for each inference step and successfully
capture a large number of interesting phenomena observed in ICL, which enhances the practicality
of the proposed circuit. (3) Our ablation analysis suggests that the proposed circuit dominates, but
some bypass mechanisms exist in parallel to perform ICL. We introduce some of these bypasses
along with their empirical evidence.

2 PREPARATION

2.1 BACKGROUND & RELATED WORKS

In-context Learning. Discovered by Radford et al. (2019), ICL is an emerging few-shot learn-
ing paradigm with only feed-forward calculation in LMs. Given demonstrations {(xi, yi)}ki=1
composed of structured input-label pairs and a query xq , typical ICL creates a prompt
[x1][s1][y1] . . . [xk][sk][yk][xq][sq], with some structural connectors (e.g. “Label: ”) including fore-
runner token si (e.g. “: ”), as shown in Fig. 1. LMs receive such prompts and return the next
token distribution, where the label token with the highest likelihood is chosen as the prediction. Ex-
plaining the principle of ICL is an unresolved research topic, although there have been some efforts
on the relationship between ICL capacity and pre-training data (Li & Qiu, 2023; Singh et al.,
2024b;a; Gu et al., 2023; Han et al., 2023b; Chan et al., 2022), the feature attribution of input
prompt (Min et al., 2022; Yoo et al., 2022; Pan, 2023; Kossen et al., 2024), and reduction to sim-
pler algorithms (Zhang et al., 2023; Dai et al., 2023; Xie et al., 2021; Han et al., 2023a). However,
a comprehensive explanation of real-world LMs is needed to capture the operating dynamics of ICL.

Induction Circuit. Introduced by Elhage et al. (2021), an induction circuit is a pair of two cooperat-
ing attention heads from two transformer layers, where the “previous token head” writes information
about the previous token to each token, and the “induction head” uses this information to identify
a token that should follow each token. Such a function is implemented by two atomic operations:
(1) copy the representation of the previous token [A] to the next token [B], and (2) retrieve and copy
similar representations on [A] to the current token [A′]. Concisely, it performs inference in the form
of [A][B] . . . [A′] ⇒ [B], which is similar to ICL-styled data. Therefore, this circuit has been widely
used to explain the inference dynamics of ICL (Wang et al., 2023) and the emergence of ICL during
pre-training (Olsson et al., 2022; Reddy, 2024; Singh et al., 2024b). Despite their valuable insights,
their experiments rely on a synthetic setting: using simplified models and well-embedded (linearly
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separable) inputs, which differs from the practical ICL scenario using real-world LMs with many
layers and complicated inputs. We bridge the gap between the synthetic and real-world settings,
providing more detailed explanations for the inference dynamics of ICL based on real-world LLMs.

2.2 EXPERIMENT SETTINGS

Models. We mainly conduct experiments on 4 modern LMs: Llama 3 (8B, 70B) (AI@Meta, 2024),
and Falcon (7B, 40B) (Almazrouei et al., 2023). Unless specified, we report the results on Llama 3
70B, since its deep and narrow structure (80 layers, 64 heads) makes it easier to show hierarchical
inference dynamics (discussed in §5.2). The results of other models can be found in Appendix H.2.

Datasets. We build ICL-formed test inputs from 6 sentence classification datasets: SST-2 (Socher
et al., 2013), MR (Pang & Lee, 2005), Financial Phrasebank (Malo et al., 2014), SST-5 (Socher
et al., 2013), TREC (Li & Roth, 2002; Hovy et al., 2001), AGNews (Zhang et al., 2015). Unless
specified, we report the average results on these datasets.

Others. Unless specified, we use k = 4 demonstrations in ICL inputs. For each dataset, we
randomly sample 512 test data and assign one order-fixed demonstration sequence for each test
sample. About the prompt templates, etc., please refer to Appendix A.1.

3 STEP 1, INPUT TEXT ENCODE: SEMANTICS ENCODING AS LINEAR
REPRESENTATIONS IN HIDDEN STATES

This section mainly confirms that LMs construct task-relevant and linearly separable semantic rep-
resentations for every input text (demonstrations and queries) in the hidden states. Such linear
representations are an important foundation for explaining the dynamics of ICL based on induction
head, since attention-based feature retrieval, a key mechanism of induction head, can be easily done
on linear representations. Current successful studies on simplified models and inputs (Chan et al.,
2022; Reddy, 2024; Singh et al., 2024b) also assume the existence of such linear representations.
Moreover, we confirm some interesting properties of the input text representations: (1) It is based on
the capacity in the model weights and can be enhanced by demonstrations in context (Fig. 2 (Middle,
Right)). (2) The similarity of representations is biased towards the encoding target’s position.

3.1 LLMS ENCODE INPUT TEXT ON FORERUNNER TOKENS IN HIDDEN STATES

We first study the existence of input text encoding in hidden states and then explain their linear
separability and task relevance in §3.2. For each text-label pair (xt, yt) (encoding target) sam-
pled from the datasets, we prepend them with k demonstrations, resulting in ICL-style inputs
[x1][s1][y1] . . . [xk][sk][yk][xt][st][yt] (augmentated by label [yt]). These inputs are then fed into
an LM to extract the hidden states of a specific token in [xt][st][yt] from each layer, serving as the
ICL inner representations. To assess the quality of these representations as sentence representations,
we use the sentence embedding of xt encoded by BGE M3 (Chen et al., 2024), a SotA encoder-only
Transformer, as a reference representation and then calculate the mutual nearest-neighbor kernel
alignment3 (Huh et al., 2024) between these representations. See Appendix A.1 and A.2 for details.

Forerunner Tokens Encode Input Text Representations. We plot the kernel alignment using 3
types of tokens in Fig. 2 (Left). The forerunner token, while often overlooked in previous work,
produces the best input text-encoding, emerging in the early phase (layers 0-28) of the inference
process, and keeping a high level to the end of inference. Interestingly, hidden states of label words
are not satisfactory input text representations even with a high background value (the result at layer 0,
refer to Appendix A.2.1 for details), which is a critical supplement to previous work which suggests
the label tokens are pivots for collecting the information of demontrations (Wang et al., 2023).

Input Text Encoding is Enhanced by Demonstrations. We investigate the influence of contextual
information on input text encoding by repeating the experiments with different k. As shown in Fig. 2
(Middle), when the demonstrations increase, feature alignment is enhanced, which is counterintu-
itive since longer preceding texts are more likely to confuse encoding targets. Such findings indicate

3Intuitively, kernel alignment measures similarity between two representations toward the same datasets,
and according to Huh et al. (2024), a higher cross-model kernel alignment usually means a better representation.
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Figure 2: Input text encoding magnitudes (metricized by kernel alignment against feature encoded
by an encoder-structured model) of hidden states in various layers in ICL scenario (The controlled
experiments are results between current 6 datasets and TEE (Mohammad et al., 2018)). Left: En-
coding magnitudes on hidden states from various types of token. Middle4: Encoding magnitudes
with different k on the forerunner tokens. Right: Encoding magnitudes in layer 24 of Llama 3 70B
against the causal language modeling loss of the input text with (upper) k = 0 and (lower) k = 8.

that LMs (1) utilize contextual information to enhance the input text encoding and (2) correctly
segment different demonstrations (detailed operation discussed in Appendix C).

Perplexed Texts are Encoded Worse. We investigate the correlation between kernel alignment and
the perplexity of encoding targets with different k. Fig. 2 (Right, upper) shows a negative correlation
for k = 0, that is, LMs generate poorer encodings for more complex input text when no demon-
strations are given, which can be identified as an In-weight Learning (IWL) property of the inner
text encoding. While, when demonstrations are given in context (Fig. 2 (Right, lower)), the negative
correlation disappears, which suggests that LMs effectively encode more complex samples with the
help of demonstrations in context. More discussion about the relationship between classification
performance and perplexity is in Appendix F.

The above findings suggest that the inner text encoding is a hybrid process of ICL and IWL: Basic
encoding capability presents from LMs weights, and is enhanced by demonstrations in context,
which can be a clue to how demonstrations help ICL. Moreover, we are about to illustrate that
these encodings are sufficiently informative for ICL tasks and linearly separable, which meets the
presumption of simplified models on the linear and well-embedded input features.

3.2 INPUT TEXT ENCODING IS LINEAR AND TASK-RELEVANT BUT POSITION-BIASED
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Figure 3: Test results of cen-
troid classifier trained on ICL
hidden states. Solid: Centroid
classification accuracy, Dotted:
Kernel alignment.

Input Text Encoding is Linear Separable and Task-relevant.
We train a centroid classifier on hold-out 256 input samples (Cho
et al., 2024), using the hidden states of a specific token in [xt][st]

5

from each layer and then predict the label yt (see Appendix A.3
for details). The results are shown in Fig. 3. The considerably
high classification accuracy of the forerunner token suggests the
high linear separabilities of the hidden states in the task-semantic-
relevant subspaces since the centroid classifier is linear. In addi-
tion, a similar emerging trend in accuracy and kernel alignment
confirms the reliability of the kernel alignment measurement.

Input Text Encoding is Biased towards Position. Ideally, the in-
ner representations of similar queries should be highly similar re-
gardless of their position in ICL inputs to support attention-based
operations for classification. To verify this, for each encoding
target, we extract the hidden states of forerunner tokens with various numbers of preceding demon-
strations. We then calculate the cosine similarity between all possible pairs of the hidden states for
the same target or different targets. As shown in Fig. 4, although the overall similarities on the same
target are higher than on the different targets, they are both especially higher when their positions
are close to each other. As to be discussed in §5.3, such positional similarity bias may lead to one

4Experiments of Fig. 2 (Middle) on Llama 3 70B do not involve results on AGNews.
5We skip the experiments on label tokens because of the leakage of ground-truth label information.
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flaw: demonstrations closer to the query have stronger impacts on ICL (Zhao et al., 2021; Lu et al.,
2022; Chang & Jia, 2023; Guo et al., 2024). The principle of such bias is discussed in Appendix C.

4 INDUCTION CIRCUITS IN LARGE LANGUAGE MODELS
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Figure 4: The similarities of ICL hidden
states in different positions on layer 24
between the same queries (Left) or two
different queries (Right) (on SST-2).

This section mainly shows how LMs utilize the encoded
linear text representations in induction circuits with a
typical 2-step form (Singh et al., 2024b): Forerunner
Token Heads merge the demonstration text representa-
tions in the forerunner token into their corresponding la-
bel tokens with a selectivity regarding the compatibility
of demonstrations and label semantics. Induction Heads
copy the information in the label representations similar
to the query representations back to the query. Such oper-
ations are done on task-specific subspaces, enabling LMs
to solve multiple tasks by multiplexing hidden spaces.

4.1 STEP 2, FORERUNNER TOKEN HEAD: COPY FROM TEXT FEATURE TO LABEL TOKEN

This subsection mainly examines and measures the forerunner token heads, which copy the informa-
tion in the forerunner into label tokens. We investigate the interaction between the forerunner tokens
and label tokens, and focus on how the representations are merged, especially when the semantics
of labels and text are disjoint, towards an explanation of why ICL are robust to wrong labels.

Text Representations are Copied to Label Tokens. To confirm the existence of the representation
copy process, we start by calculating the kernel alignment between the hidden state of forerunner
token [st] at layer l (the copy source) and that of label token [yt] at layer (l+1) (the copy target). To
suppress the high background values caused by the semantics of labels, we use abstract label tokens
{“A”, “B”, “C”, . . . } instead of the original label tokens. The results are shown in Fig. 5 (Left),
where the kernel alignment between the hidden states of the label token and the forerunner token
gradually increases and then bumps up after the encoding in the forerunner token (described in §3)
finished improving. It indicates that the hidden states of the input text representation encoded in the
forerunner tokens are merged into their label tokens, suggesting the existence of copy processing
from the forerunner token to the label token.

Text Representations are Copied without Selectivity. For each attention head, we extract the at-
tention score αyt→st from a label token [yt] (as attention query) to the corresponding forerunner
token [st] (as attention keys). We then mark the head with αyt→st ⩾ 5/nt (nt: the length of tokens
before [yt]) as a Forerunner Token Head and count them in each layer. The results are shown in Fig. 5
(Middle, “Correct Label”), where the peak matches the copy period in Fig. 5 (Left). Moreover, to
investigate the influence of the correctness of label tokens, we replace [yt] with a wrong label token6,
where the results in Fig. 5 (Middle, “Wrong Label”) are almost identical to the correct-label setting,
suggesting that the forerunner token heads don’t show selectivity toward the semantic consistency
between input text and labels, and simply merge the input text representations into the label tokens.
Furthermore, we find (Appendix D) that the copy processing is inherent: during the copy process-
ing, LMs establish strong attention connections to preceding tokens, regardless of whether these
copied tokens are forerunner tokens or not, which indicates that such copy processing is a universal
inference behavior developed during pre-training, rather than being triggered by the special tokens
in the in-context learning (ICL) input, while still aiding ICL processing (to be discussed in §5.1).

Hidden States of Label Tokens are Joint Representations of Text Encodings and Label Seman-
tics. Given the findings above, we probe the content of hidden states of label tokens [yt], i.e., how
the copied text representation interacts with the original label semantics. We first train two centroid
classifiers to predict the corresponding label yt: (1) Cf trained on the hidden states of forerunner
tokens [st] and (2) Cl trained on the hidden states of label tokens [yt]. To check whether the label
tokens include the information of forerunner tokens, we use Cf to predict the label on the hidden
state of label token [yt] in Fig. 5 (Right, solid). It shows that, during the copy processing, high
classification accuracies can be achieved both on the correct label tokens and wrong label tokens,

6For example, for a label space of “positive” and “negative”, if [yt] is “positive”, we replace it to “negative”.
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Figure 5: Hidden states copy magnitude from forerunner tokens to label tokens against layers. Left:
Kernel alignment between the forerunner token (the copy source) and the label token of the next
layer (the copy target). Middle: Curves: The count of marked forerunner token heads with correct
and wrong labels; Colored Areas: The maximum attention scores from forerunner token to query
(copy magnitude) with correct and wrong labels (detailed attention head statistical data is in Ap-
pendix H.1). Right: Centroid classifier results predicted on the hidden states of correct and wrong
label tokens, on SST-2 and MR. (Solid: Predicted by classifiers Cf trained on hidden states of fore-
runners. Dotted: Predicted by classifiers Cl trained on hidden states of label tokens.)

suggesting that the text features in the forerunner tokens can be partly and linearly detected in the
label tokens. Moreover, results using Cl (dotted line) shows extreme results, suggesting the label
information remains in the label token. So, we can conclude that: hidden states of label tokens are
joint representations of label semantics and text representations. Moreover, interestingly, the accu-
racies from Cf shown in Fig. 5 (Right) decline after layer 35, suggesting that the information sharing
between the forerunner tokens and the label tokens ends in later layers, which aligns with the results
in Fig. 5 (Middle).

Label Denoising is Conducted on the Overlap of Label Semantics and Text Representations.
Notice that in Fig. 5 (Right, solid), compared to the typical results predicted on the forerunner tokens,
accuracies are improved on the correct label and suppressed on the wrong label, which suggests that
information consistent with the label semantics is easier to be enhanced by the label tokens and
vice versa, showing a feature selectivity on the consistency between the text representations and
the label semantics. Given the observation that the information on label semantics and text features
can be extracted separately and linearly, we can confirm that these two kinds of information are
located in different sub-spaces of the hidden states, and linearly merged by the attention operation
of forerunner heads. Moreover, given the fact that there is no selectivity is observed in the copy
behavior of the forerunner token head (Fig. 5 (Middle)), it is intuitive that the feature selectivity
shown in Fig. 5 (Right) comes from the arithmetical interaction of feature vectors on the overlap of
sub-spaces between the label semantics and text features, making ICL stable against label noise (Min
et al., 2022). Moreover, as mentioned by Wei et al. (2023), large models show poorer stability against
label noise. We infer that the larger hidden dimensions in larger models lower the overlap between
the sub-spaces of label semantics and text representations to reduce the interaction.

4.2 STEP 3, INDUCTION HEAD: FEATURE RETRIEVAL ON TASK SUBSPACE

This subsection examines the existence of the aforementioned induction heads, which retrieve simi-
lar label token features as the queries’ forerunner feature, and copy the retrieved features back to the
query. We claim the necessity of multi-head attention in this process: correct feature retrieval can
only be conducted on the subspace of the hidden space, which is captured by some attention heads.

Induction is Correct in Minority Subspaces. Similar to Fig. 5 (Middle), we mark (1) the attention
heads with the sum of attention scores from the query’s forerunner token sq (as attention query) to
all the label tokens [y1], . . . , [yk] (as attention keys) in the demonstration more than 5k/nt as induc-
tion heads, and (2) attention heads with the sum of scores to all the correct label tokens more than
5k/|Y|nt as correct induction heads (Y is a label space). We show the number of both kinds of in-
duction heads in Fig. 6 (Left, detailed head statistics in Appendix H.1), where a unimodal pattern is
observed later than the copy processing of Step 2. Moreover, more than half of the induction heads
are not correct ones, suggesting that task-specific feature similarity can only be caught on some
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Figure 6: Measurements for induction heads. Left: The count of marked induction heads and
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(Vanilla Attention: attention scores directly calculated on full dimensionality. Head Average: the
averaged attention scores among all the heads. Best Ind. Head: the scores of attention head with
the most correctness.) Right: The correct induction heads overlap of all dataset pairs.

induction subspaces (defined by low-rank transition matrix Wh⊤
Q Wh

K of correct induction head h).
We enhance this claim in Fig. 6 (Middle) (details in Appendix A.4), where both vanilla attention
(without transformation and head split) and attention scores averaged among heads show low as-
signment on correct label tokens, while some heads show considerable correctness. Considering the
average value, the majority of attention heads almost randomly copy label token information to the
query, causing the prediction biased to the frequency of labels in the prompt (Zhao et al., 2021). As
the reason, we infer that the hidden states are sufficient (Fig. 3) but not minimum for ICL, where
redundant information interferes with the similarity calculation of attention.

k = 1 k = 2

k = 15 k = 16

Layer 31, Head 32, Correct Rate: 0.95
k = 1 k = 2

k = 15 k = 16

Layer 31, Head 9, Correct Rate: 0.00

Figure 7: Label representations of k demon-
strations visualized on (Left 4) correct and
(Right 4) wrong induction head, on one sam-
ple of SST-2 (see Appendix H.3). ◦: “posi-
tive” label, ×: “negative” label, ▲: zero vec-
tor. Color: attention assigned to query, nega-
tive to positive (cartography: Appendix A.5).

Some Induction Subspaces are Task-specific. We
check if different tasks share the same induction sub-
spaces based on the overlap of the correct induction
heads across different datasets. Given nD(h), the
number of times h is marked as correct induction
head on dataset D, the overlap rate S is defined as:

S(D1,D2) =
2
∑

∀h min[nD1
(h), nD2

(h)]∑
∀h nD1

(h) + nD2
(h)

. (1)

The results are shown in Fig. 6 (Right), where: (1)
A significant overlap of induction heads indicates
that a part of correct induction heads is inherent in
the model, built by the pre-training process (Reddy,
2024; Singh et al., 2024b). (2) Such overlap is
not fully observed, suggesting that some induction
subspaces are task-specific: input texts evoke task-
specific attention in induction heads, enabling the anisotropy multiplex of different subspaces in the
hidden spaces to transmit relevant information for various tasks. Therefore, we can restore ICL to
implicit end-to-end multi-task learning with hidden state multiplexing since they also use various
task heads on common bottom network layers and informative hidden states (Zhang & Yang, 2021).

Demonstrations Saturate on Induction Subspace. We visualize the demonstrations’ label token
representations mapped on the induction subspaces by the transition matrix Wh⊤

Q Wh
K and princi-

pal component analysis in Fig. 7, indicating: (1) Compared to a correct induction head, a wrong
induction head is easier to map label representations linearly inseparably. (2) In the early stage of
demonstration (k = 1 → 2), when a new demonstration is given, the morphology of attention as-
signment towards query changes significantly (shown as background color in Fig. 7; see §A.5 for
details), while in the late stage (k = 15 → 16), attention assignment morphology is stable. This can
explain the demonstration saturation (Agarwal et al., 2024; Bertsch et al., 2024): the performance
is submodular against the demonstrations. Intuitively, since demonstrations follow a prior distri-
bution, representation of a new demonstration is likely to be located within the closure of existing
demonstrations, making it less contributable to the attention assignment in the induction subspace.
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5 PUTTING THINGS TOGETHER

So far, we have revealed the existence of the circuit with 3 steps, organized by the sequential in-
ference process among Transformer layers. In this section, we find that the circuit is dominant in
the ICL inference, while some bypass mechanisms activated by residual connection assist ICL in-
ference. Moreover, a series of phenomena observed in ICL is successfully explained by the circuit.

5.1 ABLATION ANALYSIS

Table 1: Accuracy variation (%) with each inference step ab-
lated on Llama 3 8B. Small numbers are controlled results
(mean ± std) of randomly ablating equivalent amounts of
connections. Ablations are applied from the bottom to the
top layers, and results with various ablated layers are re-
ported (detailed settings: Appendix A.7).

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot baseline) ±0 (Acc. 68.55)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −4.98

−0.89 ± 0.00
−15.82

−1.19 ± 0.02
−23.43

−3.29 ± 1.87
−30.60

−1.61 ± 0.01

3 Query Texts xq → Forerunner sq −13.87
−0.16 ± 0.00

−21.10
−0.08 ± 0.00

−24.74
−0.47 ± 0.04

−28.38
−0.55 ± 0.00

– Step2: Semantics Merge –
4 Demo. Forerunner si → Label yi −2.24

−0.00 ± 0.00
−3.45

−0.18 ± 0.00
−3.39

−0.10 ± 0.04
−3.42

−0.18 ± 0.01

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq −5.14

+0.03 ± 0.00
−10.03

−0.08 ± 0.00
−11.36

+0.00 ± 0.00
−10.22

−0.06 ± 0.00

Reference Value
6 Zero-shot −17.90 (Acc. 50.65)
7 Random Prediction −36.05 (Acc. 32.50)

To demonstrate that our 3-phase cir-
cuit dominates or at least participates
in ICL process, we disconnect the
related attention connection of each
step in the proposed circuit (see Ap-
pendix A.7 for details), and test the
accuracies without such connections
as shown in Table 1. The results show
that: compared to the controlled re-
sults where trivial connections are
ablated, when the non-trivial connec-
tions designated by the proposed cir-
cuit are ablated, accuracies of ICL
significantly decrease, supporting the
existence of our circuit. However,
the result doesn’t fully match expec-
tations, for example, the result with-
out induction (line 5) should be con-
sistent with zero-shot (line 6), since
all the expected communication from demonstration to query is intercepted, but that’s not the case;
and the contribution of Step 1 in later layers are unexpectedly high, indicating the existence of some
bypass mechanisms parallelly contributing to ICL accuracies.

5.2 BYPASS MECHANISM

0% 20% 40% 60% 80% 100%
Normlized Layer Number

Llama 3 70B
 80L, 64H

Falcon 40B
 60L, 128H
Llama 3 8B

 32L, 32H
Falcon 7B
 32L, 71H

Step 1 Step 2 Step 3

Figure 8: Dynamics and deserialization of magni-
tudes of proposed 3 inference steps (cartography
details: Appendix A.6).

Motivated by the ablation results, we believe
that several mechanisms including our circuit
run parallelly for ICL, since the residual con-
nection supports complex paths among layers
and attention heads. We list some possible by-
passes and plan a complete enumeration as fu-
ture work.

Parallel Circuits. Multiple 3-step circuits can
execute in parallel, that is, one layer can assign
multiple inference functions to different heads,
causing dispersion and deserialization as shown
in Fig. 8, where a narrow (fewer heads) and
deep (more layers) model is more likely to generate localized inference, and vice versa.

Direct Decoding. Residual connection to output embedding allows intermediate hidden states to be
decoded directly. Intuitively, a shortcut from Step 1 encodings to the LM head enables ICL with
zero-shot capacities, since we have confirmed that encoded representations are informative for ICL
tasks (§3.2), while the decoding methods should be selected carefully (Cho et al., 2024) (e.g. with
essential calibration). On the other hand, shortcuts from insufficiently encoded features may lead
to meaningless information decoded by language model heads, causing prediction bias, i.e., even if
no query is given, ICL still returns unbalanced results (Zhao et al., 2021) decoded from tokens of
prompt template (see Appendix E for details).
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Table 2: Accuracy drop with shortcut ablated.

Attention Disconnected 25% 50% 75% 100%

Forerunner s1:i → Forerunner si:q −1.30
−0.00

−0.75
−0.16

−0.78
−0.16

−1.56
−0.71

Shortcut Induction. Note that a k-shot ICL
input sequence always contains a (k − 1)-shot
sequence, where the k-th forerunner (served as
the (k−1)-shot query) is previously processed.
So every forerunner can directly retrieve previ-
ously processed forerunners of demonstrations to copy their induction results directly. The non-
trivial result (Table 2) with all forerunners disconnected from each other confirms such infer.

5.3 EXPLAINATION TOWARDS OBSERVED ICL PHENOMENA

Difficulty-based Demonstration Selection. In §3.1, we find that in the zero-shot scenario, per-
plexed texts are harder to encode, explaining the observation of PPL-ICL (Gonen et al., 2023):
selecting demonstrations with lower perplexity can improve ICL performance. Moreover, while the
demonstrations increase, LMs can encode more complex inputs with diverse information to update
the attention assignment shown in Fig. 7, making it beneficial to input harder demonstrations later,
which explains the ICCL (Liu et al., 2024), which build demonstrations sequence from easy to hard.

Prediction Bias. (1) Contextual Bias: As shown in §5.2 and Appendix E, direct decoding insuffi-
ciently encoded information adds meanless logits into LM’s output, causing a background prediction
value even if no queries are given (named bias). (2) Positional Bias: As shown in §3.2, closer input
texts are encoded more similarly, so label tokens near the query have more similar information to the
query, causing more attention assignment in the induction processing, so that more influences on the
prediction. (3) Frequency Bias: As shown in §4.2, in the induction, some attention heads are without
selectivity towards labels, causing an averaged copy processing from label tokens to the query, trig-
gering a prediction bias towards the label frequency in the demonstration, even if their contribution
(absolute value of attention score on label tokens) is small. All three biases are observed by Zhao
et al. (2021), and can be removed by ICL calibration methods.

The Roles and Saturates of Demonstrations. It is well known that demonstrations improve the
performance of ICL. We decompose such performance improvement into 2 parts: (1) demonstra-
tions help early layers encode better (§3.1), and (2) more demonstrations provide larger label token
closure, enabling more accurate attention assignment (§4.2), while the volume of such closure is
submodular to demonstrations, causing the saturates of ICL performance towards demonstrations.

The Effect of Wrong Label. It is well-known that the label noise is less harmful in ICL (Min et al.,
2022) than in gradient-based learning (Zhang et al., 2021). We have explained in §4.1 that ICL
implies labels denoise to stabilize ICL against label noise, while weakened by dimensionality.

6 CONCLUSION AND DISCUSSION

Conclusion. In summary, this paper restores ICL inference into 3 basic operations and confirms
their existence. Careful measurements are conducted to capture and explain various phenomena
successfully. Moreover, ablation studies show the proposed inference circuit dominates and reveals
the existence of bypass mechanisms. We hope this paper can bring new insight into ICL practice.

Table 3: Performance of full and layer-
pruned ICL inference.

Inference Acc. # Para. Speed
Full + LM Head 66.19% 70.6B 1×

Full + Cent. 83.24% 69.5B 1.00×
Layer34 + LM Head 49.29% 32.7B 2.16×

Layer34 + Cent. 84.27% 31.2B 2.38×

The Role of Early and Later Layers. Our framework
and Fig. 3 show: encoding result of Step 1 can be directly
used for classification with reliable decoding, and later
transformer layers are not contributing to centroid clas-
sification accuracies, leading to a taxonomy of Encoding
for Step 1 and Output Preparation for Step 2 and 3: LMs
complete multi-task classification implicitly in early lay-
ers, and verbalize it by merging task-specific label seman-
tics in later layers. Therefore, we suggest an early-exiting inference: removing some top layers and
using a centroid classifier (Cho et al., 2024) to accelerate ICL as shown in Table 3 and Appendix E.

Pre-training Possibility from Natural Language Data. A large gap can be considered between
such a delicate circuit and gradient descent pre-training on the wild data. However, we believe
the wild training target contains the ICL circuit functionally. Based on the previous works finding
trainability of ICL on linear representation-label pairs (Chan et al., 2022; Reddy, 2024; Singh et al.,
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2024b), we speculate that in early training step, Transformers learn to extract linear representations
shown in §3 from wild data (Appendix B), serving as the training input of later layers to evoke the
emergence of induction heads with the same mechanism shown in aforementioned previous works.
Moreover, our conclusion of Step 3 highlights the input data requirements for the later layers: these
data should activate the multiplex of hidden space, i.e., it should implicate multi-task classification
with a wide distribution, which is consistent with the aforementioned previous works.

Comparison with Previous Works. Several prior studies have sought to interpret ICL as known
algorithms, including implicit gradient descent (Dai et al., 2023), kernel regression (Han et al.,
2023a), and implicit Bayesian inference (Xie et al., 2022), etc. However, as noted in §2.1, these
approaches fall short of fully explaining the phenomena observed during the ICL inference process.
For instance, gradient descent is known to be fragile against label noise (Zhang et al., 2021), lead-
ing to a misalignment when analogies are drawn to ICL, which is robust against label noise (Min
et al., 2022). Similarly, attempts to explain ICL as kernel regression fail to account for positional
bias, making them disconnected from empirical studies that document various inference phenomena
in real-world LMs. Also, other works have employed induction circuits to explain ICL dynam-
ics (Wang et al., 2023; Elhage et al., 2021; Olsson et al., 2022), yet significant gaps remain in
aligning these explanations with empirical observations. Our work is the first to unify the frag-
mented conclusions from prior empirical studies (discussed in §5.3) through detailed experimental
measurements. By demonstrating the alignment of these observations, we emphasize the novelty
and primary contribution of our paper.

Limitations. (1) These 3 basic operations are not functionally indivisible. Ideally, one can re-
duce every operation in ICL inference to the interconnection of special attention heads to ulteriorly
examine how the operating subspaces interact between steps, and reconstruct ICL behavior from
a minimal set of attention heads. Also, although we show the significance of the inference cir-
cuit in the ablation analysis (§5.1), measuring the connectivity of these attention heads can also
be beneficial to get more insights into the circuit. (2) The conclusions may not align with scenar-
ios where ground-truth labels are not provided in context, which are often referred to as in-weight
learning, where significant differences or even antagonism with standard ICL have been highlighted
by previous works (Chan et al., 2022; Reddy, 2024)7, reasonably and necessarily warranting sepa-
rate discussion (discussed in Appendix G). This paper explains the inference behavior of the model
under ICL conditions, leaving the in-weight learning scenario for future works. (3) We only focus
on classification tasks, while we believe that our findings can be applied to non-classification tasks,
efforts are still needed to fill the gap.
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Table 4: Prompt templates used in this paper.

Dataset Prompt Template (Unit) Label Tokens
SST-2 sentence: <input sentence> sentiment: <label token> \n negative, positive
MR review: <input sentence> sentiment: <label token> \n negative, positive
FP sentence: <input sentence> sentiment: <label token> \n negative, neutral, positive

SST-5 sentence: <input sentence> sentiment: <label token> \n poor, bad, neutral, good, great
TREC question: <input sentence> target: <label token> \n short, entity, description, person, location, number

AGNews news: <input sentence> topic: <label token> \n world, sports, business, science

A EXPERIMENT DETAILS AND SETTINGS

A.1 DETAILED OVERALL EXPERIMENTAL SETTINGS

Prompt Template. We conduct experiments on a specific prompt template for each dataset as shown
in Table 4. Moreover, similar to typical ICL practices, we reduce the label into one token to simplify
the prediction decoding. The reduced label tokens are also shown in Table 4.

Quantization. In our experiments, we use BitsAndBytes8 to quantize Llama 3 70B and Falcon
40B to INT4. For the other models, full-precision inference is conducted.

Other. All the experiment materials (models and datasets) are loaded from huggingface. For
the BGE M3, we use its pooler output as the output feature.

A.2 CALCULATION OF MUTUAL NEAREST-NEIGHBOR KERNEL ALIGNMENT

In this paper, we need to measure the similarity between features from two different models or
model layers. There are many approaches (Klabunde et al., 2023), and we use mutual nearest-
neighbor kernel alignment (Huh et al., 2024), which is relatively efficient and accurate, calculated
as follows to measure the similarity of representation from the same object set X = {xi}ni=1 in
different feature spaces.

Given a representation mapping δ : X → Hd from the objects to a space where similarity mea-
surement ⟨·, ·⟩ : Hd × Hd → R is defined, we can calculate the similarity map from dataset X
as Sδ ∈ Rn×n, where the elements are Sδ|i,j = ⟨δ (xi) , δ (xj)⟩, especially, we axiomatic define
⟨x, x⟩ = 1, so we set the diagonal element Sδ|i,i ≒ 0 since they are trivial values.

Given two encoding δ1 and δ2, two similarity map can be calculated as Sδ1 and Sδ2 on the same
object set X . For each line vector index i = 1, 2, . . . , n in Sδ1 , we select the index of top-k elements
from greater to lower as topk

(
Sδ1|i

)
. Similarly, we get topk

(
Sδ2|i

)
from Sδ2 .

Then, we calculate the kernel alignment for sample i as:

KAX (δ1, δ2)i =

∣∣topk (Sδ1|i
)
∩ topk

(
Sδ2|i

)∣∣
k

. (2)

The kernel alignment for dataset X is the average on each KAX (δ1, δ2)i.

Implementation. In our experiments, we choose cosine similarity as the ⟨·, ·⟩, and k ≒ 64. Ac-
cording to experiment settings in §2.2, n ≒ 512 is defined, and a randomlized matrix S have
KA = 64/512 = 0.125 as the random baseline.

A.2.1 BACKGROUND VALUES OF KERNEL ALIGNMENT: LABEL TOKEN - TEXT ENCODING.

Given two specific tokens xi and xj where kernel alignment is calculated from different ICL-styled
input sequences pi and pj , in a specific layer of a decoder Transformer, the representations can be
written as δ(x) = e(x)+ ϵ(p), where e(x) are the embedding vector of the token x, and ϵ(p) are the
residual side-flow w.r.t the context p.

Intuition. As shown in Fig. 9, in the hidden states of ICL, the hidden state on the label token has
a prior clustering, making it naturally similar to the representation generated by the encoder model,
even if the ICL process does not encode it sufficiently. So, at layer 0, since the model is not able to

8https://huggingface.co/docs/bitsandbytes/main/en/index
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Figure 9: Distributions (clusters) of representations generated by: Left: encoder model (BGE),
clustering w.r.t. the label; Middle: ICL on the forerunner token, where representations gather into
one point when no Transformer operation is conducted; Right: ICL on the label token, where rep-
resentations gather into points w.r.t. label (using a 2-way example) when no Transformer operation
is conducted, causing a high background value.

perform any encoding in this layer, the kernel alignment on the forerunner is on a random baseline
value of 0.125, but the value on the label token will be greater. In the case where (1) BGE generates
fully linearly separable clusters with sufficient inter-cluster distance, and (2) the number of samples
for each label is not less than 64, this upper bias can be expected to be 0.125(|Y|−1) (proof omitted).
Intuitively, such bias can propagate along the residual network to every layer, making the results of
any layer unfaithful.

Similarity on Forerunner Tokens. The cosine similarity between δ(xi) and δ(xj), where the xi

and xj are forerunner tokens of the input sequence can be written as:

⟨δ(xi), δ(xj)⟩ = ⟨e(xi) + ϵ(pi), e(xj) + ϵ(pj)⟩ (3)

=
⟨e(xi), e(xj)⟩+ ⟨e(xi), ϵ(pj)⟩+ ⟨e(xj), ϵ(pi)⟩+ ⟨ϵ(pi), ϵ(pj)⟩

∥e(xi) + ϵ(pi)∥2 ∥e(xj) + ϵ(pj)∥2
. (4)

Denote Bi,j = ⟨e(xi), ϵ(pj)⟩ + ⟨e(xj), ϵ(pi)⟩, Ci,j = ∥e(xi) + ϵ(pi)∥2 ∥e(xj) + ϵ(pj)∥2, and no-
tice that xi = xj since they are forerunner tokens which is kept consistent in experiments, we have:

⟨δ(xi), δ(xj)⟩ =
1 +Bi,j + ⟨ϵ(pi), ϵ(pj)⟩

Ci,j
. (5)

Similarity on Label Tokens. Similarly, the cosine similarity between δ(yi) and δ(yj) on label
tokens can be written as:

⟨δ(yi), δ(yj)⟩ =
⟨e(yi), e(yj)⟩+Bi,j + ⟨ϵ(pi), ϵ(pj)⟩

Ci,j
. (6)

Encoding on Label Tokens Enhances the Similarity with Same Labels. Given k = 1 for sim-
plicity, the probability top1

(
Sδ|i

)
selects a sample with the similar label with i-th sample on the

forerunner token can be written as:

PF

[
yi = ytop1(Sδ|i)

]
= ryi

Ej|yi=yj
[⟨δ(xi), δ(xj)⟩]

Ej [⟨δ(xi), δ(xj)⟩]
(7)

≈ ryi

1 + Ej|yi=yj
[Bi,j ] + Ej|yi=yj

[⟨ϵ(pi), ϵ(pj)⟩]
1 + Ej [Bi,j ] + Ej [⟨ϵ(pi), ϵ(pj)⟩]

, (8)

where the ryi is the label ratio of yi. Similarly, the probability on the label token can be written as:

PL

[
yi = ytop1(Sδ|i)

]
≈

ryi(1 + Ej|yi=yj
[Bi,j ] + Ej|yi=yj

[⟨ϵ(pi), ϵ(pj)⟩])
ryi

(
1 + Ej|yi=yj

[Bi,j ] + Ej|yi=yj
[⟨ϵ(pi), ϵ(pj)⟩]

)
+ (1− ryi

) (⟨e(yi), e(yj)⟩+ Ej [Bi,j ] + Ej [⟨ϵ(pi), ϵ(pj)⟩])

⩾ PF

[
yi = ytop1(Sδ|i)

]
. (9)
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That is, the inputs with the same labels with xi are easier to be selected into the top1
(
Sδ|i

)
. Notice

that we make approximations here: (1) we consider the Ej|yi=yj
[Ci,j ] ≈ Ej [Ci,j ], i.e., the 2-norm

of two encoding vectors are considered equal granted by normalization used in Transformer. (2) We
consider the context term c in the label token scenario the same as the forerunner scenario since the
difference is only a label token, which usually occupies quite a small part of the input sequence.

Background Values of Kernel Alignment. According to the explanation above, it is intuitive to
conclude that topk

(
Sδ|i

)
from label tokens is easier to cluster samples with the same label as yi.

Moreover, a well-pre-trained encoder can catch the prior distribution determined by these labels,
and also cluster samples with the same label, causing a high similarity of similarity map, so that
a high but unfaithful kernel alignment as the background value from the similarity on e(y) but not
ϵ(p). An intuitive verification of such background value is shown in the Fig. 2 (Left), where the
“Label Token” curve has a high value in layer 0 with ϵ(p) = 0. However, the background value
also indicates that the representation generated by BGE correctly clusters the samples, confirming
its reliability.

A.3 TRAINING AND INFERENCE OF CENTROID CLASSIFIER

In this paper, we follow Cho et al. (2024) to train centroid classifiers as a probe toward hidden states
of LMs. In detail, given the LM’s hidden states set

{
hl
i

}m

i=1
of the selected tokens (according to

the experimental setting, the last label token or forerunner token) in layer l from an [input prompt]-
[query label] set Z = {(pi, yi)}mi=1, where the labels are limited in label space Y, in the training
phase, we calculate the centroid of the hidden state h̄l

y for each label respectively:

h̄l
y = Ei|yi=y

[
hl
i

]
. (10)

In the inference phase, we extract the equitant9 hidden state hl
t as the training phase from the test

input, and calculate the similarity between hl
t and the centroids calculated above. Then, we choose

the label of the most similar centroids as the prediction:

C(hl
t) = argmax

y

〈
hl
t, h̄

l
y

〉
. (11)

Implementation. In our experiments, we set training sample number m ≒ 256, similarity function
⟨a, b⟩ = −∥a− b∥2.

A.4 CARTOGRAPHY DETAILS OF FIG. 6 (MIDDLE)

In Fig. 6 (Middle), we define a Correct Label Assignment, here we introduce how this measurement
is calculated. Suppose we have an attention score AW,f (K,Q) calculated as:

AW,f (K,Q) = f
(
Q⊤WK

)
, (12)

with hidden dimensionality of d, give a certain layer, K ∈ Rd×nt is the hidden state matrix of full
context, Q ∈ Rd×1 is the hidden state of query’s forerunner token (Q⊤ = K⊤

nt
), f : Rnt → Ωnt

is a normalization mapping from nt-dimensional real vector to nt-dimensional probability vector
(usually softmax function), the W is a linear kernel, usually Wh⊤

Q Wh
K for multi-head attention or

I = diag (1nt) for vanilla attention.

For one input sample, given the token-index set of label tokens as L, the token-index set of label
tokens which is the same as the query’s ground truth label as L+, we define the Correct Label
Assignment (CLA) of one sample as:

CLAW,f (K,Q,L,L+) =

∑
i∈L+ AW,f (K,Q)i∑
i∈L AW,f (K,Q)i

. (13)

Intuitively, CLA reflects the accuracy of attention computation AW,f towards label tokens on one
input. For an input set built from a dataset, we calculate the averaged CLA on these inputs, and
repeat in every layer to plot a curve of Averaged CLA against layer numbers. Specifically:

9Equitant refers to hidden states from the same layer and token type. While, in experiments shown in Fig. 5
(Right), we don’t keep the token type consistent.
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Figure 10: Visualization of non-trivial attention connection defined and disconnected in ablation
analysis in §5.1 and Table 1. Notations are same as Table 1.

(1) Vanilla attention. We assign W ≒ I, f to linear normlization.

(2) Best Induction Head. For each attention head h, we assign Wh ≒ Wh⊤
Q Wh

K , f ≒ softmax.
For each input, we calculate max

h
CLAWh,f (K,Q,L,L+) as the result for single input.

(3) Head Average. For each attention head h, we assign Wh ≒ Wh⊤
Q Wh

K , f ≒ softmax. For
each input, we calculate

∑
h CLAWh,f (K,Q,L,L+) /|H|, where the |H| is the amount of heads

in current layer, as the result for single input.

Note that we do not consider the absolute value of attention assignment on label tokens in this
experiment, and most of the heads have little scores assigned to the label (Fig. 6 (Left)), therefore,
although the average assignments tend to be average, this result shown in Fig. 6 (Middle) does not
contradict the phenomenon that ICL can achieve high accuracy.

A.5 CARTOGRAPHY DETAILS OF FIG. 7

For Fig. 7, we input one sample from SST-2 into Llama 3 70B, take the output of layer 30 on the label
tokens to span a matrix KL, and map them by Wh⊤

Q Wh
K of head 32 (the best induction heads in this

layer) and 9 (the worst induction heads) of layer 31 (the layer with the most correct induction heads),
respectively. We visualize the distribution of these mapped Wh⊤

Q Wh
KKL, we conduct principal

component analysis on them, and plot them on the plane of the first two components.

For each point q ∈ R2 on the principal component plane, we calculate the attention assignment
as follows. Give the index set of “positive” label token in KL as L+, the index set of “negative”
label token as L−, we calculate the attention assignment, which can be an estimate of ICL predic-
tion (Wang et al., 2023), as:

AttAssign(q) =
∑
i∈L+

q⊤Wh⊤
Q Wh

KKL|i −
∑
i∈L−

q⊤Wh⊤
Q Wh

KKL|i. (14)

We map this value to the degree of blue color of each pixel. The larger the positive value, the bluer
it is, and the smaller the negative value, the redder it is.

A.6 CARTOGRAPHY DETAILS OF FIG. 8

For Fig. 8, we calculate the magnitude of Step 1 as the finite differences of kernel alignment in
Fig. 2 (Left, Forerunner Token of Label). We directly use the head counting of Fig. 5 (Middle)
and Fig. 6 (Left) as the magnitude of Steps 2 and 3. These data are regularized and converted into
transparencies.

A.7 EXPERIMENT SETTING OF ABLATION EXPERIMENTS IN TABLE 1

In Table 1, we attribute each step of the inference process to specific attention connections, also
shown in Fig. 10. When we aim to remove this step from the inference, we eliminate (i.e. zeroing) all
corresponding attention connections from layer 0 to layer {25%, 50%, 75%, 100%}×TotalLayers.
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Figure 12: The 3 operating magnitudes on Pythia 6.9B with various pre-training steps. Left: Step 1,
Input Text Encode; Middle: Step 2, Semantics Merge; Right: Step 3, Feature Retrieval and Copy,
measured by the correct induction head numbers.

For reference, for each experiment, we also conduct controlled experiments where the same amount
of randomly selected attention connections are removed from the same layers as the experimental
values. The controlled results are shown as smaller numbers under the experimental results.

B LM PRE-TRAINING DYNAMICS MEASURED BY ICL CIRCUIT

We extend the discussion of pre-training dynamics in §6 here.
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Figure 11: Operating magnitude
(normalized) and ICL accuracy
w.r.t. pre-training steps on Pythia
6.9B and SST-2.

One can divide a self-regression model into an early part and a
later part, where the early part encodes the input into a hidden
representation, and the later part decodes the hidden represen-
tation back to the input. So, the training object can also be di-
vided into an encoding loss and a decoding loss. According to
the discussion in §6, the operation of Step 1 can be classified
as encoding, and the other two steps of the induction circuit
can be classified as decoding. Intuitively, since the decoding
operations require the encoding results as input, unless the en-
coding operation converges to a stable output, the decoding
can not be trained since the input-output mapping is noised,
causing unstable gradients to interfere with the training (Liu
et al., 2020).

We confirm such inference by a measurement in Pythia
6.9B (Biderman et al., 2023) as shown in Fig 11, where: (1).
The magnitude of the 3 operations is emergent in the early phase of pre-training (less than 10k steps),
and is monotonically increasing, while the encoding operation has the fastest growth rate. (2). ICL
capacity appearance after all three operations reaches a high level (around 50k steps, notice that the
random accuracy is 0.5), while the curve morphology of the operating magnitude against the layer
number (shown in Fig. 12) is convergence to the last training step and also the main results in this
paper. Such results suggest that: LMs start to produce the inner encoding in the very early steps of
the pre-training, and can be an important fundamental in building the subsequent induction circuits,
as explained in the previous works mentioned in §2.1.

B.1 DATA DISTRIBUTION REQUIREMENT EXPLAINED BY HIDDEN STATE MULTIPLEX

Moreover, the hidden space multiplexing in the induction operation observed in this paper can give
a prototypical and phenomenological conjecture for the data distribution requirement found in the
previous works (Olsson et al., 2022; Reddy, 2024; Singh et al., 2024b), where data with a large label
space and various tasks can promote ICL and suppress In-weight Learning (IWL), and vice versa.
Intuitively, suppose the encoding inputted into the later layers is clustered by their labels (similar
to the well-embedded input styles in the works above, confirmed in Fig. 3). In that case, we can
say a cluster center is the eigen-subspace of the corresponding label. Since attention only conducts
dot-multiplication operations, let us assume that these eigen-subspaces are radially distributed.
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During the training, (1) When the label space is small, the trained attention heads only need to
extract the projected length of the query on each label’s eigen-subspace. For each label, such op-
eration has a parameters’ analytical solution with (encoding kernel) W⊤

QWK = I and (decoding
transformation) WOWV = o⊤y ey , where oy is the label token’s output embedding, and ey is the la-
bel’s eigen-subspace. From such an operation, theoretically, one layer can handle at most |H| labels,
where |H| is the head amounts. While, considering the sparsity of these eigen-subspaces, such an
upper bound can be increased to d′|H| by multiplex one head to decode an orthogonal group of la-
bels with orthogonal eigen-subspaces of E = [ey1 ; ey2 ; . . . ; eyd′ ] and orthogonal output embedding
O = [oy1 ; oy2 ; . . . ; oyd′ ], where d′ is the inner dimension of attention head, with decoding transfor-
mation WOWV = O⊤E . (2) When the label space expands10, the decoding transformation can
not distinguish all the clusters since the WOWV is low-rank. Driven by the training loss, the model
can choose to transform the encoding kernel to focus on catching the most similar label tokens with
the query, and copy the label tokens’ information back to the query. As a result, one attention head
can catch at most d′ groups of label tokens mapped collinearly by the encoding kernel (note that this
set of labels may not appear simultaneously in the context, so confusion can be avoided), and the
common space of these label words become the induction subspace shown in §4.2.

Our other conjecture is that the ICL training endpoint is thermodynamically stable (with a lower
loss), and in contrast, the IWL training endpoint is kinetically stable (with a more accessible training
trajectory). Moreover, the IWL training object can be a precursor of ICL training, since the total
number of labels fed into the model gradually increases with the data. So, we can hypothesize that:
when the metastable state is disturbed by some condition, such as the appearance of rare or noisy
labels, the training can show a phase transition toward a thermodynamically stable state.

Notice that this section is our hypothesis based on the results of this paper, the detailed dynamics are
still unknown, which should be empirically validated in future work. One can start by decomposing
pre-training targets into implicit tasks, and examine how these tasks can evoke the occurrence of the
3-step inference operations. A possible beginning is: finding implicit input-label tuples in wild data.

C CAN LMS SEGMENT ICL PROMPT?

The experiments in §3.1 imply that LMs conduct effective segmentation on ICL-styled inputs, en-
abling LMs to block the interference of preceding demonstrations in the input text encoding opera-
tion. Here, as a prototypical discussion, we confirm the existence of segmentation and then reveal
that such segmentation can be done in very early layers from an attention operation focusing on
some specific segmentation tokens in the inputs.

Figure 13: Attention matrix visualized on layer
2, head 53 in Llama 3 70B from an input case.

As a preliminary observation, we visualize the at-
tention scores with the last forerunner token as the
attention queue at layer 21 (a layer with high en-
coding magnitude, refer to Fig. 2) from an input
case, as shown in Fig. 14 (Left), where most of the
attention heads are focused on the query text. The
visualization suggests that encoding operations are
localized into the query tokens.

Although position embedding inserts sufficient po-
sitional information to hidden states and enables
attention heads to identify nearby tokens, we be-
lieve that position embedding is insufficient to ac-
curately segment the various input parts of uncer-
tain lengths. We hypothesize that LM focused on
natural delimiters (e.g. “\n”, “:”) in the input
during the early stages of inference, and visualiza-
tion in Fig. 14 (Right) supports such hypothesis:
in layer 2, most of the attention heads focus on the

10Notice that such a situation can also occur when the orthogonality between eigen-subspaces or output
embeddings is lost. A common situation is that the variance of the cluster increases, creating confusion within
the decoding space of the attention head.
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Figure 14: Attention score visualized with the forerunner token of the ICL query as the attention
query, from (Left) layer 21 and (Right) layer 2 in Llama 3 70B from an input case.

natural delimiters, and another visualization in Fig. 13 shows that all attention queries (not only the
forerunner token) exhibit similar separator-focusing behavior, suggesting that: some attention heads
merge all the preceding delimiters’ representation into every token as delimiter-based positional en-
coding, making the representations of tokens with the same number of preceding delimiters similar,
while differentiating the representations of tokens with different numbers of preceding delimiters.
In the subsequent inference process, LM can utilize these delimiter-based positional encodings for
localization operations. Such observation is also consistent with Fig. 4.

Table 5: Accuracy drop with delimiters re-
moved/modified from prompts on SST-2.

Template Modification Acc. (%)

None (Table 4) 91.60
- w/o “\n” 93.36
- w/o “:” 85.74
- w/o “sentence:”, “sentiment:” 79.10
- w/o all above 50.98

- “:” → “hello” 78.91
- “:” → “@” 91.41
- “:” → “positive” 71.48

(Random) 50.00

Furthermore, we empirically demonstrate that de-
limiters have significant saliency towards ICL accu-
racies in Table 5 (upper), experimented by remov-
ing them from prompt templates. Interestingly, the
trial to completely remove these delimiters from the
prompt yielded almost random results, even though
these inputs still conform to the primary form of
ICL. A reliable reason can be that: The missing de-
limiter interferes with the encoding operation (Step
1) on both demonstrations and queries, so that com-
pletely disrupts the ICL process.

The scale of such a segmentation operation can sur-
prise one since more than half of the heads focus on the segmenting operation as shown in Fig. 14
(Right). However, as an assumption, we want to argue that dividing the input text into local seg-
mentation is a crucial step in language modeling, so, functionally, LM has sufficient motivation to
focus on segmenting during the training process. Moreover, based on the above principles, as long
as the delimiter appears periodically at appropriate positions and can be captured by attention heads
(only in the structured parts of the prompt template), as shown in Table 5 (lower), the delimiter can
be designed to any token. While we still recommend natural delimiters without semantics in the
template design.

D SEMANTICS MERGE IS NON-SELECTIVE ON LOCATION

To investigate whether the copy processing described in §4.1 has selectivity on the forerunner token,
on every attention head of each layer, for a given token position i, we measure the normalized copy
magnitude shown below:

NCMnt(α) =
αi→(i−1)

nt
, (15)
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Figure 15: Copy magnitude normalized by the sequence length from the previous token to the non-
label token and label token, for every token and head in each layer. Significant statistical differences
cannot be observed.

where the αi→(i−1) is the attention score with i-th token serving as the attention query and (i−1)-th
token serving as the attention key. For each layer, we export the NCM at all positions and on all
attention heads, and separately statistics the cases where the i-th token is a label token or a non-label
token. The results for 4 models on SST-2 are shown in Fig. 15.

From the results, no significant statistical differences between these two types of tokens can be
observed, suggesting that the semantics copy process, which is identified as Step 2 of our circuit,
is not selective on the token types. However, even if we demonstrate that the model cannot exhibit
selectivity in the copy positions within the current prompt, a potential direction for future research
is to investigate whether any forerunner tokens can enhance or weaken this copy process. Given that
this copying is known to be related to label denoising (§4.1), exploring this and carefully designing
these forerunner tokens could significantly benefit the control of ICL behavior.

E MEASUREMENT ON DIRECT DECODING

This section measures the direct decoding bypass, suggesting that: (1) Direct decoding on well-
processed hidden states with some later layer skipped can get satisfactory accuracy even better than
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Figure 17: Predicting distributions on different forerunner tokens with various direct decoding logits.
Inference process used: Upper: Vanilla ICL, Lower: Biased removed inference by Contextual
Calibration proposed by Zhao et al. (2021).

the full inference process. (2) Direct decoding on insufficient processed hidden states adds bias
towards the predicting distribution.
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Figure 16: Direct decoding accura-
cies on various layers.

We examine the first claim by applying the language model
head on each layer’s hidden state on SST-2, Llama 3 8B, and
conduct a standard ICL process on the decoded token predic-
tion distribution. The results are shown in Fig. 16, where di-
rect decoding accuracy emerges from random to near 1 around
layer 18. Refer to Fig. 8 and results in Appendix H.2, we can
confirm: accuracy emerges after all three steps are executed.
Moreover, the accuracies on the intermediate hidden states are
even higher than the last hidden states, which is aligned with
the discussion in Table 3. So, we can conclude: direct decod-
ing on well-processed hidden states can classify well.

Moreover, we infer that direct decoding from lower layers,
where hidden states are not sufficiently processed, causes pre-
diction bias. We investigate the influence of the direct decoding result of layer 0, by the relationship
between direct decoded distribution and final prediction distribution. In detail, on SST-2 and Llama 3
8B, we use various forerunner tokens with different direct decoding distributions on the label tokens
“positive” and “negative”, and calculate their ICL prediction probability distributions respectively,
as shown in Fig. 17 (Upper), where forerunner tokens with biased direct decoding distribution pro-
duce prediction biases with the same tendencies. While, when we apply contextual calibration (Zhao
et al., 2021), which removes the background value without a query from the prediction, such similar
tendencies disappear (Fig. 17 (Lower)).

F DEMONSTRATIONS ENHANCE THE INFERENCE OF PERPLEXED QUERIES

We investigate the correlation between the queries’ perplexities and the classification accuracies with
and without demonstrations, as a supplement of results in Fig. 2 (Right). We divide the queries into
10 bins w.r.t. the language modeling loss, and calculate the prediction accuracy in each bin, shown
in Fig. 19. In these results, although a unified correlation can not be observed, we can confirm that:
compared to the 0-shot results, the 4-shot inference shows better accuracies, especially on queries
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Figure 18: A counterexample when the induction head’s behavior cannot predict the LM’s inference
behavior. Given the demonstration shown in the figure, the attention scores from the label’s forerun-
ner token are visualized on layer 31 of Llama 3 70B. The left part is a standard ICL scenario where
the ground-truth label of the query can be accessed in the demonstrations. The right part is the IWL
scenario where the ground-truth label of the query is not presented in the demonstrations. A clear
induction pattern can not be observed in the IWL scenario.

with high language modeling loss. So, we can conclude that: demonstrations enhance the inference
accuracy of perplexed queries, consistent with the results in Fig. 2 (Right).

G DEGRADATION ANALYSIS: IN-WEIGHT LEARNING WITHOUT
GROUND-TRUTH LABEL IN CONTEXT

Given the circuit proposed in this paper, it is intuitive that some label tokens, especially the ground-
truth label token of the query should be presented in the demonstrations, which is the typical in-
context learning setting compared to the In-Weight Learning (IWL) setting (Chan et al., 2022;
Reddy, 2024) where the ground-truth label is not offered in the demonstration. In this section, we
illustrate through a counterexample that under the condition of IWL, the induction head will not
work in any known way, but the demonstrations can still enhance the inference.

Given the demonstration shown in Fig. 18, we use the query “Geoffrey Hinton”, whose ground-
truth label is presented in the context as “Researcher” as the ICL example, and the query “Michael
Jordan”, whose ground-truth label “Athlete” is NOT presented in the context as an IWL example.
Here, to investigate the behavior of the induction heads, we input both examples to Llama 3 70B,
and visualize the attention scores from the query’s forerunner token (which serves as the attention
query) on layer 31, which is identified as the layer with the highest induction magnitude, as shown
in Fig. 18. In the right part of the figure for the IWL scenario, the attention magnitude directed
toward the labeled tokens is significantly weak, with most of the attention scores being absorbed by
the Attention Sink (Xiao et al., 2024) of the first token. A comparison with the left part, where a
ground-truth label is given in the context can particularly highlight such an observation. Such an
observation is currently aligned with our expectations since no label features similar to the query’s
forerunner token can be accessed in the IWL input.

In other words, the induction heads are almost not writing demonstration-relevant information to the
query in the IWL scenario. It is intuitive to infer that the model cannot predict the label for “Michael
Jordan” well, and the demonstrations cannot help the prediction either. However, as shown in Ta-
ble 6, the model produced good predictions and benefited from the demonstration, which contradicts
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Table 6: Label probabilities from the model predictions of the ICL and IWL scenario shown in
Fig. 18. IWL predictions also benefit from demonstrations.

Label Token “ Ath#” “ Research#” “ Singer” “ Politician”

IWL 3-shot 1.00 0.00 0.00 0.00
0-shot 0.89 0.04 0.01 0.06

ICL 3-shot 0.00 1.00 0.00 0.00
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Figure 19: The correlations between language modeling loss and ICL prediction accuracies. Upper:
0-shot results; Lower: 4-shot results.

our expectations. Such contradiction indicates that even if our inference circuit can explain the in-
ference behavior in the ICL scenario robustly, it can not generalize to the IWL scenario.

Our explanation is: it can be considered that in such an IWL setting, LMs apply different inference
dynamics from the inference circuit proposed in this paper since even if the ICL and IWL input
data share a consistent format, they are fundamentally distinct, and sometimes even antagonistic,
as shown in previous work (Chan et al., 2022; Reddy, 2024), which find that toy Transformers are
difficult to perform well on both types of data simultaneously. While, large models may allow for
the coexistence of multiple inference dynamics, as discussed in §5.2, making LLMs able to yield
better performance on both inference scenarios above.

Therefore, it is reasonable to consider ICL data and IWL data separately, and this paper conducts a
robust analysis under ICL conditions, leaving the IWL scenario for future works.

H AUGMENTATED EXPERIMENT RESULTS

H.1 ATTENTION HEAD STATISTICS

We count the marked count of each attention head as Forerunner Token Head (Fig. 21, 22, 23, 24) /
Correct Induction Head (Fig. 25, 26, 27, 28) by every data sample from each dataset on each model.

Forerunner Token Head Statistics. We plot the distributions of the marked Forerunner Token
Heads towards correct and wrong labels, where: there are observable morphological differences
in figures across different datasets, while the forerunner token heads marked on the correct and
incorrect labels of the same dataset are almost identical. The detailed data confirms our conclusion
in §4.1.

Induction Head Statistics. We plot the distributions of the marked Correct Induction Heads, where
there are observable morphological differences in figures across different datasets, but also signifi-
cant overlaps, which confirms our conclusion in §4.2.
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Figure 20: Supplemental experiment result on more samples for Fig. 7.

Table 7: Results of Table 1 on Falcon 7B.

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot baseline) ±0 (Acc. 65.27)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −7.65

−0.68 ± 0.07
−15.69

−0.62 ± 0.07
−27.15

+0.08 ± 0.03
−29.10

−0.36 ± 0.07

3 Query Texts xq → Forerunner sq −8.30
−0.16 ± 0.00

−21.13
−0.15 ± 0.00

−28.84
+0.11 ± 0.01

−31.74
−0.15 ± 0.02

– Step2: Semantics Merge –
4 Demo. Forerunner si → Label yi −1.01

+0.36 ± 0.10
−1.92

−0.00 ± 0.00
−1.04

+0.06 ± 0.00
−1.27

+0.06 ± 0.02

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq +3.32

+1.72 ± 3.94
−3.61

−0.03 ± 0.00
−7.91

−0.00 ± 0.00
−5.92

+0.10 ± 0.00

Reference Value
6 Zero-shot −4.28 (Acc. 60.99)
7 Random Prediction −32.77 (Acc. 32.50)

H.2 OTHER LMS’ EXPERIMENT RESULTS

The results of most experiments in the main text on Llama 3 8B are shown in Fig. 29, 32, 35,
and 38; The results of most experiments in the main text on Falcon 40B are shown in Fig. 30, 33,
36, and 39; The results of most experiments in the main text on Falcon 7B are shown in Fig. 31, 34,
37, 40, and Table 7.

From these results, we can conclude consistently with the main text. However, as discussed in §5.2,
inference dynamics on these models are delocalized, thus clear serialization of the 3 steps can not
be observed in these results.

H.3 MORE RESULTS OF FIG. 7

To enhance the persuasiveness, we additionally and randomly try 4 input samples as supplements to
Fig. 7 on SST-2 and Llama 3 70B as shown in Fig. 20. From these results, we can observe similar
phenomena to Fig. 20 and conclude consistently.
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Figure 21: Forerunner Token Head marked on Llama 3 70B.
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Figure 22: Forerunner Token Head marked on Llama 3 8B.
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Figure 23: Forerunner Token Head marked on Falcon 40B.
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Figure 24: Forerunner Token Head marked on Falcon 7B.
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Figure 25: Correct Induction Head marked on Llama 3 70B.
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Figure 26: Correct Induction Head marked on Llama 3 8B.
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Figure 27: Correct Induction Head marked on Falcon 40B.
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Figure 28: Correct Induction Head marked on Falcon 7B.
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Figure 29: Augmentated results towards Fig. 2 on Llama 3 8B.
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Figure 30: Augmentated results towards Fig. 2 on Falcon 40B.
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Figure 31: Augmentated results towards Fig. 2 on Falcon 7B.
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Figure 32: Augmentated results towards Fig. 3 and 4 (on Layer 16) on Llama 3 8B.
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Figure 33: Augmentated results towards Fig. 3 and 4 (on Layer 24) on Falcon 40B.
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Figure 34: Augmentated results towards Fig. 3 and 4 (on Layer 16) on Falcon 7B.
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Figure 35: Augmentated results towards Fig. 5 on Llama 3 8B.
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Figure 36: Augmentated results towards Fig. 5 on Falcon 40B.
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Figure 37: Augmentated results towards Fig. 5 on Falcon 7B.
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Figure 38: Augmentated results towards Fig. 6 on Llama 3 8B.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1 10 20 30 40 50 60
Transformer Block Number

0

10

20

30

40

In
du

ct
io

n 
H

ea
d 

#

Induction
Correct Induction

1 10 20 30 40 50 60
Transformer Block Number

0.2

0.3

0.4

0.5

0.6

0.7

C
or

re
ct

 L
ab

el
 A

ss
ig

nm
en

t
Vanilla Attention
Best Ind. Head

Head Average
Random

SS
T-

2

M
R FP

SS
T-

5

TR
E

C

AG
N

Dataset 2

SST-2

MR

FP

SST-5

TREC

AGN

D
at

as
et

 1

1

0.83 1

0.63 0.69 1

0.58 0.58 0.53 1

0.52 0.48 0.44 0.69 1

0.56 0.56 0.53 0.67 0.65 1

Figure 39: Augmentated results towards Fig. 6 on Falcon 40B.
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Figure 40: Augmentated results towards Fig. 6 on Falcon 7B.
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