
World Models as Reference Trajectories for Rapid
Motor Adaptation

Carlos Stein Brito
NightCity Labs, Champalimaud Centre for the Unknown

Lisbon, Portugal
carlos.stein@nightcitylabs.ai

Daniel C. McNamee
Champalimaud Centre for the Unknown

Lisbon, Portugal
daniel.mcnamee@research.fchampalimaud.org

Abstract

Learned control policies often fail when deployed in real-world environments
with changing dynamics. When system dynamics shift unexpectedly, performance
degrades until models are retrained on new data. We introduce Reflexive World
Models (RWM), a dual control framework that uses world model predictions as
implicit reference trajectories for rapid adaptation. Our method separates the con-
trol problem into long-term reward maximization through reinforcement learning
and robust motor execution through reward-free rapid control in latent space. This
dual architecture achieves significantly faster adaptation with low online computa-
tional cost compared to model-based RL baselines, while maintaining near-optimal
performance. The approach combines the benefits of flexible policy learning
through reinforcement learning with rapid error correction capabilities, providing a
theoretically grounded method for maintaining performance in high-dimensional
continuous control tasks under varying dynamics.

1 Introduction

Model-based reinforcement learning has significantly advanced continuous control by integrating
learned world models with policy optimization [Hafner et al., 2021, Hansen et al., 2022]. These
methods use neural networks to predict future states, enabling both efficient planning through
trajectory sampling and stable policy improvement through value estimation. Yet the challenge of
maintaining performance under unexpected dynamic shifts—whether from environmental variation,
physical wear, or other sources—remains critical. When dynamics change, planning and value
computation degrade, often necessitating costly retraining or specific online adaptation mechanisms
[Peng et al., 2018, Kumar et al., 2021].

Control theory provides robust and formally grounded methods for handling changing dynamics
through adaptive control, offering stability guarantees through Lyapunov analysis [Slotine and Li,
1991]. These methods maintain performance by continuously adjusting control parameters based on
tracking errors between desired and actual trajectories. However, classical control approaches rely on
explicit reference trajectories and engineered cost functions, limiting their application to problems
with well-defined objectives and structured dynamics models [Narendra and Annaswamy, 2012].
This contrasts with reinforcement learning’s ability to learn flexible policies from abstract rewards
and high-dimensional observations [Sutton and Barto, 2018, Recht, 2019].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

We present Reflexive World Models (RWM), a framework that repurposes world model predictions
as dynamic control targets for rapid adaptation while preserving learned policy behavior. A reinforce-
ment learning module determines optimal trajectories in latent space, which the world model predicts
forward in time to serve as references for a control module that maintains performance through
trajectory tracking. This architecture is formalized through analysis of value functions, showing how
they decompose into slow learning and trajectory stabilization components. Our approach provides a
novel mechanism for rapid adaptation by transforming world model predictions into reference trajec-
tories, enabling learned policies to maintain performance under changing dynamics without requiring
reward signals, specific robustness procedures, or architectural constraints. In continuous control
tasks including locomotion under varying dynamics, this achieves significantly faster adaptation than
standard methods while maintaining performance. This computational efficiency arises from RWM’s
online mechanism, which uses lightweight controller updates driven by latent predictions from the
world model. Such direct adjustments bypass the substantial per-step operational costs associated
with planning rollouts or the extensive model retraining common in other adaptive strategies.

RWM offers a bridge between classical adaptive control (such as Model Reference Adaptive Control,
or MRAC) and modern reinforcement learning. While classical methods provide stability guaran-
tees, their common reliance on pre-defined reference models and state representations can limit
their application, especially in complex systems where these are difficult to hand-engineer. RWM
addresses this by leveraging a learned world model to implicitly derive reference dynamics from
high-dimensional observations. Furthermore, its operation in a learned latent space allows adaptation
based on task-relevant features discovered by the RL agent, rather than fixed, pre-specified ones. By
thus deriving references directly from world model predictions, our approach aims to combine the
robustness of adaptive control with the flexibility of learned policies, with the value function decom-
position establishing performance bounds under varying dynamics. This two-level approach—slower
policy learning to discover optimal behaviors and rapid error correction by the adaptive controller to
maintain execution fidelity—naturally aligns with hierarchical control architectures. Our experiments
demonstrate this separation of policy learning and rapid error correction leads to more efficient
adaptation to dynamic changes compared to approaches where these distinct functionalities are not
explicitly modularized and managed by dedicated components.

2 Background

Modern model-based reinforcement learning integrates several components through learned world
models. Given observations of system state, these models learn compressed latent representations
where planning and control occur [Hafner et al., 2021]. TD-MPC2 exemplifies this approach through
a normalized latent space that enables stable trajectory sampling and value estimation [Hansen et al.,
2023]. Previous work has explored different approaches to adaptation - Deep Model Reference
Adaptive Control [Joshi et al., 2019] combined neural networks with MRAC but required complex
dual architectures, while Rapid Motor Adaptation [Kumar et al., 2021] and Residual Policy Learning
[Silver et al., 2019] demonstrated online adaptation but required either specific architectural choices
or limited adaptation to particular types of system changes.

Adaptive control provides formal stability guarantees through Lyapunov analysis [Slotine and Li,
1991], achieving millisecond-scale adaptation by adjusting parameters based on trajectory tracking
errors. However, these methods require explicit reference trajectories, structured dynamics models,
and engineered cost functions [Narendra and Annaswamy, 2012]. In contrast, reinforcement learning
learns flexible policies directly from rewards and high-dimensional observations [Sutton and Barto,
2018], but sacrifices adaptation speed and stability guarantees. Recent work on meta-learning [Finn
et al., 2017] and domain randomization [Tobin et al., 2017, Tan et al., 2018, Peng et al., 2018] has
improved robustness but still requires extensive offline training.

Previous attempts to bridge these approaches have either restricted policies to specific forms amenable
to control theory or limited adaptation to particular types of system changes [Recht, 2019]. A general
framework for combining the flexibility of learned models with the rapid adaptation of control theory
has remained elusive. Our work addresses this gap by leveraging predictive outputs to guide a
low-level controller, enabling classical control techniques while maintaining the benefits of learned
policies.

2

3 Model design: implicit latent trajectory for adaptive control

3.1 Problem Formulation

We consider a continuous control problem formulated as a Markov Decision Process (MDP), defined
by the tuple (S,A, P,R, γ), where S is the state space, A is the action space, P (s′|s, a) is the
transition probability, R(s, a) is the reward function, and γ is the discount factor. Our goal is to learn
a policy π(a|s) that maximizes the expected cumulative discounted reward. We operate in a setting
where the true system dynamics, represented by the transition function P , can change unexpectedly
from the training conditions.

Our approach leverages a learned world model operating in a latent space Z. The model consists
of: an encoder ϕ : S → Z where zt = ϕ(st), a latent dynamics model F : Z × A → Z where
ẑt+1 = F (zt, at), and a base policy π0 : Z → A where a0 = π0(zt). The objective of our Reflexive
World Model (RWM) is to learn a second, adaptive control policy πc : Z → A, which outputs
a corrective action ac. The total action is at = a0 + ac. The objective for πc is to minimize the
discrepancy between the world model’s one-step prediction (under the base policy) and the observed
outcome, thereby making the system behave as predicted by the reference model under the base
policy.

Consider a continuous control MDP with learned policy π0 operating through a world model in latent
space z = ϕ(s). We assume that the latent space captures task-relevant dynamics from observations
s, with V (z) = V (ϕ(s)). A world model F predicts future latent states conditioned on the current
state and policy actions.

3.2 Decomposition of the value objective

Locomotion involves fundamentally distinct learning processes operating at different timescales.
Policy learning gradually discovers behaviors that maximize long-term reward. This process requires
extensive exploration but develops robust policies for diverse tasks. In contrast, rapid adaptation
maintains performance under changing dynamics without modifying the underlying policy. This
process responds quickly to errors but operates within the framework of existing behaviors.

This functional separation suggests decomposing motor learning into complementary objectives.
The policy learning system should discover behaviors that maximize expected value across tasks,
while the adaptation system should maintain stable execution under perturbations. We formalize
this approach by linking value-based learning with rapid error correction, decomposing the Taylor
expansion of the value function around optimal trajectories in a task-relevant latent space z:

V (zt+1 +∆z) = V (zt+1)−
1

2
∆zTH∆z +O(∥∆z∥3) (1)

where H = ∇2V (zt+1) is negative definite near the optimum. This decomposition suggests separat-
ing the problem into maximizing mean value through policy optimization and minimizing deviations
through rapid adaptation.

3.3 Forward model predictions as references

Our Reflexive World Models (RWM) framework implements the functional separation through
a dual architecture. The reinforcement learning module learns a base policy, a0 = π0(z), that
optimizes the mean value, as in classic RL models. We operate within a continuous, normalized
latent space z = ϕ(s), where ϕ is an encoder (further details in Section 5 and Appendix A). We opt
for a continuous latent space, akin to TD-MPC2 [Hansen et al., 2023], as it directly supports the
differentiability required for our gradient-based adaptive controller (Section 3.3). This choice offers a
simpler pathway for encoding states for continuous control tasks compared to discrete representations
(e.g., [Hafner et al., 2021]) which would necessitate specialized techniques for gradient propagation.
Normalization ensures that all dimensions of the latent space have comparable scales, which is crucial
for a balanced contribution to the error computation discussed below. We maintain a forward model
F predicting future latent states:

ẑt+1 = F (zt, π0(zt)) (2)
The world model F and the policy π0 (and by extension, the encoder ϕ) are assumed to be differen-
tiable with respect to their inputs. This is a common assumption in many model-based RL approaches

3

that use gradient-based learning and is a prerequisite for our adaptive control gradient computation
(Section 3.3).

Our framework builds on model-based reinforcement learning but changes how world model predic-
tions drive behavior. A conceptual novelty is that we interpret the forward model predictions as target
states. Both the forward model and controller share the same error function measuring discrepancy
between predicted and actual states:

L = ∥ẑt+1 − zt+1∥2 (3)
Following approaches like TD-MPC2 [Hansen et al., 2023], we use the Mean Squared Error (MSE)
as the discrepancy measure. Given the normalized latent space, MSE provides a well-distributed
measure of prediction error across all latent dimensions. This choice contrasts with scale-invariant
metrics such as KL-divergence, utilized in some world models (e.g., [Hafner et al., 2021]); we
found empirically that KL-divergence yields worse adaptation performance in our experiments. A
scale-invariant loss can disproportionately weight or neglect certain latent dimensions whose precise
tracking might be critical for fine-grained motor adaptation. However, the forward model and control
module minimize this error in opposing ways. The forward model adapts its predictions to match
observations, following the standard gradient to improve predictions. In contrast, the control module
adapts actions to make the system behave as predicted.

3.4 Adaptive control gradients

This approach inverts the standard relationship between models and control. Classical adaptive
control assumes reference trajectories and adapts a controller to track them. Model-based RL learns
models that predict actual outcomes and uses them for planning. Our framework generates reference
trajectories directly from world model predictions while adapting control to maintain their validity
under changing dynamics.

The control policy updates follow a modified gradient computation that reflects this inversion. Rather
than updating predictions to match observations, we update actions to make observations match
predictions:

θc ← θc − ηc

(
− ∂L
∂a0

)(
∂ac
∂θc

)
(4)

The update function leverages gradients through the world model to determine how actions should
change to reduce prediction error, inverting the standard approach to model learning. This differs
fundamentally from standard practice where gradients flow from predictions to parameters. The
control module instead treats predictions as fixed targets and adapts actions to achieve them.

The total action combines the base policy with these corrections:
at = π0(zt) + πc(zt) (5)

Critically, this update requires only prediction error—no reward signal is needed for adaptation.
Operating in the world model’s latent space provides two benefits. First, it ensures the control
module focuses adaptation on task-relevant features captured by the learned representation. Second,
it provides an interface between the RL policy operating on compressed latent states and the control
module maintaining prediction consistency.

4 Theoretical Guarantees

A notable feature of the RWM framework is that this decoupling of long-term policy optimization
from rapid, reference-tracking adaptive control makes the system particularly amenable to rigorous
control-theoretic analysis. For many contemporary model-based RL agents (e.g., [Hafner et al., 2021,
Hansen et al., 2022]), deriving formal guarantees on overall task reward or value under dynamic
perturbations is exceptionally challenging. This difficulty often arises not just from the inherent
complexity of these comprehensive, end-to-end learned systems. It also stems from the fact that the
general, high-dimensional value functions they optimize are not easily subjected to direct stability or
error-bound analysis from classical control theory.

In contrast, RWM’s specific formulation of the adaptive control objective—minimizing the latent
prediction error ∥ẑt+1 − zt+1∥2 (Equation 3) to ensure the system tracks the world model’s predic-
tions—presents a more constrained and tractable problem. This focus on a well-defined error signal

4

Algorithm 1 Reflexive World Models (RWM)
Require: Trained policy π0, encoder ϕ, world model F , learning rate ηc
Ensure: Adapted control policy πc

Initialize πc

for each episode do
zt ← ϕ(st)
a0 ← π0(zt); ac ← πc(zt)
Execute at = a0 + ac, observe st+1

zt+1 ← ϕ(st+1)
ẑt+1 ← F (zt, a0)
et ← zt+1 − ẑt+1

θc ← θc − ηc

(
−∂∥et∥2

∂a0

)
∂ac

∂θc

end for

for the adaptive controller allows us to apply established control-theoretic tools. Consequently, we
can establish theoretical limits on this control error and, crucially, link these to bounds on the overall
value function (Theorem 4.3). This provides formal insights into expected performance degradation
under changing dynamics, bridging a gap between flexible learning and provable robustness.

The following theorems formalize these guarantees:
Assumption 4.1 (System Properties). The system satisfies:

1. ∥∂F/∂a∥ ≤ L (Lipschitz control)

2. σmin(∂F/∂a) ≥ α > LP (control authority)

3. ∥F (z, a)− f(z, a)∥ ≤ ϵ (model accuracy)

4. ∥p(t)∥ ≤ P (bounded perturbation)

where P bounds external perturbations.
Theorem 4.2 (Control Error). Under Assumption 4.1, the control law ac = −η(∂F/∂a)T e(t)
achieves:

∥e(t)∥ ≤ γt∥e(0)∥+
√

ϵ2 +
P 2

α2
(6)

where γ = (1− ηα2 + ηL2) < 1 for η < 1/L2.
Theorem 4.3 (Value Bounds). If the error bound is sufficiently small, the value function satisfies:

V (z∗)− V (z) ≤ HM

2

(
ϵ2 +

P 2

α2

)
(7)

where HM bounds the eigenvalues of −∇2V near optimal trajectories.

These results show how world model accuracy (ϵ), control authority (α), and perturbation magnitude
(P) determine performance bounds, with quadratic scaling reflecting the natural structure of value
functions around optimal trajectories. The proofs use standard Lyapunov techniques (see Appendix F).

5 Simulations

Our experiments address three questions: (1) Can world model predictions serve as effective ref-
erence trajectories for rapid adaptation? (2) Does minimizing control error—without access to
reward—achieve robust adaptation across diverse tasks? (3) How does performance scale from simple
to high-dimensional systems?

We evaluate across multiple continuous control environments from the DeepMind Control Suite
[Tassa et al., 2018]: a 2D point-mass system (direct state observations, no encoder), standard locomo-
tion (Walker-Run, Cheetah-Run, Hopper-Hop), manipulation (Ball-in-Cup), and high-dimensional
coordination (Humanoid-Walk, 17 actuators). Adaptation is tested under actuator perturbations
simulating online miscalibration, comparing RWM against frozen baseline policies and reward-based
fine-tuning.

5

Figure 1: (A) Network architecture of Reflexive World Models (RWM), showing the reinforcement
learning policy (blue) and adaptive control modules (green), with interface variables in orange.
Each transformation is implemented as a two-hidden-layer MLP. (B) Illustrative simulation of the
adaptive control mechanism for a 2D pointmass task (without encoder, z = s). When actuators are
perturbed, the trajectory deviates from the predicted future states ŝt+k under the base policy actions
a0. This error triggers an update to generate corrective actions ac. (C) Under alternating directional
perturbations (red), RWM corrects deviations from the optimal trajectory, exhibiting characteristic
after-effects when perturbations are removed.

5.1 Addressing Policy Saturation and Inaction via a Thresholded Action Cost

Our adaptive controller πc requires the base policy π0 to provide differentiable, non-saturated
actions. However, standard RL policies in continuous control can exhibit action saturation (leading to
vanishing gradients for πc, see Fig. 4-C) or policy inaction (the "dead problem" from naive action
costs, Fig. 4-A,B). Both issues hinder effective adaptation.

To ensure a suitable base policy, we incorporate a specific thresholded quadratic action cost,
λ
∑

i(max(0, |ai| − c))2, during π0’s pre-training. This simple modification to standard action
penalization encourages π0 to operate within a smoother, non-saturated region responsive to πc, while
also mitigating policy inaction. The formulation, rationale, and illustrative effects (Fig. 4-D) are
detailed in Appendix C.

5.2 Dual-model Design

Our Reflexive World Models (RWM) approach builds on model-based reinforcement learning methods
such as Dreamer and TD-MPC2 [Hafner et al., 2021, Hansen et al., 2023], primarily to leverage their
task-related encoders. In particular, TD-MPC2 uses latent, reward and value predictions to learn the
encoder and forward models. We reuse these pre-trained representations to focus on the novel control
mechanism. In simple environments where an encoder is unnecessary, such as the point-mass task,
we use direct state observations (zt = st). In these cases, SAC or any alternative policy, including
non-RL-based controllers, could be used as the baseline policy, and the forward model is learned
through latent prediction.

5.3 Perturbation Experiments

We evaluate adaptation by introducing perturbations p(t) in the action space, with an effective actuator
aeff = (a0 + ac) · (1 + p), and measuring the controller’s ability to compensate for them (Fig.
1-B). Step perturbations involve sudden changes in the action signal at specific intervals, while slow
perturbations introduce gradual, non-stationary shifts that mimic actuator miscalibration. These
perturbations allow us to analyze how the controller reacts to both abrupt and progressive deviations.

Our primary baseline uses the TD-MPC2 reactive policy trained without the online planner, with
continued online fine-tuning. This configuration was chosen to avoid conflating the use of the world
model for both planning and our control mechanism, ensuring a cleaner experimental comparison.
The original TD-MPC2 work [Hansen et al., 2023] demonstrated that the online planner provides
substantial benefits primarily on complex tasks, while the reactive policy remains highly performant
on standard locomotion—a finding we confirm empirically in Appendix E, where both configurations
achieve nearly identical performance on Walker, Cheetah, and Hopper tasks. The exception is the

6

Humanoid environment, where the reactive policy alone is insufficient for stable locomotion, so we
use TD-MPC2 with its planner for this task only.

The experiment consists of two phases. In the first phase, a policy is trained or provided without
perturbations, and a forward model is learned using its trajectories. This phase establishes the baseline
model of the system’s behavior under normal conditions. In the second phase, perturbations are
introduced while simultaneously activating the controller. The controller uses the learned forward
model to adjust its outputs in response to the deviations introduced by the perturbations.

To assess adaptation performance, we measure the drop in task performance caused by the perturba-
tions and track the forward model error. The latter serves as an implicit measure of latent trajectory
deviation, reflecting how well the system follows the predictions of the forward model.

The prerequisite pre-training baseline model is common to all and takes approximately 16-17 hours.
Execution times for the experimental setups are detailed in Table 1. RWM’s online phase, which uses
pre-trained components and lightweight controller updates, is notably more computationally efficient
than approaches requiring full model retraining.

Table 1: Typical execution times for the online adaptation phase (1 million environment steps under
perturbation) on a single NVIDIA Tesla T4 GPU.

Experimental Setup Approximate Execution Time

TD-MPC2 (Full Training) 16.5 hours
RWM (Online Adaptation) 1.8 hours
No Adaptation (Inference) 1.4 hours

The computational efficiency of RWM’s online adaptation (Table 1) stems from using lightweight
controller updates based on forward-model predictions, avoiding the computational overhead of
planning horizons or full model retraining typical in model-based approaches.

5.4 Correction for Trajectory Deviations

The point mass system demonstrates the core interaction between policy and adaptation modules.
Under angular perturbation, the base policy’s trajectories systematically deviate from target while
the world model maintains predictions of intended paths (Fig. 1-B). The control module uses these
predictions as references to generate corrective actions, recovering performance without modifying
the underlying policy.

The system exhibits characteristic aftereffects when perturbations are removed (Fig. 1-C). Initial
overcorrection in the opposite direction indicates adaptation through internal model formation rather
than reactive control. This validates the method’s ability to learn and compensate for systematic
changes in dynamics while preserving the original policy.

5.5 Robust Motor Control

The Walker2D environment demonstrates how adaptation can operate effectively in learned latent
space. Under step perturbations to actuator gains, the control module rapidly reduces the error
between predicted and actual latent states (Fig. 2). The right column of Figure 2 presents these
metrics aggregated over perturbation cycles, with values normalized within each cycle relative
to the ’No Adaptation’ agent’s performance range to highlight relative improvements. As the
latent prediction error decreases (shown in the control error plots), task performance improves
correspondingly (shown in the reward plots), validating that world model predictions in latent space
provide effective references for adaptation.

Table 2 presents results across multiple environments under step perturbations (full results in Ap-
pendix B). Critically, RWM achieves robust adaptation without access to reward signals—minimizing
latent control error alone is sufficient to recover substantial task performance. On Walker, RWM
achieves 94.3% reward recovery, substantially outperforming fine-tuning’s 66.3%, demonstrating that
the reward-free objective can match or exceed reward-driven adaptation. The Humanoid environment
is particularly revealing for complex, high-dimensional tasks: RWM’s controller successfully operates
on the 17-actuator system, while fine-tuning on reward causes the policy to deviate significantly from

7

Figure 2: RWM adaptation performance under step motor perturbations. The plots show Reward and
Control Error over 800 episodes (left column); shaded areas indicate perturbation periods. The right
column displays Normalized Median Reward and Control Error, aggregated across perturbation cycles.
Shaded areas in the right plots represent the 95% confidence interval of the median (bootstrapped).
RWM (green line) consistently maintains higher reward and lower control error compared to No
Adaptation (gray line) and the TD-MPC2 (no planner) baseline (blue line), demonstrating effective
and rapid recovery from perturbations.

its original motor program (58.6% increase in control error). In contrast, RWM preserves the core
motor pattern (24.1% decrease in control error). This illustrates a central distinction—reward reflects
narrow task-specific metrics (e.g., forward velocity), while control error captures fidelity to the entire
learned motor program. In complex tasks, these objectives can diverge: maximizing reward may
degrade the underlying coordination pattern, suggesting that preserving trajectory integrity through
control error minimization can provide a more robust foundation for adaptation.

Table 2: Adaptation performance on representative environments under step perturbations. Reward
Drop and Control Error measure degradation from baseline; Improvement (%) shows recovery relative
to frozen policy. See Appendix B for complete results across all environments.

Environment Method Reward Drop Control Error Improvement (%)
Reward Control

Walker-Run
Frozen Policy 108.40 28.09 – –
Fine-tuning 36.50 8.87 66.3 68.4
RWM (ours) 6.20 7.43 94.3 73.6

Humanoid-Walk
Frozen Policy (w/ planner) 28.10 0.58 – –
Fine-tuning (w/ planner) 12.90 0.92 54.1 -58.6
RWM (ours, w/ planner) 13.60 0.44 51.6 24.1

A crucial test for deployment in real-world systems is the ability to handle nonstationary dynam-
ics—scenarios where system properties gradually change over time due to wear, temperature fluctua-
tions, or miscalibration. Such scenarios are particularly challenging because they cannot be addressed
through fixed robustness strategies, demanding continuous adaptation. To evaluate this capability, we
introduced continuously varying perturbations by applying filtered noise to actuator gains, simulating
the gradual deterioration and drift common in physical hardware (Fig. 3A). The results suggest
strong potential for real-world applications: RWM maintains a performance of 360.56, substantially
outperforming both TD-MPC2 (no planner) (311.67) and the fixed baseline policy which degrades
to 233.42. This performance advantage is accompanied by systematically lower control error for

8

RWM compared to both alternatives, indicating more efficient adaptation to continuously changing
dynamics. The world model predictions provide a stable reference for ongoing adaptation even as
dynamics evolve unpredictably, enabling rapid corrections without reward signals or policy retraining
that would be impractical in deployed systems.

Figure 3: Nonstationary perturbations and high-dimensional coordination. (A) Walker2D under
continuous filtered noise perturbations to actuator gains, following sinusoidal pattern p (top). Time
series (left) and averaged performance (right) show RWM (green) achieves the highest reward
(360.56), followed by TD-MPC2 (no planner) (blue) (311.67), with No Adaptation (gray) performing
worst (233.42). Control error measurements (bottom) demonstrate that RWM maintains systematically
lower error throughout adaptation compared to both alternatives. (B) Analysis of the 17-actuator
Humanoid environment showing coordinated movement patterns maintained by RWM even under
perturbations.

5.6 High-Dimensional Coordination and a Control-Theoretic Perspective

Beyond nonstationary dynamics, we examined high-dimensional coordination in the 17-actuator
Humanoid environment (Fig. 3B), where successful locomotion requires synchronized movements
across multiple joints. When perturbed, the unadapted system exhibits severely degraded coordination
between joints (compare the normal orange gait with the gray affected movement). RWM’s primary
advantage is revealed in the trajectory density visualization: by tracking latent predictions that capture
coordinated multi-joint relationships, it maintains coherent movement patterns even under challenging
conditions.

This separation of concerns between RL and control modules provides a framework to analyze differ-
ent sources of variability: intentional variability from exploration and decision-making (RL module)
versus unwanted variability from imperfect execution and external perturbations (control module).
This distinction has potential applications in understanding biological motor control, where similar
separations between voluntary movements and reflexive corrections exist. The system demonstrates
sophisticated adaptation where perturbations to individual actuators trigger compensatory adjustments
across multiple joints simultaneously, preserving overall balance and performance.

5.7 Comparison with Domain-Randomized Baselines

To isolate the benefits of RWM’s online adaptive mechanism, we compared its performance against
baseline agents (TD-MPC2 (no planner) and No Adaptation) that were pre-trained with exposure
to the same randomized actuator perturbations subsequently used during evaluation. This form of
domain randomization during pre-training aims to enhance the inherent robustness of the baseline
policies. The comparison then assesses whether RWM’s dedicated online adaptation still provides
substantial advantages beyond this enhanced baseline robustness. The results of this comparison are
presented in Figure 5 (see Appendix D).

This comparison investigates whether pre-training the baseline TD-MPC2 (no planner) policy with
exposure to randomized actuator perturbations—a form of domain randomization—could achieve
robustness comparable to RWM’s online adaptation. While such pre-training does enhance the base-
line’s performance when dynamics are nominal (i.e., perturbation OFF in Figure 5 (see Appendix D),

9

where this specialized TD-MPC2 (no planner) agent achieves higher reward than RWM), the critical
test is performance under active, unmodelled dynamic shifts. During these perturbation phases,
RWM’s advantage is evident: Table 3 shows that RWM maintains significantly higher reward and
lower control error compared to the TD-MPC2 (no planner) agent pre-trained with perturbations.
This outcome underscores that while domain randomization can improve baseline robustness to
some extent (as the pre-trained No Adaptation policy still performed worst, with a median reward
of 0.1150 and control error of 0.9676 during perturbation), it does not eliminate the performance
degradation caused by the perturbations encountered during evaluation. Consequently, this form
of domain randomization does not eliminate the need for an explicit online adaptation mechanism
like RWM, which provides more effective real-time compensation for unmodelled dynamics than
pre-training alone.

Table 3: Comparison with Domain-Randomized Baselines: Performance Metrics during Perturbation
ON (Baselines Pre-trained with Perturbations)

Metric RWM TD-MPC2 (no planner)

Median Normalized Reward 0.6003 0.3600
Median Normalized Control Error 0.7307 1.4162

6 Discussion

This work introduces Reflexive World Models (RWM), demonstrating how predictive models can be
cast as sources of desired state trajectories for rapid adaptation. RWM distinctively inverts the standard
model-based RL paradigm: rather than using world models for planning, we enable the control policy
πc to directly minimize prediction errors in latent space. This mechanism reframes the learning
objective—instead of the model learning to track reality, the agent acts to make reality track the
model. This contrasts with typical model-based RL methods where world models primarily serve for
planning or data augmentation. Unlike Model Predictive Control, which plans action sequences over
a horizon, RWM uses single-step predictions as instantaneous references, enabling rapid responses
with low computational overhead ideal for real-world deployment. A notable advantage of this
approach is that adaptation requires no reward signal, making it applicable when rewards are sparse,
delayed, or unavailable in deployed systems.

The inherent dual-timescale operation in RWM—slower policy learning with π0 discovering optimal
behaviors and faster error correction via πc maintaining execution fidelity—is a central aspect of its
effectiveness. This separation of concerns, where πc rapidly compensates for dynamic shifts based
on π0’s intended trajectory (as predicted by the world model), allows the system to adapt without
costly retraining of the entire policy or world model. These theoretical guarantees (Section 4) rely on
assumptions such as sufficient control authority and model accuracy, which may not always be fully
met in highly complex or underactuated scenarios. Nevertheless, our empirical results demonstrate
RWM’s practical effectiveness across challenging benchmarks.

6.1 Limitations and Future Work

Future work includes several directions. First, learning latent representations specifically optimized
for RWM’s adaptive control could enable application to arbitrary pre-trained policies. Second,
while our phased training approach simplifies analysis, end-to-end joint learning of the base policy,
world model, and adaptive controller presents interesting challenges around preventing controller
exploitation of model inaccuracies. Third, extending RWM beyond actuator perturbations to handle
morphological changes, environmental shifts, or sensor noise would broaden applicability. This
may require incorporating uncertainty estimation into the world model or developing methods to
disambiguate different error sources.

The principle of reward-free adaptation through world model predictions offers a promising foundation
for robust, learned behaviors in real-world deployments where reward signals may be unavailable.
Reflexive World Models (RWM) build on this by integrating a rigorous theoretical framework with
comprehensive empirical support, facilitating the development of adaptive agents that can sustain
high performance under real-world dynamic changes.

10

Acknowledgments and Disclosure of Funding

This work was supported by the Champalimaud Foundation and the Google Cloud Research Credits
program with the award GCP398030901.

References
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation

of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR,
2017.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Mastering atari with discrete
world models. International Conference on Learning Representations, 2021.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In Proceedings of the 39th International Conference on Machine Learning, pages 8163–
8174. PMLR, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Girish Joshi, Jasvir Virdi, and Girish Chowdhary. Deep model reference adaptive control. In AIAA
SciTech Forum. AIAA, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. In Robotics: Science and Systems, 2021.

Kumpati S Narendra and Anuradha M Annaswamy. Stable Adaptive Systems. Courier Corporation,
2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 3803–3810, 2018.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. In
Advances in Neural Information Processing Systems 32 (NeurIPS), pages 331–342, 2019.

Jean-Jacques E Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, MA, 2 edition, 2018.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. In Robotics:
Science and Systems (RSS), 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Arnoud Lefrancq, et al. Deepmind control suite. Journal of
Machine Learning Research, 19(38):1–21, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 23–30. IEEE, 2017.

11

A Implementation Details

Our main simulations are conducted using the DeepMind Control Suite [Tassa et al., 2018], with
tasks such as humanoid-walk and walker-walk (with an action repeat of 2), and are implemented
in PyTorch [Paszke et al., 2019]. Experiments were run on a computer with a single NVIDIA Tesla
T4 GPU (16 GB GDDR6). For experimental runs of 1 million environment steps, typical execution
times on this GPU were approximately 1.5-2 hours for the ’No Adaptation’ and RWM setups. These
setups primarily involve inference using pre-trained components, with RWM additionally performing
a lightweight online update for its controller. In contrast, a full TD-MPC2 training run of 1 million
steps, which includes its comprehensive learning cycle of model updates, planning, and policy/value
optimization, typically took around 16-17 hours.

Baseline TD-MPC2 Agent. We pre-train a TD-MPC2 agent [Hansen et al., 2023] for 1 million
environment steps to provide the state encoder ϕ, the base policy π0, and the forward dynamics model
F . The encoder ϕ consists of 2 hidden layers with 256 units each, while other MLPs within the
TD-MPC2 agent (such as those for the policy and dynamics model) have 2 hidden layers with 512
units each. These networks use Mish activations. The encoder output is normalized using SimNorm
with 8 dimensions [Hansen et al., 2023]. The base policy π0 is pre-trained with a thresholded
quadratic action cost (Section 5.1, with full details and illustration in Appendix C). The environments
use hard action bounds of [−2, 2], and the threshold c for this cost is set to 0.5, with the penalty
coefficient λ = 0.2.

Forward Model Training. The forward model F is trained as a general transition model during the
pre-training phase, exposed to a wide distribution of states and actions including those from early,
suboptimal policies—not just trajectories from the final converged policy. This broad training enables
the model to make reasonable predictions even for states off the optimal trajectory, which is crucial
for providing corrective signals when perturbations occur.

Episode Length and Reward Scale. Our experiments use a maximum episode length of 400
steps, compared to 1000 steps in the original TD-MPC2 paper [Hansen et al., 2023]. This results
in maximum achievable rewards of approximately 400 for locomotion tasks, rather than 800+. Our
reported rewards of ∼380 are therefore near-optimal for this episode length. The thresholded action
cost is applied only during policy training to ensure sufficient action headroom for the adaptive
controller.

For comprehensive details on the TD-MPC2 architecture and its training, we refer to the original
publication [Hansen et al., 2023].

RWM Controller. The Reflexive World Model controller, πc, is an MLP with 2 hidden layers
and 512 units per layer, using ReLU activations. During RWM adaptation, the parameters of the
pre-trained TD-MPC2 components (encoder ϕ, base policy π0, and forward model F) are frozen. The
RWM controller πc is then trained online over a multi-step horizon of 3 to minimize the squared error
between the forward model’s latent state predictions (based on π0’s actions) and the observed next
latent states, as per Algorithm 1. This update involves backpropagating the gradient of this prediction
error with respect to the base policy action a0, and then transferring this gradient (with an inverted
sign, as detailed in Algorithm 1 and Equation 4) to update the RWM controller πc. The learning rate
for πc is 3× 10−4.

Perturbation Protocol. To evaluate adaptation, we introduce multiplicative step perturbations to
actuator gains, where the effective action for each actuator j becomes aeff,j = (a0,j+ac,j) ·(1+pj).
For each perturbation instance, the value pj for each actuator j is sampled uniformly from the
range [−0.5, 0.5]. These perturbations alter actuator outputs for 10,000 to 15,000 environment steps,
followed by an equal duration without perturbation. This cycle repeats throughout an experimental
run, which can extend up to 1 million steps for comprehensive experiments including pre-training
and adaptation phases.

All neural networks, including πc, are optimized using Adam [Kingma and Ba, 2015]. A simplified
reference implementation of the RWM controller is provided in the supplementary material. The full
codebase will be made available upon publication.

12

B Results Across All Environments

Table 4 presents adaptation performance across all evaluated environments under step perturbations.

Table 4: Adaptation performance across all environments under step perturbations. Reward Drop
and Control Error measure degradation from baseline; Improvement (%) shows recovery relative to
frozen policy. RWM achieves adaptation through reward-free control error minimization.

Environment Method Reward Drop Control Error Improvement (%)
Reward Control

Ball-in-Cup
Frozen Policy 1.00 9.05 – –
Fine-tuning 0.00 2.61 100.0 71.2
RWM (ours) 1.00 2.09 0.0 77.0

Cheetah-Run
Frozen Policy 6.30 3.21 – –
Fine-tuning 5.60 2.44 11.1 24.0
RWM (ours) 1.40 1.70 77.8 47.0

Hopper-Hop
Frozen Policy 15.40 5.67 – –
Fine-tuning 6.20 2.92 59.7 48.5
RWM (ours) 4.50 3.20 70.8 43.6

Walker-Run
Frozen Policy 108.40 28.09 – –
Fine-tuning 36.50 8.87 66.3 68.4
RWM (ours) 6.20 7.43 94.3 73.6

Humanoid-Walk
Frozen Policy (w/ planner) 28.10 0.58 – –
Fine-tuning (w/ planner) 12.90 0.92 54.1 -58.6
RWM (ours, w/ planner) 13.60 0.44 51.6 24.1

C Details on the Thresholded Action Cost

A base policy π0 that provides differentiable, non-saturated actions is crucial for the effectiveness
of our adaptive controller, πc. Standard continuous control policies, however, can suffer from two
common issues: (i) action saturation at the boundaries of the allowed range, which nullifies gradients
needed by πc (Fig. 4-C), and (ii) policy inaction or the "dead problem" (Fig. 4-A,B), where naive
quadratic action costs can overly penalize any movement, leading to minimal activity.

To address these, we employ a thresholded quadratic action cost, λ
∑

i(max(0, |ai|−c))2, during the
pre-training of π0. Here, ai is an action component, c is a threshold (e.g., c = 0.5), and λ a coefficient
(e.g., λ = 0.2). This cost is a simple modification of a standard quadratic penalty but only penalizes
action magnitudes |ai| exceeding c. This encourages π0 to operate primarily within a smoother,
non-saturated region (Fig. 4-D), preserving differentiability for πc. Simultaneously, by not penalizing
actions within [−c, c], it mitigates the dead problem, allowing the agent to achieve adequate task
performance. While other techniques might yield suitably bounded actions, this approach offers a
straightforward way to obtain a responsive baseline for adaptation.

D Figure for Comparison with Domain-Randomized Baselines

Figure 5 illustrates the performance comparison for the comparison with domain-randomized base-
lines discussed in Section 5.7, where baseline policies were pre-trained with exposure to actuator
perturbations.

13

Figure 4: Addressing challenges in baseline policy actions for effective adaptation. (A) A humanoid
agent exhibiting "dead" behavior due to a simple quadratic action cost in its RL objective, leading
to inaction. (B) The norm of actions for the simulation in (A), demonstrating a decay towards
zero over training episodes as the agent minimizes the naive action cost. (C) Action component
values over time for a standard TD-MPC2 policy (without the thresholded cost) in the Humanoid
task, showing frequent saturation at the boundaries [-1, 1], which impedes gradient flow for the
adaptive controller. (D) Smoother and bounded action values from a TD-MPC2 policy trained with
the proposed thresholded quadratic action cost, maintaining differentiability and responsiveness.

Figure 5: Comparison with Domain-Randomized Baselines: Impact of pre-training with perturbations.
Comparison of No Adaptation, RWM, and TD-MPC2 (no planner) when baseline policies for No
Adaptation and TD-MPC2 are pre-trained with exposure to actuator perturbations. (Left column)
Reward and Control Error over episodes. (Right column) Normalized median reward and control
error within perturbation cycles. While pre-training with perturbations improves the baseline, RWM
(green line) still demonstrates superior adaptation capabilities in terms of reward and control error
compared to the pre-trained TD-MPC2 (no planner) (blue line) and the pre-trained No Adaptation
policy (gray line).

E Baseline Comparison: TD-MPC2 With and Without Planner

We use the TD-MPC2 reactive policy (trained without the online planner) as our primary baseline.
This appendix provides empirical validation that this configuration is appropriate for the locomotion
tasks evaluated.

Table 5 shows that for standard locomotion (Walker, Cheetah, Hopper), the reactive policy achieves
nearly identical performance to the full agent with planning, both in final reward and when handling
perturbations. This is consistent with the original TD-MPC2 work [Hansen et al., 2023], which
showed the online planner provides substantial benefits primarily on complex tasks like Humanoid.
Importantly, TD-MPC2 without the planner still leverages the world model for latent imagination

14

during policy learning (similar to Dreamer [Hafner et al., 2021]), making it a capable model-based
baseline.

Table 5: TD-MPC2 performance with and without online planner on standard locomotion tasks.

Environment Configuration Final Reward (1M steps) Reward Under Perturbation

Walker-Run Without Planner 380.2 342.1
With Planner 381.4 345.3

Cheetah-Run Without Planner 364.5 358.2
With Planner 362.8 360.1

Hopper-Hop Without Planner 373.1 367.4
With Planner 372.6 368.2

Table 6 compares against SAC, a standard model-free baseline. TD-MPC2 (no planner) substantially
outperforms SAC.

Table 6: Comparison of TD-MPC2 (no planner) against model-free SAC baseline.

Environment SAC TD-MPC2 (no planner)

Cheetah-Run 244.0 364.5
Walker-Run 249.7 380.2
Hopper-Hop 19.2 373.1

These results validate our choice: the reactive policy performs comparably to the full agent under
perturbation and substantially outperforms model-free methods. This configuration enabled a clean
comparison by avoiding conflation of world model use for both planning and our control mechanism.

15

F Theoretical Analysis

We provide proofs for the main theoretical results, showing how control error bounds lead to value
function guarantees.

The proofs rely on Assumption 4.1 from Section 4.
Theorem F.1 (Control Error Bounds). Under Assumption 4.1, the control law ac = −η(∂F/∂a)T e(t)
with η < 1/L2 achieves:

∥e(t)∥ ≤ γt∥e(0)∥+
√

ϵ2 +
P 2

α2
(8)

where γ = (1− ηα2 + ηL2) < 1.

Proof. The error evolves as:
e(t+ 1) = F (zt, at)− F (zt, a0)︸ ︷︷ ︸

control effect

+F (zt, a0)− f(zt, at)︸ ︷︷ ︸
model error

+p(t) (9)

For the control effect:
−F (z, a0 + ac) = −η(∂F/∂a)(∂F/∂a)T e(t) (first order) (10)

∥(∂F/∂a)(∂F/∂a)T ∥ ≥ α2 (by min singular value) (11)

∥F (z, a0 + ac)− F (z, a0)∥ ≤ (1− ηα2 + ηL2)∥e(t)∥ (Lipschitz) (12)

The model error satisfies:

∥F (z, a0)− f(z, at)∥ ≤ ϵ+ L∥ac∥ ≤ ϵ+
LP

α
(13)

Therefore:
∥e(t+ 1)∥ ≤ γ∥e(t)∥+ ϵ+

P

α
(14)

By condition (2) of Assumption 4.1 and η < 1/L2:

γ = 1− ηα2 + ηL2 < 1− η(LP)2 + ηL2 < 1 (15)

The bound follows from solving this recurrence, using the fact that for positive a, b:
(a+ b)2 ≤ 2(a2 + b2) (16)

Theorem F.2 (Performance Guarantees). If
√

ϵ2 + P 2/α2 < δ where δ bounds the region of
quadratic approximation for V , then:

V (z∗)− V (z) ≤ HM

2

(
ϵ2 +

P 2

α2

)
(17)

where HM bounds the eigenvalues of −∇2V .

Proof. Around optimal trajectories, Taylor expansion gives:

V (z∗ +∆z) = V (z∗)− 1

2
∆zTH∆z +R(∆z) (18)

where |R(∆z)| ≤ C∥∆z∥3 for some C > 0.

The prediction error directly bounds state deviation:

∥∆z∥ = ∥z − z∗∥ ≤ ∥e(t)∥ ≤
√
ϵ2 +

P 2

α2
(19)

When this is less than δ, the quadratic term dominates since:
|R(∆z)|
∥∆z∥2

≤ C∥∆z∥ → 0 (20)

The bound follows from λmax(H) = HM and the error bound.

16

These results establish quantitative bounds linking world model accuracy (ϵ), control authority (α),
and perturbation magnitude (P) to performance. The quadratic scaling reflects the natural structure
of value functions around optimal trajectories.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s contributions regarding
a dual control framework for rapid motor adaptation using world model predictions as
reference trajectories. The claims align with the presented methods and results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations and future work in section 6, covering aspects
such as encoder learning, end-to-end training, and the scope of perturbation handling.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

17

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: section 4 outlines the theoretical results and their assumptions. The Appendix
(Appendix F) provides detailed proofs and restates the assumptions for these theoretical
guarantees.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix A (Implementation Details, lines 601-630) describes the environ-
ments, model architectures, hyperparameters, and perturbation protocol, providing sufficient
details to reproduce the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

18

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the full code is not released at this time, a Python-based reference
implementation of the core Reflexive World Model (RWM) controller mechanism, as
described in Algorithm 1 and subsection 3.4, is provided in the supplemental material. This
allows for inspection of the key algorithmic contributions.

Guidelines:

• The answer NA means that paper does not include experiments.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A (Implementation Details) specifies necessary training and test
details, including environments, model architectures, optimizer settings, hyperparameters,
and the perturbation protocols used for evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: For the main results concerning adaptation to perturbations (Figures 2 and 5),
the paper reports median rewards and control errors, with shaded areas indicating variability,
estimated over perturbation cycles.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A (Implementation Details) specifies the GPU type (including
memory), the scale of experiments in terms of environment steps, and information on
computing time, providing necessary details on compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
urlhttps://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics.
The work focuses on algorithmic advancements for adaptive control in simulated environ-
ments and does not involve human subjects, sensitive data, or direct societal deployments
that would raise immediate ethical concerns under the code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

20

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses positive societal impacts through its contributions to the
robustness of autonomous systems (e.g., in section 6 and subsection 5.5). More robust and
adaptive control can lead to more reliable and safer autonomous systems in various appli-
cations. Potential negative societal impacts, such as the misuse of advanced autonomous
systems, are general concerns for AI but are not uniquely amplified by this specific method-
ology, which focuses on a foundational control mechanism.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work presents a control algorithm and its evaluation in simulated environ-
ments. No large-scale pretrained models or datasets with immediate high risk for misuse
are being released, so specific safeguards for responsible release are not applicable in this
context.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

21

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper credits original research via citations. Key software frameworks
and libraries used (e.g., PyTorch, DeepMind Control Suite, TD-MPC2) are mentioned in
Appendix A. Their standard open-source licenses and terms of use have been respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The single reference file, provided in the supplemental material to illustrate the
core RWM control algorithm, is documented with inline comments. This serves to illustrate
the key algorithmic ideas.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

22

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects, so IRB approval is not applica-
ble.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large Language Models (LLMs) were not used as a component of the core
methods or experiments in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Model design: implicit latent trajectory for adaptive control
	Problem Formulation
	Decomposition of the value objective
	Forward model predictions as references
	Adaptive control gradients

	Theoretical Guarantees
	Simulations
	Addressing Policy Saturation and Inaction via a Thresholded Action Cost
	Dual-model Design
	Perturbation Experiments
	Correction for Trajectory Deviations
	Robust Motor Control
	High-Dimensional Coordination and a Control-Theoretic Perspective
	Comparison with Domain-Randomized Baselines

	Discussion
	Limitations and Future Work

	Implementation Details
	Results Across All Environments
	Details on the Thresholded Action Cost
	Figure for Comparison with Domain-Randomized Baselines
	Baseline Comparison: TD-MPC2 With and Without Planner
	Theoretical Analysis

