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Abstract

Estimating the per-state expected cumulative rewards is a critical aspect of rein-
forcement learning approaches, however the experience is obtained, but standard
deep neural-network function-approximation methods are often inefficient in this
setting. An alternative approach, exemplified by value iteration networks, is to
learn transition and reward models of a latent Markov decision process whose value
predictions fit the data. This approach has been shown empirically to converge
faster to a more robust solution in many cases, but there has been little theoretical
study of this phenomenon. In this paper, we explore such implicit representations
of value functions via theory and focused experimentation. We prove that, for a
linear parametrization, gradient descent converges to global optima despite non-
linearity and non-convexity introduced by the implicit representation. Furthermore,
we derive convergence rates for both cases which allow us to identify conditions
under which stochastic gradient descent (SGD) with this implicit representation
converges substantially faster than its explicit counterpart. Finally, we provide
empirical results in some simple domains that illustrate the theoretical findings.

1 Introduction

Whether done by averaging over trajectories or some intricate fitting procedure, estimating the
per-state expected cumulative rewards is a critical aspect of every reinforcement learning (RL)
approach. Efficiently learning these values in large complex domains still remains a challenge despite
advances in deep learning. One contributing factor comes from the difficulty of scaling model-based
methods which model the transition probabilities and rewards directly. While known to be sample
efficient, these methods have failed to fully leverage recent advances in deep learning, forcing the
use of less efficient but more scalable model-free methods which try to learn the values directly.
Even when achieving low one-step prediction error, models learned with large highly expressive
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estimators struggle to produce good policies or accurate value estimates in part due to a mismatch in
the objective [11] or compounding errors [24, 22]. To address this, several recent methods propose to
directly optimize predictions derived from the model and leverage modern automatic differentiation
frameworks to propagate errors back to the model parameters [23, 18, 15, 19, 6]. However, despite
promising results shown by these methods, often referred to as end-to-end model-based methods,
there is little formal justification for this idea beyond intuitive arguments.

In many cases, this approach is motivated by the goal of varying the model parameters based on the
current state or observation. Empirical results suggest that such end-to-end model-based methods are
capable of better generalization when observations can be used to formulate smaller subproblems,
for example, by providing a map of the world [23], a description of a goal [19], or the high-level
action being followed [15]. However, as we will show later, even without input dependent models,
this indirect, or implicit, representation of values drastically alters the dynamics of gradient descent
and, thus, the inductive bias, in interesting ways.

To better understand how these end-to-end model-based methods compare to more direct methods,
we formulate these ideas as different parameterization of the same function class. Specifically, by
formulating an end-to-end model-based approach as an implicit parameterization of a linear function,
we can directly quantify differences between this implicit approach to the more common trivial
explicit parameterization where linear weights are stored and learned directly.

Concurrent to our work was a recent paper [14] which focuses on implicit differentiation applied to
end-to-end model based methods. This work compares this approach to model-based methods which
maximize likelihood. Although we focus on the comparison between end-to-end methods and other
direct methods, we view this related work as highly relevant and complementary with ours. Both our
work and theirs aim to better understand the properties of end-to-end model-based methods.

Our contributions are primarily theoretical and aim to provide a theoretical account of the performance
of end-to-end model-based methods. To help in this matter, we also provide some empirical results in
simple illustrative problems which serve to demonstrate properties derived from our analysis. We start
by showing that although the implicit formulation defines a non-linear and non-convex optimization
problem, the implicit linear weights still converge to a global optimum. We continue by showing
that stochastic gradient descent with the implicit parameterization has appealing properties when the
residuals exhibit certain properties. Specifically, we derive the expected changes in the loss and show
a surprisingly fast convergence rate along a specific component of the residual. We then use these
results to discuss conditions under which end-to-end methods might be preferable. We conclude our
theoretical contributions by quantifying the variance-mean ratio updates under both parameterization
and establishing conditions under which the implicit parameterization exhibits significantly better
properties than its explicit counterpart. Finally, we conclude with some empirical results.

2 Framework

While our theoretical results consider a supervised learning setting, the motivation for this work comes
from the policy evaluation problem. In this setting, we assume there is an MDP,M = {S,A, ra, Ta},
with a state space S whose dynamics for each action a ∈ A are described by the transition probabilities
Ta generating rewards as described by ra. We are interested in learning the discounted value function
for a given policy π which is defined as the per-state expected cumulative discounted rewards.
Formally, given a discount factor γ ∈ [0, 1) and state s ∈ S,

V π(s) = EAt∼π(St)

[ ∞∑
t=0

γtR(t)

∣∣∣∣∣ S0 = s

]
= EA0∼π(s) [R0 + γV π(S1) | S0 = s] , (1)

where the second equality leverages the Markov assumption to define the values recursively.

2.1 Linear function approximation

We investigate the differences between parameterizations in the context of linear functions of the
form V̂ (s) = φ(s)>θ, where φ(s) ∈ Rk is some fixed, possibly non-linear, encoding of the state
s ∈ S and θ ∈ Rk represents the linear coefficients. This type of function approximator is common
in reinforcement learning and can be seen as a generalization of the discrete tabular setting, i.e., φ(s)
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corresponds to a one-hot encoding, and has yielded insight in the past, for example, by highlighting
temporal difference learning convergence issues [1] or by relating Bellman error to model error [16].
Additionally, in settings where domain knowledge can be used to generate useful features, these
linear approximations can be significantly more efficient to learn and evaluate, making them not only
theoretically interesting, but often practical as well.

To allow us to compare different parameterizations, we introduce a reparameterization function g
which maps parameters ψ ∈ Ψ to linear feature weights θ ∈ Θ, i.e., θ := g(ψ) and define linear
estimators of the form:

V̂g(s;ψ) = φ(s)>g(ψ) = φ(s)>θ.

Note that while V̂g is always linear in φ(s) and θ, it is not necessarily linear with respect to the
parameters ψ. For this reason, the dynamics of gradient descent can differ significantly across
different parameterization despite all defining equally expressive function classes (if g spans Rn).

2.2 Implicit parameterization

In order to explore the properties of end-to-end model-based methods, we consider a simple instance
of such methods whose model corresponds to a Markov reward chain, i.e., an MDP with a singleton
action. We consider the case where the rewards are encoded as a vector w and the transition
probabilities are kept as a matrix of unnormalized log-probabilities, F , such that σ(F ) corresponds
to a row-stochastic matrix, i.e., σ applies the softmax function on each row. With the probabilities
encoded in this way, we can treat F as an unconstrained matrix which simplifies both the optimization
problem and our analysis. Finally, we define the linear weights θ̂ := g((w,F )) to be the state values
of the Markov reward chain defined by (w,F ).

We note that this formulation closely resembles that of value iteration networks (VIN) [23] with a
few differences. Although VIN allows the model parameters to be conditioned on the state, we wish
to better understand the effect of representing values implicitly, as model parameters, without any
conflating effect introduced by using state-dependent models. Note that any insight in this simpler
framework is likely relevant to the state-dependent model setting since the gradients differ only by the
Jacobian relating model parameters’ differentials to learned parameters’ differentials, i.e., the chain
rule. Additionally, while VIN consider an internal action space similar to the action space of the true
underlying MDP, we limit ourselves to the a singleton action in order to keep the analysis tractable.
We provide a brief explanation for why insight in the singleton case is relevant to the general case
and provide some supporting empirical results in the appendix.

We assume the linear feature weights, θ̂, and the model parameters, ψ, satisfy some constraint
h(θ̂;ψ) = 0 which can be used to implicitly define the function, g, which maps model parameters to
feature weights, i.e., g(ψ) = θ̂. This implicit formulation allows us to analyse how ψ and θ̂ relate
without needing to consider the algorithm used to compute θ̂. For the Markov reward chain case
previously described, we can use (1) to define the constraints as

h(θ̂;w,F ) = w + ησ(F )θ̂ − θ̂, (2)

where η ∈ [0, 1) is the internal discount factor for the modelled Markov reward chain. Note, that
this discount factor η is different than the discount factor γ which defines the true discounted values.
We intentionally use a different symbol to avoid any confusion later on. Also, for clarity, we allow
ourselves to abuse the notation slightly by unpacking the parameters ψ into a vector, w, and matrix,
F , analogous to the rewards and the unnormalized transition log-probabilities, respectively.

2.3 Implicit differentiation

Under appropriate assumptions of continuity, an implicit parameterization can be differentiated just
like any other explicit parameterization through the use of the implicit function theorem. Formally,
for an implicit parameterization g, the derivatives can be defined solely through the derivatives of
the constraint, h(θ;ψ) = 0. That is, the constraint of 0 = h(θ;ψ) = h(g(ψ);ψ) (where θ = g(ψ))
implies that 0 = ∂h

∂θ
∂g
∂ψ + ∂h

∂ψ (by the chain rule), which can be rearranged into

∂g

∂ψ
= −

(
∂h

∂θ

)−1
∂h

∂ψ
.
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Note that this results in differentiation rules that are independent of how the constraints were solved.
In contrast, many methods like VIN will differentiate through the solver’s computation, e.g., several
iterations of value iteration. This approach is often only asymptotically equivalent to the implicit
differentiation formulation and will otherwise alter the gradient dynamics.

3 Dynamics of gradient descent

We start by exploring the dynamics of gradient descent under the implicit parameterization induced
by (2). We show that the gradient descent updates under the implicit parameterization are equivalent
to preconditioned updates under the explicit parameterization. Furthermore, we show that despite no
longer being a convex optimization problem, the gradient dynamics of the implicit parameterized
objective function converges to a global optimum.

To keep the notation clear, we reserve θ to represent parameters of the trivial explicit parameterization
in which the reparameterization function is the identity, gexplicit(x) = x, and θ̂ to represent the linear
weights under an implicit parameterization, e.g., gimplicit(w,F ) = θ̂ where θ̂ is the solution to the
constraint (2). For the remainder of this paper, we will refer to these two parameterizations as the
explicit and implicit parameterization, respectively.

We assume we are given a set of n datapoints D = {(xi, yi) : i ∈ {1, . . . , n}} and a loss L defined
on the linear weights such that

L(θ) =
1

2

n∑
i

(φ(xi)
>θ − yi)2 =

1

2

n∑
i

ri(θ)
2, (3)

where ri(θ) is the residual of the predicted value of xi using the linear weights θ and φ is a fixed
function mapping data points, xi, to feature vectors. Additionally, we assume a fixed sequence of
learning rates (α(t))

∞
t=0 is used. Let the sequence (θ(t))

∞
t=0 represent the linear weights obtained

by using gradient descent to optimize L under the explicit parameterization with initial weights
θ(0) and, similarly, let (θ̂(t))

∞
t=0 be the sequence of implicitly parameterized linear weights obtained

by optimizing L(gimplicit(w(t), F(t))) with corresponding parameters (w(t))
∞
t=0 and (F(t))

∞
t=0, and

initial parameters (w(0), F(0)). Following previous works on gradient dynamics of deep learning
models [17, 4, 5, 8], we also consider the corresponding gradient dynamics d

dtθ(t) and d
dt θ̂(t) under

the gradient flow (where d
dt θ̂(t) is induced by the dynamics of w(t) and F(t)).

We start our analysis by presenting our results describing the gradient dynamics for both parameteri-
zations. This will allow us to compare the two and start building a better understanding of the effects
the implicit parameterization has on the gradient dynamics. First, we define A(t) = I − ησ(F(t)) and
note that because σ(F(t)) always forms a stochastic matrix, we can explicitly write out the implicitly
parameterized linear weight, θ̂(t) = A−1(t)w(t), enabling us to show the following theorem.

Theorem 1. Let P(t) = A−1(t)

(
η2D(t) + I

)
(A−1(t) )> where D(t) = diag(d(t)) and

[
d(t)

]
k

=∑
i

(∑
j
∂σ(F(t))ki

∂[F(t)]kj

θj

)2

, then λmin(P(t)) ≥ c for some time-independent constant c > 0, and

the following holds:
d

dt
θ(t) = −∇L(θ(t)) and

d

dt
θ̂(t) = −P(t)∇L(θ̂(t)). (4)

We provide the proofs for all our results in the supplementary material. From this result, we see that
the updates to the linear weights under the implicit parameterization resemble that of preconditioned
gradient descent under the explicit parameterization where P(t) acts as a preconditioner which
transforms the gradient before updates. Ideally, the preconditioner would be chosen such that it
accelerates convergence for some class of problems, for example, by efficiently approximating
the inverse Hessian thus resulting in updates approximating Netwon’s method. This potential to
greatly accelerate convergence under the right circumstances is why our analysis will revolve around
understanding the properties of P(t).

We begin by noting that P(t)’s positive definiteness implies that the weights of the implicit parameter-
ization converge to a global minimum from any initialization.
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Corollary 1. For any initialization θ̂(0), the gradient dynamics d
dt θ̂(t) converges to a global minimum.

It is important to note that the loss landscape under the implicit parameterization is generally non-
linear and non-convex. As a consequence, convergence results applicable to linear regression cannot
be trivially applied to our setting; additional properties of the optimization dynamics are required,
such as those presented in Theorem 1. Thus, we proved a non-trivial global convergence in non-
convex optimization for reinforcement learning, whereas related works studied it for deep learning
[7, 9, 10, 26].

3.1 Properties of stochastic gradient descent

We now turn our focus towards stochastic gradient descent (SGD), e.g., gradient descent on sampled
mini-batches of training data, and present some additional properties of both parameterizations
considered. In this section, we first define some additional notation and update rules to accommodate
the SGD setting. We then quantify the expected improvement of the loss and show that both cases
have comparable convergence rates.

We start by defining a sequence of random averaged loss functions L(0), L(1), . . ., corresponding to
the loss L defined in (3) evaluated on a random subset of the data D. Formally,

L(t)(θ) =
1

2|D(t)|
∑

(x,y)∈D(t)

(φ(x)>θ − y)2,

where D(t) is a random subset of the data D of size k drawn without replacement. In this setting,
gradients are taken just as in gradient descent but using L(t) instead of the full loss.

Before presenting our results quantifying the dynamics of SGD with the explicit and implicit
parameterization, we need the following assumptions on the feature matrix.
Assumption 1. Using the notation X . Y to mean X < cY for some constant c > 0, we assume
the features φ(xi) satisfy

• ‖φ(xi)‖2 . 1 for 1 ≤ i ≤ n.

• Let X = [φ(x1), φ(x2), · · · , φ(xn)], the sample covariance matrix X>X has bounded
norm ‖X>X‖2 = O(1), and ‖X>1‖22 & n.

Theorem 2. Given a sequence of learning rates (α(t))t, for SGD with the explicit parameterization,
the expected decrease of the loss function satisfies

E[(L(θt+1)− L(θ(t)))|θ(t)] = −
α(t)

n

∥∥r(θ(t))
∥∥2
2

+O(α2
(t)) & −

α(t)

n
L(θ(t)) +O

(
α2
(t)

)
,

where r(θ) =
∑
i ri(θ)φ(xi).

If αt = O(1), in expectation, the convergence rate for the SGD with explicit parametrization is
O(1/n) which makes it slow, taking O(n) steps to converge. Note that this result isn’t novel and
follows from standard results of convex optimization [3], but is stated here to facilitate comparisons.
For the implicit parameterization, we recall from Theorem 1 (and Lemma ??) that the GD dynamics
are given explicitly in terms of the matrix P(t). We state formally a similar result for the expected
SGD dynamics:
Theorem 3. Given a sequence of learning rate (α(t))t, for SGD with the implicit parameterization,
the expected decrease of the loss function satisfies

E[(L(θ̂t+1)− L(θ̂(t)))|θ̂(t)] = −
α(t)

n

〈
P(t)r(θ̂(t)), r(θ̂(t))

〉
+O(α2

(t)),

where r(θ) =
∑
i ri(θ)φ(xi).

3.2 Conditions favoring implicit parameterization

An important takeaway of our results so far is that the matrix P(t) is critical in understanding the
effects of using such an implicit parameterization, and, more importantly, in understanding when
it would be expected to outperform its explicit counterpart. For this reason, we first examine some
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properties of P(t). To this end, we first must highlight some general properties of row-stochastic
matrices.

Recall that, by construction, σ(F(t)) is an irreducible row-stochastic matrix for any finite F(t). As a
result, the Perron-Frobenius theorem tells us that the largest eigenvalue (in absolute value) of σ(F(t))
is 1 with all other eigenvalues strictly smaller and there exists an eigenvector v(t) such that

σ(F(t)) = 1v>(t) +M(t), v>(t)1 = 1,M(t)1 = 0, v>(t)M(t) = 0,

where v(t) can be interpreted as the stationary distribution of a Markov chain with transition proba-
bilities σ(F(t)). This observation allows us to decompose A−1(t) and identify its dominant terms:

A−1(t) =
(
I − ησ(F(t))

)−1
= I +

∑
k≥1

ηk1v>(t) +
∑
k≥1

ηkMk
(t) =

η

1− η
1v>(t) +

∑
k≥0

ηkMk
(t).

Since all eigenvalues of M(t) are strictly less than 1, we see that for an arbitrary vector x

A−1(t)x =
1

1− η
1
(
v>(t)x

)
+O(1), (5)

as η approaches 1. This decomposition of A−1(t) allows us to see that the vectors 1 and v(t) also
dominate the dynamics induced by P(t). Specifically, we see that

P(t) = A−1(t)

(
η2D(t) + I

)
(A−1(t) )> =

1

(1− η)
21v

>
(t)

(
η2D(t) + I

)
v(t)1

> +O
(

1

1− η

)
.

Recall that the expected improvement under the implicit parameterization is dominated by
〈P(t)r(θ̂(t))r(θ̂(t))〉. This means that our results suggest that the component of the residuals, r(θ̂(t))

along the 1 direction, i.e., 1>r(θ̂(t)), plays a critical role in determining the performance under the
implicit parameterization. We use this observation to better understand under which conditions we
might expect the implicit parameterizations to perform better. We start by formally quantify the
dynamics of the component of the vector of residual along this direction with the following theorem.

Theorem 4. Let r‖(θ̂) be the component of the vector of residuals parallel to the 1 direction, i.e.,
r(θ̂) = r‖(θ̂)1 + r⊥(θ̂), then

E[r‖(θ̂t+1)− r‖(θ̂(t))|θ̂(t)] = −
α(t)r

‖(θ̂(t))

(1− η)
2 v>(t)

(
η2D(t) + I

)
v(t)
‖X>1‖22

n
+O(α2

(t) +
1

1− η
)

. −
α(t)r

‖(θ̂(t))

(1− η)
2 .

From this result we can conclude that this component of the residual converges very rapidly under
the implicit parameterization. For instance, given αt = O(1), the expected convergence rate along
the 1 direction is O(1/(1− η)2), which is substantially faster than the more general rate, O(1/n),
for the explicit and implicit case seen in Theorem 2 and 3, respectively. Moreover, this suggest that
increasing η will accentuate this effect.

Intuitively, this suggests that the implicit parameterization is favored when the residuals have similar
magnitudes and sign, such as when every state is being over or underestimated. In practice, this is not
uncommon since the estimates are often initialized to similar values, e.g., V̂ (s) ≈ 0. Additionally,
the true state values are typically highly correlated, making this systemic error all the more likely.

To further understand how the properties of the two parameterizations differ, we continue our analysis
by examining how the variance of the SGD updates compares to the magnitude of their expectation
which we quantify with the ratio of the variance and the squared mean update. If the variance is large
compared to the expected updates, then the optimization is likely to spend a significant amount of time
bouncing around, leading to slower convergence [2, 12, 25]. For this reason, it is desirable to have this
ratio be as small as possible. We consider this variance-mean ratio instead of just the variance itself
to avoid penalizing cases where the variance is large due to large expected improvements. In the rest
of this section, we compare the performance of SGD with the explicit and implicit parameterization
through this ratio which we state formally in the following theorem.
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Theorem 5. Given n data points and a batch size of k, the (variance)/(mean square) ratio of SGD
updates is as follows.

1. For the explicit parametrization,

E[
∥∥∆θ(t)

∥∥2
2
]∥∥E[∆θ(t)]
∥∥2
2

=
n(k − 1)

k(n− 1)
+

(n− k)n

k(n− 1)

∑
i r

2
i ‖φ(xi)‖22∥∥r(θ(t))

∥∥2
2

.

2. For the implicit parametrization,

E[‖∆θ̂(t)‖22]

‖E[∆θ̂(t)]‖22
=
n(k − 1)

k(n− 1)
+

(n− k)n

k(n− 1)

∑
i〈1, riφ(xi)〉2

(
∑
i〈1, riφ(xi)〉)2

+O(1− η).

Once more, we see the 1 direction play an important role in determining the behavior of the implicit
case. Given the importance of the choice of features, φ, it can be somewhat difficult to understand the
implications of these results. To help build intuition, we conclude by examining the specials case
when using tabular values where φ corresponds to a one-hot encoding with the following corollaries.
Corollary 2. For the SGD with explicit parametrization and one-hot encoding the (variance)/(mean
square) ratio of each noisy gradient update is given by

E[
∥∥∆θ(t)

∥∥2
2
]∥∥E[∆θ(t)]
∥∥2
2

=
n

k
.

We see that under the explicit parametrization, the (variance)/(mean square) ratio is given by n/k, and
is fixed throughout training. In contrast, Theorem 5 tells us that when using a one-hot encoding under
the implicit parameterization, the dependency on the residual remains and will likely vary throughout
the optimization. Similar to before, we can use these observations to help us better understand
the conditions under which the implicit parameterization might exhibit preferable properties. The
following corollary provides some insight as to what some of these conditions might be.

Corollary 3. Assume the residuals are bounded such that 0 < rmin ≤ [r(θ̂(t))]i ≤ rmax for all
1 ≤ i ≤ n, then the (variance)/(mean square) ratio under the implicit parameterization is

E[‖∆θ̂(t)‖22]

‖E[∆θ̂(t)]‖22
. 1 +

1

k

(
rmax
rmin

)2

.

This result tells us that we should expect a considerably better (variance)/(mean square) ratio under
the implicit parameterization when the ratio, rmax/rmin, of the largest and the smallest residual
among the n data points is small, as is the case when residuals are similar to each other. For instance,
a “balanced” residuals such that (rmax/rmin)2 = O(1) means that the (variance)/(mean square)
ratio of SGD updates is also O(1), whereas it would be O(n) under the explicit parameterization.
This tells us that we can expect a notable benefit of using the implicit parameterization instead of the
explicit one under balanced residuals. Finally, we note that this observation mirrors well the results
from Theorems 2 and 4 which say that for a residual with a dominant 1 component, the convergence
rate with the implicit parameterization is roughly n times faster. These results strongly suggest that
the implicit parameterization might be preferrable in situations where the residuals are expected to be
highly correlated.

4 Empirical results

To illustrate our theoretical results, we evaluate the two parameterizations by fitting value functions
from data collected offline. Specifically, we consider a setting where value targets are generated
by rolling out a fixed stochastic policy and are thus noisy and imperfect similar to what might be
encountered in applications of reinforcement learning. When evaluating, the residual is computed
using the true values or, when dealing with a continuous state space, using unseen trajectories. All
states in a trajectory are used with corresponding value targets, yi, computed from the empirical
discounted return. Consequently, duplicate states might be present in the dataset and might be given
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Figure 1: The effect of the reward offset on the components of the residual

different targets. All results show here except for Figure 2 consider the residual after 300 training
steps. Since the purpose of these experiments are to illustrate our theoretical results, we leave the
temporal difference learning case to future work in which we hope to extend our results.

To ensure any observed differences are caused by differing dynamics and not by differing initialization
strategy, we use the same 20 seeds for both parameterizations and initialize parameters such that
identical seeds result in the same initial linear weights, θ and θ̂. The shaded areas in our figures
visualize the sample standard deviation across the seeds. For all experiments, we used a batch size
k = 25. We ran these experiments with several combinations of learning rates and internal discounts
but only present a few representative results here. Additional results and implementation details can
be found in the appendix. All other implementation details, data and code are publicly available1. We
consider three simple, illustrative domains: a chain MDP, the four rooms domain and the mountain
car domain, which we describe below.

Chain MDP: a two-action MDP which requires an optimal agent to repeat the “correct” action until
it has reached the end of the chain where the agent receives a large reward, +10, before being sent
back to the start of the chain. At any point along the chain, the agent can execute the “wrong” action
and collect a small reward, +1, before being prematurely sent back to the beginning. The chain MDP
has 10 states along the good path and 1 extra transient state when executing the wrong action. States
were represented with one-hot encoding and γ = 0.9 was used. Trajectories followed an ε-greedy
policy which picks a random action with probability ε = 0.1 and an optimal action otherwise.

Four rooms [21]: a gridworld navigation task with obstacles dividing the world into 4 connected
rooms. The agent can attempt to move in either of the four cardinal directions but will remain
stationary with probability 1/3. The goal is a terminal state with a single +1 reward situated at (7, 1).
As before, we use a one-hot encoding, an ε-greedy policy with ε = 0.1, and γ = 0.9.

Mountain car [13, 20]: a domain in which an agent must accumulate momentum by driving back
and forth in order to get an underactuated car over a hill by applying three possible actions: idle,
forward or backwards force. Each step results in a −1 reward except when transitioning to a terminal
state. We encode the continuous state space using a uniformed 20x20 grid of normalized radial
basis functions. Trajectories are sampled using an ε-greedy energy pumping policy which picks a
random action with probability 0.1 and otherwise applies force in the direction of the car’s velocity.
Furthermore, in lieu of the true analytical values, we generate an additional test dataset and evaluate
using similar but likely unseen states. In this domain, we use a discount factor γ = 0.99.

We consider a set of experiments that observe the change in the performance of both parameterizations
as the rewards are offset by a constant. The purpose of these experiments is two fold: 1) to demonstrate
the significance of the 1 component of the residual in a policy evaluation setting, and 2) to illustrate
how increasing this component of the residual severely degrades the performance under the explicit
case while having a lesser effect under the implicit parameterization as our theory would suggest.

The scale and skew of state values can have a significant impact on the learning performance. While
these effects can be mitigated in a supervised learning setting, existing strategies aren’t always
applicable to a RL setting where values might not be known beforehand such as when using a
temporal difference learning based approach. For this reason, it’s not uncommon for values to be
offset away from zero in unison making the 1 component more significant.

1https://github.com/gehring/implicit-estimators

8



0.0 0.2 0.4 0.6 0.8 1.0
Reward Offset

2

4

6

8

10

12

||r
|| 2

Chain MDP

0.0 0.2 0.4 0.6 0.8 1.0
Reward Offset

0

10

20

30

40

50
Four Rooms

0.0 0.2 0.4 0.6 0.8 1.0
Reward Offset

0

100

200

300

400

500

Mountain Car

Parameterization
explicit
implicit

Figure 2: The effect of the reward offset on the norm of the final residual using η = 0.95
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Figure 3: The effect of η on the final residual under the implicit parameterization. The vertical dotted
line represents the true discount factor used to generate values. Note that the x-axis uses a logit scale.

We illustrate this by adding a constant offset to the reward while keeping policies and transitions
unchanged. In the case of mountain car, varying this offset from 0 to +1 spans the two most common
reward formulations for shortest-path like problems, the uniform step cost and the sparse reward
approach where reaching the goal is the only non-zero reward. Figure 1 shows how the reward offset
affects the residual by decomposing the residual at the start of training into two components: its
projection on the 1 direction and the norm of the remainder. We see that the reward offset allows us
to manipulate the relative magnitude of 1 component enabling us to illustrate our theory as discussed
bellow.

We start by observing how changes in the 1 component affect each parameterizations. Figure 2
compares the residual at the end of training and show that, unsurprisingly, increasing the norm of
the initial residual decreases the final performance. However, we also see a significant difference
in the severity of this effect between the two cases. As established by Theorem 4, the implicit
parameterization has a significant advantage in convergence rate of the residual’s 1 component when
compared to the explicit case. Thus, our theory predicts that the implicit parameterization would be
less sensitive to changes in this component which is exactly what our empirical results show.

Finally, we conclude our empirical contributions by illustrating the role of η in reducing the sensitivity
to the 1 component of the residual. Figure 3 plots the final residual of each η and compares between
the different offsets. We can compare this sensitivity under different η’s by looking at the relative
distance between the plots of a given reward offset. Note that, as is the case for the Chain MDP, the
least sensitive η isn’t necessarily the best performing η. In addition, the best η isn’t necessarily equal
to the true underlying discount factor, γ. This raises several interesting questions not covered by our
theoretical results, such as how to select the “best” η, which we hope to explore in future work.

5 Conclusion

This work serves as a first step towards better understanding the properties of end-to-end model-based
methods. This was done by first formulating a simple instance of such methods as an implicit
parameterization of a linear function and analysing the dynamics of gradient descent under this
parameterization. We showed that despite resulting in a non-linear and non-convex optimization
problem, the implicitly parameterized linear weights still converges to a unique global optimal.
Furthermore, we quantified the convergence rate of the residual under the implicit parameterization
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showing a surprisingly fast convergence rate along the 1 direction. We then derive similar conclusions
by deriving the ratio of the variance and squared mean SGD updates and identifying some conditions
under which the implicit parameterization exhibits a significantly faster convergence rate than its
explicit counterpart. We conclude our contributions with some empirical results which illustrate some
of the phenomena identified in our theoretical results.

Although our analysis is restricted to a simple Markov reward chain model, we believe our results are
likely to generalize to the full MDP setting since the subgradients of these two formulations have
similar forms; both can be seen as backpropagating through a Markov reward chain. This is because
the subderivatives of the Bellman optimality constraints only depend on the transitions under the
optimal policy, i.e., the Markov reward chain induced by the optimal policy. We hope to extend our
results to the more general MDP case in future work.
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