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Abstract
In this work, we show that the extra-gradient and optimistic gradient descent-ascent methods,
arguably the de facto algorithms for solving variational inequalities (VIs) and saddle-point opti-
mization problems, converge in iterates at a rate strictly faster than the established lower bound of
Ω(1/

√
T ) in all monotone smooth variational inequalities. These rates apply to both constant and

line-search-free, AdaGrad-type step sizes, where no decrease property is generally guaranteed. We
believe these results are especially noteworthy in light of recent lower bounds which established
that, for any fixed time horizon T , an adversary could construct a monotone Lipschitz VI in which
the the iterate at time T is bounded Ω(1/

√
T ) away from the solution. Our results imply that, even

on such adversarially constructed examples, the extra-gradient type method’s slow convergence is
only transitory.

1. Introduction

Variational inequalities (VI) are a general and flexible framework for “optimization beyond mini-
mization”. They capture large classes of optimization problems, including saddle point computation,
equilibrium finding in multiplayer games, fixed-point computation, and complementarity prob-
lems [16, 46]. These classes of problems arise naturally in machine learning, for example in GANs
[23], robust reinforcement learning [41], and other adversarial models. The case of monotone VIs
is especially important, since these can be solved in polynomial time while capturing a number of
useful applications, including computation of Nash equilibria in two-player zero-sum games, and
minimization of convex functions. Positive complexity results for monotone VIs were first given
by [27] constructively, who showed that the extra-gradient (EG) method—a two-step variant of
projected gradient descent—produces iterates whose average converges to a solution. The demand
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FASTER RATES FOR EXTRA-GRADIENT ITERATES

of solving more complex problems steming from online convex optimization, and convex/ concave
min-max problem triggered a wide range of literature like [50], [45], [13] and references therein.

On the other hand, the Extra-gradient and their optimistic variants have a long history in the
field of optimization. The Extra-gradient, is known to achieve an optimal rate of order O(1/T ) in
monotone VIs. This method has been further extended in [35, 38] by introducing Mirror-prox and its
primal-dual counterpart Dual-extrapolation. However, all these methods require two oracle calls per
iteration (one for the extrapolation and one for the update step) which makes them more expensive
than the standard Forward/Backward methods. The first issue to address this issue was Popov’s
modified Arrow–Hurwicz algorithm [42]. To that end, several extensions have been proposed such as
Past Extra-Gradient (PEG) of [10, 19], Reflected Gradient (RG) of [9, 11, 29], Optimistic Gradient
(OG) of [12, 33, 34, 40] and Golden Ratio method of [30]. Since then, several generalizations and
improvements have been proposed over the EG method, and several authors have set out to strengthen
EG analysis beyond the case of average iterates. Two prior results are especially important in the
context of our paper.

• Tseng [51] showed that, under certain conditions on the structure of the VI (or being more
precise a favorable geometry of the problems domain), the extra-gradient method guarantees
asymptotic convergence to a solution of the VI at a speed of convergence at least exponentially
fast with respect to the number of iterations of the method. This result applies in particular in
the case of VIs with affine operators and polyhedral feasible sets, as is the case in normal-form
and extensive-form games.

• A recent paper by Golowich, Pattathil, Daskalakis, and Ozdaglar [22] showed that, among the
class of L-Lipschitz VIs with solution norm bounded by D, for any number of iterations T an
adversary could always construct a VI in the class such that the approximation of the solution
obtained by EG (or, in fact, any method from 1,2-SCLI[3] after T iterations is never better
than Ω(LD/

√
T ).

Contributions In seeming defiance to the paper by Golowich et al. [22] discussed above, in this
paper we show the following result:

In all monotone Lipshchitz VIs, EG and OGDA converge (in iterates) strictly faster than O(1/
√
T ).

We remark that, unlike the result of Tseng [51]’s, our results apply to all monotone Lipschitz VIs
under any arbitrary convex domains, although such generality comes at the cost of the linear rate
shown in that paper. We suspect that such a gap can hardly be overcome, given the generality of our
setting. One might wonder why our result is not precluded by the recent lower bound of Golowich
et al. [22]. The resolution is in the following observation: our results says that, for any VI, there exists
a time instant T (dependent on the specific VI) after which EG exhibits asymptotic convergence
faster than O(1/

√
T ). Golowich et al. [22]’s result, on the other hand, says that, for any T , there

exists a VI (dependent on the specific T ) such that EG exhibits slow convergence up to time T . Our
results imply that, even on such adversarially-constructed examples, extra-gradient’s (and OGDA)
slow convergence can only be transitory. This results completes our understanding of these two
classical methods, namely the (EG)/(OGDA) algorithms regarding their last iterate performance.
Furthermore, we provide a novel framework which additionally allows us to tackle "non-decreasing"
methods with controllable error.

In a nutshell, our contributions can be summarized as follows.
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1. We provide a refinement of the existing work on last iterate convergence rates and provide a
strictly faster speed of convergence of order o(1/

√
T ) for (EG)/(OGDA).

2. We provide a last iterate convergence rate of the same order for a family of one fly adaptive
step size family in the sense of [15]. As far as our knowledge goes this is the first result
that provides the last iterate rate for these types of adaptive step sizes. More importantly,
we establish a faster than the 1/

√
T by employing a common adaptive mechanism for both

methods.

3. We provide some initial numerical evidence of our theoretical results on an actual Poker game
in the Appendix.

2. Problem Setup and Notation

In this preliminary section, we shall illustrate the generic variational inequality problem formulation
along with its interplay with popular “convex-structured” problems as its special cases. Moreover,
we introduce the main performance criterion for the case of (VI), in view of the lack of a particular
potential as in the case of the simple minimization framework.

2.1. The Variational Inequality Problem

Our main objective is to solve the following variational inequality given by the following abstract
formulation:

Find x∗ ∈ X such that ⟨A(x∗),x− x∗⟩ ≥ 0 for all x ∈ X (VI)

where X is a convex and closed (but not necessarily bounded) subset of Rd. For the case where
X = Rd, the (VI) problem boils down to the classical problem of finding a zero-equilibrium point-of
A, i.e.:

Find x∗ ∈ Rd such that A(x∗) = 0 (Zer)

Moreover, in terms of structural and regularity conditions concerning the defining operator A : X →
Rd, we make the following blanket assumptions:

• Monotonicity: ⟨A(x)−A(x′),x− x′⟩ ≥ 0 for all x,x′ ∈ X .

• Lipschitz continuity: ∥A(x)−A(x′)∥2 ≤ L∥x− x′∥2 for all x,x′ ∈ X .

The (VI) formulation offers a versatile representation that embraces multiple structured problems
as its special cases. Let us bring about some of the prominent examples which are covered by this
powerful unifying framework.

2.2. Restricted Gap Function and the Oracle Model

To that end, a widely used performance metric to evaluate a candidate solution of (VI) is the so-called
restricted gap function:

GapC(x̂) = sup
x∈C

⟨A(x), x̂− x⟩, (Gap)

where the “test domain” C is a non-empty compact subset of Rd. This particular construction of the
merit function characterizes the solutions of the (VI) through its zeros.
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Proposition 1 Let C be a non-empty, convex and compact subset of X . Then, the following hold
true: GapC(x̂) ≥ 0, whenever x̂ ∈ C. Conversely, if GapC(x̂) = 0 and C contains a neighborhood
of x̂ in X , then x̂ is a solution of (VI).

The above is a generalization of the merit function by [37] (see also [1, 39] and references therein)
for the general convex and compact test domains. We defer the proof of the above to Appendix B.

From an algorithmic point of view, our aim is to solve (VI) using iterative methods that require
access to a so-called first order oracle (FO) [36]. This means that, at each stage of the algorithmic
process, the optimizer can query some black-box mechanism that returns the operator A at the
queried point. In other words, this mechanism has no prior knowledge of the operator and/or any
favorable geometrical or regularity properties which A may or may not possess and only computes
the value of A at a particular point in the problem domain X .

2.3. Overview of the methods and their last iterate performance

Perhaps the most popular numerical method for games and variational inequalities (VIs) is the
so-called extra-gradient (EG) algorithm, defined by the following recursive formula:

x(t+1/2) := ΠX
(
x(t) − γ(t)A(x(t))

)
, x(t+1) := ΠX

(
x(t) − γ(t)A(x(t+1/2))

)
, (EG)

initially introduced by [27] and later developed by [35, 38]. Heuristically, the main idea is that,
at each t = 1, 2, . . . , the oracle is called at the algorithm’s base state x(t) to generate an intermediate,
leading state x(t+1/2); subsequently, the base state is updated with oracle information from the leading
state x(t+1/2) and the process repeats. In this way, (EG) essentially tries to “anticipate” the change of
A along a projection step, and to exploit this “forward” information. This anticipatory mechanism,
along with the gradual variation of the operator A, hence the need for Lipschitz continuity, leads to a
faster convergence rate than ordinary forward-backward/gradient descent schemes in the classical
analysis of the algorithm [26, 35, 37]. Furthermore, the so-called optimistic version of (EG) was
introduced by [42] and is defined as follows:

x(t+1/2) := ΠX
(
x(t) − γ(t)A(x(t−1/2))

)
, x(t+1) := ΠX

(
x(t) − γ(t)A(x(t+1/2))

)
. (OGDA)

Note, that for this case the leading state is generated by reusing the previous oracle query and
therefore it exhibits the advantage of requiring only one oracle call per iteration in contrast to the
(EG). Regarding the convergence rate guarantees, the typical analysis, considers either the time
average or the ergodic average as the respective output of (EG)/(OGDA),i.e.,

x̄(T+1/2) =
1

T

T∑
t=1

x(t+1/2) and x̃(T+1/2) =

( T∑
t=1

γ(t)
)−1 T∑

t=1

γ(t)x(t+1/2) (1)

In that case, an order optimal O(1/T ) rate relative to the (Gap) is obtained. On the other hand,
the behaviour of the actual iterates x(t+1/2),x(t), was only studied in the context of asymptotic
convergence to a solution (see, [2, 25, 32]); and hence a particular rate relative to the (Gap) was
largely unknown. This open problem has been tackled in [8, 21, 22, 24] for the specific case of (EG)
run with a constant step size γ ≤ 1/L.
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If one considers the so-called tangent residual:

r(x) = min
ζ∈NX (x)

∥A(x) + ζ∥2 (2)

=
∥∥Ax+ΠNX (x)(−A(x))

∥∥
2

(3)

with NX (x) being the normal cone of X at x:

NX (x) = {ζ ∈ Rd |
〈
ζ,x′ − x

〉
≤ 0 for all x′ ∈ X} (4)

Proposition 2 [8] Assume that x(t+1/2),x(t) are the iterations generated by (EG)/ (OGDA) run
with a constant step size γ = 1/2L. Moreover, assume that C is a compact, non-empty subset of X
which contains a neighborhood of a solution of (VI). Then, the following estimation holds:

GapC(x
(T+1/2)) ≤ DL√

T

Regarding the tightness, the respective performance is matched by a respective "uniform" lower
bound on all (VI) problems associated with a monotone and smooth operator A for a whole class of
1-SCLI algorithms, introduced by [3], which includes the template (EG). More precisely, considering
for simplicity the unconstrained (Zer) problem, and setting Lip(L) is the set of all monotone and L
Lipschitz constant operators, in [22] one has:

sup
A∈Lip(L)

∥∥∥A(x(T ))
∥∥∥2
2
≥ DL2

20T

Similarly, the lower bound holds also for the case of (OGDA). We investigate in more detail the
fragility of these lower bounds for the case where a fixed operator A in appendix D is used.

3. Faster Rates for (EG)/(OGDA)’s Last Iterate Convergence

Having all this at hand, we aim to address the following fundamental issue: Imagine that instead of
considering a uniform, in all Lipschitz and monotone (VI), worst-case lower bound, we face a fixed
smooth variational inequality problem. Then we seek to answer the following question:

Is it possible to provide provable faster rates which outperform the existing "uniform" lower bounds?

More precisely, given a Lipschitz mnonotone (VI) problem should we expect a better performance
for (EG)/(OGDA) templates than the 1/

√
T lower bound in the long-run?

We answer this question affirmatively by providing a strictly faster rate of order o(1/
√
T ). In

doing so, we begin with the simplest case of (EG)/(OGDA) methods run with a constant step size;
more precisely where the optimizer has access to an exact estimation of the Lipschitz constant of A.
This intermediate result refines existing upper bounds obtained in the existing works of [8, 22].

Moving forward, we present the full power of our results to more practise-oriented scenarios,
where the calculation of the Lipschitz constant of A may become a significant computational
bottleneck, we first propose a family of line-search free, on-the-fly step size policies in the sense of
[43, 44]. In turn, we extend the last iterate faster convergence rate for the said step size.
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3.1. Faster Convergence Rate with Constant Step Sizes

In this section, we primarily consider the case where the (EG)/(OGDA) are run with a constant step
size upper bounded by 1/L. In particular, we assume that the respective step size satisfies:

γ(t) ≡ γ ≤ 1/
√
32L (Constant)

To that end, the following theorem holds:

Theorem 3 Assume x(t+1/2),x(t) are the iterates generated by (EG)/ (OGDA) run with a constant
step size policy satisfying (Constant). Moreover, assume that C a non-empty, convex and compact
subset of X which contains a neighborhood of a solution of (VI). Then, the following hold:

lim
T→+∞

√
T GapC(x

(T )) = lim
T→+∞

√
T GapC(x

(T+1/2)) = 0

Furthermore, we have:

lim inf
T→+∞

√
T log T GapC(x

T ) = lim inf
T→+∞

√
T log T GapC(x

T+1/2) = 0. (5)

The above theorem provides a more fine-grained and strictly faster asymptotic convergence rate
compared to the one established in [8, 22].

3.2. Last Iterate with Adaptive Step Sizes

We turn now our attention towards establishing our main result; namely the last iterate convergence
rate guarantees for (EG) run with an adaptive step size inspired by line-search free AdaGrad step
size [2, 15, 31].

In particular computing the exact Lipschitz constant of A in order to properly fine-tune the
respective step size, can become a very tedious task. Moreover, even the slightest miscalculation of
L may lead to catastrophic oscillations of the methods and cycling phenomena. To that end, we shall
study a family of adaptive step sizes of the following form:

γ(t) =

(
γ(0) +

t−1∑
j=1

j
∥∥∥x(j+1) − x(j+1/2)

∥∥∥2
2

)−1/2

(Adapt)

where γ(0) > 0. Having established the main ingredients, we are in a position to present the full
potency of our analysis. More precisely, we show that (EG) run with (Adapt) exhibit a last iterate of
order o(1/

√
T ), if one considers (Gap) as a performance metric. Formally, this is captured by the

following theorem.

Theorem 4 Assume x(t+1/2),x(t) are the iterates generated by (EG) or (OGDA) run with the
adaptive step size policy (Adapt). Moreover, assume that C a convex and compact subset of X which
contains a neighborhood of a solution of (VI). Then, the following hold:

lim
T→+∞

√
T GapC(x

(T )) = lim
T→+∞

√
T GapC(x

(T+1/2)) = 0

Furthermore, we have:

lim inf
T→+∞

√
T log T GapC(x

(T )) = lim inf
T→+∞

√
T log T GapC(x

(T+1/2)) = 0 (6)

6



FASTER RATES FOR EXTRA-GRADIENT ITERATES

Our analysis builds around the following inequalities for (EG)/(OGDA) run with a generic, non-
negative, non-increasing step size policy γ(t). This general approach provides in addition a unifying
framework for examining (EG)/(OGDA) run for both constant and adaptive step size policies. To do
this, we start by showing a novel template for (EG) relative to the tangent residual (3).

The second step is to prove a quasi-Fejér type inequality [6] for the "weighted" tangent residual
sequence (tγ(t)r(t))t∈N for the case of (EG) run with a non-negative, non-increasing step size γ(t).

Therefore the final step would be to show that the employed step size is bounded away from
zero. While for the case of a constant step size is self-evident, we additionally show that this desired
property is also satisfied by (Adapt). We defer the particular technical details to the Appendix.

4. Conclusions

In this paper, we have provided faster convergence rate guarantees for the popular (EG) run with
both constant and adaptive step size policies. A fruitful direction is to further investigate the fragility
of the respective lower bound in the long run. This line of research may provide further theoretical
evidence which may bridge the worst-case theoretical guarantees with actual practical performance.
We defer this open questions to future work.
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Appendix A. Further related work on adaptive methods for (VI)

The literature on the topic is too vast to be summarized here. We mostly focus on the papers that are
strongly related to one or more aspects of our results.

Theoretical guarantees which eventually outperform the respective lower bounds were first
investigated for the case of simple smooth convex minimization in [4]. In that regard, a faster rate
o(1/T 2) is established for the case of convex smooth minimization, which seemingly outperforms
the lower bound 1/T 2, if the iterations of the algorithm exceed the dimension of the respective
problem. This effect takes place because the construction of the respective “bad instances” in [36]
heavily depend on the underlying dimensionality of the problem. Therefore, whenever the method
iterations go beyond this threshold may exhibit faster rates On the other hand, this is not self-evident
for our case. For example,(EG) remains unclear whether it can achieve faster asymptotic rates if we
consider the time average as the method’s output since even in the most favorable case one must

12
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always suffer the ∥x(1) − x∗∥22/T ; this prohibits an asymptotically faster rate. That being said,
for the case of the last iterate, our result is obtained by attacking the uniformity upon which the
respective lower bound of (EG)/(OGDA) is built in [3, 22]. More precisely, instead of considering
the lower bound in the monotone and Lipschitz continuous set (VI), we treat the performance of the
(EG)/(OGDA) methods in each individual (VI).

On the other hand, other works focus on moving away from the slow last iterate performance
of (EG)/(OGDA) by introducing novel algorithmic schemes, mostly based on the so-called Halpern
iteration concept. More precisely, [53] suggests an anchored version of (EG) that is capable of
performing as O(1/T ) for unconstrained problems. Furthermore, in [14] a rate of order O(log T/T )
is established for the Halpern iterates. Finally, a recent line of work focuses on establishing faster
o(1/T ) rates in [7, 47] for non-adaptive, beyond (EG) type methods. That being said, all these results
go beyond the scope of this paper since they do not aim to establish new insights regarding any
refinements for the actual last iterate of the traditional (EG) and (OGDA) algorithms. Furthermore,
they do not study the convergence behaviour of AdaGrad type step size policies.

Several works have been performed to improve the guarantees of the original (EG)/(MP) template.
All of them consider a time-average iterate as their output. We review some of these works below.
Because many of these works appear in the literature on VI [16], we also use this language in the
sequel. In unconstrained problems with an operator that is locally Lipschitz continuous (but not
necessarily globally so), the (GRAAL) [30] achieves convergence without requiring prior knowledge
of the problem’s Lipschitz parameter.

However, (GRAAL) provides no rate guarantees for non-smooth problems – and hence, a fortiori,
no interpolation guarantees either. By contrast, such guarantees are provided in problems with a
bounded domain by the GMP algorithm of [49] under the umbrella of Hölder continuity.

Still, nothing is known about the convergence of (GRAAL) / (GMP) in problems with singularities
(i.e. when the vector field defining the problem blows up at a boundary point of the problem domain).
Singularities of this type were treated in a recent series of papers [1, 18, 48] using a “Bregman
continuity” or “Lipschitz-like condition ”. These methods are order-optimal in the smooth case,
without requiring any knowledge of the problem’s smoothness modulus. On the other hand, like
(GRAAL) (but unlike (GMP), they do not provide any rate interpolation guarantees between smooth
and non-smooth problems. Another method that simultaneously achieves an O(1/

√
T ) rate in

non-smooth problems and an O(1/T ) rate in smooth ones is the recent algorithm of [5].
The (BL) algorithm employs an Adagrad-like adaptive step size policy which allows the method

to interpolate between the two regimes –and this, even with noisy gradient feedback. On the negative
side, the (BL) algorithm requires a bounded domain with a diameter (Bregman) known in advance;
as a result, its theoretical guarantees do not apply to unbounded problems.

Appendix B. Preliminaries

We consider a generic monotone variational inequality (VI) problem

find x∗ ∈ X such that ⟨A(x∗),x− x∗⟩ ≥ 0 ∀x ∈ X , (VI)

where the operator A is Lipschitz continuous, that is, ∥Ax−Ax′∥ ≤ L∥x− x′∥ for an appropriate
Lipschitz constant L > 0, and X ⊆ Rd is a closed and convex set; but not necessarily compact.
Moreover, we define the so-called normal cone:

NX (x) = {v ∈ Rd :
〈
v,x′ − x

〉
≤ 0 for all x′ ∈ X}. (7)

13



FASTER RATES FOR EXTRA-GRADIENT ITERATES

We investigate the last-iterate convergence properties of the Extragradient algorithm, given by

x(t+1/2) := ΠX
(
x(t) − γ(t)A(x(t))

)
,x(t+1) := ΠX

(
x(t) − γ(t)A(x(t+1/2))

)
, (EG)

and its optimistic counterpart:

x(t+1/2) := ΠX
(
x(t) − γ(t)A(x(t−1/2))

)
,

x(t+1) := ΠX
(
x(t) − γ(t)A(x(t+1/2))

)
,

(OGDA)

where the learning rates {γ(t)}t∈N for a non-negative, non-increasing sequence.
To that end, we have the following general proposition.

Proposition 5 Assume that x+ = ΠX
(
x
)
. Then, the following holds:

x− x+ = ζ ∈ NX (x) (8)

In order to streamline our presentation, for this fairly standard result we refer the reader to [6]. On
the other we shall use as a performance criterion, the so-called restricted gap function:

GapC(x̂) = sup
x∈C

⟨A(x), x̂− x⟩, (Gap)

Proposition 6 Let C ⊆ Rd be a compact, convex and nonempty subset of X . Then, the following
hold true: GapC(x̂) ≥ 0, as long as x̂ ∈ X . If GapC(x̂) = 0 and C contains a neighbourhood of x̂,
then x̂ is a solution of (VI)

Proof Let x∗ ∈ X be a solution of (VI) so ⟨A(x∗),x− x∗⟩ ≥ 0 for all x ∈ X . Then, by
monotonicity, we get:

⟨A(x),x∗ − x⟩ ≤ ⟨A(x)−A(x∗),x∗ − x⟩+ ⟨A(x∗),x∗ − x⟩
= −⟨A(x∗)−A(x),x∗ − x⟩ − ⟨A(x∗),x− x∗⟩ ≤ 0, (9)

so GapC(x
∗) ≤ 0. On the other hand, if x∗ ∈ C, we also get GapC(x

∗) ≥ ⟨A(x∗),x∗ − x∗⟩ = 0,
so we conclude that:

GapC(x
∗) = 0 (10)

For the converse statement, assume that GapC(x
+) = 0 for some x+ ∈ C and suppose that C

contains a neighborhood of x+ in X . First, we claim that the following inequality holds:〈
A(x),x− x+

〉
≥ 0 for all x ∈ C. (11)

Indeed, assume to the contrary that there exists some x(1) ∈ C such that〈
A(x(1)),x(1) − x(+)

〉
< 0. (12)

or, equivalently
〈
A(x(1)),x+ − x(1)

〉
> 0. This would then give the following.

0 = GapC(x
+) ≥

〈
A(x(1)),x+ − x(1)

〉
> 0, (13)
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which is a contradiction. Now, we further claim that x+ is a solution of (VI),i.e.:〈
A(x+),x− x+

〉
≥ 0 for all x ∈ X . (14)

If we suppose that there exists some z1 ∈ X such that ⟨Ax+, z1 − x+⟩ < 0, then, by the continuity
of A, there exists a neighborhood D of x+ in X such that

⟨A(x), z1 − x⟩ < 0 for all x ∈ D. (15)

Hence, assuming without loss of generality that D ⊂ D′ ⊂ C (the latter assumption due to the
assumption that C contains a neighborhood of x+), and taking λ > 0 sufficiently small so that
x = x+ + λ(z1 − x+) ∈ D, we get ⟨Ax,x− x+⟩ = λ⟨A(x), z1 − x+⟩ < 0, in contradiction to
(11). We conclude that x+ is a solution of (VI), as claimed.

Appendix C. Experiments

We validate our results numerically by running the extra-gradient method to compute a max-min
strategy (Nash equilibrium) in two bilinear games.

EG and OGDA on Kuhn Poker. We investigated EG in Kuhn poker [28], a standard reference
in the literature on extensive form games of imperfect information. The variational inequality
corresponding to the vector field formulation of the equilibrium has dimension 26, and is constrained
on a polyhedral set—the sequence-form polytope [52]—-with 14 linear constraints. The projections
on the sequence-form polytope were computed using the algorithm laid out by Farina et al. [17]
based on ideas from Gilpin [20].
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1Figure 1: Gap of the iterates produced by the extra-gradient (EG) and optimistic gradient descent-
ascent (OGDA) algorithms set up with constant and adaptive stepsizes, in two benchmark
games.

fig. 1 (Left) shows the performance of EG and OGDA in the case in which the stepsize is set to
the constant value γ ≡ 10−2 and adaptive stepsizes (see section 3.2) starting from the same initial
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value γ(0) = 10−2. Both axes are on a logarithmic scale, with the x-axis displaying the number of
iterations t of the algorithm, and the y-axis showing the value of GapX (x

(t)) produced by EG and
OGDA. A dotted line shows the slope of a function of the form f(t) = 1/

√
t; since the plot is on a

logarithmic scale, the plot of a generic function c/
√
t would be parallel to the dotted line. Hence, it

becomes clear from the plot that the rate of decrease of the gap is not compatible with a rate of 1/
√
t,

and becomes significantly asymptotically faster as the number of iterations increases. This validates
our results in theorem 3 and theorem 4. We remark that the adaptive choice of stepsize consistently
produces significantly better-approximated equilibria (up to 7 orders of magnitude) for the same
computational budget, validating the importance of studying adaptive schedules in the context of
last-iterate convergence.

EG and OGDA on a Bilinear Game with Euclidean Ball Strategy Sets. fig. 1 (Right) follows a
similar setup, but with strategy sets for the players that are set to be Euclidean balls of radius one.
The payoff matrix is chosen with independently uniform entries in the range [0, 1]. The choice of
strategy sets was guided by the desire to investigate EG beyond polyhedral domains. We observe that
all conclusions drawn in appendix C hold verbatim. Once again, we observe that the performance of
the adaptive stepsize scheduling is significantly better than that of constant stepsize.

Appendix D. On the Lower Bounds

To illustrate some of the fragility of the known lower bounds for the extra-gradient, we use the very
adversarial example that was introduced by Golowich et al. [22] to show slow convergence.

In particular, Golowich et al. [22] consider the following monotone Lipschitz VI parameterized
by the Lipschitzness constant L = ν > 0:

Aν : x 7→ Aνx+ bν , where Aν :=

(
0 ν
−ν 0

)
, bν :=

(
ν
ν

)
.

For any ν, the iterates produced by extra gradient with fixed learning rate γ(t) := η are therefore

x(t+1/2) = x(t) − η(Aνx
(t) + bν),

x(t+1) = x(t) − η(Aνx
(t+1/2) + bν),

which implies, by substituting x(t+1/2) into the expression for x(t+1),

x(t+1) =
(
I− ηAν + η2A2

ν

)
x(t) − η

(
I− ηAν

)
bν .

Assuming the initial point x(0) = 0, a closed-form solution to the above recurrence equation is given
by

x(t) =
((

I− ηAν + η2A2
ν

)t − I
)
A−1

ν bν .

Plugging the above expression into the Hamiltonian leads to

Ham(x(t)) := ∥Aνx
(t) + bν∥22

=
∥∥∥(I− ηAν + η2A2

ν

)t
bν

∥∥∥2
2
.
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The matrix M := I − ηAν + η2A2
ν admits the unitary diagonalization M = Cdiag(λ1, λ2)C

H ,
where

C :=
1√
2

(
−i i
1 1

)
,

λ1 :=
(
1− (ην)2

)
− (ην)i,

λ2 :=
(
1− (ην)2

)
+ (ην)i.

Hence,

Ham(x(t)) =

∥∥∥∥(λt
1 0
0 λt

2

)
CHbν

∥∥∥∥2
2

=
ν2

2

∥∥∥∥(λt
1 0
0 λt

2

)(
1 + i
1− i

)∥∥∥∥2
2

= ν2
(
|λ1|t + |λ2|t

)
= 2ν2(1− (ην)2 + (ην)4)t. (16)

Suppose now that an upper bound L > 0 on the maximum possible Lipschitzness constant of Aν

has been set. In other words, the adversary is constrained to only using game instances where ν ≤ L.
Then, there are two cases.

• If the step size η is set too large, say η > 1/L, then by picking ν = L the adversary can
guarantee exponential Hamiltonian growth. The algorithm does not converge at all!

• On the other hand, if η ≤ 1
L , then the adversary can pick

ν :=
L

2
√
T

and obtain that at iteration T the Hamiltonian is

Ham(x(t)) = 2
L2

4T

(
1− (νL)2

4T
+

(νL)4

16T 2

)T

> 2
L2

4T

(
1− (νL)2

4T

)T

≥ 2
L2

4T

(
1− 1

4T

)T

(since ηL ≤ 1)

≥ L2

2T
· 1
4
.

It is important to note, however, the fragility of such an approach. eq. (16) shows that, for a fixed
VI instance, the Hamiltonian will in general decrease exponentially fast. In other words, the lower
bound of Golowich et al. [22] requires that the adversary knows the number of iterations upfront,
and that the extragradient method be used for exactly that number of iterations.

Appendix E. Analysis

In this section, we present the technical components of our analysis. In particular, we provide the
proofs which lead to the faster convergence rates of (EG)/(OGDA) run with both (Constant) or
(Adapt).
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E.1. General regret inequalities

We start by showing a generic regret analysis of the (EG) method. More precisely, we have the
following result.

Proposition 7 Assume that x(t+1/2),x(t) are the iterates of (EG) run with a non-increasing, non-
negative step size γ(t). Then, for all x ∈ X the following inequality holds:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2

+γ(t)
〈
A(x(t+1/2))−A(x(t),x(t+1/2))− x(t+1)

〉
− 1

2
∥x(t)−x(t+1/2)∥22−

1

2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

Proof Starting with the update rule of (EG) we have for all x ∈ X :〈
x(t) − x(t+1) − γ(t)A(x(x(t+1/2))),x(t+1) − x

〉
≥ 0 (17)

and hence we get:

γ(t)
〈
A(x(t+1/2)),x(t+1) − x

〉
≤
〈
x(t) − x(t+1),x(t+1) − x

〉
(18)

Now, by expanding the (RHS) of the above, we have:〈
x(t) − x(t+1),x(t+1) − x

〉
=

1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(19)

So, we have:

γ(t)
〈
A(x(t+1/2)),x(t+1) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(20)

Therefore, for all x ∈ X by writing:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
= γ(t)

〈
A(x(t+1/2)),x(t+1/2) − x(t+1)

〉
+ γ(t)

〈
A(x(t+1/2)),x(t+1) − x

〉
(21)

and hence combining with (29), we have:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ γ(t)

〈
A(x(t+1/2)),x(t+1/2) − x(t+1)

〉
+

1

2

∥∥∥x(t) − x
∥∥∥2
2

− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(22)

On the other hand by the extrapolation step of (EG) we have for all x ∈ X :〈
x(t) − x(t+1/2) − γ(t)A(x(x(t))),x(t+1/2) − x

〉
≥ 0 (23)

and hence we have:

γ(t)
〈
A(x(t)),x(t+1/2) − x

〉
≤
〈
x(t) − x(t+1/2),x(t+1/2) − x

〉
=

1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1/2) − x
∥∥∥2
2
− 1

2

∥∥∥x(t) − x(t+1/2)
∥∥∥2
2
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and by setting x = x(t+1) we have that:

γ(t)
〈
A(x(t)),x(t+1/2) − x(t+1)

〉
≤ 1

2

∥∥∥x(t) − x(t+1)
∥∥∥2
2
−1

2

∥∥∥x(t+1/2) − x(t+1)
∥∥∥2
2
−1

2

∥∥∥x(t) − x(t+1/2)
∥∥∥2
2

(24)
Therefore, by adding (31) and (33), we have:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2

+γ(t)
〈
A(x(t+1/2))−A(x(t),x(t+1/2))− x(t+1)

〉
− 1

2
∥x(t)−x(t+1/2)∥22−

1

2
∥x(t+1)−x(t+1/2)∥22

(25)

and hence the result follows.

The analog regret analysis for the (OGDA) algorithms is formalized by the following proposition.

Proposition 8 Assume that xt+1/2,xt are the iterations of (OGDA) run with a non-increasing,
non-negative step size γt. Then, for all x ∈ X the following inequality holds:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2

+γ(t)
〈
A(x(t+1/2))−A(x(t−1/2)),x(t+1/2))− x(t+1)

〉
−1

2
∥x(t)−x(t+1/2)∥22−

1

2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

Proof Starting with the update rule of (OGDA) we have for all x ∈ X :〈
x(t) − x(t+1) − γ(t)A(x(x(t+1/2))),x(t+1) − x

〉
≥ 0 (26)

and hence we get:

γ(t)
〈
A(x(t+1/2)),x(t+1) − x

〉
≤
〈
x(t) − x(t+1),x(t+1) − x

〉
(27)

Now, by expanding the (RHS) of the above, we have:〈
x(t) − x(t+1),x(t+1) − x

〉
=

1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(28)

So, we have:

γ(t)
〈
A(x(t+1/2)),x(t+1) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(29)

Therefore, for all x ∈ X by writing:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
= γ(t)

〈
A(x(t+1/2)),x(t+1/2) − x(t+1)

〉
+ γ(t)

〈
A(x(t+1/2)),x(t+1) − x

〉
(30)
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and hence combining with (29), we have:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ γ(t)

〈
A(x(t+1/2)),x(t+1/2) − x(t+1)

〉
+

1

2

∥∥∥x(t) − x
∥∥∥2
2

− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x(t)
∥∥∥2
2

(31)

On the other hand by the extrapolation step of (OGDA) we have for all x ∈ X :〈
x(t) − x(t+1/2) − γ(t)A(x(x(t−1/2))),x(t+1/2) − x

〉
≥ 0 (32)

and hence we have:

γ(t)
〈
A(x(t−1/2)),x(t+1/2) − x

〉
≤
〈
x(t) − x(t+1/2),x(t+1/2) − x

〉
=

1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1/2) − x
∥∥∥2
2
− 1

2

∥∥∥x(t) − x(t+1/2)
∥∥∥2
2

and by setting x = x(t+1) we have that:

γ(t−1/2)
〈
A(x(t)),x(t+1/2) − x(t+1)

〉
≤ 1

2

∥∥∥x(t) − x(t+1)
∥∥∥2
2

− 1

2

∥∥∥x(t+1/2) − x(t+1)
∥∥∥2
2
− 1

2

∥∥∥x(t) − x(t+1/2)
∥∥∥2
2

(33)

Therefore, by adding (31) and (33), we have:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2

+γ(t)
〈
A(x(t+1/2))−A(x(t−1/2),x(t+1/2))− x(t+1)

〉
−1

2
∥x(t)−x(t+1/2)∥22−

1

2
∥x(t+1)−x(t+1/2)∥22

(34)

and hence the result follows.

We move forward by providing a novel template inequality for (EG). In particular, we have the
following proposition.

Proposition 9 Assume that x(t+1/2),x(t) are the iterates of (EG) run with a non-increasing non-
negative step size policy γ(t). Moreover let,

c(t+1) := ΠN (x(t+1))

(
−A(x(t+1))

)
, r(t+1) :=

∥∥∥Ax(t+1) + c(t+1)
∥∥∥
2
.

Then, for all x ∈ X , we have

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
−1

2

∥∥∥x(t+1) − x
∥∥∥2
2
+(2γ(t)L)2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

−min

{
1

4
,

1

4γ(0)L

}
(γ(t)r(t+1))2 − 1

8

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2
.

20



FASTER RATES FOR EXTRA-GRADIENT ITERATES

Proof From the standard analysis of (EG), for all x ∈ X we have :

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2
∥x(t) − x∥22 −

1

2
∥x(t+1) − x∥22

+γ(t)
〈
A(x(t+1/2))−A(x(t)),x(t+1/2) − x(t+1)

〉
− 1

2
∥x(t)−x(t+1/2)∥22−

1

2
∥x(t+1)−x(t+1/2)∥22.

(35)

Moreover, we have that:

γ(t)
〈
A(x(t+1/2))−A(x(t)),x(t+1/2) − x(t+1)

〉
≤ γ(t)∥A(x(t+1/2))−A(x(t))∥2 · ∥x(t+1/2) − x(t+1)∥2

≤ 1

4L2
∥A(x(t+1/2))−A(x(t))∥22 + 4(γ(t)L)2∥x(t+1/2) − x(t+1)∥22

(36)

≤ 1

4
∥x(t+1/2) − x(t)∥22 + 4(γ(t)L)2∥x(t+1/2) − x(t+1)∥22,

(37)

where (36) follows from applying Young’s inequality and (37) by Lipschitz continuity of A.
Moreover, we have

1

2
∥x(t) − x(t+1/2)∥2 + 1

2
∥x(t+1) − x(t+1/2)∥2

=
1

4
∥x(t) − x(t+1/2)∥22 +

1

8

[
2∥x(t) − x(t+1/2)∥2 + 2∥x(t+1) − x(t+1/2)∥22

]
+

1

4
∥x(t+1) − x(t+1/2)∥22

≥ 1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t) − x(t+1)∥22 +

1

4
∥x(t+1) − x(t+1/2)∥22 (38)

=
1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t) − x(t+1)∥22 +

1

8
∥x(t+1) − x(t+1/2)∥22 +

1

8
∥x(t+1) − x(t+1/2)∥22

≥ 1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t) − x(t+1)∥22 +

1

8
∥x(t+1) − x(t+1/2)∥22

+
(γ(t))2

8(γ(0)L)2
∥Ax(t+1) −Ax(t+1/2)∥22

(39)

=
1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t+1/2) − x(t+1)∥22

+
1

16

[
2∥x(t) − x(t+1)∥22 +

2(γ(t))2

(γ(0)L)2
∥A(x(t+1))−A(x(t+1/2))∥22

]
≥ 1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t+1/2) − x(t+1)∥22

+
min{1, 1/(γ(0)L)2}

16

∥∥∥γ(t)A(x(t+1)) + (x(t) − x(t+1) − γ(t)A(x(t+1/2)))
∥∥∥2
2

(40)

where (38) follows from the triangle inequality, (39) follows from the L-Lipschitzness of A. More-
over, by denoting

ζ(t+1) = x(t) − γ(t)A(x(t+1/2))− x(t+1) ∈ NX (x(t+1)) and ut+1 =
1

γ(t)
ζ(t+1) ∈ NX (x(t+1))
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we have:∥∥∥γ(t)A(x(t+1)) + (x(t) − x(t+1) − γ(t)Ax(t+1/2))
∥∥∥2
2
= (γ(t))2

∥∥∥A(x(t+1)) + ut+1

∥∥∥2
2

(41)

≥ (γ(t))2
∥∥∥A(x(t+1)) + c(t+1)

∥∥∥2
2

(42)

= (γ(t)r(t+1))2 (43)

with (42) being obtained by the definition of c(t+1). Now, combining (43) with (40)

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2
∥x(t) − x∥22 −

1

2
∥x(t+1) − x∥2 +

1

4
∥x(t+1/2) − x(t)∥22

+ 4(γ(t)L)2∥x(t+1/2) − x(t+1)∥22

− 1

4
∥x(t) − x(t+1/2)∥22 −

1

8
∥x(t+1/2) − x(t+1)∥22 −

min{1, 1/(γ(0)L)2}
16

(γ(t)r(t+1))2 (44)

which in turn yields:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
−1

2

∥∥∥x(t+1) − x
∥∥∥2
2
+4(γ(t)L)2∥x(t+1/2)−x(t+1)∥22

− 1

8
∥x(t+1/2) − x(t+1)∥22 −

min{1, 1/(γ(0)L)2}
16

(γ(t)r(t+1))2 (45)

and hence the result follows.

Moving forward, we have the following novel template regarding the (OGDA) method, formalized
in the following proposition.

Proposition 10 Assume that x(t+1/2),x(t) are the iterates of (OGDA) run with a non-increasing,
non-negative step-size policy γ(t). Moreover, let

c(t+1) := ΠN (x(t+1))

(
−A(x(t+1))

)
, r(t+1) :=

∥∥∥Ax(t+1) + c(t+1)
∥∥∥
2
.

Then, for all x ∈ X the following inequality holds:

γ(t)
〈
A(x(t+1/2)),x(1/2) − x

〉
≤ 1

2
∥x(t) − x∥22 −

1

2
∥x(t+1) − x∥22

+
1

16

(
∥x(t) − x(t−1/2)∥22 − ∥x(t+1) − x(t+1/2)∥22

)
− min{1, 1/(γ(0)L)2}

16
(γ(t)r(t+1))2+8L2(γ(t)∥x(t+1)−x(t+1/2)∥2)2−

1

16
∥x(t+1/2)−x(t+1)∥22

(46)

Proof By invoking theorem 8 we have:

γ(t)
〈
A(x(t+1/2)),x(t+1/2) − x

〉
≤ 1

2

∥∥∥x(t) − x
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x
∥∥∥2
2

+γ(t)
〈
A(x(t+1/2))−A(x(t−1/2)),x(t+1/2))− x(t+1)

〉
−1

2
∥x(t)−x(t+1/2)∥22−

1

2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(47)
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Then, we have that:

γ(t)
〈
A(x(t+1/2))−A(x(t−1/2)),x(t+1/2))− x(t+1)

〉
≤ ∥A(x(t+1/2))−A(x(t−1/2))∥2

γ(t)∥x(t+1/2) − x(t+1)∥2 (48)

Moreover, by applying the Fenchel-Young inequality, we get:

∥A(x(t+1/2))−A(x(t−1/2))∥2γ(t)∥x(t+1/2) − x(t+1)∥2 ≤
1

32L2
∥A(x(t+1/2))−A(x(t−1/2))∥22

+ 8L2(γ(t)∥x(t+1) − x(t+1/2)∥2)2 (49)

where in order to obtain the above we used the standard inequality:

αβ ≤ 1

2ρ
α2 +

ρ

2
β2 (50)

for ρ = 16L2. Furthermore, we have:

1

32L2
∥A(x(t+1/2))−A(x(t−1/2))∥22 ≤

1

32
∥x(t+1/2) − x(t−1/2)∥22 (51)

≤ 1

16
∥x(t+1/2) − x(t)∥22 +

1

16
∥x(t) − x(t−1/2)∥22 (52)

On the other hand, we have: Moreover, we have

1

2
∥x(t) − x(t+1/2)∥2 + 1

2
∥x(t+1) − x(t+1/2)∥2

≥ 1

4
∥x(t) − x(t+1/2)∥22 +

1

8
∥x(t+1/2) − x(t+1)∥22

+
min{1, 1/(γ(0)L)2}

16

∥∥∥γ(t)A(x(t+1)) + (x(t) − x(t+1) − γ(t)A(x(t+1/2)))
∥∥∥2
2

(53)

Moreover, by denoting

ζ(t+1) = x(t) − γ(t)A(x(t+1/2))− x(t+1) ∈ NX (x(t+1)) and ut+1 =
1

γ(t)
ζ(t+1) ∈ NX (x(t+1))

we have:
∥γ(t)A(x(t+1)) + (x(t) − x(t+1) − γ(t)A(x(t+1/2)))∥22 ≥ (γ(t)r(t+1))2 (54)

by the definition c(t+1). Therefore, summarizing we have:

γ(t)
〈
A(x(t+1/2)),x(1/2) − x

〉
≤ 1

2
∥x(t) − x∥22 −

1

2
∥x(t+1) − x∥22 +

1

16
∥x(t+1/2) − x(t)∥22

+
1

16
∥x(t)−x(t−1/2)∥22−

1

4
∥x(t+1/2)−x(t)∥22−

1

8
∥x(t+1/2)−x(t+1)∥22−

min{1, 1/(γ(0)L)2}
16

(γ(t)r(t+1))2

+ 8L2(γ(t)∥x(t+1) − x(t+1/2)∥2)2 (55)
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which in turn yields:

γ(t)
〈
A(x(t+1/2)),x(1/2) − x

〉
≤ 1

2
∥x(t) − x∥22 −

1

2
∥x(t+1) − x∥22

+
1

16

(
∥x(t) − x(t−1/2)∥22 − ∥x(t+1) − x(t+1/2)∥22

)
− min{1, 1/(γ(0)L)2}

16
(γ(t)r(t+1))2+8L2(γ(t)∥x(t+1)−x(t+1/2)∥2)2−

1

16
∥x(t+1/2)−x(t+1)∥22

(56)

which concludes the proof.

Now, turning our attention towards the tangent residual sequence we begin with the (EG)
algorithm.

Proposition 11 Assume that x(t+1/2),x(t) are the iterates of (EG) run with a non-increasing,
non-negative step size γ(t). Then, the following inequality holds:

(γ(t+1)rt+1)2 − (γ(t)rt)2 ≤ −
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
+ (γ(t)L)2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(57)

Proof We want to have a lower bound for:

−(γ(t+1)rt+1)2 + (γ(t)rt)2 (58)

Working in the spirit as in [8] we obtain the following inequalities: First, by applying monotonicity,
we have:

−2γ(t)
〈
Ax(t+1) −Ax(t),x(t+1) − x(t)

〉
≤ 0 (59)

Moreover, due to the Lipschitz continuity of A we have:

(γ(t))2
∥∥∥Ax(t+1) − x(t+1/2)

∥∥∥2
2
− L2(γ(t))2

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2
≤ 0 (60)

Furthermore, by the projection property we have:

−2⟨x(t) − x(t+1/2) − γ(t)Ax(t),x(t+1/2) − x(t)⟩ ≤ 0 (61)

and
−2
〈
x(t) − x(t+1) − γ(t)Ax(t+1/2),x(t+1) − x(t)

〉
≤ 0 (62)

and
−2
〈
c(t),x(t) − x(t+1/2)

〉
≤ 0 (63)

and
−2γ(t)

〈
c(t+1) +Ax(t+1),x(t) − γ(t)Ax(t+1/2) − x(t+1)

〉
≤ 0 (64)

and
−2γ(t)

〈
c(t+1),−γ(t)c(t+1)

〉
≤ 0 (65)

Then, by adding (68),(59), (60),(69),(72),(73),(74),(78) and rearranging we get the result.

Moreover, we can show the following general inequality, concerning the weighted sequence of
the tangent residual generated by (EG).
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Proposition 12 Assume that x(t+1/2),x(t) are the iterates of (EG) run with a non-increasing,
non-negative step size γ(t). Then, for all t = 1, 2, . . . the following inequality holds:

(t+ 1)(γ(t+1)r(t+1))2 − t(γ(t)r(t))2 ≤ (γ(t+1)r(t+1))2 − t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

+ t(Lγ(t))2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

Proof We have:

(t+ 1)(γ(t+1)r(t+1))2 − t(γ(t)r(t))2 = (γ(t+1)r(t+1))2 + t

(
(γ(t+1)r(t+1))2 − (γ(t)r(t))2

)
(66)

and hence by applying theorem 11 we obtain:

(t+ 1)(γ(t+1)r(t+1))2 − t(γ(t)r(t))2 ≤ (γ(t+1)r(t+1))2 − t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

+ t(Lγ(t))2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(67)

and therefore the result follows.

On the other hand, regarding the (OGDA) generated tangent residual is formalized by the following
proposition.

Proposition 13 Assume that xt+1/2,xt are the iterates of (OGDA) run with a non-increasing,
non-negative step size policy γ(t). Then, the following inequality holds:(

γ(t+1)r(t+1)

)2

+

(
γt+1∥A(x(t+1)) −A(x(t+1/2))∥2

)2

−
(
γ(t)r(t)

)2

−
(
γ(t)∥A(x(t))−A(x(t−1/2))∥2

)2

≤ −∥xt+1 − xt+1/2∥22 + 2

(
γ(t)L∥x(t+1) − x(t+1/2)∥2

)2

Proof We would like to bound from below the following quantity:

−
(
γ(t+1)r(t+1)

)2

−
(
γt+1∥A(x(t+1)) +A(x(t+1/2))∥2

)2

+

(
γ(t)r(t)

)2

−
(
γ(t)∥A(x(t))−A(x(t−1/2))∥2

)2

(68)

In particular, we have the following inequalities. First, due to the monotonicity of A, we have:

−2γ(t)
〈
A(x(t+1))−A(x(t)),x(t+1) − x(t)

〉
≤ 0 (69)

Moreover, since x(t+1) = ΠX (x(t) − γ(t)A(x(t+1/2))) and x(t+1/2) = ΠX (x(t) − γ(t)A(x(t−1/2)))
we have the following:

x(t) − x(t+1) − γ(t)A(x(t+1/2)) ∈ NX (x(t+1)) (70)
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and
x(t) − x(t+1/2) − γ(t)A(x(t−1/2)) ∈ NX (x(t+1/2)) (71)

These directly yield the following inequalities:

−
〈
x(t) − x(t+1) − γ(t)A(x(t+1/2)),x(t+1) − x(t)

〉
≤ 0 (72)

and
−
〈
x(t) − x(t+1/2) − γ(t)A(xt−1/2),x(t+1/2) − xt

〉
≤ 0 (73)

Moreover, since by definition c(t) ∈ NX (x(t)) we have the following:

−γ(t)
〈
c(t),x(t) − x(t+1/2)

〉
≤ 0 (74)

and
−γ(t)

〈
c(t),x(t) − x(t+1)

〉
≤ 0 (75)

Finally, because of the fact that:

x(t) − γ(t)A(x(t+1/2))− x(t+1) ∈ NX (x(t+1)) and c(t+1) = ΠNX (−A(x(t+1))) (76)

we get:
−2γ(t)

〈
c(t+1) +A(x(t+1)),x(t) − γ(t)A(x(t+1/2))− x(t+1)

〉
≤ 0 (77)

and
−2γ(t)

〈
c(t+1) +A(x(t+1)),−c(t+1)

〉
= 0 (78)

Finally, having established the above inequalities, by adding (68),(69),(72),(73),(74),(78) and after
rearranging we get:(

γ(t+1)r(t+1)

)2

+

(
γt+1∥A(x(t+1)) −A(x(t+1/2))∥2

)2

−
(
γ(t)r(t)

)2

−
(
γ(t)∥A(x(t))−A(x(t−1/2))∥2

)2

≤ 2

(
γ(t)∥A(x(t+1))−A(x(t+1/2))∥2

)2

−∥x(t+1)−x(t+1/2)∥22
(79)

Then, the result follows by Lipschitz continuity of A.

Moreover, building on theorem 13 may show the following recursive formula for weighted
tangent residual generated by (OGDA).

Proposition 14 Assume that x(t+1/2),x(t) are the iterates of (OGDA) run with a non-increasing,
non-negative step-size policy γ(t). Then, for all t = 1, 2, . . . the following inequality holds:

(t+ 1)

(
γt+1r(t+1)

)2

+ (t+ 1)

(
γt+1∥A(x(t+1)) −A(x(t+1/2))∥2

)2

− t

(
γt+1r(t+1)

)2

−t

(
γ(t)∥A(x(t))−A(x(t−1/2))∥2

)2

≤ −t∥x(t+1)−x(t+1/2)∥22+2t

(
γ(t)L∥x(t+1)−x(t+1/2)∥2

)2

+

(
γt+1r(t+1)

)2

+

(
γt+1∥A(x(t+1)) −A(x(t+1/2))∥2

)2
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Proof We have that:

(t+ 1)

(
γ(t+1)r(t+1)

)2

+ (t+ 1)

(
γ(t+1)∥A(x(t+1)) −A(x(t+1/2))∥2

)2

− t

(
γt+1r(t+1)

)2

−t

(
γ(t)∥A(x(t))−A(x(t−1/2))∥2

)2

= t

((
γ(t+1)r(t+1)

)2

+

(
γ(t+1)∥A(x(t+1))−A(x(t+1/2))∥2

)2

−
(
γ(t)r(t+1)

)2

−
(
γ(t)∥A(x(t)) −A(x(t−1/2))∥2

)2)
+

(
γ(t+1)r(t+1)

)2

+

(
γ(t+1)∥A(x(t+1)) −A(x(t+1/2))∥2

)2

Then, the result follows directly by theorem 13.

Finally, we have the following proposition regarding the distance of the iterates and a respective
solution of the (VI). In particular,

Proposition 15 Assume that x(t+1/2),x(t) are the iterates generated by (EG)/ (OGDA) run either
with a constant step size γ ≤ 1/

√
32L or with (Adapt). Then, for every x∗ being a solution of (VI)

the sequence
∥∥x(t) − x∗∥∥

2
is bounded.

Proof Starting with the generic inequality in theorem 9 and by rearranging we have:

1

2

∥∥∥x(t+1) − x∗
∥∥∥2
2
≤ 1

2

∥∥∥x(t) − x∗
∥∥∥
2
+

(
(2γ(t)L)2 − 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(80)

So, for the first case of a constant step size, we readily get that:

1

2

∥∥∥x(t+1) − x∗
∥∥∥2
2
≤ 1

2

∥∥∥x(t) − x∗
∥∥∥
2

(81)

which in turn yields, after telescoping t = 1, . . . T we get:

1

2

∥∥∥x(T+1) − x∗
∥∥∥2
2
≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2

(82)

and so the first case follows. Now, we turn our attention to the adaptive case. Again,in by telescoping
from t = 1, . . . T we have:

1

2

∥∥∥x(T+1) − x∗
∥∥∥2
2
≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2
+ γ0

T∑
t=1

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(83)

≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2
+ γ0

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(84)

Then, the result follows by theorem 26 and hence the second is shown. Concerning the respective
distance to a solution for the iterates generated by (OGDA), by working in the same spirit as above
we again divide the proof into two parts. For the constant step size the result is directly obtained by
the appropriate choise of the step size along with the theorem 10 (for x = x∗ being a solution of
(VI)).Moreover, for the (Adapt) step size iterates of (OGDA) is again obtained in the same spirit by
invoking theorem 10 (for x = x∗ being a solution of (VI)) and theorem 26.
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E.2. Constant step size

As a warm-up, we start by presenting the case where (EG)/(OGDA) are run with a constant step size
γ(t) ≡ γ. In doing so, we improve the results of [8, 22], by showing a strictly faster asymptotic rate
of order o(1/

√
T ). First, we show the summability of the tangent residual (r(t))2 generated by (EG).

In particular, we have the following proposition.

Proposition 16 Assume that x(t+1/2),x(t) are iterates of (EG) run with constant step size γ ≤
1/

√
32L. Then, the following holds:

+∞∑
t=1

(r(t+1))2 < +∞ (85)

Proof By setting x = x∗ to be a solution of (VI) in theorem 9, using the fact that:

⟨A(x(t+1/2)),x− x∗⟩ ≥ 0

and after rearranging we have:

min

{
1

4
,

1

4γ(0)L

}
γ2(r(t+1))2 ≤ 1

2

∥∥∥x(t) − x∗
∥∥∥2
2
− 1

2

∥∥∥x(t+1) − x∗
∥∥∥2
2

+ 4(γ(t)L)2∥x(t+1/2) − x(t+1)∥22 −
1

8

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(86)

Now, by telescoping (86) t = 1, . . . T we get:

min

{
1

4
,

1

4γ(0)L

}
γ2

T∑
t=1

(r(t+1))2 ≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2
+

T∑
t=1

(
4γ2L2 − 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(87)

≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2

(88)

with the last inequality being obtained by the specific choice of γ. Therefore, the result follows by
letting T → +∞.

Moreover, we will show that the weighted tangent residual sequence t
∥∥x(t+1) − x(t+1/2)

∥∥2
2

generated by (EG) is summable. In particular, we have:

Proposition 17 Assume that x(t+1/2),x(t) are the iterates of (EG) run with a constant step size
γ ≤ 1/

√
32L. Then, the following holds:

+∞∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
< +∞ (89)

Proof By invoking theorem 12 we have:

(t+ 1)γ2(r(t+1))2 ≤ tγ2(r(t))2 + (γr(t+1))2 +

(
(Lγ)2 − 1

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(90)
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and since γ ≤ 1
2L , the above yields:

(t+ 1)γ2(r(t+1))2 ≤ tγ2(r(t))2 + (γr(t+1))2 − 1

2
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(91)

and hence after rearranging and telescoping t = 1, . . . T we have:

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
≤ γ2(r(1))2 +

+∞∑
t=1

∥x(t+1) − x(t+1/2)∥22 < +∞ (92)

and hence the result follows by letting T → +∞.

Moreover, we show that the sequence (t(r(t+1)))2 has a limit. In particular, we have the following
result.

Proposition 18 Assume x(t+1/2),x(t) are the iterates of (EG) run with a constant step size γ ≤
1/2L. Then, the sequence

(
t(γr(t+1))2

)
t∈N has a limit.

Proof By applying theorem 12 we have:

(t+ 1)γ2(r(t+1))2 ≤ tγ2(r(t))2 + (γr(t+1))2 +

(
(Lγ)2 − 1

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(93)

which in turn yields by the specific choice of γ:

(t+ 1)γ2(r(t+1))2 ≤ tγ2(r(t))2 + (γr(t+1))2 (94)

The result follows by combing theorem 16 with theorem 31.

Following the same methodology for the (OGDA) algorithm we first have the following proposi-
tion. Namely

Proposition 19 Assume that x(t+1/2),x(t) are the iterates of (OGDA) run with a constant step size
γ ≤. Then, the following holds:

+∞∑
t=1

∥A(x(t+1))−A(x(t+1/2))∥22 + (r(t+1))2 < +∞ (95)

Proof By setting x = x∗ to be a solution of the (VI) in theorem 10 and using the fact that:

⟨A(x(t+1/2)),x(t+1/2) − x∗⟩ ≥ 0 (96)

Hence, after rearranging and applying the Lipschitz continuity of A and telescoping t = 1, . . . , T
we get the following.

T∑
t=1

∥A(x(t+1))−A(x(t+1/2))∥22 + (r(t+1))2 ≤ 1

2

∥∥∥x(1) − x∗
∥∥∥2
2
+

1

8
∥x(1) − x(1/2)∥22

+

T∑
run=1

(
8L2γ2 − 1

32

)
∥x(t+1/2) − x(t+1)∥22 (97)
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Therefore, by choosing γ we get:

T∑
t=1

∥A(x(t+1))−A(x(t+1/2))∥22 + (r(t+1))2 ≤ 1

2
∥x(1) − x∗∥22 +

1

8
∥x(1) − x(1/2)∥22 (98)

and the result follows.

Proposition 20 Assume that x(t+1/2),x(t) are the iterates of (OGDA) run with a constant step-size
γ Then, the following holds:

+∞∑
t=1

t∥x(t+1) − x(t+1/2)∥22 < +∞ (99)

Proof By invoking theorem 14, after rearranging and telescoping t = 1, . . . , T we get that:

1

2

T∑
t=1

t∥x(t+1)−x(t+1/2)∥22 ≤ (γr(1))2+(γ∥A(x1)−x(1/2)∥2)2+
1

2

T∑
t=1

t

(
2L2γ2−1

)
∥x(t+1)−x(t+1/2)∥22

+
T∑
t=1

(
γ2(r(t+1))2 + γ2∥x(t+1) − x(t+1/2)∥22

)
(100)

Then, the result follows by the appropriate choice of the step size and theorem 19.

Proposition 21 Assume that x(t+1/2),xt are the iterates of (OGDA) run with a constant step size γ.

Then, the sequence
(
(t+ 1)(γ2(r(t+1))2 + γ2∥A(x(t+1/2))−A(x(t+1))∥22

)
t

has a limit.

Proof Note that that by theorem 14 and theorem 19 and the appropriate choice of γ one directly
obtains the fact that the theorem 31 is satisfied and therefore the result follows.

We shall now prove the faster convergence rate for r(t+1). More precisely, we have the following
proposition.

Proposition 22 Assume that x(t+1/2),x(t) are the iterates of (EG)/ (OGDA) run with a constant
step size γ ≤ 1/

√
32L. Then, we have that:

rT = o(1/
√
T ) (101)

In other words, we have that: √
TrT → 0 (102)

Proof We have by theorem 16:

+∞∑
t=1

1

t+ 1
(t+ 1)(r(t+1))2 < +∞ (103)
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Moreover, by theorem 18 we have that:

lim
t→+∞

(t+ 1)(r(t+1))2 = r∞ ≥ 0 (104)

Assume to the contrary that r∞ > 0. Then, there exists some t0 ∈ N such that:

(t+ 1)(r(t+1))2 >
r∞
2

for all t > t0 (105)

Now combining the above with (103) we have:

+∞ >

+∞∑
t=1

1

t+ 1
(t+ 1)(r(t+1))2 =

t0∑
t=1

1

t+ 1
(t+ 1)(r(t+1))2 +

+∞∑
t=t0+1

1

t+ 1
(t+ 1)(r(t+1))2

(106)

≥
t0∑
t=1

1

t+ 1
(t+ 1)(r(t+1))2 +

r∞
2

+∞∑
t=t0+1

1

t+ 1
(107)

which is a contradiction. Therefore, r∞ = 0 and hence the result follows. Note that the respective
result concerning (OGDA) is obtained by using the same reasoning,

Remark 23 Given the above reasoning, we may in addition extract a subsequence of x(T ) such
that:

lim inf
T→+∞

(
T log T (r(T ))2

)
= 0 (108)

This is obtain by the following generic observation. In particular, given any non negative sequence
β(t) such that

∑+∞
t=1

β(t)

t < +∞, it cannot be lim infT→+∞ β(T ) log T = ε > 0, otherwise there
β(T )

T ≥ ε
T log T for sufficiently large T , which in turn violates the convergence of the series [4].

Finally, we are in the position to show the final rate of (EG)’s last iterate for the constant step
size case. Formally, we have the following result.

Proposition 24 Assume that x(t+1/2),x(t) are the iterates generated by (EG)/ (OGDA) run with a
constant step size γ ≤ 1/

√
32L. Moreover, assume that C is a compact neighborhood of a (VI)

solution. Then, the following hold:

GapC(x
(T+1)) = o(1/

√
T ) and GapC(x

(T+1/2)) = o(1/
√
T ) (109)

Moreover, we have that:

lim inf
T→+∞

√
(T + 1) log(T + 1)GapC(x

(T+1)) = lim inf
T→+∞

√
(T + 1) log(T + 1)GapC(x

(T+1/2)) = 0

(110)
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Proof We first show the last iterate rate for x(T ). In particular, for all x ∈ C we have:
√
T + 1⟨A(x),x(T+1) − x⟩ ≤

√
T + 1⟨A(x(T+1)),x(T+1) − x⟩ (111)

≤
√
T + 1⟨A(x(T+1)) + c(T+1),x(T+1) − x⟩ (112)

=
√
T + 1

(
⟨A(x(T+1)) + c(T+1),x(T+1) − x∗⟩ (113)

+ ⟨A(x(T+1)) + c(T+1),x∗ − x⟩
)

(114)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(115)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(1) − x(∗)
∥∥∥
2
+ ∥x∗ − x∥2

)
(116)

with (111) being obtained by monotonicity of A, (112) by the fact that c(T+1) belongs by definition
to the normal cone of x(T+1) and finally (116). Hence, by taking suprema on both sides relative to x
we get: √

T + 1Gap(x(T+1)) ≤
√
T + 1

∥∥∥A(x(T+1)) + c(t+1)
∥∥∥
2
D (117)

with D =
∥∥x(1) − x∗∥∥

2
+ supx∥x∗ − x∥2 < +∞. Therefore, the first claim follows directly from

theorem 22.
Moving forward, for the second claim we have:
√
T + 1⟨A(x),x(T+1/2) − x⟩ ≤

√
T + 1⟨Ax(T+1/2),x(T+1/2) − x⟩ (118)

=
√
T + 1

(
⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ (119)

+ ⟨Ax(T+1),x(T+1/2) − x⟩
)

(120)

We shall each (RHS) term (191) individually. In particular, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2)−x⟩ =

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2)−x∗⟩

+
√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x∗ − x⟩ (121)

Therefore, by applying Cauchy-Shwartz we get:
√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1

∥∥∥Ax(T+1/2) −Ax(T+1)
∥∥∥
2

(122)(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(123)

≤
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(124)(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(125)
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with (196) being obtained by L- Lipschitz continuity of A. Furthermore, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥2
2

+
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(∥∥∥x(T+1) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(126)

On the other hand, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x∗ − x⟩ ≤

√
T + 1

∥∥∥A(x(T+1/2))−A(x(T+1))
∥∥∥
2
∥x∗ − x∥2

(127)

≤
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
∥x∗ − x∥2

(128)

Therefore, summarizing we have for the first term:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(
∥x(1) − x∗∥2 + 2∥x∗ − x∥2

)
(129)

For the second term we have,

√
T + 1⟨A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1

∥∥∥A(x(T+1))
∥∥∥
2

∥∥∥x(T+1/2) − x
∥∥∥
2

(130)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(131)(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(132)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(133)(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+
∥∥∥x(T+1) − x∗

∥∥∥
2
+ ∥x∗ − x∥2

)
(134)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(135)(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+
∥∥∥x(1) − x∗

∥∥∥
2
+ ∥x∗ − x∥2

)
(136)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(137)
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with D =
∥∥x(1) − x∗∥∥

2
+ supx∥x∗ − x∥2. Therefore, summarizing we have:

√
T + 1

〈
A(x(T+1/2)),x(T+1/2) − x

〉
≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+2
√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D+

√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(138)

In turn, this yields:

√
T + 1

〈
A(x),x(T+1/2) − x

〉
≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2
+2

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D

+
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(139)

and therefore by taking suprema on both sides we get:

0 ≤
√
T + 1Gap(x(T+1/2)) ≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2
+2

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D

+
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(140)

and hence the result follows by theorem 17. The second claim is derived directly from theorem 23
Finally for the (OGDA) algorithm, rate of convergence is obtained via the same line of reasoning.

E.3. Adaptive step size

We now move forward to the more demanding case of the adaptive step size policy. Namely, we will
examine the last iterate’s behaviour of (EG)/ (OGDA) run with the following generic form:

γ(t) =

(
γ(0) +

t−1∑
τ=1

τ∥x(τ+1) − x(τ+1/2)∥22

)−q

, (Adapt)

where q > 0 and γ(0) > 0. The main challenge of this framework is that (Adapt) does not guarantee
a monotonic decrease of the tangent residual sequence r(t). More precisely, we have the following
proposition.

Proposition 25 Assume that x(t+1/2),x(t) are the iterates of (EG)/ (OGDA) run with the step size
policy (Adapt). Then, the following holds:

+∞∑
t=1

(γ(t)r(t+1))2 < +∞ (141)

Proof First note that γ(t) is a nonnegative and nonincreasing sequence. Therefore, its limit exists
and moreover we have:

lim
t

γ(t) = inf
t
γ(t) ≥ 0 (142)
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Now, by denoting γ∞ = limt γ
(t) = inft γ

(t) we distinguish two cases.
Case 1: γ∞ > 0. Then, note that by the definition of (Adapt) we have:

T∑
t=1

t∥x(t+1) − x(t+1/2)∥22 =
(

1

γ(T+1)

)1/q

− γ(0) (143)

Therefore, we have:

+∞∑
t=1

t∥x(t+1) − x(t+1/2)∥22 = lim
T→+∞

T∑
t=1

t∥x(t+1) − x(t+1/2)∥22 (144)

= lim
T→+∞

(
1

γ(T+1)

)1/q

− γ(0) (145)

=

(
1

γ∞

)1/q

− γ(0) (146)

< +∞ (147)

with the last strict inequality being obtained by the fact that γ∞ > 0. Therefore, by applying
theorem 9 for x = x∗, being a solution of (VI), and after rearranging and telescoping for t = 1, . . . T
we have:

min

{
1

4
,

1

4γ(0)L

} T∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1) − x∗∥22 +

T∑
t=1

(2γ(t)L)2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

−
T∑
t=1

1

8

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(148)

which in turn yields:

min

{
1

4
,

1

4γ(0)L

} T∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1) − x∗∥22 +

T∑
t=1

(2γ(t)L)2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(149)

≤ 1

2
∥x(1) − x∗∥22 + 4L2(γ(0))2/q

T∑
t=1

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(150)

≤ 1

2
∥x(1) − x∗∥22 + 4L2(γ(0))2/q

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(151)

≤ 1

2
∥x(1) − x∗∥22 + 4L2(γ(0))2/q

+∞∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(152)
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which finally yields:

min

{
1

4
,

1

4γ(0)L

} T∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1) −x∗∥22 + 4L2(γ(0))2/q

((
1

γ∞

)1/q

− γ(0)
)

(153)

Hence, the result for the first case follows by taking limits on both sides.
Case 2: γ∞ = 0 Now we move to the case where the step-size policy may vanish. This in turn

yields that there exists some t0 ∈ N such that:

γ(t) ≤ 1√
32L

for all t > t0 (154)

Then, again by invoking theorem 9 in the same spirit as in case 1, we have:

min

{
1

4
,

1

4γ(0)L

} T∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1) − x∗∥22 +

T∑
t=1

(2γ(t)L)2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

−
T∑
t=1

1

8

∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(155)

which in turn for T large enough:

min

{
1

4
,

1

4γ(0)L

} T∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1) − x∗∥22 +

T∑
t=1

(
(2γ(t)L)2 − 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(156)

=
1

2
∥x(1) − x∗∥22 +

t0∑
t=1

(
(2γ(t)L)2 − 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(157)

+
T∑

t=t0+1

(
(2γ(t)L)2 − 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(158)

To that end, by invoking (154) we have that:

min

{
1

4
,

1

4γ(0)L

} t0∑
t=1

(γ(t)r(t+1))2 ≤ 1

2
∥x(1)−x∗∥22+

T∑
t=1

(
(2γ(t)L)2− 1

8

)∥∥∥x(t+1) − x(t+1/2)
∥∥∥2
2

(159)
Finally, the result for the second case follows by taking limits on both sides. In order to establish
the respective result for (OGDA) the same arguments apply by invoking the template inequality
theorem 10 for x = x∗.

Moving forward, we show the following crucial stepping stones. In particular, we have the
following proposition.

Proposition 26 Assume that x(t+1/2),x(t) are the iterates of (EG)/ (OGDA) run with the adaptive
step size policy (Adapt). Then, the following hold:
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1. The adaptive step size policy γ(t) is bounded away from zero, i.e.

lim
t→+∞

γ(t) = inf
t
γ(t) = γ∞ > 0 (160)

2. The sequence (t
∥∥x(t+1) − x(t+1/2)

∥∥2
2
)t is summable, i.e.

+∞∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
< +∞ (161)

Proof For the first claim, assume that γ∞ = 0. Then, by invoking theorem 12 and rearranging, we
have:

1

2
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
≤ t(γ(t)r(t))2−(t+1)(γ(t+1)r(t+1))2+(γ(t+1)r(t+1))2−1

2
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

+ t(γ(t)L)2
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(162)

Moreover, since we assumed that γ∞ = 0, there exists some t0 ∈ N such that:

γ(t) ≤ 1√
2L

for all t > t0 (163)

So, by telescoping (162) for T large enough, we have:

1

2

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
≤ (γ(1)r(1))2+

T∑
t=1

(γ(t+1)r(t+1))2+
T∑
t=1

(
(γ(t)L)2−1

2

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(164)
and therefore by dividing the sum we get:

1

2

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
≤ (γ(1)r(1))2 +

T∑
t=1

(γ(t+1)r(t+1))2

+

t0∑
t=1

(
(γ(t)L)2 − 1

2

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
+

T∑
t=t0+1

(
(γ(t)L)2 − 1

2

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(165)

which combined with (163) we have:

1

2

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
≤ (γ(1)r(1))2 +

T∑
t=1

(γ(t+1)r(t+1))2 (166)

+

t0∑
t=1

(
(γ(t)L)2 − 1

2

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(167)

< +∞ (168)

37



FASTER RATES FOR EXTRA-GRADIENT ITERATES

which the last strict inequality being obtained by theorem 25. On the other hand, by the definition of
γ(t) we have that:

1

2

T∑
t=1

t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2
=

(
1

γ(T+1)

)1/q

− γ(0) → +∞ (169)

since we assumed that γ(t) → 0 and is non-negative; yielding an contradiction. Therefore, we have
γ∞ > 0 and hence the result follows. Finally, regarding the (OGDA) the respective result is obtained
by the same reasoning and invoking theorem 14 and theorem 10.

Next step would be to establish the limit existence of the tangent residual. In particular, we have:

Proposition 27 Assume that x(t+1/2),x(t) are the iterates of (EG)/ (OGDA) run with the adaptive
step size policy (Adapt). Then, the sequence t(γ(t)r(t))2 has a limit.

Proof By invoking theorem 12 we have:

(t+ 1)(γ(t+1)r(t+1))2 ≤ t(γ(t)r(t))2 + (γ(t+1)r(t+1))2 +

(
(Lγ(t))2 − 1

)
t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(170)

≤ t(γ(t)r(t))2 + (γ(t+1)r(t+1))2 + (Lγ(t))2t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(171)

≤ t(γ(t)r(t))2 + (γ(t+1)r(t+1))2 + γ(0)L2t
∥∥∥x(t+1) − x(t+1/2)

∥∥∥2
2

(172)

So, since (γ(t+1)r(t+1))2, γ(0)L2t
∥∥x(t+1) − x(t+1/2)

∥∥2
2

are summable due to theorem 25 and theo-
rem 26, by applying theorem 31, we directly get the result.

Proposition 28 Assume that x(t+1/2),x(t) are the iterates of (EG) run with the adaptive step size
policy (Adapt). Then, we have:

lim
T→+∞

(Tr(T ))2 = 0 (173)

Proof First, note that by invoking theorem 25 we have:

+∞∑
t=1

1

t
t(γ(t)r(t))2 < +∞ (174)

By working in the same spirit as in , we readily get that:

lim
T→+∞

T (γ(T )r(T ))2 = 0 (175)

Therefore, we have:

lim
T→+∞

T (r(T ))2 = lim
T→+∞

T (γ(T )r(T ))2

(γ(T ))2
(176)

=
1

γ2∞
0 (177)

= 0 (178)
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and hence the result follows. Finally, regarding the (OGDA) is directly obtained by the same
reasoning by invoking theorem 14.

Remark 29 Following the same spirit as in theorem 23 we readily get:

lim inf
T→+∞

(
T log(T + 1)(r(T ))2

)
= 0 (179)

Finally, we are in the position to shown our full result; namely the last iterate of (EG) run with
the adaptive step size policy (Adapt). In particular, we have the following theorem.

Theorem 30 Assume that x(t+1/2),x(t) are the iterates of (EG)/ (OGDA) run with the adaptive step
size policy (Adapt). Moreover, assume that C is a non-empty, convex and compact subset of X which
contains a neighborhood of a solution of (VI). Then, the following hold:

GapC(x
(T+1)) = o(1/

√
T ) and GapC(x

(T+1/2)) = o(1/
√
T ) (180)

Moreover, we have:

lim inf
T→+∞

√
(T + 1) log(T + 1)GapC(x

(T+1)) = lim inf
T→+∞

√
(T + 1) log(T + 1)GapC(x

(T+1/2)) = 0

(181)

Proof Working in the same spirit with theorem 24 we have:
√
T + 1⟨A(x),x(T+1) − x⟩ ≤

√
T + 1⟨Ax(T+1),x(T+1) − x⟩ (182)

≤
√
T + 1⟨A(x(T+1)) + c(T+1),x(T+1) − x⟩ (183)

=
√
T + 1

(
⟨A(x(T+1)) + c(T+1),x(T+1) − x∗⟩ (184)

+ ⟨A(x(T+1)) + c(T+1),x∗ − x⟩
)

(185)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(186)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(1) − x(∗)
∥∥∥
2
+ ∥x∗ − x∥2

)
(187)

which finally yields: √
T + 1Gap(x(T+1)) ≤

√
T + 1r(T+1)D (188)

and hence the first claim follows by invoking . For the second claim, again by working in the same
spirit as in theorem 24 we have:

√
T + 1⟨A(x),x(T+1/2) − x⟩ ≤

√
T + 1⟨A(x(T+1/2)),x(T+1/2) − x⟩ (189)

=
√
T + 1

(
⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ (190)

+ ⟨A(x(T+1)),x(T+1/2) − x⟩
)

(191)
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We shall bound each (RHS) term (191) individually. In particular, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2)−x⟩ =

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2)−x∗⟩

+
√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x∗ − x⟩ (192)

Therefore, by applying Cauchy-Shwartz we get:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1

∥∥∥A(x(T+1/2))−A(x(T+1))
∥∥∥
2

(193)(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(194)

≤
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(195)(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(196)

with (196) being obtained by L- Lipschitz continuity of A. Furthermore, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥2
2

+
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(∥∥∥x(T+1) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(197)

On the other hand, we have:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x∗ − x⟩ ≤

√
T + 1

∥∥∥A(x(T+1/2))−A(x(T+1))
∥∥∥
2
∥x∗ − x∥2

(198)

≤
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
∥x∗ − x∥2

(199)

Therefore, summarizing we have for the first term:

√
T + 1⟨A(x(T+1/2))−A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+
√
T + 1L

∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(
∥x(1) − x∗∥2 + 2∥x∗ − x∥2

)
(200)
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For the second term we have,
√
T + 1⟨A(x(T+1)),x(T+1/2) − x⟩ ≤

√
T + 1

∥∥∥A(x(T+1))
∥∥∥
2

∥∥∥x(T+1/2) − x
∥∥∥
2

(201)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x∗
∥∥∥
2
+ ∥x∗ − x∥2

)
(202)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(203)

+
∥∥∥x(T+1) − x∗

∥∥∥
2
+ ∥x∗ − x∥2

)
(204)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2

(205)

+
∥∥∥x(1) − x∗

∥∥∥
2
+ ∥x∗ − x∥2

)
(206)

≤
√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(207)

with D =
∥∥x(1) − x∗∥∥

2
+ supx∥x∗ − x∥2. Therefore, summarizing we have:

√
T + 1

〈
A(x(T+1/2)),x(T+1/2) − x

〉
≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+2
√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D+

√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(208)

In turn, this yields:

√
T + 1

〈
A(x),x(T+1/2) − x

〉
≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+2
√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D+

√
T + 1

∥∥∥A(x(T+1)) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(209)

and therefore by taking suprema on both sides we get:

0 ≤
√
T + 1Gap(x(T+1/2)) ≤

√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥2
2

+2
√
T + 1L

∥∥∥x(T+1) − x(T+1/2)
∥∥∥
2
D+

√
T + 1

∥∥∥Ax(T+1) + c(T+1)
∥∥∥
2

(∥∥∥x(T+1/2) − x(T+1)
∥∥∥
2
+D

)
(210)

and hence the result follows by theorem 28. The second claim is directly obtained by theorem 29.
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Appendix F. Auxiliary lemma

In this section, we briefly present the notion of quasi-Féjer monotone sequences. More precisely,
sequences which satisfy the following recursion:

α(t+1) ≤ α(t) − β(t) + δ(t) for all t = 1, 2, . . . (211)

where αt, βt, δt are non-negative sequences. In particular, we have the following proposition.

Proposition 31 Let χ ∈ (0, 1], (α(t))t∈N , (β(t))t∈N non-negative sequences and (δ(t))t∈N such
that t = 1, 2, . . . :

α(t+1) ≤ χα(t) − β(t) + δ(t) (212)

Then, α(t) converges.

Proof First, one shows that α(t∈N ) is a bounded sequence. Indeed, one can derive directly that:

α(t+1) ≤ χt+1α(0) +

t∑
k=0

χt−kδ(k) (213)

Hence, (α(t))t∈N lies in [0, α(0) + δ], with δ =
∑+∞

t=0 δ
(t). Now, one is able to extract a convergent

subsequence (α(kt))t∈N , let say limt→+∞ α(kt) = α ∈ [0, α0 + δ] and fix ε > 0. Then, one can find
some t0 such that α(kt0 ) − α < ε

2 and
∑

m>tkt0
δ(m) < ε

2 . That said, we have:

0 ≤ α(t) ≤ α(kt0 ) +
∑

m>tkt0

δ(m) <
ε

2
+ α+

ε

2
= α+ ε (214)

Hence, lim supt α
(t) ≤ lim inft α

(t) + ε. Since, ε is chosen arbitrarily we may let ε → 0 and hence
the result follows. The case of (OGDA) is derived by invoking the same reasoning.

Appendix G. Symbolic verification of theorem 11 and theorem 13

We used SymPy, a symbolic algebra system to verify theorem 11.

from sympy import *

z0, z1, z2, Fz0, Fz1, Fz2, c0, c2, L, g
= symbols(’z0 z1 z2 Fz0 Fz1 Fz2 c0 c2 L g’)

expression_1 = g**2*(Fz0+ c0)**2 - g**2*(Fz2+ c2)**2
expression_2 = (-1)*g**2*(L**2*(z1 - z2)**2 - (Fz1 - Fz2)**2)
expression_3 = (-2)*g*(Fz2 - Fz0)*(z2 - z0)
expression_4 = (-2)*(z0 - g*Fz0 - z1)*(z1 - z2)
expression_5 = (-2)*(z0 - g*Fz1 - z2)*(z2 - z0)
expression_6 = (-2)*g*c0*(z0 - z1)
expression_7 = (-2)*(g*c2 + g*Fz2)*(z0 - g*Fz1 - z2)
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expression_8 = (-2)*(g*c2 + g*Fz2)*(-g*c2)
expression_9 = (g*Fz0 + g*c0 - z0 + z1)**2
expression_10 = (g*Fz1 + g*c2 - z0 + z2)**2

LHS = (expression_1 + expression_2 + expression_3 + expression_4 +
expression_5 + expression_6 + expression_7 + expression_8)

RHS = expression_9 + expression_10

print(simplify(LHS-RHS))

Moreover, we additionally used SymPy for verifying theorem 13

from sympy import *
z1, z0, w0, w1, Fz0, Fz1, Fw0, Fw1, c0, c1
=symbols(’z1 z0 w0 w1 Fz0 Fz1 Fw0 Fw1 c0 c1’)

# Expression (47)
expression_1 = ((Fz0 + c0)**2 + (Fz0 - Fw0)**2 ) -
((Fz1 + c1)**2 + (Fz1 - Fw1)**2)

# LHS of Inequality (48)
expression_2 = (-2)*(Fz1 - Fz0)*(z1 - z0)

# LHS of Inequality (49)
expression_3 = (-2)*(0.25*(z1 - w1)**2 - (Fz1 - Fw1)**2)

# LHS of Inequality (50)
expression_4 = (-1)*(z0 - Fw0 - w1)*(w1 - z1)

# LHS of Inequality (51)
expression_5 = (-2)*(z0 - Fw1 - z1)*(z1 - z0)

# LHS of Inequality (52)
expression_6 = (-1)*c0*(z0 - w1)

# LHS of Inequality (53)
expression_7 = (-1)*c0*(z0 - z1)

# LHS of Inequality (54)
expression_8 = (-2)*(c1 + Fz1)*(z0 - Fw1 - z1)

# LHS of Inequality (55)
expression_9 = (-2)*(c1 + Fz1)*(-c1)

# LHS of Inequality (56)
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expression_10 = ((w1 - z1)/2 + Fw0 - Fz0)**2

# LHS of Inequality (57)
expression_11 = (Fz0 + c0 - z0 + (w1 + z1)/2)**2

# LHS of Inequality (58)
expression_12 = (z0 - Fw1 - z1 - c1)**2

# LHS of the identity
LHS = ( expression_1 + expression_2 + expression_4 + expression_5

+ expression_6 + expression_7 + expression_8 + expression_9)

# RHS of the identity
RHS = expression_10 + expression_11 + expression_12

P = LHS - RHS
Q=simplify(P)
print(Q)
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