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ABSTRACT

We introduce SceneTransporter, an end-to-end framework for structured 3D scene
generation from a single image. While existing methods generate part-level 3D
objects, they often fail to organize these parts into distinct instances in open-world
scenes. Through a debiased clustering probe, we reveal a critical insight: this fail-
ure stems from the lack of structural constraints within the model’s internal as-
signment mechanism. Based on this finding, we reframe the task of structured 3D
scene generation as a global correlation assignment problem. To solve this, Scene-
Transporter formulates and solves an entropic Optimal Transport (OT) objective
within the denoising loop of the compositional DiT model. This formulation im-
poses two powerful structural constraints. First, the resulting transport plan gates
cross-attention to enforce an exclusive, one-to-one routing of image patches to
part-level 3D latents, preventing entanglement. Second, the competitive nature of
the transport encourages the grouping of similar patches, a process that is further
regularized by an edge-based cost, to form coherent objects and prevent fragmen-
tation. Extensive experiments show that SceneTransporter outperforms existing
methods on open-world scene generation, significantly improving instance-level
coherence and geometric fidelity. Code and models will be publicly available at
https://scenetransporter.github.io/ .

1 INTRODUCTION

The capacity to generate high-quality, scalable 3D scenes is a cornerstone for the next generation of
immersive technologies and embodied AI. While advancements in generative AI promise scalable
synthesis, the vast majority of scene generators still produce monolithic, unstructured meshes (Vo-
drahalli et al., 2024; Li et al., 2025; Xiang et al., 2025). For real-world pipelines, a fused 3D shell is
functionally inert. Downstream tasks—including material assignment, realistic physics simulation,
asset retrieval and placement, and fine-grained editing—require a structured scene mesh with ex-
plicit, instance-level object-context disentanglement. A common “divide and conquer” solution at-
tempts this by first segmenting an input image, then generating a 3D model for each part, and finally
assembling them into a scene (Huang et al., 2025; Chen et al., 2024b; Ardelean et al., 2024). This
multi-stage pipeline, however, is inherently brittle; its heavy reliance on 2D segmentation makes it
incapable of handling heavily occluded objects, and transforms even minor 2D segmentation flaws
into significant 3D geometric artifacts.

In recent years, end-to-end structured generation has emerged as a promising alternative (Lin et al.,
2025b; Tang et al., 2025; Chen et al., 2025a; Yang et al., 2025b), enabled by the development of
large-scale repositories with explicit part annotations (e.g., Objaverse (Lin et al., 2025a)). In this
paradigm, a scene is no longer represented as a single, indivisible latent code but as a collection of
disentangled latent tokens, where each set of tokens corresponds to a distinct 3D part. Although
these methods show great promise for generating structured objects and indoor scenes, open-world
structured scene generation remains underexplored. As illustrated in Figure 4, when naively applied
to large, complex open-world scenes, it uncovers two persistent 3D pathologies: (i) Structural
Mispartition—semantic instances within the scene fail to form disjoint parts; and (ii) Geometric
Redundancy—multiple latents “compete” to describe the same geometric area.
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Figure 1: Comparison between our end-to-end scene generation pipeline in (c) with compositional
3D latent diffusion and existing “divide and conquer” methods.

To address these challenges, we first perform Probing Latent Structure with Debiased Clustering.
This probe reveals the primary bottleneck: a lack of structural constraints within the model’s assign-
ment mechanism prevents the formation of stable instances. To this end, we introduce SceneTrans-
porter, a framework that reframes the task as an Optimal-Transport–Guided Correlation Assignment
problem. To solve this, we define a principled entropic Optimal Transport (OT) formulation that cal-
culates a globally optimal transport plan between the set of image patch features and the part-level
tokens. This optimization imposes powerful structural constraints through two key components.
First, an OT Plan–Gated Cross–Attention module uses the plan to enforce a hard, one-to-one rout-
ing, ensuring each patch contributes to only one part, thus preventing feature entanglement. Second,
the competitive nature of the transport incentivizes patches with high feature similarity to be as-
signed to the same token, naturally forming coherent structures. To further refine this grouping and
ensure sharp object boundaries, we introduce an Edge–Regularized Assignment Cost, which penal-
izes assignments that cross salient image edges within the transport objective. Extensive experiments
show that our approach outperforms existing methods, setting a new framework for structured 3D
scene generation.

In summary, our contributions are as follows:

• We design a Debiased Clustering probe based on Canonical Correlation Analysis (CCA)
to investigate the latent structure of part-level generators. The probe reveals that the core
failure lies in the assignment mechanism due to a lack of structural constraints.

• We reframe the task as an Optimal-Transport (OT)–Guided Correlation Assignment prob-
lem. To solve this, we propose SceneTransporter, which leverages an entropic OT frame-
work to impose two powerful structural constraints: an OT Plan–Gated Cross–Attention
module for exclusive one-to-one routing, and an Edge-Regularized Assignment Cost for
coherent structures grouping.

• SceneTransporter achieves state-of-the-art performance on open-world 3D scene genera-
tion, demonstrating significantly improved instance-level coherence and geometric fidelity.

2 RELATED WORK

3D Scene Generation. Early approaches to scene synthesis were dominated by retrieval-based
methods, which compose scenes by aligning assets from a 3D database with an input image (Feng
et al., 2023; Gao et al., 2024; Langer et al., 2024). These methods, however, are fundamentally
limited by the scope of their database and often suffer from alignment errors from a single view.
The advent of large-scale generative models has shifted the focus towards creating novel content.
One dominant approach is 2D-prior distillation, a multi-stage process that first generates consistent
multi-view images (Chen et al., 2025b; Li et al., 2024), videos Sun et al. (2024); Wang et al. (2025);
Liang et al. (2025), or panoramic images Yang et al. (2025a); Zhou et al. (2024) via powerful dif-
fusion models, and then reconstructs a 3D scene from these views using techniques like Neural
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Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS). To address the geometric inconsisten-
cies of 2D-lifting, another line of research develops models that operate directly in native 3D latent
spaces (Meng et al., 2025; Wu et al., 2024; Lee et al., 2025; Ren et al., 2024; Lee et al., 2024; Liu
et al., 2024b). While this improves multi-view consistency, it requires large-scale 3D datasets and
generalizes poorly to in-the-wild scenes. Crucially, both of these generative avenues converge on
the same limitation: their output is a single, unstructured monolithic mesh, which lacks the explicit
object-level separation needed for most downstream tasks.

3D Structured Scene Generation. A common “divide and conquer” strategy for structured scene
generation is to process a scene piece by piece (Chen et al., 2024b; Ardelean et al., 2024; Han et al.,
2024). This typically involves a pipeline that segments the input, generates 3D models for the seg-
ments, and then arranges them. Such methods benefit from modularity but suffer from two key
weaknesses: the accumulation of errors across stages and a failure to maintain global consistency.
While more integrated approaches like MIDI (Huang et al., 2025) use a multi-instance attention
mechanism to capture inter-object interactions, they remain fundamentally limited by their reliance
on segmenting visible content, preventing the reconstruction of occluded parts. Another line of
work explores end-to-end compositional generation using 3D diffusion models that bind latent to-
ken subsets to semantic parts (Lin et al., 2025b; Tang et al., 2025). While these models excel at
generating structured objects, they fail to generalize to complex open-world scenes due to a scarcity
of scene-level part annotations. This generalization gap manifests as two distinct geometric patholo-
gies (Figure 4): structural mispartition and geometric redundancy. Our work offers the first direct
solution, introducing a method to guide the compositional cross-attention of pretrained generators
and explicitly correct these failure modes.

Attention control in diffusion models. Attention maps in image and video diffusion models have
become a compact, training-free control interface: by manipulating or augmenting self- and cross-
attention at sampling time, practitioners can steer layout and composition (Chen et al., 2024a; Hertz
et al., 2022; Patashnik et al., 2023), transfer fine-grained texture and style (Hertz et al., 2024), enforce
multi-prompt alignment (Chefer et al., 2023) and temporal coherence for videos (Cai et al., 2025;
Liu et al., 2024a; Qi et al., 2023), and perform a variety of image-editing tasks (Parmar et al., 2023;
Yang et al., 2023; Mokady et al., 2023; Park et al., 2024; Tumanyan et al., 2023). Despite its success
in 2D, attention-based control has seen little application to 3D latent diffusion—largely because
3D representations differ fundamentally. In 2D, attention queries live on a regular spatial grid with
explicit positions. By contrast, 3D data commonly takes irregular forms. For instance, in the vecset-
based latent representation (Zhang et al., 2023) where a shape is encoded as an unordered set of
latent vectors, positional information is not explicitly structured. The absence of a canonical spatial
index therefore makes attention manipulation for 3D editing substantially more difficult and still
largely unexplored.

3 METHODOLOGY

3.1 PRELIMINARIES: COMPOSITIONAL 3D GENERATORS

A typical compositional 3D generator consists of two key components: (i) a Transformer-based
Variational Autoencoder (VAE), such as 3DShape2VecSet, which encodes a 3D mesh into a set of
latent vectors and decodes them back into a geometric field (e.g., SDF), and (ii) a denoising network
that operates within this latent space to reverse a diffusion process and synthesize clean latents from
noise. Prior to going further, we first introduce the notations and preliminaries used in our paper,
especially those for the attention mechanism, as its core lies in modeling the geometric dependencies
among shape components. At denoising step t, the model maintains N part-specific token blocks
{z(t)i }Ni=1, where each z

(t)
i ∈RK×D contains K tokens (width D) for part i. A common practice is

to add a learnable part identity embedding ei ∈ RD to all tokens of part i, where 1K is a column
vector of ones:

z̃
(t)
i = z

(t)
i + 1Ke⊤i , Z(t) = concattokens

(
z̃
(t)
1 , . . . , z̃

(t)
N

)
∈ R(NK)×D. (1)
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Figure 2: Qualitative Results on Vecset-based Latent Probing. Cluster and Cluster with CCA
are our probes that perform in the compositional latent space of PartPacker; VAE clusters the latent
obtained by encoding the fused geometry produced by PartPacker into the VAE. Colors denote part
assignments.

Conditioning comes from a single RGB image x encoded by a frozen DINOv2 ϕ(x) = I ∈ RL×Dimg .
Linear projections yield queries, keys, and values (omitting head indices for brevity):

Q = ℓQ(Z
(t)) ∈ R(NK)×d, K = ℓK(I) ∈ RL×d, V = ℓV (I) ∈ RL×d. (2)

Row-normalized cross-attention fuses image evidence into the latent tokens. In practice, to increase
expressiveness, multi-head attention is used: the projections are split into H heads (Qh,Kh,Vh),
attention is computed per head Mh = Softmax

(
QhK

⊤
h /

√
d
)
, the head outputs are concatenated,

and a learned output projection produces the final update,

Ẑ(t) = ConcatHh=1

(
MhVh

)
WO. (3)

The updated sequence proceeds through the DiT block and the denoising schedule. At inference,
the final clean sequence is split back into {ẑi}Ni=1 and each subset is decoded by the pretrained VAE
to obtain a part mesh; parts are then fused to form the full scene.

3.2 PROBING LATENT STRUCTURE WITH DEBIASED CLUSTERING

Part-level generators carry a strong inductive bias toward a part-level organization that models cor-
relations among parts of the same object (e.g., chair legs and back share style and structure). In
contrast, scene synthesis models an instance-level organization, where distinct entities are largely
conditionally independent.

Applying the former to the latter gives rise to two observable failure modes (Figure 4): Structural
Mispartition, where geometry for a single object is scattered across multiple part-tokens, and Geo-
metric Redundancy, which leads to the geometry overlap between objects. Intriguingly, despite this
incoherent part-level assignment, the union of all parts often reconstructs the overall scene reason-
ably well. This raises a concrete question: Can we recover a coherent, instance-level organization
from these part-level latents? To probe this, we introduce a debiased clustering procedure with three
steps: identify the shared subspace via canonical correlation analysis (CCA) on the part-level latent
sets; suppress it by projecting tokens onto the orthogonal complement to isolate object-specific vari-
ation; and regroup the residual tokens to obtain semantically coherent sets. Implementation details
are provided in Appendix 5.

An illustrative example is provided in Figure 2. Our probe offers a clear signal: clustering raw part
tokens fails to produce stable instance groupings, whereas clustering the CCA-debiased residual
tokens reliably succeeds. This striking contrast reveals a critical flaw in current part-level generators:
while their learned features implicitly contain the necessary information for correct associations, the
models fail to establish these associations explicitly. As a result, the learned groupings are left weak,
fragmented, and entangled with scene context. Based on this insight, we argue that a paradigm shift
is required. Instead of hoping for an organization to emerge from an implicit learning process, we
must introduce explicit structural constraints to guarantee a coherent, instance-level structure by
design.
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Figure 3: Overview of the SceneTransporter pipeline. At each denoising step t, our Optimal-
Transport–Guided Correlation Assignment framework formulates a global OT problem between
image patches and part-level tokens within the compositional latent DiT. We compute a part-patch
cost from Q/K similarity, regularized by image edges, and solve for an optimal transport plan using
Sinkhorn iteration. The OT plan gates the cross attention to enforce an explicit patch-to-part routing,
and the resulting gated attention map updates the latent zt. Attention maps transport over time,
showing assignments becoming sharper and more instance-consistent.

3.3 OPTIMAL-TRANSPORT–GUIDED CORRELATION ASSIGNMENT

To impose the explicit structural constraints suggested by our probe, we reframe the routing of visual
evidence to part tokens as a globally optimal correlation assignment problem. We propose to solve
this problem at each denoising step using the principled framework of Optimal Transport (OT). OT
provides the exact constraints needed to combat the failures we observed. By enforcing a one-to-
one assignment, it ensures exclusivity, preventing the feature entanglement that causes objects to
blend. Simultaneously, by requiring each part-latent to meet a coverage budget, it encourages the
aggregation of large, coherent patch regions, directly mitigating semantic fragmentation. This OT-
guided mechanism, which we detail next, transforms the generation from an unconstrained process
into a structured, well-posed optimization.

OT Problem Setup. The core challenge of routing is to ensure a globally consistent allocation:
image patches should not be double-counted by multiple 3D parts, and 3D parts should not compete
for the same patch information. To address this, we model the assignment as a single optimization
problem with constraints. We compute an entropic OT plan At ∈ RN×L to allocate the mass from
L image patch features to the latent tokens of N 3D parts:

At = argmin
A≥0

⟨Ct,A⟩+ εt H(A) s.t. A1 = µ, A⊤1 = ν, (4)

where the cost matrix Ct ∈ RN×L measures the incompatibility between patches and parts, as will
be detailed in Eq. (12). Crucially, the constraints enforce a budget for each part through µ ∈ ∆N ,
which prevents any part from being “starved” of information1. They also ensure that each patch
contributes an equal amount of mass by ν = 1

L1L, meaning each patch contributes 1/L of the total
mass. H(A) is the entropy of the transport plan A, and εt is the entropic regularization term, which
helps to smooth the solution. The resulting transport plan At minimizes the assignment cost while
adhering to the capacity constraints.

OT Plan–Gated Cross–Attention. Given the entropic OT plan At ∈ RN×L from Eq. (4), we
inject this global assignment into the native cross-attention mechanism by using it to gate the in-
coming visual information multiplicatively. This approach enables us to regulate the amount of
evidence each image patch can contribute to each 3D part, while preserving the standard Softmax
attention to decide which of the available patches each token should focus on. To achieve this, we

1∆N = {x ∈ RN
≥0|1Nx = 1} is a probability simplex. µ ∈ ∆N satisfies

∑N
i=1 µi = 1 with µi ≥ 0.

5
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first convert the transport plan At into per-part patch weights ωi ∈ ∆L through row-normalization.
We then design a bounded, identity-preserving gating function ψ(·) that transforms these weights
into a gating signal:

ψλt,εg (w) = εg + (1− εg)w
λt , w ∈ [0, 1], λt≥0, εg∈ [0, 1), (5)

where the guidance strength λt determines how quickly the gate closes for patches with low weights,
while a small floor εg prevents any patch from being entirely starved of attention. Critically, when
guidance is disabled (λt = 0), the function outputs exactly 1, guaranteeing that the mechanism
reverts to standard cross-attention. This gating signal is subsequently applied to modulate both the
keys and values in the attention computation for each part. For a specific head h, the keys Kh and
values Vh are scaled row-wise by the gating signal derived from the part-specific weights ωi(j).
This results in a unique, gated “view” of the image memory for each part i:

K
(i)
h (j, :) = ψλt,εg

(
ωi(j)

)
Kh(j, :), V

(i)
h (j, :) = ψλt,εg

(
ωi(j)

)
Vh(j, :). (6)

The queries for the 3D part i focus solely on this gated memory. By gating both keys and values,
we ensure that routes suppressed by the OT plan contribute neither large logits nor large feature
values, resulting in a clean, capacity-consistent routing with low leakage. The final representations
for each part are computed via standard multi-head attention on their respective gated inputs and
then stitched together:

M
(i)
h = Softmax

(
Q

(t)
h (Si,:)

(
K

(i)
h

)⊤
√
dh

)
, H

(i)
h = M

(i)
h V

(i)
h , (7)

Ẑ(t)(Si, :) = ConcatHh=1

[
H

(i)
h

]
WO, i = 1, . . . , N, Ẑ(t) ∈ R(NK)×d. (8)

Edge–Regularized Assignment Cost. In cluttered scenes, patch features near contact boundaries
often seem compatible with multiple parts. As a result, the transported patch tends to “leak” in-
formation across adjacent objects. To address this issue, we introduce a weak but spatially precise
prior: an edge map E ∈ [0, 1]H×W obtained from the conditioning image (e.g., Canny/Sobel or a
learned edge detector). The goal is to encourage region–wise consistency in the affinities between
parts and patches while discouraging the spread of information across image edges.

Let {q̄(t)
i }Ni=1 represent the aggregated token of the i-th part. Meanwhile, let {kj}Lj=1 denote the

patch keys. We first compute the raw cosine similarities between these prototypes and keys,

Si,j = cos
(
q̄
(t)
i , kj

)
∈ [−1, 1]. (9)

We downsample the edge map to match the patch grid, resulting in E↓∈ [0, 1]Hp×Wp whereHpWp =
L, and construct a 4–neighborhood graph among the patches. For a patch j and its neighboring patch
ℓ∈N (j), we define an edge–aware coupling weight:

wjℓ = exp
(
− γedge max{E↓(j), E↓(ℓ)}

)
, γedge>0, (10)

which is close to 1 in smooth regions and decays near image edges. We then perform a single
edge–aware smoothing step on the affinities,

Ŝi,j =
Si,j + λedge

∑
ℓ∈N (j)wjℓ Si,ℓ

1 + λedge
∑

ℓ∈N (j)wjℓ
, λedge≥0. (11)

Eq. (11) facilitate the spread of evidence within regions characterized by low edge strength, while
simultaneously inhibiting the spread across edges. The process results in affinities that are piecewise
smooth and respect boundaries. To further intensify the competition among parts for each patch, we
implement a contrast normalization on a per-patch basis and obtain S̃i,j from Ŝi,j .

Finally, our OT cost is defined as the margin–enhanced dissimilarity measure that incorporates the
edge map to guide the assignment cost, ensuring that the affinities respect the boundaries and main-
tain region-wise consistency,

Ct(i, j) =
1

2

(
1− S̃i,j

)
. (12)
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Method Instance
Mask

Geometry Fidelity Part Disentanglement Inference
Time (s)ULIP↑ ULIP-2↑ Uni3D↑ IoUmax ↓ IoUmean ↓

MIDIHuang et al. (2025) ! 0.1397 0.2763 0.2518 0.0458 0.1642 149.68
PartCrafterLin et al. (2025b) % 0.1177 0.3096 0.2635 0.0042 0.0539 157.97
PartPackerTang et al. (2025) % 0.1417 0.3083 0.2887 0.0319 0.2142 47.41

Ours % 0.1466 0.3220 0.3021 0.0101 0.0926 54.99

Table 1: Quantitative Comparison on Structured 3D Scene Generation across Methods. Bold
values indicate the best scores, while underlined values indicate the second-best scores among the
fair comparison.

When λedge = 0 (or the edge map consists entirely of zeros), Eq. (12) simplifies to the standard
cosine–based cost with contrast normalization. A positive λedge suppresses cross–boundary transport
without requiring any semantic masks: patches on opposite sides of strong edges receive weak
mutual support in Eq. (11), so the subsequent OT solver more reliably assigns them to different parts.
All operations are differentiable and head/part–agnostic, and the hyperparameters (λedge, γedge) can
be annealed across denoising steps (stronger in early steps, weaker later) to promote clean separation
first and fine detail later.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines We compare our approach against recent state-of-the-art methods for part-level 3D gen-
eration—PARTCRAFTER (Lin et al., 2025b), PARTPACKER (Tang et al., 2025), and MIDI (Huang
et al., 2025). We ensure fairness in our evaluation by using the officially released source code and
checkpoints for each baseline.

Metrics. Following prior work (Tang et al., 2025; Zhao et al., 2025), we evaluate geometry fidelity
with ULIP (Xue et al., 2023; 2024) and Uni3D (Zhou et al., 2023). These models learn unified rep-
resentations across text, image, and point cloud modalities. Since both ULIP-2 and Uni3D require
colored point clouds as input, we assign a uniform white color to all mesh outputs before computing
the metrics. For part disentanglement, we voxelize the canonical space into a 643 grid, binarize oc-
cupancies {Oi}Ni=1 for the N generated parts, and compute pairwise Intersection-over-Union (IoU).
We report the mean of the top-20 largest IoUs, and the maximum IoU; lower values indicate better
disentanglement (less inter-part overlap).

Implementation details. We build SceneTransporter on the open-source part-level 3D generator
of Tang et al. (2025), which uses a rectified-flow DiT with 24 attention blocks and supports arbitrary
part counts via a dual-volume packing strategy. In our setup we instantiate dual volumes, yielding
a compositional latent of size 4096 × 2 = 8192 with channel width 64. For the OT solver, we use
a stabilized log-domain Sinkhorn with 40 iterations. We enable OT plan–gated attention in the first
half of the DiT blocks, and use standard cross-attention in the remaining blocks to refine the global
geometry. All other inference settings follow Tang et al. (2025).

4.2 COMPARISONS WITH STATE-OF-THE-ARTS.

To demonstrate the effectiveness and breadth of our approach, we evaluate on an open-world set of
74 high-quality scene images collected from the Web, spanning diverse styles. As shown in Table 1,
our method achieves the highest geometry fidelity and the second-lowest inter-part overlap. The
absolute lowest IoU is reported by PartCrafter, largely because it discards background/ground re-
gions during generation, which trivially reduces overlap but also compromises scene completeness.
Although our runtime is slightly slower than PartPacker, we deliver substantially better geometry
and disentanglement, while remaining much faster than MIDI and PartCrafter.

Figure 4 provides qualitative comparisons: our method produces coherent object-level parts (e.g.,
complete houses, sofas, trees, lamps), whereas PartPacker shows semantic fragmentation (e.g., roofs
or tree canopies split across parts) and feature entanglement (e.g., ground features leaking into adja-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Qualitative Comparison on Structured 3D Scene Generation across Methods. Dif-
ferent colors indicate different parts in the generated 3D scene.

Method Geometry ↑ Layout ↑ Segmentation ↑

MIDI (Huang et al., 2025) 2.61 1.82 2.29
PartCrafter (Lin et al., 2025b) 2.44 1.63 2.17
PartPacker (Tang et al., 2025) 2.81 2.95 1.97

Ours 3.09 3.34 3.22

Table 2: User Study. Human evaluation of dif-
ferent structure 3D scene generation methods
across multiple aspects. Scores range from 1
to 4, with higher scores indicating better perfor-
mance. Bold values represent the best perfor-
mance within each metric.

Figure 5: Qualitative Ablation Studies on the
Edge–Regularized Assignment Cost.

cent buildings). Trained primarily on indoor assets, MIDI further requires additional instance masks
at inference; it performs reasonably on simple indoor scenes but degrades on outdoor cases, exhibit-
ing spatial layout distortions and weaker instance separation. PartPacker does not use masks and
can perform well on objects that are well separated from their surroundings, but its performance
deteriorates in complex spatial layouts.

We invite 30 participants to evaluate three baselines and our method, considering three criteria:
geometry quality, layout coherence, and segmentation plausibility. We employ a Forced Ranking
Scale, where items are ranked from 1 to 4, with the highest rank receiving a score of 4 and the
lowest rank receiving a score of 1. As clearly indicated in Table 2, our method receives the highest
preference across all three criteria, indicating more coherent object–level parts, reduced feature
leakage, and better scene–wide layout consistency.

4.3 ABLATION STUDY

Effects of OT Plan–Gated Cross–Attention As shown in Figure 6 (a), our OT Plan–Gated
Cross–Attention method produces highly structured and focused attention maps. Notice how
A atten. map clearly isolates the ground, while the other (B atten. map) concentrates exclusively
on the houses. This clean separation of duties, visualized in the hard affinity map, results in distinct,
non-overlapping regions. Consequently, each part is generated as a complete and clean geometric
object (A geo. for the ground, B geo. for the houses). When combined, they form a perfectly orga-
nized scene Uni geo. with sharp boundaries. In contrast, the standard cross-attention in (b) is noisy
and chaotic. The attention maps are diffuse, sending mixed signals about which part is responsible
for which region. This confusion leads to corrupted geometry. This result validates the efficacy of
our OT Plan–Gated Cross–Attention module, proving that its enforcement of one-to-one constraints
effectively prevents feature entanglement.

8
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Figure 6: Qualitative Ablation Studies on the OT Plane-gated Cross Attention. Here, A attn.
and B attn. denote the dual-volume soft attention probability maps, reshaped to the image patch
grid (brighter means higher affinity). Hard affinity visualizes the argmax(A,B) patch assignments
overlaid on the input image (blue→A, red→B). A geo. and B geo. are the geometries decoded
from dual volumes, respectively, and Uni geo. is their fused scene mesh. Row (a) shows our OT
plan–gated cross-attention; row (b) shows the standard cross-attention.

Figure 7: Qualitative Ablation Studies on the OT Plan Progression over Denoising Steps. Each
map visualizes the hard OT plan at a given denoising step: every cell is an image patch assigned to
one volume (dark blue = A, light cyan = B). Left→right shows the OT plan’s evolution; later steps
mostly stabilize with only local refinements.

OT Plan Progression over Denoising Steps. As shown in Figure 7, as t increases, the OT plan
quickly stabilizes: after roughly t≈540/600 the global partition changes little. In the late denoising
stage, entire objects (e.g., buildings, furniture, trees) are already routed into a single volume, with
only fine adjustments thereafter. This temporal behavior explains the coherence of our object-level
parts: coarse, semantic routing is decided early and preserved, while later steps polish details without
flipping the global assignment.

Effects of Edge–Regularized Assignment Cost. Our correlation assignment operates at the patch
level. Because image features are locally smooth, neighboring patches usually prefer the same
part, which tends to pull an entire connected region into a single part. While desirable within an
object, this behavior can mistakenly merge spatially adjacent but semantically distinct objects at
contact zones (e.g., furniture touching walls or fences touching posts). As shown in Figure 5, adding
the edge regularizer cleanly separates objects that are contiguous in the image—the sofa from the
corner side table in the top row, and the wooden posts from the surrounding fence in the bottom
row. Compared to the version without edge regularization, the edge-aware plan yields crisper inter-
object boundaries, fewer mixed parts, and improved structural fidelity, while requiring no additional
instance mask supervision.

5 CONCLUSION

In this paper, we introduced SceneTransporter, a novel framework for structured 3D scene generation
from a single image. By reframing the task as a global correlation assignment problem and solving it
with an Optimal Transport layer, our method imposes powerful structural constraints directly on the
generative process, effectively resolving the critical issues of structural mispartition and geometric
redundancy found in existing models. Experimental results demonstrate that our method achieves
state-of-the-art performance, generating complex open-world scenes with significantly improved
geometric fidelity and instance-level coherence.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES
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A THE USE OF LARGE LANGUAGE MODELS

The writing of this paper was assisted by Large Language Models (LLM). Specifically, the LLM
was utilized for the following tasks:

• Improving grammar, clarity, and academic tone throughout the manuscript.
• Rephrasing and restructuring sentences and paragraphs to enhance the logical flow of our

arguments.

In accordance with ICLR policy, the human authors directed all content generation, critically re-
viewed and edited all model outputs, and take full and final responsibility for the claims, accuracy,
and integrity of this work.

B METHOD DETAILS

Debiased Clustering Probe To quantitatively investigate the flawed latent organization of the
baseline, we designed a diagnostic probe based on unsupervised clustering. The key idea is that
the constituent information for complete objects is indeed present within the generated latents,
but is merely disorganized and entangled by the model’s component-based prior. Specifically, let
ZA,ZB ∈ RK×D be the dual-volume latents generated by Tang et al. (2025) for a given scene. We
stack them and apply a mild whitening:

Z =

[
ZA

ZB

]
, Z̃ = (Z−1µ⊤) Σ−1/2, µ = 1

2K

2K∑
i=1

Zi, Σ = 1
2K

2K∑
i=1

(Zi−µ)(Zi−µ)⊤, (13)

where Σ−1/2 is computed from an eigendecomposition with a small ridge for stability. Denote the
whitened halves by Z̃A, Z̃B .

Directly clustering the raw token latents often fails because the process is dominated by strong,
shared nuisance factors—such as the ground plane or global style—that are non-diagnostic for ob-
ject identity. To suppress these pervasive cross-volume trends, we first estimate a shared subspace
between the two latent volumes (Z̃A, Z̃B) using canonical correlation analysis (CCA). CCA iden-
tifies paired directions (uj ,vj) that maximize the correlation between the volumes’ projections.
We retain all directions whose canonical correlation ρj exceeds a threshold τ to define this shared
subspace

{(ρj ,uj ,vj)}j∈J = CCA(Z̃A, Z̃B), J = {j : ρj > τ}, Ushared = span{uj ,vj : j ∈ J },
(14)

where span{·} denotes the set of all linear combinations of the listed vectors. Let U be a column-
orthonormal basis of Ushared and P = UU⊤ the orthogonal projector. We obtain debiased tokens by
removing their shared component:

ẐA = Z̃A − Z̃AP, ẐB = Z̃B − Z̃BP. (15)
Intuitively, (15) down-weights the high-variance global modes while preserving object-specific vari-
ation. We then cluster the debiased tokens Ẑ = [ẐA; ẐB ] with a flexible Gaussian mixture

Ẑ ∼
C∑

c=1

πc N (µc,Σc), C = 2, (16)

and denote by γic the posterior responsibility of component c for token i. To improve robustness, to-
kens with low maximum confidence (maxc γic < δ) are reassigned to the nearest centroid computed
from high-confidence members (maxc γic ≥ δ). Finally, grouped tokens are decoded independently
with the frozen VAE decoder to visualize the resulting object-level organization.

C EXPERIMENT SETTINGS

C.1 HYPERPARAMETERS

Table 3 provides the hyperparameters needed to replicate our experiments.
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Table 3: Hyperparameters of OT plan–gated cross-attention used in all experiments.

Symbol Description Value

εt Entropic regularization weight 0.10
λedge Edge regularization strength 0.8
γedge Edge sensitivity 8.0
λt Guidance strength 2.5
εg Floor term 0.02
KOT Number of Sinkhorn iterations 40

C.2 HUMAN EVALUATION.

In our user study, we compare our method with three baselines (MIDI (Huang et al., 2025),
PartCrafter (Lin et al., 2025b), and PartPacker (Tang et al., 2025)) on perceptual quality. For each
reference image, all four methods generate a structured 3D scene, which we export as .glbmeshes.
These meshes are loaded into a web-based 3D viewer with identical lighting and shading settings.
The four methods are assigned to labels A–D in a single random permutation, and the correspond-
ing meshes are displayed side-by-side under these labels. Participants can freely rotate, zoom, and
inspect each mesh interactively.

We recruit a total of 30 participants (graduate students and researchers in computer vision/graphics
not involved in this project). For each reference image they are shown, participants evaluate the four
methods along three dimensions. Specifically, they are asked to rank the four scenes (A–D) from 1
(lowest) to 4 (highest) for each of the following questions:

• Geometry Quality: “Please rank the overall geometry quality of each scene.” This metric
evaluates how detailed, precise, and faithful to the reference image the geometry of each
scene is, including fine-grained structures and overall shape fidelity.

• Layout Coherence: “Please rank the overall spatial layout and arrangement of objects in
each scene relative to the reference image.” This measures how coherent the scene layout
is, and how well object positions, scales, and composition align with the input image.

• Segmentation Plausibility: “Please rank the overall plausibility of the object-level part
decomposition in each scene.” This assesses to what extent each scene exhibits clear, rea-
sonable instances with minimal overlaps, missing regions, or mixed parts.

For each method and each criterion, we compute the average rank over all evaluated images and
participants. These averaged scores are reported in Table 2 of the main paper, where higher values
indicate stronger human preference. Our method achieves the highest average rank across all three
dimensions, suggesting more coherent object-level parts, reduced feature leakage, and better scene-
wide layout consistency.

D ADDITIONAL EXPERIMENTS

D.1 REAL-WORLD RESULTS

In our current setting, all methods (including the baselines) are trained on synthetically rendered
scenes, which allows us to construct a large and diverse training set with consistent part-level anno-
tations. To test the generalization ability of our model to natural photographs, we perform zero-shot
evaluation on real-world images from the DL3DV-10K dataset (Ling et al., 2024).

As expected, directly applying the synthetic-trained model to raw photographs leads to a notice-
able performance drop due to the appearance domain gap. Following the strategy proposed in
PartCrafter (Lin et al., 2025b), we therefore explore transferring the style of real-world images
to make them look more like images rendered from a graphics engine using recent image editing
models, such as GPT-5. Specifically, we use prompts of the form: “Preserve all details and perform
image-to-image style transfer to convert the image into the style of a 3D rendering (Objaverse-style
rendering).” The style-transferred images preserve the original scene layout and object identities,
while matching the rendering statistics of our synthetic training data.
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Figure 8: Qualitative Results on Structured 3D Scene Generation from Real-World Images.
We use a GPT-5–based image editing model to transfer the style of real-world images, making them
look like images rendered from a graphics engine.

Under this simple, purely test-time preprocessing, our method produces significantly more faithful
and coherent 3D scene reconstructions: objects are better separated, part boundaries align more
closely with image evidence, and the overall layout matches the input photograph more accurately.
As shown in Figure 8, this simple strategy works surprisingly well on a variety of indoor and outdoor
real-world scenes.

D.2 CONVERGENCE ANALYSIS OF THE ENTROPIC OT SOLVER

In each OT-gated cross-attention layer, we solve a small entropic optimal transport (OT) problem
between two “rolls” of part queries and M image tokens. Given a cost matrix C ∈ R2×M , row
marginals µ ∈ R2 and column marginals ν ∈ RM , we minimize

min
A≥0

⟨C,A⟩+ εH(A) s.t. A1 = µ, A⊤1 = ν, (17)

where A ∈ R2×M is the transport plan, ε > 0 is the entropic regularization strength, and H(A) =∑
ij Aij logAij is the negative-entropy regularizer.

Following the standard dual formulation of entropic OT, we introduce dual potentials f ∈ R2 (for
the row constraints) and g ∈ RM (for the column constraints). At Sinkhorn iteration k, the corre-
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sponding transport plan has the form

A
(k)
ij ∝ exp

(
f
(k)
i +g

(k)
j −Cij

ε

)
, (18)

followed by a normalization step to enforce the marginal constraints A(k)1 ≈ µ and (A(k))⊤1 ≈
ν. A fixed point of the Sinkhorn updates corresponds to a stationary solution of the entropic OT
problem equation 17.

Monitored residuals. To assess optimization stability and convergence in practice, we instrument
our entropic OT solver and log convergence statistics for all OT-gated cross-attention layers. For
each Sinkhorn solve, at each iteration k we record the following residuals:

• Dual updates: the ℓ2 norms of the changes in the dual variables

r
(k)
f =

∥∥f (k+1) − f (k)
∥∥
2
, r(k)g =

∥∥g(k+1) − g(k)
∥∥
2
. (19)

These measure how much the dual potentials still move between two successive iterations.
• Transport-plan update: the Frobenius norm of the change in the transport plan

r
(k)
A =

∥∥A(k+1) −A(k)
∥∥
F
, (20)

which quantifies how much the routing plan is still being updated.
• Marginal-constraint violation: the deviation of the current plan from the prescribed

marginals,

r(k)row =
1

2

2∑
i=1

∣∣(A(k)1)i − µi

∣∣, r
(k)
col =

1

M

M∑
j=1

∣∣((A(k))⊤1)j − νj
∣∣, (21)

and we report their sum
r(k)marg = r(k)row + r

(k)
col . (22)

Intuitively, r(k)marg measures how well the current A(k) satisfies the OT marginal constraints.

In words, r(k)f , r(k)g and r(k)A tell us whether the dual variables and the transport plan have stabilized,

while r(k)marg indicates how strictly the mass conservation constraints are enforced. Figure. 9 visualizes
these quantities for three OT-gated cross-attention layers. For each layer, we run the Sinkhorn solver
with a fixed number of iterations (40 in all our experiments) and plot the residuals r(k)f , r(k)g , r(k)A

and r(k)marg as a function of the iteration index k.

Across all OT-gated layers and across different denoising steps, we observe a consistent pattern:
the dual and plan residuals r(k)f , r(k)g , and r(k)A drop by 3–5 orders of magnitude within only 3–5

Sinkhorn iterations and then remain numerically flat, while the marginal-constraint violation r(k)marg
quickly converges to a very small value and stays stable without oscillation or divergence. This
indicates that the entropic OT subproblem in our setting is well-conditioned and that our solver
converges rapidly and stably under the default choice of 40 iterations used in all experiments.

D.3 ADDITIONAL ABLATION STUDIES

Table 4 presents quantitative ablations regarding the core components and hyperparameters of our
OT-guided routing mechanism. The key observations are summarized below.

Impact of OT Plan–Gated Attention and Edge-Regularized Cost. Rows (a.1)–(a.3) isolate the
contributions of the proposed OT modules. The removal of the OT Plan–Gated Cross-Attention (a.1)
precipitates a discernible drop in Geometry Fidelity (e.g., ULIP decrease) and a marked deterioration
in IOU metrics. This empirical evidence substantiates our hypothesis that enforcing a one-to-one,
capacity-constrained patch-to-part routing is critical for mitigating feature leakage and suppressing
redundant geometry. Furthermore, while retaining OT gating but omitting the Edge-Regularized

17
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Figure 9: Convergence of the entropic OT solver across OT-gated cross-attention layers. We
plot the residuals of the dual variables and transport plan, as well as the marginal-constraint viola-
tion, for three representative OT-gated cross-attention layers.

Assignment Cost (a.2) improves upon the baseline, the IoU metrics remain suboptimal compared to
the full configuration. The full model (a.3) attains superior performance across all metrics, confirm-
ing that edge-aware smoothing effectively refines object separation without compromising global
geometric fidelity. In terms of efficiency, the inclusion of OT modules introduces a manageable
computational overhead (increasing inference time from 47.4,s to 55.0,s), while memory consump-
tion remains negligible.

Effect of OT Hyperparameters. We further analyze the sensitivity of our method to key hyper-
parameters in Rows (b)–(d). First, varying the entropic regularization εt (Rows b.1–b.4) reveals
that εt = 0.10 yields the optimal trade-off. Deviating to lower or higher values disrupts the bal-
ance between transport plan sparsity and smoothness, leading to a degradation in both geometric
fidelity (ULIP/Uni3D) and part disentanglement metrics. Second, regarding the edge sensitivity
γedge (Rows c.1–c.4), a lower value (6.0) relaxes boundary constraints, which marginally benefits
global geometry (highest ULIP) but causes leakage across object boundaries (increased IoUmax).
Conversely, excessive sensitivity (≥ 10.0) over-constrains the routing, harming all metrics. Our
default γedge = 8.0 strikes the best balance. Finally, for the edge-smoothing weight λedge (Rows
d.1–d.3), we observe that sufficient smoothing is required to enforce intra-part coherence. Setting
λedge too low (0.6) or too high (1.0) results in suboptimal segmentation, evident from the sharp rise
in IoUmax. The default λedge = 0.8 consistently achieves superior performance, demonstrating that
the method is robust within a reasonable range around the optimal settings.

Number of OT-Gated DiT Blocks. Finally, Rows (e.1)–(e.3) investigate the optimal density of
OT Plan–Gated Cross-Attention within the DiT architecture. Restricting OT integration to only one-
third of the blocks (e.1) yields some geometric improvement over the baseline but proves insufficient
for effective part separation, as evidenced by suboptimal IoU metrics. Increasing the coverage to
half of the blocks (e.2, our default) precipitates a substantial gain in both Geometry Fidelity and
Part Disentanglement. Crucially, this setting maintains a moderate runtime, incurring only a rea-
sonable overhead compared to the baseline. Applying OT to all blocks (e.3) provides marginal
gains in specific geometry metrics (e.g., ULIP-2) but leads to diminishing returns—or even slight
degradation—in part metrics, while imposing a significant latency penalty. These results indicate
that integrating OT into approximately half of the layers offers the most favorable trade-off between
structural disentanglement and computational efficiency.
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Setting
Geometry Fidelity Part Disentanglement Inference

Time (s)
Inference

Memory (M)ULIP↑ ULIP-2↑ Uni3D↑ IoUmax ↓ IoUmean ↓

(a.1) w/o OT Plan–Gated Cross–Attention 0.1417 0.3083 0.2887 0.0319 0.2142 47.41 9030
(a.2) w/o Edge–Regularized Assignment Cost 0.1452 0.3164 0.2916 0.0241 0.1136 54.61 9068
(a.3) Full model 0.1466 0.3220 0.3021 0.0101 0.0926 54.99 9070

(b.1) εt = 0.08 0.1460 0.3184 0.3003 0.0117 0.0914 55.30 9070
(b.2) εt = 0.10∗ 0.1466 0.3220 0.3021 0.0101 0.0926 54.99 9070
(b.3) εt = 0.12 0.1437 0.3185 0.2970 0.1239 0.1119 55.12 9070
(b.4) εt = 0.14 0.1424 0.3178 0.2937 0.0159 0.0936 55.02 9070

(c.1) γedge = 6.0 0.1488 0.3239 0.3014 0.0243 0.0936 56.17 9070
(c.2) γedge = 8.0∗ 0.1466 0.3220 0.3021 0.0101 0.0926 54.99 9070
(c.3) γedge = 10.0 0.1457 0.3182 0.3029 0.0570 0.1113 55.17 9070
(c.4) γedge = 12.0 0.1426 0.3156 0.3003 0.1149 0.0994 55.89 9070

(d.1) λedge = 0.6 0.1456 0.3236 0.3003 0.0609 0.1128 53.59 9070
(d.2) λedge = 0.8∗ 0.1466 0.3220 0.3021 0.0101 0.0926 53.97 9070
(d.3) λedge = 1.0 0.1439 0.3204 0.3017 0.1482 0.0952 55.17 9070

(e.1) w 1/3 DiT blocks 0.1465 0.3170 0.3004 0.0992 0.1061 51.89 9070
(e.2) w 1/2 DiT blocks∗ 0.1466 0.3220 0.3021 0.0101 0.0926 54.99 9070
(e.3) w all DiT blocks 0.1426 0.3262 0.3022 0.0207 0.0830 65.24 9070

Table 4: Comparison of metrics for ablation. Bold values indicate the best scores, while under-
lined values indicate the second-best scores among the fair comparison. Asterisk (∗) indicates the
default settings in our method.

Figure 10: Effect of adding a residual vanilla cross-attention branch. Left to right: input image,
PartPacker baseline, our OT-guided routing, and our OT-guided routing with an additional residual
cross-attention branch (Ours residual), which recovers the small crowded instances (e.g., boats)
while preserving the improved global layout and part separation.

D.4 FAILURE CASES AND RESIDUAL DIAGNOSTIC

Crowded tiny instances. In scenes with very dense clusters of small, similar objects that share
only a few image patches (e.g., tightly packed boats or trees), the OT-guided routing can allocate
most capacity to the strongest responses and effectively merge a few weak instances into their neigh-
bours. This may slightly under-count very small repeated objects, while the global layout (buildings,
roads, docks, etc.) remains correct. We find that adding a small residual branch of vanilla cross-
attention on top of the OT-gated attention largely mitigates this issue, keeping the OT plan as a
low-frequency structural prior and using the residual attention to recover high-frequency local de-
tails. Figure 10 visualizes a representative example, comparing (i) the baseline, (ii) SceneTransporter
with pure OT-guided routing, and (iii) SceneTransporter with the residual cross-attention branch: the
residual variant recovers the missing tiny instances while preserving the cleaner global structure of
OT.

Geometry artifacts. We occasionally see nonsmooth surfaces or floating parts when the denoising
schedule is too short or the number of tokens is too small. Increasing the number of diffusion steps
or the token budget alleviates these cases, and the resulting artifacts are typically local and do not
affect the overall scene layout.
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Out-of-distribution appearance. Since the model is trained on synthetic rendered images,
strongly out-of-distribution real images (e.g., unusual lighting or textures) can lead to degraded
geometry and part grouping. As discussed in Appendix D.1, applying automated style transfer to
convert real images into a 3D-rendering style significantly improves the results, and SceneTrans-
porter still produces plausible structured scenes on many challenging real-world inputs.
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