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Abstract

Evaluating the performance of clustering models is
a challenging task where the outcome depends on
the definition of what constitutes a cluster. Due to
this design, current existing metrics rarely handle
multiple clustering models with diverse cluster def-
initions, nor do they comply with the integration of
constraints when available. In this work, we take
inspiration from consensus clustering and assume
that a set of clustering models is able to uncover
hidden structures in the data. We propose to con-
struct a discriminative ordering through ensemble
consensus based on the distance between the con-
nectivity of a clustering model and the consensus
matrix. We first validate the proposed method with
synthetic scenarios, highlighting that the proposed
score ranks the models that best match the consen-
sus first. We then show that this simple ranking
score significantly outperforms other scoring meth-
ods when comparing sets of different clustering
algorithms that are not restricted to a fixed num-
ber of clusters and is compatible with clustering
constraints.

1 INTRODUCTION

Clustering is an essential task in data analysis where one
seeks to partition the observations of a dataset into K clus-
ters. Due to its ill-posed nature, the design of a clustering
algorithm requires hypotheses about what defines good clus-
ters. Different hypotheses may lead to different clusters. In
other words, cluster definition and methodology must be
adapted to the context in which they are applied (Hennig,
2015).

Evaluating the quality of a clustering model is a complex
problem that requires appropriate metrics. In an experimen-
tal setting, synthetic data can be generated according to

hypotheses about the definition of clusters, allowing veri-
fication that a clustering algorithm recovers the expected
partition. This verification can be done using external met-
rics such as the (unsupervised) accuracy, the normalised mu-
tual information (NMI), or the adjusted Rand index (ARI,
Hubert and Arabie, 1985). Conversely, in an exploratory
context, i.e. when no labels are available, we rely on inter-
nal metrics that depend solely on the data observations and
the model predictions, e.g. the variance-ratio criterion (Cal-
iński and Harabasz, 1974), the silhouette score (Rousseeuw,
1987), or the integrated complete likelihood (Biernacki et al.,
2000). Internal metrics are often built with a specific view
on clustering hypotheses, and therefore must be used with
algorithms that match those hypotheses.

Despite the large number of clustering metrics (Desgrau-
pes, 2013; Charrad et al., 2014), there are few metrics that
are suitable for comparing clustering models with different
clustering hypotheses. In addition, and to the best of our
knowledge, there is no clustering metric that can integrate
constraints when targets are partially observed.

To compare different clustering algorithms independently
of their clustering hypotheses, we take inspiration from con-
sensus clustering (Strehl and Ghosh, 2002) and rank cluster-
ing algorithms according to their proximity to a consensus
matrix. Our underlying hypothesis is that a diverse set of
clustering algorithms will shed light on clusters whose ob-
servations are more frequently connected. Our contributions
are:

• The proposal of a simple-to-compute and fast score
for ranking clustering algorithms based on consensus
clustering that is compatible with pairwise constraints
regularisations.

• The first exploration of clustering ensembles as a mean
of performing model selection, both for our metric and
some baselines.

• An extensive benchmark including synthetic and real
data for several internal metrics showing strong perfor-
mances in favour of our metric.
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2 RELATED WORKS

Evaluating the quality of a clustering model is a challenging
task. In fact, the absence of a formal definition of what a
cluster is leads to the absence of a definition of what quality
is, and finding an objective measure of quality that allows
comparison of different algorithms is challenging (Boley
et al., 1999). For example, Han et al. (2012) define quality as
“[s]ome methods [that] measure how well the clusters fit the
data set, while others measure how well the clusters match
the ground truth”. These two categories can be referred to
as internal metrics and external metrics.

2.1 EXTERNAL INDICES

In the presence of ground truth, i.e. targets, we can eval-
uate clustering models using external indices. Common
evaluation metrics include the (unsupervised) accuracy, the
NMI (Strehl and Ghosh, 2002) or the ARI (Hubert and
Arabie, 1985). It is worth noting that NMI and ARI are
preferable to unsupervised accuracy when the number of
clusters in a model differs from the number of clusters in
the targets, which is unknown in practice.

When we partially observe the targets, we can still use them
as constraints, as in semi-supervised clustering (Bair, 2013;
Cai et al., 2023). Two types of constraints can be distin-
guished: labels and must-link or cannot-link constraints.
The former explicitly assign samples to a cluster, whereas
the latter only indicate whether samples should be together
or in different clusters, regardless of the cluster membership.
Labels imply must-link and cannot-link constraints, but the
reverse is not true. For example, we can evaluate the model
using the pairwise recall, precision and F-measure (Basu
et al., 2004), or the constrained Rand index (CRI, Klein
et al., 2002). For both measures, the evaluation is restricted
to the set of samples (or set of sample pairs) that are not af-
fected by constraints. These metrics are external and require
ground truth. Consequently, they cannot be used if we do not
have access to labels other than those used to constrain the
clustering algorithm. In the absence of such information, the
approximate measure of informativeness (Davidson et al.,
2006) could be preferred: it is simply the average number
of constraints not satisfied by a clustering algorithm.

2.2 INTERNAL INDICES

We can distinguish two types of internal indices: those that
integrate the clustering hypotheses from the model, and
those that carry their own hypotheses about the definition of
what makes good clusters.

If a model defines a tractable likelihood, we can use this
value to reflect the fit between the model and the data. For
example, the Akaike information criterion (AIC, Akaike,
1974, 1998) penalises the likelihood by the complexity of

the model, expressed in terms of the number of free param-
eters. The Bayesian information criterion (BIC; Schwarz,
1978) weights this parameter penalty by the logarithm of
the number of training samples. The integrated complete
likelihood (ICL, Biernacki et al., 2000) extends the BIC in
model-based clustering by distinguishing between model
components in model-based clustering and their correspon-
dence to clusters using an entropy penalty term.

If a model does not define a tractable likelihood, we may not
have access to a fitness measure from the model and have to
construct it post hoc. This is notably the case for discrimi-
native clustering models, e.g. KMeans or DBSCAN (Ester
et al., 1996). In this sense, the most well-known internal
metric is the within-group sum of squares (WGSS, Edwards
and Cavalli-Sforza, 1965), also known as the KMeans score.
This score is efficient for clusters that are assumed to be
concentrated around a centroid. However, ensuring that sam-
ples are concentrated around a centroid is not enough; a
clear separation between clusters is also a desirable prop-
erty. From this desire come criteria such as the variance-
ratio criterion (Caliński and Harabasz, 1974), the Dunn
index (Dunn, 1974) and its generalisations (Bezdek and
Pal, 1998), which include the Davies-Bouldin index (Davies
and Bouldin, 1979), the Silhouette score (Rousseeuw, 1987)
or the PBM index (Pakhira et al., 2004). Internal metrics
comparing the coherence of pairwise clustering have also
been proposed. For instance, the Gamma index (Baker and
Hubert, 1975) and the G+ index (Rohlf, 1974) are based
on the notion of discordant and concordant pairs. A pair of
samples from a similar cluster is concordant with another
pair of samples from different clusters when their distance is
shorter than the second pair. The two pairs are discordant if
the distance is greater for dissimilar clusters than for similar
clusters. To alleviate the requirement on the choice of dis-
tances, some of these scores were adapted for connectivity
matrices (Saha and Bandyopadhyay, 2012) derived from
relative neighbourhood graphs (Toussaint, 1980).

2.3 RANKING MODELS IN CONSENSUS
CLUSTERING

If we restrict the goal of a clustering metric to comparing
models, then the most relevant property is the ability of a
metric to rank algorithms well. In a ranking context, we
necessarily have several models: this allows us to use en-
semble methods. Consensus clustering is an unsupervised
ensemble clustering method that stems from classification
ensembles (Strehl and Ghosh, 2002). The goal is to use
several clustering algorithms, called base clusterings, and
to combine their results into a single final clustering using
a consensus function. Combining the results thus increases
the quality of the clustering, in the sense of an evaluation
using external labels.

Several works then developed some filtering criteria on



the base clusterings to improve the quality of consensus
clustering. This field, sometimes called ensemble clustering
selection (Golalipour et al., 2021), focuses on selecting a
subset of base clusterings based on the belief that some of
the base models hinder the global quality and should be
discarded. The goal is to keep clusterings of quality while
maintaining some diversity (Kuncheva and Hadjitodorov,
2004; Hadjitodorov et al., 2006; Fern and Lin, 2008). This
selection can be done by keeping the base clusterings that
are closest to the consensus result (Hong et al., 2009; Azimi
and Fern, 2009; Jia et al., 2011). Although this introduces
ordering between models, this ordering is non-deterministic
as it relies on the outcome of the consensus which can be
stochastic. Selection can also be achieved by solving a K-
vertex subgraph problem on a graph, where edges are the
similarities between pairs of base clusterings (Fern and Lin,
2008; Yang et al., 2017). However, such an approach does
not introduce an order between models.

In some cases, this selection is made thanks to a ranking. Of-
ten, this ranking is done by interpolating between the quality
and the diversity of each clustering algorithm (Fern and Lin,
2008; Naldi et al., 2013; Wang and Liu, 2018). The ranking
then depends simultaneously on the definition of what is the
quality of a base clustering and what diversity represents, in
an internal metric sense, and on the interpolation coefficient.
Thus, metrics for ranking clustering algorithms are not new,
but their purpose is different. Therefore, and to the best
of our knowledge, ranking clustering algorithms through
consensus has never been used as a metric for selecting
clustering models.

3 THE DISCOTEC

We seek to build a score for ranking clustering algorithms
that simultaneously take into account the results of all al-
gorithms and comply with must-link and cannot-link con-
straints. We start with the general unconstrained score, then
detail how it can be simplified thanks to consensus binaris-
ing and finish with the addition of constraints.

3.1 THE UNCONSTRAINED SCORE

We assume that we have a set of T ≥ 3 clustering models
and a dataset of n unlabelled samples D = {xi}ni=1. Each
clustering model t defines a partition of this dataset into Kt

clusters: πt ∈ {1, . . . ,Kt}n. Note that we only consider
hard clusterings here, so that our method is compatible with
any clustering algorithm, since soft clusterings can always
be converted to hard ones.

We construct for each partition its respective connectivity
matrix. Its entries are binary values indicating whether two
samples were in the same cluster:

AAAt =
[
1[πt

i = πt
j ]
]
. (1)

Table 1: Examples of formula for the distance D between
connectiviy and consensus with different statistical dis-
tances.

D(B(0)∥B(CCCij)) D(B(1)∥B(CCCij))

KL − log(1−CCCij) − logCCCij

TV CCCij 1−CCCij

H2 1−
√
1−CCCij 1−

√
CCCij

We can then build the consensus matrix (Monti et al., 2003)
by averaging all connectivity matrices:

CCC = T−1
T∑

t=1

AAAt. (2)

The entries of the consensus matrix can be interpreted as
parameters of Bernoulli distributions: they describe the prob-
ability that two samples end up in the same cluster according
to the ensemble of models. The more often a pair of observa-
tions end up in the same cluster, the higher their consensus
value. Consequently, we would like to identify a clustering
that respects this trend. Conversely, when the consensus
value is close to zero, we would like to select a clustering
that did not link the two observations.

To order the clustering algorithms, we propose to measure
the distance between their respective connectivity matrix
and the consensus matrix. The smaller the distance, the
better. We expect that the model with the lowest distance
corresponds to a partition that best matches the consensus
established by the ensemble. For an arbitrary distance or
divergence D, e.g. the total variation distance or the KL
divergence:

S(πt) =
∑
i,j

D(AAAt
ij∥CCCij). (3)

Note that some combinations of inputs are impossible when
computing D. We cannot have 0 (resp. 1) for connectiv-
ity AAAij and 1 (resp. 0) for the consensus CCCij because the
consensus is an average. When both values are 0, or 1, the
distance is necessarily 0. Therefore, the only distances we
compute correspond to the cases where CCCij ∈]0, 1[. We
summarise three examples of distances for this case, which
we will use in experiments, in Table 1.

It is possible that this score favours solutions with too few
or too many clusters. In fact, when clustering models tend to
connect most of the samples together through large clusters,
the ranking would favour solutions with few clusters be-
cause they minimise the number of terms D(B(0)∥B(CCCij)),
which incur a large penalty. Conversely, when most cluster-
ing models have a large number of clusters, the consensus
matrix may become sparse or filled with very low values
and the score would favour solutions with many clusters be-
cause they minimise the number of terms D(B(1)∥B(CCCij)).



Algorithm 1 The binarised DISCOTEC

Require: A set of partitions πt ∈ {1, . . . ,Kt}n; t ∈
{1, . . . , T}.

Require: Must-link constraints CML = {(ai, bi)}nML
i=1

Require: Cannot-link constraints CCL = {(ai, bi)}nCL
i=1

for t ∈ {1, . . . , T} do
AAAt ←

[
1[πt

i = πt
j ]
]

▷ Connectivity matrices
end for
CCC ← T−1

∑T
t=1AAA

t ▷ Consensus matrix
µ← n−2

∑n
i,j CCCij

QQQ← [1[CCCij ≥ µ]] ▷ Binarise the consensus
for t ∈ {1, . . . , T} do
St ← n−2

∑n
i,j

∣∣QQQij −AAAt
ij

∣∣ ▷ Score of model t
Rt ← 0 ▷ Regularisation by constraints
for (i, j) ∈ CML do
Rt ← Rt + (1−AAAt

ij)
end for
for (i, j) ∈ CCL do
Rt ← Rt +AAAt

ij

end for
St ← St + Rt

nML+nCL
▷ Regularised DISCOTEC

end for

When the number of clusters varies from both extremes in
the pool of clustering models, then the behaviour of the
score would be in favour of solutions with many clusters
because the consensus matrix gets low values.

In order to alleviate the limitation of having only high values
or only low values in the consensus matrix, we propose to
binarise it with respect to its mean:

QQQ =

1
CCCij ≥ n−2

∑
i′j′

CCCi′j′

 . (4)

In this variant, we measure only the absolute differences
between zeros and ones from both the connectivity and the
consensus matrices. While this binarised consensus matrix
is not compatible with the original perspective of statistical
distances between two matrices, it can be interpreted as the
ratio of mismatching connectivities between observations:
the lower the better.

3.2 ADDING REGULARISATIONS

An important feature of the proposed score is its com-
patibility with the approximate measure of informative-
ness (Davidson et al., 2006), i.e. the average number of vio-
lated constraints. Given a set of nML must-link constraints
CnML = {(ai, bi)}nML

i=1, and a set of nCL cannot-link con-
straints CnCL = {(ai, bi)}nCL

i=1, this regularisation is:

R(πt) =

∑
(a,b)∈CML

D(AAAt
ab∥1) +

∑
(a,b)∈CCL

D(AAAt
ab∥0)

nML + nCL
.

(5)

Both the regularisation and our score are contained in [0,1]
and correspond to the sum of distances between a connectiv-
ity and a target value. Thus, both measures are compatible
according to dimensional analysis.

We summarise the binarised version of the discriminative
ordering through ensemble consensus (DISCOTEC) in Al-
gorithm 1. We evaluate the computational complexity of
this algorithm to O(T (n2 + nML + nCL)) for T models and
n observations.

We may note that the DISCOTEC scales linearly with the
number of models. In comparison, the average NMI (ANMI,
Strehl and Ghosh, 2002) and the average ARI, which were
used for clustering ensemble selection (Fern and Lin, 2008),
scale quadratically. These metrics consist in the average of
a score between a partition and all other partitions, e.g. for
ANMI:

ANMI(πt) =
1

T − 1

∑
t′ ̸=t

NMI(πt, πt′). (6)

Consequently, evaluating the AARI or ANMI requires
T (T − 1)/2 pairwise computations, which becomes ex-
pensive when the number of models is large.

4 EXPERIMENTS

For our experiments, we incrementally moved from syn-
thetic partitions to datasets and constraints integration. We
first show that the DISCOTEC and other ensemble base-
lines perform on par on synthetic cases. We then introduce
datasets and test both clustering algorithms with a fixed
number of clusters or an unrestricted number of clusters. We
highlight that the DISCOTEC has strong performances for
the latter. Finally, we show that constraints can enhance the
performance of DISCOTEC on real datasets, even with few
constraints.

4.1 GENERAL PROTOCOL

To evaluate the DISCOTEC, we have borrowed the method-
ology of Vendramin et al. (2010, section 4). We first select
a pool of ND datasets, and for each dataset we apply T
clustering algorithms. We then evaluate the correlation be-
tween an internal metric of interest and an external metric
that describes how well a model matches some targets. A
higher correlation value indicates that the ranking proposed
by the internal metric is efficient in identifying the most
relevant clustering. We report the average correlations over
the ND datasets. Note that we have negated all scores that
should be minimised, so a positive correlation means good
performance. We chose to show the Kendall’s tau correla-
tion (Kendall, 1945) in the paper because it measures how
well two rankings compare. For extended results, including



the Pearson correlation as originally proposed by Vendramin
et al. (2010), see Appendix D.

We distinguish two types of baselines: internal metrics that
are also based on ensemble clustering and internal met-
rics that evaluate models individually using distances be-
tween observations. For the former, we use the ANMI and
AARI, and emphasise that this is the first time the rank-
ing properties of these metrics is studied. For the latter, we
used clustering metrics available in the permetrics Python
library (Thieu, 2024) and implemented ourselves some from
the clusterCrit package (Desgraupes, 2013). For the sake
of clarity, we have restricted all figures and tables to the
ensemble metrics and the top-performing distance-based
metrics where relevant. Extended tables with the 20 base-
lines can be found in Appendix D. Code can be found at:
https://github.com/oshillou/Discotec.

4.2 SYNTHETIC PARTITIONS

We started by evaluating the DISCOTEC with synthetic
partitions, which allowed us to control the difficulty of the
consensus. We started by generating a ground truth of n ob-
servations and K clusters, then generated T different parti-
tions trying to imitate the ground truth with some controlled
accuracy. To that end, we sample for each observation a
conservation indicator according to some probability ρ. If
the observation is conserved, it keeps the same cluster as the
ground truth. Otherwise, it is assigned to a different cluster
than the ground truth.

We tested two synthetic scenarios: one with a uniform dis-
tribution of accuracies to the ground truth and one with
unbalanced accuracies. For the first scenario, we uniformly
sample a conservation threshold ρt ∈ [0.1, ρmax] for each
model. This ensures that the models have a minimum accu-
racy of 10%, and an average maximum accuracy of ρmax. For
the second scenario, we first sample two partitions called
hubs: one with ρ = 0.2 and one with ρ = 0.9. Then, we
sample a fraction αT of the models with an accuracy in the
range [0.2, 0.9] to the first hub, and the remaining (1−α)T
models with identical accuracy range to the second hub.

Since both of these scenarios do not have any underlying
data samples on which we can measure distances, we can
only evaluate the AARI, the ANMI and the DISCOTEC.
We ran both scenarios with n = 200 samples and K = 10
clusters. In the first scenario, we varied T from 5 to 50
models. In the second scenario, we fixed T = 50. Each
simulation was repeated 50 times. The results of the first
scenario are shown in Figure 1 and of the second scenario
in Figure 2. For the sake of readability, we only report
the DISCOTEC with KL divergence and with binarised
consensus in the figures, as the rankings using total variation
distance and squared Hellinger distance followed the KL
curve perfectly.

From the first scenario, we observe that increasing the max-
imum possible accuracy with ρmax increases the correlation
of the ranking. Indeed, when the maximum accuracy is
low, most of the synthetic partitions tend to disagree with
each other, resulting in a noisy consensus. Consequently,
no pattern can emerge from the consensus matrix, and the
DISCOTEC fails to correctly identify the correct cluster-
ings. In contrast, if the maximum accuracy is high, a pattern
can be seen in the consensus matrix, and the ranking can
be coherent with this pattern. For completeness, we have
included examples of such matrices in Appendix C. We can
note in Figure 1 that the number of models is crucial to
improve the performance of both baselines and DISCOTEC.
Indeed, the correlation between the ARI of the partitions
on the targets and the ranking of each method increases,
and its standard deviation decreases from 5 to 50 models.
This effect is even stronger for the binarised DISCOTEC.
We further discuss and experiment with scaling within this
scenario in Appendix B.

The success of the first scenario is due to the uniform distri-
bution in terms of accuracy of all sampled models, but does
not transfer to the second scenario. The second scenario
highlights that both the DISCOTEC and the baselines are
attracted to dominant hubs in terms of clustering solutions.
Indeed, we can see in Figure 2 that when the partitions are
close to a solution with high accuracy, i.e. α ≈ 0, then the
ranking has a high correlation with the ARI. Conversely,
increasing the number of models that are similar to a poor
solution with very low accuracy, i.e. α = 1, decreases the
correlation for the same reason of noisy patterns as described
above.

In summary, we have shown with these synthetic scenarios
that ranking according to the relationships between mod-
els, both in baselines and the DISCOTEC, depends on two
main factors: (i) the number of models and (ii) the distribu-
tion of the clustering ARIs. The number of models should
preferably be large enough. However, too large a number of
models is detrimental to the AARI and ANMI, which scale
quadratically while the DISCOTEC scales linearly. Regard-
ing the distribution of the clustering ARIs, we can expect
better performance if it is more concentrated on solutions
that are close enough to the ground truth and uniform. In
other words: the diversity of base clusterings matters, in the
sense of different cluster definitions.

4.3 SYNTHETIC AND REAL DATASETS
CLUSTERING

To simulate more complex distributions of ARI with respect
to targets, we now turn to different combinations of clus-
tering models and datasets. We considered two different
categories of datasets for our experiment: the fundamental
clustering problem suite (FCPS, Thrun and Stier, 2021) and
real datasets from the UCI repository, summarised in Ap-

https://github.com/oshillou/Discotec
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(c) 50 models

Figure 1: Evolution of the average Kendall’s tau (↑) correlation between ranking metrics and ARI with targets of synthetic
partition when the label preservation rate ρmax increases.
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Figure 2: Evolution of Kendall’s tau correlation (↑) of the
selected models per ranking method as the interpolation α
varies between highly accurate models (α = 0) and non-
accurate models (α = 1).

pendix A. The FCPS consists of different simulated datasets
in two or three dimensions, so that the definition of clusters
is consensual to the naked eye. In contrast, the UCI datasets
are intended for classification, which means that the classes
and their number may not reflect the clusters and their num-
ber. Therefore, we must be careful in our interpretation of
the ARI depending on the category of the datasets.

4.3.1 Restriction to a fixed number of clusters

Similarly to the synthetic scenarios, we restrict our experi-
ments to clustering models that must find as many clusters
as the number of clusters (resp. classes) indicated by the
targets of the FCPS (resp. UCI) datasets. We try two dif-
ferent algorithms: KMeans and agglomerative clustering.
We run KMeans 50 times. Since agglomerative clustering
deterministically produces the same clustering, we vary its
parameters using single, average, complete, and Ward link-
age, and also Euclidean or Manhattan distance. This results
in 7 models, because the Manhattan distance and the Ward
linkage are incompatible.

Table 2: Average Kendall tau correlationstd (↑) of the rank-
ing metrics when the base clusterings are restricted to as
many clusters as targets. KL and Binary respectively stand
for the DISCOTEC with KL divergence, and consensus bi-
narisation.

FCPS UCI

Model Agg. Kmeans Agg. Kmeans

AARI 0.480.47 0.060.79 -0.350.60 0.050.37
ANMI 0.570.46 0.040.78 -0.310.54 0.100.46
CHI 0.360.51 0.500.54 0.950.11 -0.020.40
SI 0.070.69 0.680.40 -0.450.36 0.250.56

KL 0.380.63 0.050.79 -0.520.44 0.050.37
Binary 0.730.24 0.020.91 0.440.65 0.060.46

Following the general protocol, we report the correlation in
Table 2. Since the average correlation can be high due to
some lucky runs, we extend our results by also reporting the
regret score on the ARI of the top-ranked model for all meth-
ods. We define the regret score as the difference between
the best performance of all methods and the performance of
one method, which we average over all datasets. A lower
regret score is better, and a regret score of 0 indicates that
the method always had the best performance. We report the
regret scores in Table 3. Regret scores on the correlation can
be found in Appendix D.

These results complement the observations made previously
in our second synthetic scenario. Indeed, we can see in Ta-
ble 3 that the clusterings proposed by the agglomerative
algorithms are more diverse than for KMeans since the
ARI regret is up to 38% behind for some scores. This di-
versity leads to higher correlations compared to KMeans
algorithms in Table 2. In contrast, the KMeans algorithms
were attracted to specific clusterings that had a low ARI with
respect to the targets for some datasets, leading to lower cor-
relations. Furthermore, the lack of diversity between the



Table 3: Regret on the ARI of the model selectedstd (↓) by
each ranking metric when the base clusterings are restricted
to as many clusters as targets.

FCPS UCI

Model Agg. Kmeans Agg. Kmeans

AARI 0.160.28 0.060.10 0.310.22 0.050.05
ANMI 0.160.28 0.060.10 0.310.22 0.030.03
CHI 0.240.33 0.050.09 0.000.00 0.060.05
SI 0.310.37 0.020.04 0.380.25 0.070.08

KL 0.260.37 0.060.10 0.320.21 0.050.05
Binary 0.150.24 0.050.10 0.170.18 0.050.06

base clusterings and the regret on the selected model ARI is
similar for all scores.

Among the compared baselines, we do not distinguish any
score that offers a better ranking than any other for this
experiment. We only mention both the silhouette index (SI,
Rousseeuw, 1987) as an example and the strong success of
the Calinski-Harabasz index (CHI, Caliński and Harabasz,
1974) for the UCI datasets with agglomerative clustering,
highlighted by a high correlation in Table 2 and a regret
score of 0 on the selected model ARI in Table 3.

4.3.2 Unrestricted pool of clustering models

We now extend the previous experiments by proposing a
more diverse pool of clustering algorithms. We run KMeans
clustering with K varying from 2 to 20 for each dataset,
5 times per value of K. We run agglomerative clustering
with the same linkage parameters as before with Euclidean
distances for 2 to 20 clusters. We then add DBSCAN models
with parameter epsilon varying from the 1% quantile of the
Euclidean distances of the dataset to the 25% quantile. We
discard degenerate clusterings. Finally, we also evaluate the
performance of the ranking methods when we merge all the
models.

We observe in Table 4 that the average correlation is the
highest for the DISCOTEC with binarised consensus matrix.
Moreover, the ARI regret of the selected model is also the
lowest in Table 5, which reveals better selection. In contrast,
the DISCOTEC using the KL divergence did not perform
better than the AARI baselines.

The performance of the DISCOTEC with KL divergence suf-
fered precisely from the overclustering bias that motivated
the introduction of the binarised consensus. The high propor-
tion of models with a large number of clusters contributed
to lowering the values of the consensus matrix, bringing
them all close to 0. The KL ranking consequently favoured
models with the largest number of clusters because they
are less penalised when connecting as few observations as
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Figure 3: Kendall’s tau correlation (↑) after adding must-
link cannot-link constraints from an increasing number of
random observations for the UCI datasets with mixed clus-
tering models.

possible.

Finally, there is a notable difference between the FPCS
and UCI datasets. For the former, we have the certainty
that at least one of the proposed algorithms will achieve
an ARI of 1 when merged together, because it matches the
empirical definition of the clusters in a dataset. In contrast,
the latter does not guarantee that the targets reflect clusters.
Therefore, it is likely that the set of clustering algorithms
will point to different clusters than the targets, sometimes
with a different number of clusters compared to the number
of classes. This accounts for the lower correlation values for
the UCI datasets compared to the FCPS datasets in Table 4.

4.4 CONSTRAINT INTEGRATION

To make the most sense of the correlation between targets
and clusters in the UCI datasets, we add constraints to the
ranking. Thus, we simultaneously look for a model that
captures clusters that correspond to what most models find,
while also respecting the classes as much as possible.

We measured constraint satisfaction using the approximate
measure of informativenessR, and added it to both the DIS-
COTEC and the AARI/ANMI baselines. We chose not to
add it to distance-based metrics because they do not cor-
respond to the approximate measure of informativeness in
terms of dimensional analysis. Moreover, the constraint reg-
ularisation is bounded in [0,1], whereas some other metrics
are unbounded.

To assess the benefit of constraints, we report for each
dataset the initial unconstrained correlation between targets
and rankings using the same models from the previous ex-
periment, and report the correlation after adding constraints.
For each dataset, we randomly selected n observations and
generated all must-link and cannot-link constraints they im-
plied using the targets, and then evaluated the correlation of



Table 4: Average Kendall tau correlationstd (↑) of the ranking metrics when the base clusterings seek different number of
clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.340.32 0.620.48 0.200.36 0.280.42 0.180.33 0.190.55 0.170.30 0.320.30
ANMI 0.170.39 0.630.49 0.030.46 0.140.47 0.300.37 0.160.53 -0.010.38 0.360.22
CHI 0.010.36 0.350.77 0.150.51 -0.040.52 0.390.24 0.400.27 0.330.46 0.360.26
WGSS -0.410.32 -0.110.93 -0.680.26 -0.470.32 0.290.54 0.550.36 -0.370.49 0.200.38

KL 0.250.45 0.570.57 -0.160.46 0.200.50 0.060.40 0.170.51 -0.110.39 0.310.38
Binary 0.790.24 0.840.24 0.820.09 0.730.36 0.630.20 0.550.30 0.470.41 0.520.21

Table 5: Regret on the ARI of the model selectedstd (↓) by each ranking metric when the base clusterings seek different
number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.410.32 0.100.17 0.330.27 0.410.32 0.200.24 0.110.13 0.200.19 0.200.25
ANMI 0.410.33 0.100.17 0.330.30 0.400.34 0.170.23 0.120.13 0.190.24 0.140.15
CHI 0.240.32 0.070.15 0.160.19 0.270.34 0.130.20 0.060.09 0.150.19 0.120.17
SI 0.240.34 0.080.17 0.100.14 0.310.34 0.400.26 0.190.19 0.140.24 0.410.28

KL 0.400.32 0.100.17 0.420.28 0.430.31 0.230.25 0.120.13 0.230.23 0.150.21
Binary 0.140.20 0.060.14 0.170.21 0.220.24 0.110.16 0.050.06 0.090.12 0.100.14

the regularised rankings. We repeated the constraint addition
50 times. Correlations before and after constraint addition
can be found in Figure 3.

We observe that the addition of constraints is rarely detri-
mental to the correlation, as highlighted by the standard
deviation decreasing from 0 constrained observations to 5
constrained observations. Moreover, increasing the number
of constraints increases the correlation of the ranking with
the targets. However, this increase is more substantial when
introducing the first few constraints and tends to flatten af-
terwards. Nonetheless, we may note that 50 constrained
observations is relatively small for some UCI datasets , e.g.
Segmentation with 2310 observations.

5 CONCLUSION

We introduced a metric based on the distance between con-
nectivity and consensus matrices to rank clustering algo-
rithms, called the DISCOTEC. Overall, this metric works as
intended and tends to select clustering models that are most
similar to the consensus. We therefore suggest, as validated
through experiments, that a diverse pool of clustering algo-
rithms is required to get the most out of the DISCOTEC. In
other words, the more the merrier when going to the disco.

We have shown experimentally that among several choices
of distances, the most efficient is to binarise the consensus

matrix with respect to its mean and compute its difference
with the connectivity matrix. In general, the resulting perfor-
mance is equal to or better than other ensemble clustering
baselines such as the average ARI. The main difference with
this baseline is that the DISCOTEC is faster to compute with
respect to the number of models. Compared to other internal
metrics, the advantage of the DISCOTEC is its tolerance to
any type of clustering algorithm, i.e. definition of clusters.
Consequently, the DISCOTEC shows better performance
when the ranking a diverse set of clustering algorithms. In
the case of a single clustering algorithm with limited param-
eters, a specialised internal metric may be preferred.

Finally, we have shown that the DISCOTEC can be regu-
larised with must-link/cannot-link constraints thanks to the
approximate measure of informativeness. Moreover, both
methods are compatible from a dimensional analysis per-
spective because they average differences between edges of
connectivity matrices.

In future work, it would be interesting to investigate how to
further improve the performance of the DISCOTEC when
the pool of base clusterings is not diverse. Additionally, it
would be interesting to explore different approaches to the
raw binarisation of the consensus matrix, e.g. a nonlinear
bijection to obtain extreme values without being binary.
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A SUPPLEMENTARY DETAILS FOR EXPERIMENTS

We used for our experiments two different types of datasets: synthetic datasets from the fundamental clustering problem
suite (FCPS) and real datasets from the UCI repository. Their characteristics are summarised in Table 6.

Table 6: Datasets used in experiments

(a) FCPS datasets

Name n d K (Clusters)

Atom 800 3 2
Chainlink 1000 3 2
EngyTime 4096 2 2
Hepta 212 3 7
LSun3D 404 3 4
Target 770 2 6
Tetra 400 3 4
TwoDiamonds 800 2 2
WingNut 1016 2 2

(b) UCI datasets

Name n d K (Classes)

Dermatology 366 33 6
Digits 1797 64 10
Glass 214 9 6
Ionosphere 351 34 2
Iris 150 4 3
Lung 32 54 3
Segmentation 2310 19 7
WDBC 569 30 2
Wine 178 13 3

We used different metrics for evaluating the clustering models as baselines. We essentially took metrics available in the
permetrics Python package (Thieu, 2024), and expanded with additional metrics described in some R packages (Desgraupes,
2013; Charrad et al., 2014), which we implemented ourselves. The name of the metrics thus mainly follow the permetrics
name, and we propose a lexicon in Table 7.

B SCALING WITH THE NUMBER OF MODELS UNDER SYNTHETIC SCENARIOS

In this experiment, we further explore the relationship between the number models and the quality of the ranking. We keep
the initial synthetic scenario from our first experiment in Section 4, where a ground truth is first generated and then T models
are created by preserving between 10% and ρmax of the labels. The resulting models have an accuracy bounded between
10% and ρmax on average. For three specific thresholds ρmax ∈ {0.2, 0.5, 0.9}, which correspond to a decreasing difficulty
of consensus, we increase the number of models T from 5 models to 200. We report the average correlations for 50 runs per
value of T and ρmax. Figure 4 corresponds to the Pearson correlation and Figure 5 corresponds to Kendall’s tau correlation
coefficient. For clarity of both figures, we omitted the squared Hellinger and total variation distances because they perfectly
followed the KL curve.

We observe from both figures that the scaling depends on the difficulty to reach a consensus. When a consensus is hard to

mailto:<louis.ohl@liu.se>?Subject=Your UAI 2025 paper


Table 7: Lexicon for the name of the metrics used in experiments. The accronyms are taken from the permetrics library (Thieu,
2024). Scores marked with an asterisk were re-implemented.

Short Name Name Reference

AARI Average ARI -
ANMI Average NMI Strehl and Ghosh, 2002
BHI Ball-Hall index Ball, 1965
BRI Banfield-Raftery index Banfield and Raftery, 1993
CHI Calinski-Harabasz index Caliński and Harabasz, 1974
CI* C-index Hubert and Schultz, 1976
DBI Davies-Bouldin index Davies and Bouldin, 1979
DHI Duda-Hart index Duda and Hart, 1974
DI* Dunn index Dunn, 1974
DRI Det-ratio index Scott and Symons, 1971
HI Hartigan index Hartigan, 1975
KDI K squared determinant index Marriott, 1971
LDRI Log det ratio Scott and Symons, 1971
LSRI Log sum of squared error -
McRao* McClain-Rao index McClain and Rao, 1975
PBM* Pakhira-Bandyopadhyay-Maulik index Pakhira et al., 2004
SI Silhouette index Rousseeuw, 1987
WGSS Within-group sum of squares Edwards and Cavalli-Sforza, 1965
XBI Xie-Beni index Xie and Beni, 1991
WG* Wermmert-Gancarski index Desgraupes, 2013

find, i.e. ρmax = 0.2, even 200 models is insufficient to establish a strong correlation between ranking and ARI with targets.
In contrast, an easy scenario, i.e. ρmax = 0.9, requires few models to achieve excellent correlations as we are already close to
1 with 20 models. In a mitigated scenario, increasing the number of models increases steadily the correlations. It is notable
that the binary DISCOTEC displays stronger performances even in a mitigated scenario compared to the DISCOTEC based
on the KL distance.

We conclude that when the consensus is not clear-cut, adding models in the ensemble may be beneficial to the DISCOTEC
ranking.

C CONSENSUS MATRIX VISUALISATION

We show in Figure 6 the examples of 3 consensus matrices from the first synthetic scenario in Section 4.

D EXTENDED BENCHMARK RESULTS

This section describes all extended tables of the experiments from Section 4. They concern the DISCOTEC performances
and all baselines when testing different clustering algorithms on both the FCPS and UCI dataset.

D.1 COMPLETE TABLES WITH KENDALL’S TAU CORRELATION

The tables 8 and 9 correspond to the performances of scoring methods when the base clusterings are restricted to as many
clusters as the number specified by the targets of the dataset.

The tables 10 and 11 correspond to the extension of the experiment where clustering models cover different number of
clusters.
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(c) ρmax = 0.9

Figure 4: Pearson correlation between ranking metrics and ARI with ground truth as the number of models in the ensemble
increase. Each model has an accuracy bounded between 10% and ρmax.
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(b) ρmax = 0.5
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(c) ρmax = 0.9

Figure 5: Kendall’s tau correlation between ranking metrics and ARI with ground truth as the number of models in the
ensemble increase. Each model has an accuracy bounded between 10% and ρmax.

D.2 ADDITIONAL TABLES WITH PEARSON CORRELATION

To further complete the results, we show the exact same tables measuring the Pearson correlation instead of the Kendall’s
tau correlation. The tables 12 and 13 respectively correspond to the correlation and regret on correlation when the number of
clusters is fixed. The tables 14 and 15 respectively correspond to the correlation and regret on correlation when the number
of clusters varies between clustering algorithms.

D.3 COMPLETE TABLES FOR THE ARI REGRET OF SELECTED MODELS

We finally report the extended results for the regret on the ARI of the top-selected model per score in Table 17 when the
number of clusters is restricted and Talbe 16 when the number of clusters can vary.
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Figure 6: Example of consensus matrices from the first synthetic scenario when the upper bound on the label preservation
rate ρmax increases from 20% to 90% with the ground truth. The top row is shows the initial consensus matrix, the bottom
row shows the same matrix after binarising with respect to its mean value.

Table 8: Extended results for the average Kendall tau correlationstd (↑) of the ranking metrics when the base clusterings are
restricted to as many clusters as targets.

FCPS UCI

Model Agglomerative Kmeans Agglomerative Kmeans

AARI 0.480.47 0.060.79 -0.350.60 0.050.37
ANMI 0.570.46 0.040.78 -0.310.54 0.100.46
BHI 0.360.51 0.470.54 0.950.11 -0.020.40
BRI 0.630.37 0.410.58 0.860.13 0.210.60
CHI 0.360.51 0.500.54 0.950.11 -0.020.40
CI 0.390.37 0.410.52 -0.350.46 -0.210.45
DBI 0.020.77 0.250.69 -0.800.25 0.270.38
DHI -0.080.54 0.450.56 -0.800.19 0.160.59
DI 0.360.58 0.100.73 -0.680.36 0.080.24
DRI 0.210.73 0.420.64 0.550.66 0.290.34
HI 0.020.79 0.420.55 -0.830.20 0.330.42
KDI -0.160.56 0.190.62 0.020.56 -0.010.53
LDRI 0.210.73 0.420.64 0.550.66 0.290.34
LSRI 0.360.51 0.520.55 0.950.11 -0.020.40
McRao 0.260.43 0.380.47 -0.300.56 -0.180.37
PBM -0.020.63 0.410.69 -0.320.59 0.090.63
SI 0.070.69 0.680.40 -0.450.36 0.250.56
WGSS 0.360.51 0.510.58 0.950.11 -0.020.40
WG -0.250.62 0.390.57 -0.930.12 0.040.47
XBI 0.120.67 0.420.60 -0.610.20 0.140.52

H 0.420.64 0.050.79 -0.520.44 0.050.37
KL 0.380.63 0.050.79 -0.520.44 0.050.37
TV 0.420.64 0.050.79 -0.520.44 0.050.37
Binary 0.730.24 0.020.91 0.440.65 0.060.46



Table 9: Extended results for the regret on the Kendall tau correlationstd (↓) of the ranking metrics when the base clusterings
are restricted to as many clusters as targets.

FCPS UCI

Model Agglomerative Kmeans Agglomerative Kmeans

AARI 0.400.48 0.780.84 1.310.65 0.620.50
ANMI 0.300.48 0.810.82 1.280.59 0.570.54
BHI 0.520.49 0.370.47 0.010.03 0.690.53
BRI 0.240.28 0.430.54 0.110.13 0.460.60
CHI 0.520.49 0.340.46 0.010.03 0.690.53
CI 0.490.33 0.430.45 1.310.52 0.880.66
DBI 0.860.81 0.600.69 1.770.33 0.400.22
DHI 0.950.59 0.390.55 1.770.24 0.510.45
DI 0.520.58 0.740.75 1.650.43 0.590.38
DRI 0.670.70 0.420.56 0.390.69 0.470.14
HI 0.850.84 0.430.53 1.800.25 0.340.19
KDI 1.030.54 0.650.63 0.940.52 0.700.66
LDRI 0.670.70 0.420.56 0.390.69 0.470.14
LSRI 0.520.49 0.330.46 0.010.03 0.690.53
McRao 0.610.46 0.460.42 1.270.58 0.850.59
PBM 0.890.68 0.440.62 1.290.62 0.590.64
SI 0.810.73 0.160.23 1.420.45 0.420.47
WGSS 0.520.49 0.340.50 0.010.03 0.690.53
WG 1.140.64 0.450.57 1.900.21 0.630.43
XBI 0.760.72 0.420.51 1.580.26 0.540.59

H 0.460.70 0.790.83 1.490.52 0.620.50
KL 0.500.68 0.790.83 1.490.52 0.620.50
TV 0.460.70 0.790.83 1.490.52 0.620.50
Binary 0.150.21 0.820.96 0.520.65 0.620.50

Table 10: Extended results for the average Kendall tau correlationstd (↑) of the ranking metrics when the base clusterings
seek different number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.340.32 0.620.48 0.200.36 0.280.42 0.180.33 0.190.55 0.170.30 0.320.30
ANMI 0.170.39 0.630.49 0.030.46 0.140.47 0.300.37 0.160.53 -0.010.38 0.360.22
BHI -0.340.29 -0.200.83 -0.680.26 -0.430.30 0.120.45 0.470.39 -0.370.49 0.100.37
BRI -0.400.31 -0.190.81 -0.690.25 -0.430.31 0.190.20 0.330.61 -0.070.26 0.230.23
CHI 0.010.36 0.350.77 0.150.51 -0.040.52 0.390.24 0.400.27 0.330.46 0.360.26
CI -0.060.42 -0.150.89 -0.350.44 -0.210.48 -0.120.40 0.070.57 -0.120.43 0.040.29
DBI 0.030.38 -0.230.78 0.020.37 -0.100.40 -0.380.33 -0.190.34 0.030.29 -0.080.24
DHI -0.090.26 -0.350.62 -0.660.26 -0.290.26 -0.370.15 0.010.43 -0.310.43 -0.170.23
DI 0.110.27 0.300.71 -0.110.21 0.090.27 -0.480.27 -0.170.57 -0.010.29 -0.180.31
DRI -0.420.33 -0.120.92 -0.680.26 -0.480.33 0.040.50 0.470.30 -0.490.39 0.080.29
HI 0.280.36 0.260.65 0.620.28 0.290.34 -0.290.49 -0.360.48 0.340.53 -0.190.42
KDI 0.160.25 0.290.68 0.630.26 0.300.21 -0.110.37 0.070.51 0.350.31 -0.030.37
LDRI -0.420.33 -0.120.92 -0.680.26 -0.480.33 0.040.50 0.440.38 -0.490.39 0.050.31
LSRI -0.410.32 -0.110.93 -0.680.26 -0.470.32 0.290.54 0.550.36 -0.370.49 0.200.38
McRao -0.390.27 -0.280.81 -0.660.28 -0.470.30 -0.280.45 -0.020.63 -0.300.46 -0.120.38
PBM 0.120.35 0.210.74 0.470.47 0.140.47 -0.010.29 -0.220.63 0.380.26 0.010.29
SI 0.070.32 0.170.72 0.320.36 0.010.44 -0.300.37 -0.180.62 0.230.32 -0.110.26
WGSS -0.410.32 -0.110.93 -0.680.26 -0.470.32 0.290.54 0.550.36 -0.370.49 0.200.38
WG 0.040.24 -0.380.62 -0.450.32 -0.180.28 -0.190.18 0.100.46 -0.210.41 -0.160.22
XBI -0.120.33 0.140.78 0.090.27 -0.120.34 -0.290.34 -0.230.60 0.140.26 -0.160.27

H 0.240.46 0.570.57 -0.160.46 0.200.50 0.060.41 0.180.51 -0.110.39 0.310.38
KL 0.250.45 0.570.57 -0.160.46 0.200.50 0.060.40 0.170.51 -0.110.39 0.310.38
TV 0.240.46 0.570.57 -0.160.46 0.190.50 0.060.41 0.180.51 -0.110.39 0.310.39
Binary 0.790.24 0.840.24 0.820.09 0.730.36 0.630.20 0.550.30 0.470.41 0.520.21



Table 11: Extended results for the regret on the Kendall tau correlationstd (↓) of the ranking metrics when the base clusterings
seek different number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.470.32 0.260.34 0.650.35 0.550.39 0.550.40 0.640.55 0.460.36 0.310.30
ANMI 0.640.42 0.250.36 0.830.46 0.690.48 0.430.40 0.670.54 0.650.45 0.260.13
BHI 1.150.41 1.100.86 1.540.30 1.250.39 0.610.43 0.370.40 1.010.65 0.530.33
BRI 1.210.43 1.090.86 1.540.29 1.250.42 0.540.23 0.500.62 0.710.48 0.390.24
CHI 0.800.35 0.550.74 0.710.47 0.860.51 0.350.25 0.440.34 0.310.42 0.260.26
CI 0.870.44 1.050.91 1.210.46 1.030.49 0.850.45 0.760.61 0.760.55 0.580.30
DBI 0.780.33 1.130.75 0.830.39 0.930.41 1.120.37 1.030.40 0.610.31 0.700.19
DHI 0.900.40 1.250.65 1.510.31 1.110.47 1.110.24 0.820.48 0.940.58 0.790.21
DI 0.700.37 0.590.62 0.960.25 0.730.27 1.220.31 1.000.60 0.650.43 0.810.40
DRI 1.230.43 1.010.95 1.540.31 1.300.40 0.690.56 0.330.28 1.120.72 0.570.31
HI 0.530.28 0.630.59 0.240.26 0.530.38 1.020.53 1.190.52 0.290.45 0.810.48
KDI 0.650.17 0.610.64 0.230.24 0.530.26 0.880.37 0.770.48 0.340.30 0.680.43
LDRI 1.230.43 1.010.95 1.540.31 1.300.40 0.690.56 0.360.36 1.120.72 0.600.29
LSRI 1.220.42 1.010.95 1.530.30 1.290.39 0.440.51 0.280.39 1.010.65 0.430.35
McRao 1.200.38 1.180.81 1.510.34 1.300.39 1.010.49 0.850.68 0.940.62 0.740.39
PBM 0.690.27 0.690.72 0.380.45 0.690.52 0.740.34 1.050.68 0.260.16 0.610.33
SI 0.740.31 0.720.63 0.540.35 0.810.44 1.040.42 1.010.69 0.400.28 0.740.22
WGSS 1.220.42 1.010.95 1.530.30 1.290.39 0.440.51 0.280.39 1.010.65 0.430.35
WG 0.770.36 1.280.64 1.300.34 1.000.42 0.920.21 0.740.48 0.850.53 0.780.20
XBI 0.930.36 0.760.71 0.760.33 0.940.38 1.030.37 1.060.66 0.490.25 0.780.27

H 0.570.48 0.310.44 1.010.49 0.630.51 0.670.49 0.650.52 0.740.52 0.310.39
KL 0.560.48 0.310.44 1.010.48 0.620.51 0.670.48 0.660.51 0.740.52 0.310.38
TV 0.570.48 0.310.44 1.010.49 0.630.51 0.680.49 0.650.52 0.750.52 0.310.39
Binary 0.020.07 0.050.14 0.030.05 0.090.25 0.100.20 0.290.31 0.170.29 0.110.13

Table 12: Extended results for the average Pearson correlationstd (↑) of the ranking metrics when the base clusterings are
restricted to as many clusters as targets.

FCPS UCI

Model Agglomerative Kmeans Agglomerative Kmeans

AARI 0.720.49 0.030.94 -0.350.78 0.430.54
ANMI 0.800.39 -0.010.86 -0.290.77 0.490.48
BHI 0.410.73 0.570.68 0.920.10 0.370.57
BRI 0.630.28 0.330.83 0.870.11 0.300.64
CHI 0.410.69 0.560.68 0.930.10 0.370.57
CI 0.390.68 0.570.65 -0.390.53 0.050.67
DBI 0.150.79 0.480.69 -0.780.17 0.020.63
DHI 0.050.60 0.560.56 -0.900.11 -0.150.62
DI 0.640.45 0.180.76 -0.840.13 -0.010.39
DRI 0.220.85 0.440.86 0.510.84 0.550.41
HI 0.130.78 0.470.72 -0.850.13 -0.030.59
KDI -0.270.69 0.120.81 -0.080.72 -0.220.52
LDRI 0.220.86 0.440.86 0.550.86 0.610.39
LSRI 0.350.72 0.580.67 0.920.09 0.370.57
McRao 0.330.66 0.560.70 -0.320.74 0.100.63
PBM 0.260.74 0.520.61 -0.380.66 0.060.67
SI 0.200.79 0.670.56 -0.630.37 0.100.72
WGSS 0.410.73 0.570.68 0.920.10 0.370.57
WG -0.130.66 0.480.59 -0.920.06 -0.080.55
XBI 0.230.80 0.590.56 -0.660.25 0.220.60

H 0.530.71 0.040.92 -0.510.68 0.470.51
KL 0.530.70 0.040.91 -0.510.68 0.470.48
TV 0.530.72 0.030.92 -0.510.68 0.460.52
Binary 0.850.24 0.010.97 0.460.66 0.520.56



Table 13: Extended results for the regret on the Pearson correlationstd (↓) of the ranking metrics when the base clusterings
are restricted to as many clusters as targets.

FCPS UCI

Model Agglomerative Kmeans Agglomerative Kmeans

AARI 0.250.48 0.910.96 1.330.78 0.330.39
ANMI 0.170.39 0.950.87 1.270.77 0.270.37
BHI 0.550.71 0.370.67 0.060.09 0.390.52
BRI 0.340.27 0.610.84 0.110.11 0.460.63
CHI 0.550.68 0.380.67 0.060.10 0.390.52
CI 0.570.66 0.370.64 1.380.54 0.710.72
DBI 0.820.78 0.460.67 1.770.18 0.730.66
DHI 0.920.60 0.380.53 1.880.11 0.910.70
DI 0.330.44 0.760.74 1.830.14 0.760.48
DRI 0.740.83 0.500.86 0.480.85 0.330.29
HI 0.840.77 0.470.70 1.830.14 0.780.63
KDI 1.240.69 0.820.81 1.070.71 1.000.72
LDRI 0.750.84 0.500.86 0.430.87 0.260.28
LSRI 0.610.70 0.360.66 0.070.09 0.390.52
McRao 0.630.64 0.380.70 1.310.75 0.660.68
PBM 0.700.72 0.420.59 1.360.66 0.690.72
SI 0.760.77 0.270.54 1.610.39 0.660.74
WGSS 0.550.71 0.370.67 0.060.09 0.390.52
WG 1.100.66 0.470.57 1.900.06 0.840.64
XBI 0.730.79 0.350.53 1.650.25 0.530.59

H 0.440.72 0.900.93 1.500.68 0.290.38
KL 0.440.71 0.900.92 1.500.68 0.290.36
TV 0.440.72 0.910.94 1.500.68 0.290.40
Binary 0.120.24 0.930.99 0.520.66 0.240.37

Table 14: Extended results for the average Pearson correlationstd (↑) of the ranking metrics when the base clusterings seek
different number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.400.43 0.590.64 0.000.67 0.330.52 0.200.49 0.210.80 0.130.58 0.430.40
ANMI 0.260.48 0.610.65 -0.080.67 0.200.52 0.260.50 0.260.79 -0.020.65 0.500.31
BHI 0.140.41 -0.080.96 -0.110.59 -0.050.53 0.170.36 0.540.58 -0.140.62 0.190.55
BRI -0.400.45 -0.180.89 -0.410.56 -0.220.28 0.360.26 0.430.66 0.170.33 0.190.23
CHI -0.050.55 0.430.80 0.270.49 -0.080.62 0.610.33 0.600.37 0.330.60 0.530.35
CI 0.020.62 -0.130.92 -0.030.64 -0.140.65 -0.070.51 0.300.77 0.000.60 0.280.30
DBI 0.060.57 -0.340.78 0.250.45 -0.160.50 -0.490.44 -0.230.42 0.160.42 -0.150.36
DHI 0.190.41 -0.370.67 -0.350.52 -0.090.46 -0.550.23 0.090.61 -0.270.56 -0.230.30
DI 0.200.48 0.230.81 0.070.36 0.260.44 -0.560.29 -0.100.70 0.060.34 -0.260.28
DRI -0.360.29 -0.050.94 -0.530.28 -0.410.23 -0.140.39 0.620.39 -0.360.34 -0.120.29
HI 0.210.44 0.300.63 0.570.33 0.240.42 -0.330.55 -0.500.48 0.320.62 -0.160.50
KDI 0.050.35 0.290.74 0.540.30 0.230.27 -0.050.45 -0.010.55 0.260.22 0.060.26
LDRI -0.200.55 -0.041.01 -0.450.53 -0.320.54 0.150.66 0.710.48 -0.460.46 0.090.48
LSRI -0.060.59 -0.090.96 -0.350.55 -0.210.60 0.430.63 0.750.57 -0.240.65 0.320.59
McRao -0.130.52 -0.260.87 -0.260.59 -0.260.55 -0.160.61 0.270.73 -0.190.60 0.080.46
PBM 0.000.50 0.260.71 0.450.56 0.070.55 -0.150.27 -0.080.76 0.470.31 -0.040.31
SI -0.080.56 0.150.77 0.720.36 -0.100.63 -0.340.38 -0.060.69 0.420.45 -0.120.35
WGSS -0.030.60 -0.070.99 -0.230.58 -0.180.62 0.450.62 0.760.58 -0.240.64 0.330.57
WG 0.380.38 -0.330.70 -0.320.45 0.100.41 -0.340.20 0.080.60 -0.230.48 -0.230.19
XBI -0.340.45 0.120.74 0.310.26 -0.270.42 -0.380.35 -0.180.67 0.220.40 -0.100.35

H 0.260.55 0.510.73 -0.120.69 0.250.58 -0.120.67 0.130.82 -0.070.63 0.390.57
KL 0.300.50 0.500.74 -0.100.68 0.290.54 -0.120.66 0.130.81 -0.050.61 0.380.56
TV 0.240.57 0.510.73 -0.130.69 0.230.60 -0.130.68 0.130.82 -0.080.63 0.390.57
Binary 0.800.25 0.900.19 0.720.21 0.700.37 0.670.39 0.480.58 0.540.39 0.660.25



Table 15: Extended results for the regret on the Perason correlationstd (↓) of the ranking metrics when the base clusterings
seek different number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.460.39 0.370.60 0.890.65 0.470.50 0.650.51 0.750.79 0.660.62 0.370.40
ANMI 0.600.47 0.350.61 0.970.65 0.600.54 0.590.51 0.710.78 0.810.69 0.300.20
BHI 0.720.41 1.040.98 1.010.58 0.860.60 0.670.35 0.430.59 0.920.68 0.610.48
BRI 1.260.45 1.140.90 1.300.55 1.020.36 0.490.32 0.530.65 0.620.41 0.620.31
CHI 0.910.54 0.530.80 0.620.47 0.890.66 0.240.36 0.370.38 0.450.64 0.270.31
CI 0.840.58 1.100.94 0.920.62 0.940.71 0.920.50 0.670.78 0.780.67 0.530.31
DBI 0.810.48 1.300.77 0.640.42 0.970.55 1.340.41 1.200.44 0.630.36 0.960.32
DHI 0.680.42 1.330.67 1.240.51 0.890.58 1.400.24 0.880.62 1.060.64 1.030.28
DI 0.660.52 0.730.78 0.830.33 0.550.43 1.410.27 1.070.71 0.730.43 1.070.38
DRI 1.220.36 1.010.95 1.430.27 1.210.31 1.040.43 0.340.35 1.100.65 0.930.33
HI 0.650.40 0.660.61 0.320.34 0.560.47 1.170.55 1.470.51 0.460.59 0.970.57
KDI 0.810.37 0.680.72 0.360.32 0.580.23 0.940.41 0.990.54 0.600.25 0.780.30
LDRI 1.070.56 1.001.03 1.340.52 1.130.56 0.750.71 0.240.43 1.200.76 0.720.47
LSRI 0.920.58 1.060.97 1.250.54 1.010.65 0.420.60 0.220.58 1.030.72 0.490.52
McRao 0.990.50 1.230.87 1.160.57 1.060.60 1.010.62 0.700.73 0.970.69 0.730.48
PBM 0.860.46 0.700.69 0.450.55 0.740.64 1.000.27 1.050.78 0.320.17 0.850.32
SI 0.950.52 0.820.75 0.180.33 0.910.65 1.190.34 1.020.71 0.360.33 0.920.31
WGSS 0.890.58 1.031.01 1.130.56 0.990.66 0.400.59 0.200.59 1.020.71 0.480.49
WG 0.480.35 1.300.71 1.210.43 0.710.49 1.190.21 0.880.59 1.020.54 1.030.20
XBI 1.200.45 0.840.72 0.580.25 1.070.45 1.230.31 1.140.69 0.560.36 0.910.32

H 0.600.55 0.450.69 1.020.67 0.560.63 0.970.71 0.830.81 0.860.68 0.420.59
KL 0.560.50 0.460.70 0.990.66 0.520.60 0.960.70 0.840.81 0.840.67 0.420.59
TV 0.620.57 0.450.69 1.030.68 0.580.65 0.970.72 0.830.81 0.870.68 0.420.59
Binary 0.060.16 0.070.16 0.180.22 0.110.24 0.180.38 0.490.57 0.250.24 0.140.16

Table 16: Extended results for the regret on the ARI of the model selectedstd (↓) by each ranking metric when the base
clusterings seek different number of clusters.

FCPS UCI

Model Agg. DBSCAN Kmeans Alltogether Agg. DBSCAN Kmeans Alltogether

AARI 0.410.32 0.100.17 0.330.27 0.410.32 0.200.24 0.110.13 0.200.19 0.200.25
ANMI 0.410.33 0.100.17 0.330.30 0.400.34 0.170.23 0.120.13 0.190.24 0.140.15
BHI 0.660.21 0.250.21 0.540.26 0.690.20 0.230.22 0.140.23 0.300.26 0.260.24
BRI 0.670.21 0.240.18 0.580.20 0.720.18 0.210.21 0.140.19 0.290.27 0.260.24
CHI 0.240.32 0.070.15 0.160.19 0.270.34 0.130.20 0.060.09 0.150.19 0.120.17
CI 0.360.37 0.200.20 0.230.28 0.380.36 0.300.23 0.140.15 0.250.22 0.320.22
DBI 0.300.33 0.290.33 0.190.19 0.310.35 0.430.27 0.240.24 0.160.24 0.450.29
DHI 0.250.25 0.330.27 0.540.26 0.260.28 0.390.26 0.220.23 0.270.24 0.410.28
DI 0.240.37 0.170.35 0.290.25 0.250.38 0.430.28 0.200.16 0.260.30 0.450.29
DRI 0.670.21 0.200.20 0.540.25 0.690.20 0.360.20 0.130.24 0.370.25 0.380.23
HI 0.620.39 0.200.34 0.160.25 0.580.37 0.430.27 0.280.22 0.270.27 0.450.29
KDI 0.560.35 0.190.34 0.440.31 0.590.35 0.210.25 0.130.13 0.210.27 0.290.26
LDRI 0.670.21 0.200.20 0.540.25 0.690.20 0.360.20 0.130.24 0.370.25 0.380.23
LSRI 0.660.21 0.200.20 0.540.26 0.690.20 0.230.22 0.070.19 0.300.26 0.260.24
McRao 0.660.21 0.210.19 0.550.25 0.690.19 0.370.23 0.080.11 0.300.26 0.400.23
PBM 0.260.32 0.210.34 0.160.17 0.270.34 0.410.26 0.180.17 0.210.27 0.420.28
SI 0.240.34 0.080.17 0.100.14 0.310.34 0.400.26 0.190.19 0.140.24 0.410.28
WGSS 0.660.21 0.200.20 0.540.26 0.690.20 0.230.22 0.070.19 0.300.26 0.260.24
WG 0.210.23 0.290.19 0.540.26 0.220.21 0.400.26 0.180.23 0.280.25 0.410.28
XBI 0.280.31 0.190.33 0.150.19 0.340.38 0.400.26 0.210.24 0.160.23 0.410.28

H 0.400.32 0.100.17 0.410.27 0.430.31 0.230.25 0.120.13 0.230.23 0.150.21
KL 0.400.32 0.100.17 0.420.28 0.430.31 0.230.25 0.120.13 0.230.23 0.150.21
TV 0.400.32 0.100.17 0.410.27 0.430.31 0.230.25 0.120.13 0.230.23 0.150.21
Binary 0.140.20 0.060.14 0.170.21 0.220.24 0.110.16 0.050.06 0.090.12 0.100.14



Table 17: Extended results for the regret on the ARI of the model selectedstd (↓) by each ranking metric when the base
clusterings are restricted to as many clusters as targets.

FCPS UCI

Model Agglomerative Kmeans Agglomerative Kmeans

AARI 0.160.28 0.060.10 0.310.22 0.050.05
ANMI 0.160.28 0.060.10 0.310.22 0.030.03
BHI 0.240.33 0.050.09 0.000.00 0.060.05
BRI 0.140.21 0.070.12 0.000.00 0.020.03
CHI 0.240.33 0.050.09 0.000.00 0.060.05
CI 0.220.27 0.050.09 0.290.23 0.110.11
DBI 0.360.41 0.020.04 0.430.28 0.090.08
DHI 0.480.43 0.020.04 0.430.28 0.180.16
DI 0.090.27 0.010.01 0.380.25 0.080.06
DRI 0.300.41 0.050.10 0.230.27 0.050.07
HI 0.360.41 0.020.04 0.430.28 0.150.16
KDI 0.570.40 0.140.25 0.170.18 0.170.18
LDRI 0.300.41 0.050.10 0.230.27 0.050.07
LSRI 0.240.33 0.050.09 0.000.00 0.060.05
McRao 0.300.32 0.050.09 0.280.25 0.090.06
PBM 0.370.38 0.050.09 0.350.27 0.120.17
SI 0.310.37 0.020.04 0.380.25 0.070.08
WGSS 0.240.33 0.050.09 0.000.00 0.060.05
WG 0.570.45 0.010.04 0.430.28 0.160.16
XBI 0.310.37 0.020.04 0.420.28 0.060.07

H 0.260.37 0.060.10 0.320.21 0.050.05
KL 0.260.37 0.060.10 0.320.21 0.050.05
TV 0.260.37 0.060.10 0.320.21 0.050.05
Binary 0.150.24 0.050.10 0.170.18 0.050.06
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