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ABSTRACT

Virtual Try-On (VTON) aims to outfit a person with a specific garment from paired
person and garment images. Recent diffusion-based approaches show promising
results but still struggle to preserve fine-grained details such as logos, patterns, and
textures. We suggest these failures come from inaccurate query–key matching in
attention maps. To analyze this, we introduce a correspondence evaluation frame-
work that extracts dense correspondences from attention maps and evaluates them
with pseudo ground-truth matches. Using this framework, we analyze a simple
DiT-based baseline and observe that its attention maps in most layers fail to cap-
ture reliable semantic correspondences. We then propose CORAL, a lightweight
regularization strategy with two components: correspondence loss, which cor-
rects where each query attends by aligning it with reliable external matches, and
entropy loss, which sharpens attention for more confident matching. CORAL
improves person–garment alignment in our baseline and can be applied to other
diffusion-based pipelines without architectural changes.

Figure 1: Teaser. CORAL aligns attention maps with reliable correspondences, resulting in better
garment–person alignment and finer detail preservation in Virtual Try-On.

1 INTRODUCTION

Given a pair of person and garment images, Virtual Try-On (VTON) aims to synthesize the same
person image wearing the given garment, accurately aligning the person and garment under large ge-
ometric variations. Recent advances in diffusion models have shown remarkable progress in VTON,
driving growing applications in e-commerce and AR/VR. Conventional works often focus on pre-
serving the fine-grained details of a given garment, through advanced inference techniques (Bhunia
et al., 2023), additional conditioning signals (Choi et al., 2024; Kim et al., 2025), or garment en-
coders (Kim et al., 2023; Choi et al., 2024; Zhou et al., 2024).
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Figure 2: Attention Map Visualization. Compared to the baseline, our method produces sharper
and more localized attention, resulting in more accurate person–garment correspondences.

However, they still fail to accurately preserve garment details, such as small logos or text, repet-
itive patterns, and textures. As discussed in (Zhou et al., 2024; Nam et al., 2024a; 2025a), this
failure largely stems from imprecise correspondence estimation between the person’s query and the
garment’s key in the attention module of diffusion models.

Recent works (Zhou et al., 2024) address this by improving correspondence-awareness of the model.
This is achieved by applying an RGB photometric loss between the person image and the gar-
ment image warped by the dense flow map estimated from the attention module of the diffusion
U-Net Zhou et al. (2024). However, the model learned through such supervision still struggles with
repetitive patterns, homogeneous textures, or illumination changes, where the photometric assump-
tion often fails because non-matching pixels may share similar RGB values (Truong et al., 2021).
Inaddition, these methods focus solely on the diffusion U-Net, instead of advanced diffusion models
such as Diffusion Transformers (DiTs), without analyzing how person–garment correspondences
are represented within the model or how they could be further enhanced.

To address this, we first explore person–garment correspondence within Diffusion Transformers
(DiTs) for VTON. We focus on the multi-modal attention mechanism in DiTs, where the person,
garment, and text prompt interact. As highlighted in Figure 2, our analysis shows that the internal
query–key matching between person and garment tokens is often weak, leading to misaligned and
suboptimal try-on results.

Based on this analysis, we propose a new framework, CORAL (CORrespondence ALignment),
which explicitly enhances query–key matching in the attention module of DiTs by aligning it with
reliable correspondences obtained from the off-the-shelf vision foundation model DINOv3. Specif-
ically, we introduce two complementary supervision signals: (1) correspondence alignment loss,
which aligns the garment key points attended by each person query point with the correspondences
provided by DINOv3, and (2) entropy minimization loss, which minimizes the entropy of the at-
tention distribution to keep the attention sharp and localized.

In our experiments, we demonstrate that CORAL significantly improves query–key matching be-
tween the person and garment (Figure 2), thereby improving the VTON performance, and surpasses
prior RGB photometric loss. Ablation studies further validate our design choices.

In summary, our main contributions are as follows:

• We provide new insights into VTON, demonstrating that accurate person–garment alignment
depends on precise query–key matching within the attention module of DiTs.

• We introduce a novel VTON method that improves query–key matching through correspondence
alignment with DINOv3 and entropy minimization, yielding sharper and more reliable matches.

2 RELATED WORK

Image-based Virtual Try-On. Early image-based virtual try-on methods (Han et al., 2018; Wang
et al., 2018) commonly follow a two-stage framework: garment deformation and try-on synthesis.
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Diffusion-based models have significantly advanced try-on quality. Some methods (Gou et al., 2023;
Morelli et al., 2023) bridge GAN-based and diffusion-based approaches by incorporating traditional
warping modules within the diffusion framework. Other methods (Choi et al., 2024; Kim et al., 2023;
Nam et al., 2025b) employ ControlNet-like structures or an additional network to encode garment
images. CATVTON(Chong et al., 2025) simply concatenates person and garment images along
spatial dimensions as inputs, eliminating the need for additional encoding modules. Leffa (Zhou
et al., 2024) proposes auxiliary regularization loss on attention maps to enforce proper alignment
between target queries and reference keys. However, these approaches still struggle to preserve
fine-grained details across diverse poses and garment types.

Correspondence in Diffusion Models. The development of diffusion models has inspired studies
on their correspondence capabilities, revealing visual representations useful for cross-image under-
standing. DIFT (Tang et al., 2023) showed that diffusion features can establish semantic correspon-
dences without extra training, and DiffMatch (Nam et al., 2024b) proposed a diffusion-based frame-
work for dense matching using generative priors. Improving correspondence has also been shown
to boost downstream tasks: DiffTrack (Nam et al., 2025a) explores temporal correspondences be-
tween video frames for better point tracking and video generation, while Track4gen (Jeong et al.,
2025) supervises cross-frame correspondences to enhance video quality. These works mainly ad-
dress feature-level correspondence. Other studies examine semantic correspondence in attention:
Liu et al. (Liu et al., 2024) analyze cross- and self-attention to explain text–image alignment, and
SynGen (Rassin et al., 2024) refines attention maps to improve text–object matching. Our work
targets attention-level visual correspondence between images to improve generation quality.

3 PRELIMINARIES

Diffusion Models. The latent diffusion model (LDM) consists of a variational autoencoder (VAE)
ε, a denoising network ϵθ(·). The VAE encoder ε maps an image x into a latent representation
z0 = ε(x). At each diffusion timestep t ∈ [0, 1], Gaussian noise ϵ ∼ N (0, I) is added to z0
according to a predefined noise schedule, yielding the noised latent zt = (1 − t)z0 + tϵ. Given
conditioning tokens c, the denoiser ϵθ is trained to predict the added noise, with the objective

Ldiff = Ez0,ϵ,t

∥∥ϵ− ϵθ(zt, c, t)
∥∥2
2
. (1)

Here, the conditioning tokens c can be text tokens from the text encoders or visual tokens extracted
from reference images by a visual encoder.

Multi-Modal Attention in DiTs. In DiTs, attention is computed over a joint token sequence
across the noisy latent tokens zt and the conditioning tokens c. Here, conditioning tokens c are
concatenated token-wise across multiple conditions, constructing c = [c1; c2; . . . ; cNcond , ], where
Ncond denotes the number of different conditions. The final input sequence can thus be written as
S = [ zt; c ]. At each layer l and head h within the transformer blocks, S is mapped into the queries
and keys, formulated as

Ql,h = [Ql,h
zt ;Q

l,h
c1 ; . . . ;Q

l,h
cNcond

], Kl,h = [Kl,h
zt ;Kl,h

c1 ; . . . ;Kl,h
cNcond

]. (2)

To encode positional information, each token in S is augmented with rotary position embeddings
(RoPE). The attention map Al,h is then calculated by

Al,h = Softmax

(
Ql,h(Kl,h)⊤√

d

)
, (3)

where Softmax is applied over the key dimension for each query. This full attention encodes how
each latent or conditioning token attends to the remaining tokens.

4 METHODOLOGY

4.1 TASK DEFINITION

Given a person image Ip ∈ RH×W×3, a garment image Ig ∈ RH×W×3, a pose condition Ic ∈
RH×W×3, and binary masks Mp,Mg ∈ {0, 1}H×W×1 indicating the person and garment regions
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Figure 3: Overall Architecture. The person image Ip, garment image Ig , and pose condition Idp
are encoded into latents zp, zb, zg , and zdp, which are processed by multi-modal attention layers in
DiTs. We enhance query–key matching using a correspondence loss Lcorr supervised by DINOv3
and an entropy loss Lent that sharpens attention distributions, both applied to the attention with
person tokens as queries and garment tokens as keys.

in Ip, our goal is to generate a try-on image Î that preserves the identity of Ip and the pose of Ic,
obatined from Densepose (Güler et al., 2018), while replacing the clothing with the appearance of
Ig . Note that Mp denotes the entire upper-body region excluding hands, obtained by dilating the
human-parsing contour mask, following prior work (Choi et al., 2024).

4.2 DIFFUSION TRANSFORMERS (DITS)-BASED BASELINE

We encode the person image Ip, the garment image Ig , and the pose condition Ic into the latent
space using a VAE encoder ε, producing ε(Ip), ε(Ig), ε(Ic) ∈ Rh×w×d with spatial resolution
h × w and channel dimension d. The binary masks Mp and Mg are downsampled into the latent
space to obtain Mp,Mg ∈ {0, 1}h×w×1.

To let the model to focus on the garment regions, we apply these masks to the image latents, yielding

zp = ε(Ip)⊙Mp, zb = ε(Ip)⊙ (1−Mp),

zg = ε(Ig)⊙Mg, zc = ε(Ic)⊙Mp.
(4)

Here, zp represents the person latent region to be updated with the given garment, zb corresponds to
the background regions of the person latent to be preserved, zg captures the garment regions from
the garment latent, and zc represents the garment regions from the pose latent.

At diffusion timestep t, noise is added to the person latent zp to produce zp,t = (1 − t)zp + tϵ,
following Section 3. We then concatenate all latents and text tokens ctext along the token dimension,
forming [zp,t; zb; zg; zc; ctext], and feed them into multiple multi-modal attention layers in DiTs.
Note that this design fully leverage the inherent capability of DiTs to transfer garment appearance
to the person, rather than relying on auxiliary encoders (Liu et al., 2024; Choi et al., 2024; Zhang
et al., 2024).

To enable the model to distinguish spatially aligned conditions from non-aligned ones, inspired
by (Tan et al., 2025a), we modify the RoPE embeddings such that zM and zc, which are spatially
aligned with zp, share the same token positions as zp, while zg , which is not spatially aligned, is
shifted by a fixed positional offset.
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We apply an attention mask that restricts the conditioning latents to attend only to themselves, rather
than interacting with the evolving person tokens zp,t. This prevents the conditioning information
from being corrupted during denoising and helps preserve fine garment details (Tan et al., 2025b).

We train this baseline under Equation 1, achieving competitive performance despite its simplicity.
However, as shown in Figure 2, it still fails to transfer fine-grained garment details—logos and
textures appear blurred, and structural boundaries lack sharpness. This motivates a closer analysis
of the model’s attention behavior, presented in the following section.

4.3 ANALYSIS

Matching Cost from DiT Attention. We further explore our baseline from the perspective of how
the person and garment match each other within the DiT architecture. Leveraging the DiT’s multi-
modal attention capability, where person, garment, and text tokens interact, we specifically focus on
the attention from the person latent zp,t to the garment condition zg . This modifies Equation 2 and
is formulated as

Al,h
zp,t→zg = Softmax

(
Ql,h

zp,t(K
l,h
zg )⊤

√
d

)
. (5)

We redifine this Al,h
zp,t→cI as the matching cost between the person and garment latents at timestep

t. This is similar to the analysis in (Nam et al., 2024a; 2025a), but no prior work has framed the
VTON task as person–garment correspondence within DiT attention.

Figure 4: Correspondence visualiza-
tion. (a) Baseline correspondences
obtained from the multi-modal atten-
tion maps. (b) DINOv3 correspon-
dences between the garment and per-
son images. (c) Refined DINOv3 cor-
respondences after applying the cycle-
consistency check. The bottom row
shows the garment warped to the person
using each correspondence field.

Correspondence Estimation. We then extract per-
son–garment correspondences from the matching cost
Al,h

zp,t→zg defined in Equation 5. We first average the
matching costs across all heads to obtain Āl

zp,t→zg ∈
RNq×Nk , where Nq and Nk denote the numbers of per-
son query tokens and garment key tokens, respectively.
Each entry Āl

zp,t→zg (i, j) represents the probability that
the i-th person query token attends to the j-th garment
key token. Finally, dense correspondences at layer l are
estimated by taking the argmax over j:

X̂ = {x̂i | i = 1, . . . , Nq}, (6)

x̂i = argmax
j∈{1,...,Nk}

Āl
zp,t→zg (i, j). (7)

Pseudo-GT Construction. Since there is no ground-
truth correspondence between the person and garment
images, we construct pseudo ground-truth matches us-
ing DINOv3, a strong vision foundation model for visual
matching tasks (Siméoni et al., 2025). Given the person
image Ip and garment image Ig, we extract feature de-
scriptors with ϕ(·) from DINOv3. We then mask these de-
scriptors with mc and mg to ensure that correspondences
are computed only within the valid garment-related re-
gions:

ψp = ϕ(Ip)⊙mc, ψg = ϕ(Ig)⊙mg. (8)
With these masked descriptors, following the classic matching protocol (Hong et al., 2022a;b; Cho
et al., 2024), we compute the cosine similarity as the matching cost:

C(i, j) =
ψp(i) · ψg(j)

∥ψp(i)∥2 ∥ψg(j)∥2
, (9)

where i and j index spatial locations of person and garment descriptors, respectively.

From this cost map, we calculate a person-to-garment flow, Fp→g ∈ Rh×w×2 by taking the argmax

over garment locations, and similarly compute a garment-to-person flow Fg→p ∈ Rh×w×2 by taking

5
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(a) Correspondence Visualization across layer/timesteps (b) Correspondence Evaluation

Figure 5: Visualization of attention-based correspondence estimation across timesteps and lay-
ers. (a) Top-left shows the input garment and person images, and bottom-left shows the DINOv3
correspondences computed between the source garment and the target person. The grids on the right
illustrate correspondences extracted from multi-modal attention maps, varying across timesteps (left
to right) and layers (bottom to top). Overall, the baseline produces weak and unstable correspon-
dences, while CORAL significantly improves the alignment with DINOv3, yielding more consistent
person–garment matching. (b) We evauate whether predicted correspondences align well with DI-
NOv3 by measuring percentage of coorect keypoints (PCK) on the VTION-HD (Choi et al., 2021)
dataset.

the argmax over person locations. To retain only reliable matches, we apply a cycle-consistency
check defined as

∥Fg→p(Fp→g(i))− i∥ < γ, (10)

where γ is a small distance threshold. Only correspondences with cycle-consistency error below γ
are kept, as illustrated in Figure 4.

Correspondence Evaluation. Finally, we evaluate the predicted correspondences x̂i by measur-
ing the percentage of correct keypoints (PCK), the proportion of predictions within a distance α of
the ground-truth correspondence xGT

i , which is defined as:

xGT
i = argmax

j∈{1,...,Nk}
C(i, j). (11)

Based on these correspondences, we measure alignment accuracy using the Percentage of Correct
Keypoints (PCK):

PCK(α) =
1

N

N∑
i=1

1
(
∥x̂i − xGT

i ∥2 < α
)
. (12)

Here, N denotes the number of evaluated correspondences and α is a distance threshold.

Observations. In Figure 5(b), we observe that the correspondences estimated by the baseline ex-
hibit significantly lower performance across all layers compared to those obtained from DINOv3.
This indicates that the baseline struggles to establish accurate matches between person queries and
garment keys, and suggests that this matching could be further improved by distilling pseudo ground-
truth correspondences from DINOv3. Additionally, as shown in Figure 5(a) the baseline mostly
captures left–right separation, while top–bottom structure clearly appears in only later layers. This
indicates that the model only captures coarse structural layout in earlier layers, and does not fully
establish complete garment alignment. Across timesteps, the overall patterns remain similar with-
out clear improvement, suggesting that noise reduction alone does not resolve the correspondence
problem. We also find that correspondences sharply degrade in later layers and timesteps. These
observations show that correspondence errors occur throughout the denoising process, motivating
us to apply supervision across all layers rather than restricting it to a few selected ones.
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4.4 CORAL: CORRESPONDENCE ALIGNMENT FOR VIRTUAL TRY-ON

We propose CORAL, a lightweight alignment loss that can be seamlessly integrated into any DiT-
based pipeline. Without modifying the underlying architecture, CORAL enhances person–garment
matching by jointly optimizing two complementary supervision signals: (1) correspondence align-
ment loss and (2) entropy minimization loss.

Correspondence Alignment Loss. The goal of the correspondence alignment loss is to correct
the query–key correspondences between the person and garment observed in the baseline by distill-
ing reliable matches from DINOv3 (Siméoni et al., 2025). We focus on the attention map Al,h in
Equation 3. After applying softmax, the attention maps are averaged across heads to obtain Āl. The
attended location for query i is then computed through a soft-argmax, which interprets the attention
weights as probabilities over key positions. Let xj ∈ R2 denote the spatial coordinate of the j-th
key token. The expected coordinate of query i at layer l is given by

x̂li =

Nk∑
j=1

Āl
i,j xj , (13)

Finally, we compute the averaged L2 loss between the estimated correspondences and the pseudo-
GT matches, where Nc is the number of supervised query tokens inside the person mask mc and L
is the total number of transformer layers:

Lcorr =
1

LNc

L∑
l=1

Nc∑
i=1

∥x̂li − xGT
i ∥22. (14)

Figure 6: Entropy minimization loss. We
compute the entropy of each query’s atten-
tion distribution over keys and average across
queries and layers.

Entropy Minimization Loss. We introduce an
entropy-based loss to explicitly supervise attention
sharpness. Although the correspondence loss aligns
queries with external matches, the alignment can still
be unreliable when the attention distributions are too
diffuse, as they may be dominated by weighted av-
erages of incorrect key positions. Spatial entropy
has been used to measure attention sharpness: Pe-
ruzzo et al. (Peruzzo et al., 2023) applied it as an in-
ductive bias to promote localized attention in Vision
Transformers, while Kang et al. (Kang et al., 2025)
used it to identify heads focusing on text-relevant
regions in vision–language models. Motivated by
this, we employ entropy as a regularization objec-
tive to guide sharper query–key alignments. Follow-
ing Shannon’s definition of entropy (Attanasio et al.,
2022), we consider the attention weights of a query
as probabilities over keys and compute the entropy
of this distribution. For a supervised query i at layer
l, the entropy of its attention distribution is

H l
i = −

Nk∑
j=1

Āl
i,j log Āl

i,j , (15)

whereNk is the number of key tokens and Āl
i,j denotes the attention probability on key j. Averaging

across queries and layers, the entropy loss is

Lent =
1

LNc

L∑
l=1

Nc∑
i=1

H l
i . (16)

Lower entropy corresponds to more localized matches, whereas higher entropy indicates diffuse or
uncertain attention. This loss therefore complements the correspondence loss by enforcing sharper
alignments across layers.

7
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Benchmark Method Paired Unpaired
FID (↓) KID (↓) SSIM (↑) LPIPS (↓) KID (↓)

VITON-HD Baseline 9.52 1.35 0.864 0.084 0.456
Baseline + CORAL 6.27 0.56 0.871 0.084 0.315

DressCode Baseline 5.75 0.47 0.905 0.065 0.736
Baseline + CORAL 5.22 0.56 0.905 0.060 0.193

Table 1: Quantitative comparison. We show results on VITON-HD and DressCode, demonstrating
that our losses are effective in both paired and unpaired settings.

Total Loss. We extend the diffusion objective by adding correspondence and entropy terms:

Ltrain = Ldiff + λcorr Lcorr + λent Lent, (17)

where Ldiff is explained in Eq 1. Instead of stage-wise training, we apply these objectives from the
beginning, which gave better results. The weights λcorr and λent were set empirically.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset We choose to use two widely used public datasets, VITON-HD (Choi et al., 2021) and
DressCode (Morelli et al., 2022) Models are trained separately on the training sets and evaluated
on the corresponding test sets. VITON-HD includes 11,647 training pairs and 2,032 test pairs of
upper-body garments with images at 1024× 768 resolution. DressCode consists of 48,392 training
pairs and 5,400 test pairs, covering upper-body, lower-body, and dress categories, also at 1024×768
resolution. Both datasets provide paired images of in-shop garments and person images.

Metrics Following prior works, we evaluate under two settings: paired, where the garment in the
person image Ip matches the garment image Ig, and unpaired, where the garments do not match
and no ground-truth is available. For the paired setting, we use FID (Soloveitchik et al., 2022),
KID Bińkowski et al. (2021), SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018), while in the
unpaired setting we use only FID and KID.

Implementation Details. Our model is based on FLUX.1-dev and fine-tuned with LoRA Hu
et al. (2021). Training is conducted on two NVIDIA A100 GPUs for 7 epochs for VITON-HD and 3
epochs for DressCode with a batch size of 1. All results are generated at a resolution of 1024×1024.
We use the Prodigy optimizer with a learning rate of 1.0. The correspondence and entropy objectives
are weighted by λcorr = 10−3 and λent = 10−1.

5.2 EXPERIMENTAL RESULTS

Quantitative Comparison. We evaluate our method in comparison with the baseline on virtual
try-on benchmarks VITON-HD (Choi et al., 2021) and DressCode (Morelli et al., 2022), with results
shown in Tabs. 1. Compared to the baseline, our model achieves consistent gains: on VITON-HD
we obtain FID decreases of 3.25 in the paired setup and KID decreases of 0.141 in the unpaired
setup. On DressCode we also outperform the baseline across all garment types (upper body, lower
body, dresses), with FID reductions of 0.53 in the paired setting and KID reductions of 0.543 in the
unpaired setting.

Qualitative Comparison. Fig. 7 shows that our method achieves more accurate garment transfer
compared to the baseline. First, fine details such as the exact color of small logos are well preserved,
while the baseline often fails to reproduce these localized elements. Second, the baseline often
attends to irrelevant regions of the garment and transfers incorrect parts. With our regularization,
the model attends to the correct locations and transfers the proper regions, even in cases where
visually similar areas can cause confusion.

8
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Figure 7: We compare our method with the DiT-based baseline under both paired and unpaired
settings.

5.3 ABLATION STUDIES

Impact of Different Losses. To analyze the contribution of each component, we perform ablations
on the correspondence and entropy losses. Using Lcorr alone improves correspondence quality and
produces better alignment with correspondences from DINOv3, but entropy slightly increases com-
pared to the baseline, showing that attention becomes more spread out even though correspondences
are better aligned. Although details are improved , the model sometimes confuses garment length
or fails on complex garment shapes. Conversely, applying only Lent enhances attention sharpness
and shows partial improvements, yet it does not sufficiently preserve fine-grained details or garment
appearance. When both losses are applied together, the model achieves the best performance: corre-
spondences are reliable, entropy is reduced, and garment details such as logos, textures, and shapes
are preserved more consistently across diverse poses and clothing types.

6 CONCLUSION

We first systematically explore attention-based correspondence in DiT-based VTON models and
observe that weak and diffuse query–key matching fundamentally limits fine-grained detail preser-
vation. Motivated by these findings, we propose CORAL, which aligns person–garment correspon-
dences with DINOv3 and enforces sharper attention distributions through entropy minimization. Ex-
perimental results on VITON-HD and DressCode demonstrate that CORAL consistently improves
garment fidelity and structural alignment, offering a simple yet effective regularization strategy for
future VTON pipelines.
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