
Topological Semantic Graph Memory
for Image-Goal Navigation

Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh
Department of Electrical and Computer Engineering, ASRI, Seoul National University

{firstname.secondname}@rllab.snu.ac.kr, songhwai@snu.ac.kr

Abstract: A novel framework is proposed to incrementally collect landmark-
based graph memory and use the collected memory for image goal navigation.
Given a target image to search, an embodied robot utilizes semantic memory
to find the target in an unknown environment. In this paper, we present a topo-
logical semantic graph memory (TSGM), which consists of (1) a graph builder
that takes the observed RGB-D image to construct a topological semantic graph,
(2) a cross graph mixer module that takes the collected nodes to get contex-
tual information, and (3) a memory decoder that takes the contextual memory
as an input to find an action to the target. On the task of an image goal navi-
gation, TSGM significantly outperforms competitive baselines by +5.0-9.0% on
the success rate and +7.0-23.5% on SPL, which means that the TSGM finds
efficient paths. Additionally, we demonstrate our method on a mobile robot in
real-world image goal scenarios. Code is available at https://github.com/rllab-
snu/TopologicalSemanticGraphMemory.

Keywords: Landmark-Based Navigation, Incremental Topological Memory

1 Introduction

Navigation with rich visual observations has been a critical issue in a variety of embodied agent
tasks, such as exploration, image goal navigation, and object goal navigation [1–16]. A crucial in-
gredient for successful visual navigation is to construct a memory, which can represent the structure
of the environment along with compact visual features for representing high-dimensional visual in-
puts. A metric-map memory [5, 17] created with SLAM, and a graph memory [8, 9, 18–20] with
nodes and edges are the two standard memory construction approaches for navigation algorithms.
Even though navigation systems that use metric maps produce powerful results with exact localiza-
tion and mapping, it is not practical because the navigation agent is susceptible to sensory noises.
The topological map, which represents geometric properties and spatial relations of places in the
form of a graph, is proposed to construct a map without accurate mapping. Previous visual naviga-
tion methods [9, 18] with topological map exploit image features as nodes and edges connecting the
nodes in proximity. Since a node indicates a location, the robot’s position can be estimated by the
nodes in the topological map. Therefore, the graph can be used to navigate successfully even in a
real noisy environment.

Unfortunately, using semantic information in topological graph memory presents several difficul-
ties. The first challenge is to incorporate landmarks into a topological graph. As demonstrated by
studies [21–23] that show animals navigate utilizing contextual cues from landmarks, the problem
of incorporating landmarks, such as object compositions, is a critical issue in visual navigation. A
recent research [15] addresses the problem by making an object graph, which connects objects in
a field of view of a directional camera to leverage object features. Although it guides an agent to
effective action to discover the target utilizing object relationships, it often misses 3D object con-
text information since it only connects objects observed from the same viewpoint. Imagine a goal
is given to find a cooking pot, and you know that the cooking pot is usually kept adjacent to an
oven. If the oven is nearby but not visible, the agent may miss this crucial information and pick an
inefficient path. The more difficult problem is inferring contextual information from objects using
geometrically arranged landmarks. There are various advantages to obtaining contextual features

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://github.com/rllab-snu/TopologicalSemanticGraphMemory
https://github.com/rllab-snu/TopologicalSemanticGraphMemory

Figure 1: Importance of semantic contextual information. (a) When two similar items, e.g., cups,
are in different locations, they can be identified individually. (b) A kitchen can be recognized when
refrigerator, oven, and dining table are detected.()

from topological graphs. By defining an object through neighboring objects, the contextual repre-
sentation helps to eliminate the ambiguity of similar but different objects. As shown in Figure 1(a),
by describing cups in terms of their neighboring objects, it is possible to distinguish two similar
cups. For example, a cup in the kitchen can be perceived as one next to a chair and snack box, while
a cup in the bathroom can be shown as one that is near to a toothbrush and washstand. Moreover, a
place can be better described through objects. A kitchen, for example, can be defined by the presence
of a refrigerator, oven, and dining table (see Figure 1(b)).

To this end, this paper addresses the challenges described above using topological semantic graph
memory (TSGM), which has two types of nodes: image nodes and object nodes. Image nodes rep-
resent different positions that include image representations, while each object node represents a
unique object with its visual representation regardless of viewpoint. If a previously undiscovered
image node is identified, it is connected to the previously visited image node, producing a spa-
tially meaningful graph. For each image input, objects are detected using MaskRCNN [24] and then
connected to image nodes where the object can be seen. A cross graph mixer, a learnable message-
passing network that exchanges object and image information, is then used to make the memory
contextual. Using this contextual memory, the agent determines the best strategy for finding the
goal. We applied our proposed method to image goal navigation in the Gibson [25] to validate our
method. As a result, the proposed method significantly outperforms competitive baselines by +5.0-
9.0% on the success rate and +7.0-23.5% on SPL, which means that the TSGM finds efficient paths.
On a mobile jackal robot, we demonstrate our method in a real-world environment. The experiment
is carried out using episodes where the goal location is not visible and is 5 to 10m away. Despite that
the episodes are challenging for image goal navigation, TSGM demonstrates successful navigation.

2 Related Work

There has been a lot of research using memory for visual navigation. There are three types of mem-
ory formation methods: implicit memory, metric memory, and topological memory.

Implicit memory. Using a recurrent neural network (RNN) as a policy network is a simple method
to make an implicit memory [26]. TargetDriven [26] has a vanilla RL policy with a CNN backbone
followed by an LSTM which is implicit memory. Since RNN has difficulty backpropagating for a
long sequence, RNN is replaced with an explicit memory structure [2, 5, 8, 9, 17, 20].

Metric memory. Active Neural SLAM [17] has a hierarchical structure to explore an environment:
global and local policy. The global policy constructs a top-down 2D map and estimates a global goal.
It consists of a neural network for flexible output on the input modalities. Given the global goal
from the global policy module, a local policy module plans a path to the goal using the simple local
navigation algorithm.Exp4nav [5] tackles the exploration problem for navigation. It builds a global
metric map, combining egocentric metric maps. Then, to estimate the action, it embeds images with
CNN, and a recurrent policy takes the embedding of current observation and the target to output an
action.

Topological memory. In [2], LSTM is a policy network that finds the currently located node and
derives an action when a topological map is provided. The goal of NeuralPlanner [20] is primarily to

2

Figure 2: Overview of the proposed method. TSGM has a spatially meaningful structure that is
generated and updated online. An image node Vim is represented by a blue circle, and an object node
Vob is represented by a pink triangle. The current observation xt is shown in green, while the goal xg
is highlighted in red. A cross graph mixer module is used to update the constructed graph memory to
encode the context of features. Then, the attention module chooses the updated memory by querying
the current observation and target node. The action policy network determines the action at based
on the selected memory. Note that the node position is only used for visualization purposes.

explore the environment and maximize coverage. To this end, a topological map is generated from
an exploratory policy during the rollout. Then, a pretrained neural planner calculates the path to
the node most similar to the target image. Semi-parametric topological memory (SPTM) [9] forms
a topological memory through exploration before training an agent. Then, an agent navigates to
the destination based on the topological memory using the Dijkstra algorithm that plans a path to
reach the waypoint. Scene memory transformer (SMT) [8] stacks all the visual features of the past
observations as a navigation memory. It uses transformer network [6] to process this memory in the
context of the current and target observations. In other words, the authors completely replaced the
RNN with an attention mechanism, which shows good performance in long-term tasks. Visual graph
memory (VGM) [18] constructs a topological visual memory to navigate an environment while not
utilizing the landmark information of the scene. No RL no simulator (NRNS) [27] uses models
trained using image input without interaction with the simulator. It creates a node for an unexplored
area and finds the goal by estimating the geodesic distance to the goal.

Our method builds upon prior topological memory methods to handle the problem of creating and
exploiting the object-based semantic graph to find the most efficient path. Once placed in a new
environment, our method explores while incrementally constructing a topological graph, inspired
by prior work [8, 18, 27]. In contrast to these previous methods, our method employs spatially
meaningful landmarks without using exact positions.

3 TSGM: Topological Semantic Graph Memory

3.1 Problem Statement

We consider the problem of goal-directed exploration for efficient navigation. Given a current ob-
servation and a target image to search, an embodied robot aims to find the target (see Figure 2). The
current observation contains RGB-D sensory input xt and detected objects {z1, ..., zK} ∈ zt.

3.2 Graph Memory Construction

Let us consider an agent equipped with an RGB-D camera that was dropped into a novel environ-
ment that it has never been in before. We want to build and exploit a graph memory that enables

3

this agent to find the goal in a new environment efficiently. To this end, a semantically structured
graph memory, named topological semantic graph memory (TSGM), is built online while an agent
traverses the new environment. For example, as shown in Figure 2, when a new node (green circle) is
found, the new node is connected to the previous image node (the blue circle connected to the green
circle), and the object nodes found at the new node (the green triangles). Since the graph is built
with landmarks, recalling the landmarks the agent has seen before will help the agent to discover ef-
ficient paths. The TSGM contains two types of nodes and edges, i.e., G = {Vim,Vob, Eim, Ec} with
image nodes Vim = {xi}Ni=1 and its edges Eim with the affinity matrix Aim ∈ RN×N , object nodes
Vob = {zi}Mi=1 where zi ∈ R1×D, and edges connecting image and object nodes Ec with the affinity
matrix Ac ∈ RN×M . N is the number of image nodes, M is the number of object nodes, and D is
the dimension of the object representation. The graph expands continuously as the agent explores
the environment. The algorithm for constructing TSGM is provided in Supplementary Section 2.

Object graph construction. Objects are retrieved using MaskRCNN [24] and added to the graph
memory as nodes. When the object is already in memory, the object node is updated with a node with
a higher object detection score. If it is not determined that the object is the same, a new object node
(zk) is added to the memory, connecting with the corresponding current image node (xt) using the
affinity matrix (Ac). To connect objects in proximity in the graph memory, we calculate the affinity
matrix for object nodes to be connected to objects in the neighbors of the current image node using
the image affinity and image-object affinity. Here, since we want a single object node for an object,
the trained object encoder using Supervised contrastive learning [28] learns whether the objects are
the same object even when the images are shot from various points of view.

Image graph construction. To construct an image graph, a pretrained similarity encoder [29]
learns image similarity in an unsupervised manner and is then used to determine whether or not
the node is already in memory. If an observed node is new, i.e., the node feature is not similar
to the existing memory, it is added to the graph memory; otherwise, it is utilized to update the
corresponding memory node. While connecting image nodes, a new technique based on objects is
utilized, assuming that the likelihood of being at the same place is significantly low if there are
few co-visible objects between two image nodes. Therefore, the similarity between the object nodes
collected at the current location and the object graph nodes is calculated. We consider two image
nodes to represent different locations when there are no similar items between them. If the similarity
is low, the observed image node is added to memory; otherwise, the image node is updated to the
most recent image representation. When it turns out that the image node is new, it is connected to
the previous image node (xl), making the image affinity matrix (Aim) between xl and xt connected.

3.3 Cross Graph Mixer

The cross graph mixer is developed from MPNNs [30] to encode scene contexts by combining in-
formation from the image and object graphs. The upper row of Figure 3 depicts the image graph,
while the lower row represents the object graph. The message passing phase runs for L steps and is
defined of message functions M l and vertex update functions U l, where l ∈ {1, ..., L}. The mes-
sage function M l is composed of two functions, the self-update function (Sl) and the cross-update
function (Cl). To begin, image and object nodes self-update to obtain contextual representations of
nearby locations or objects, respectively:

m̂i
l

v =
∑

w∈Ni(v)

Sli(hi
l
w, Aim, g), m̂o

l
v =

∑
k∈No(v)

Slo(ho
l
k, Aob, g), (1)

where Ni(v) and No(v) denote the image/object neighbors of the vth node. The node features h
are concatenated with the goal feature g, and it is embedded into a feature using two-layered neural
networks. Then, the self-update message function S makes m̂i

l

v and m̂olv by aggregating connected
nodes with the message passing method, which is illustrated in the left column of Figure 3. After
self-update, each graph exchanges information with the others to make a complete the messages,

milv =
∑

k∈No(v)

Cli(m̂i
l

v, m̂o
l
k, Ac), mo

l
v =

∑
w∈Ni(v)

Clo(m̂o
l
v, m̂i

l

w, Ac), (2)

where Ci and Co are cross updating functions that produce milv and molv , which are cross-updated
messages. The cross-update module’s central concept is that images are updated through connected

4

Figure 3: Cross graph mixer. The upper row shows the image graph update while the lower row
shows the object graph update.

objects, and objects are updated using connected images. To cross-update the graphs, the self-
updated image/object features aggregate the connected object/image node features. Then, the update
function U transfers messages from object nodes to image nodes and vice versa,

hil+1
v = U li (hi

l
v,mi

l
v), ho

l+1
v = U lo(ho

l
v,mo

l
v). (3)

where U is a two-layered neural network that maps information of an object/image to the connected
objects/images. The image-object update iterates for L steps to create semantic contextual node
features. After L steps of the image-object update iterations, the cross-mixed memory for image
graph mi and object graph mo are generated for each node. The details of the module structure are
described in the supplementary material.

3.4 Memory Attention Module

TSGM is composed of visited image nodes and object nodes that have been observed. For this, an at-
tention network is used to discover the node closest to the goal among the memory. Since this module
utilizes attention, interpolation between visited nodes enables goal features to be extracted from un-
explored nodes. Additionally, to find the relative path, the current node is better to be searched. The
goal feature xg is given as a query q when extracting a memory-conditioned goal feature, Cig , Cog ,
and the current observation feature xt is given as an input when selecting the memory-conditioned
current feature, Cit, Cot. Using the decoder module of the transformer network [6], current contex-
tual feature Cit, Cot and goal context feature Cig , Cog are collected,

Ci = σ
((Wqq)(Wk{mi1, ...,min}T)√

d

)
(Wvq),Co = σ

((Wqq)(Wk{mo1, ...,mon}T)√
d

)
(Wvq),

(4)

where Wv , Wq , and Wk are matrix parameters and the set {mi1, ...,miN} is the image memory, the
set {mo1, ...,moM} is the object memory, and σ is a softmax function.

3.5 Action Policy Network

Given the contextual feature for goal and current nodes, the action policy network finds an action to
reach the goal. For tth time step, we encode the sequential information, hta = G(htc,h

t
g,h

t−1
a , at−1),

where G is a recurrent neural network and hta is a tth hidden state for action, and at−1 is the pre-
vious action of an agent. Then, the action at is sampled from the Categorical distribution, i.e. at ∼
Categorical(Whta + b), where W and b are matrix parameters.

5

3.6 Optimization

Learning action. Proximal policy optimization (PPO) [31] is used to learn a policy for picture
goal navigation. The policy is trained to maximize the expected return, which is defined as the
total reward Eτ [R(st, at)] over time trajectories τ = (st, at)

H
t=1 of the policy’s time horizon H .

When an agent takes action at at state st, Lppo = −Et
[
∇θlogπθ(at|st)Ât

]
, where and Ât is an

estimator of the advantage function at time step t, and pitheta is a stochastic policy. We formulated
it as a negative log likelihood to the oracle action, Lact = −Eτ∼D

[∑Tτ
t=1 a

∗
t log(at|xt)

]
, where τ

= (xt, a
∗
t) for t ∈ {1, 2, ..., Tτ}, and a∗t is the oracle action at time step t. Since PPO can better

estimate return after creating successful episodes, the policy is pretrained with imitation learning
and then finetuned with reinforcement learning.

Auxiliary metrics. Knowing when to stop is a significant issue since an episode is considered
successful if an agent calls the stop action upon seeing the goal. Fortunately, it is well known that
auxiliary metrics, such as a progress monitor and goal sensor, can assist an agent in determining
when to stop [32]. The progress monitor assesses progress based on the current observation and a
target to determine when to press the stop button, which is obtained by calculating the geodesic
distance between an agent and the goal. The goal sensor indicates how close the current position
is to the goal. If the target is within the success criteria for image goal navigation, the goal sensor
produces one. The progress monitor takes the current observation and a target as input and estimates
the progress, p̂t. The target sensor takes the same input of the progress monitor and estimates that
the current observation containing a target, ŝt. Then, two estimations, p̂t and ŝt, are optimized with
L2 loss, Laux = Eτ∼D

[∑Tτ
t=1 ||s∗t − ŝt||2 + ||p∗t − p̂t||2

]
, where s∗t and p∗t are the ground truths.

Since the auxiliary loss is simply added to the action loss, the final loss function for training an agent
with imitation learning is Lbc = Lact+λLaux, where λ is a balancing parameter. For reinforcement
learning, the combined loss Lrl = Lppo + λLaux, is used.

4 Experimental Evaluation

4.1 Baselines

We compare our method with baselines with various types of memory.RGBD + RL [26] has a
vanilla RL policy with a CNN backbone followed by an LSTM adapted from [26]. Active Neural
SLAM [17] has a metric memory for exploration. To adapt the algorithm to the image goal naviga-
tion, we set the output of the global policy to be the relative position to the target when the target is
detected using a pretrained target pose estimator. Exp4nav [5] tackles the exploration problem.To
finetune the image goal navigation task model, we change the coverage reward to the image goal
reward. Neural Planner [20] is a model adapted the method [20] for image goal navigation from
exploration task. SPTM [9] creates a topological graph, and then the Dijkstra algorithm then creates
a path to a waypoint. SMT [8] stacks all the visual features of the past observations and the pose
information as a navigation memory. VGM [18] builds a topological memory to navigate an envi-
ronment without using landmark information. NRNS [27] trained agent without interaction with the
simulator. In order to compare the method fairly, we adapted the method to use a panoramic camera.

4.2 Experiment Settings

We evaluate TSGM in the Gibson environment with a habitat simulator, which is photo-realistic.
For image observation, we used a panoramic image, the same setting with [18], inspired by the
human neuron not recognizing the heading for localizing [33]. The ground truth objects from the
Gibson dataset and detected objects from the detector are used for training. For testing, a de-
tector [24] pretrained with a COCO dataset is used. We use a discrete action space defined as
A = {go forward, turn left, turn right, stop}, which is a common choice for navigation
problems. The step size of the forward action is 0.25m, and the rotation angle is set to 10° in all
experiments. The reward function R is defined using the progress of an agent, using a geodesic dis-
tance between an agent and the target, and +10 is given when the agent reaches the goal. Further
implementation details of the proposed method are provided in the supplementary material.

6

Table 1: Comparison of TSGM with memory-based baselines on image goal navigation on Gibson.

Method Memory No Pose Object Easy Medium Hard Overall
Success SPL Success SPL Success SPL Success SPL

RGBD + RL [26] implicit 7 7 72.5 69.5 53.1 48.6 22.3 17.7 49.3 45.3
Active Neural SLAM [17] metric 7 7 74.2 20.5 68.4 22.9 29.9 11.0 57.5 18.1
Exp4nav [5] metric 7 7 70.2 61.8 60.6 52.4 46.9 38.5 59.2 50.9
SMT [8] graph 7 7 81.9 77.4 65.6 52.2 55.6 39.7 67.7 56.4
Neural Planner [20] graph 7 7 71.7 41.3 64.7 38.5 42.0 27.0 59.5 35.6
SPTM [9] graph 4 7 66.5 40.6 64.2 38.5 42.1 25.4 57.6 34.8
VGM [18] graph 4 7 86.1 79.6 81.2 68.2 60.9 45.6 76.1 64.5

TSGM (Ours) graph 4 4 91.1 83.5 82.0 68.1 70.3 50.0 81.1 67.2

Table 2: Comparison of TSGM with image goal navigation baselines on straight/curved episodes on
Gibson.

Path Type Method Easy Medium Hard Overall
Success SPL Success SPL Success SPL Success SPL

Straight
NRNS [27] 67.1 57.8 52.4 41.2 32.6 22.4 50.7 40.5
VGM [18] 81.0 54.4 82.0 69.9 67.3 54.4 76.7 59.6
TSGM (Ours) 94.4 92.1 92.6 84.3 70.3 62.8 85.7 79.7

Curved
NRNS [27] 31.7 13.0 29.0 13.6 19.2 10.4 26.6 12.3
VGM [18] 81.0 45.5 78.8 59.5 62.2 46.9 74.0 50.6
TSGM (Ours) 93.6 91.0 89.7 77.8 64.2 55.0 82.5 74.1

Evaluation metrics. We use Success and SPL (success rate over path length) to evaluate the naviga-
tion tasks. Success is calculated by dividing the total success number by the number of test episodes.
We set the success criterion as 1m to the goal, a common criterion for image goal navigation. SPL
multiplies the success rate and the ratio of the shortest path length and traveled path.

Episode settings. We divide test episodes into three difficulty levels for image goal navigation: easy,
medium, and hard. The difficulty is determined by the geodesic length of an episode. Following
[17, 18], we set the length as follows: easy (1.5 – 3m), medium (3 – 5m), and hard (5 – 10m).

4.3 Results

TSGM outperforms baselines. Table 1 shows the performance of our TSGM and relevant
memory-based baselines on test splits of the Gibson dataset. Our TSGM algorithm outperforms
the baseline methods in terms of Success and SPL @ 1m. TSGM improves upon the implicit mem-
ory model [26] across splits of Gibson by 31.8% on the success rate. Compared to the VGM [18],
our method improved by +5% on the success rate the 4.1% on SPL. To measure performance in
various situations, the test episodes are divided according to whether the path is curved or not in
Table 2. Our TSGM shows surprising performance improvement in both curved and straight situ-
ations. In particular, for an easy episode, the SPL increased quite a surprising amount, 45.5% to
91.0% (100%) for curved episodes and 54.4% to 92.1% (69.3%) for straight episodes compared to
the last state-of-the-art result of VGM [18], which can be seen that if an object existing at the target
position is present in the field of view, the agent can find the goal position very efficiently. In aver-
aged results in Table 2, TSGM outperforms competitive baselines by 8.5-9.0% on the success rate
and 20.2-23.5% improvement on SPL. In summary, TSGM significantly outperforms competitive
baselines by 5.0-9.0% on the success rate and 7.0-23.5% improvement on SPL.

TSGM finds efficient paths. We checked that the SPL, which indicates the efficiency of the path,
is improved a lot. To investigate how the object graph assists the agent in choosing efficient paths,
we visualized the paths in Figure 4. When an object graph is not provided, an agent passes the goal
without realizing it is a goal, while an agent with an object graph quickly understands that the goal
has been achieved and terminates the search (see Figure 4(a)). In Figure 4(b), the agent enters a
deadlock when the object graph is not provided. In the case of a TSGM with an object graph, on the
other hand, the goal is successfully found with a more efficient path.

7

Figure 4: Visualization of path changes when object graph is not given. Our TSGM is compared
with the method that does not have the object graph. The red flag highlights the image goals. The
lines with an arrow represent trajectories of the agent with the color changes with time. (a) shows
that an inefficient path is created when the object graph is not given. (b) The agent is trapped in the
deadlock states without the object graph.

Figure 5: Visualization of the robot path on real environment. The color gradation represents the
flow of time. The blue arrow symbolizes the starting point, and the red flag indicates the destination.
An image node is represented by a blue circle, and an object node is represented by a pink triangle.

Table 3: Update rules.
Update Success SPL
No 0.533 0.393
Visual 0.578 0.446
Object 0.613 0.458
Cross 0.627 0.471

Cross update module is effective. As shown in Table 3, the ablation
study on the graph update was performed, where we only used imi-
tation learning results on hard episodes for the ablation experiments.
The object update version indicates the update is done only to the im-
age node to the object node, and the visual update version shows the
results when the update is the opposite. Using the semantic graph up-
date shows a 4.5% improvement in success rate and +5.3% on SPL.
Surprisingly, the updating object node with visual node shows better
results than updating graph with opposite direction, showing +8.0% on the success rate and +6.5%
on SPL compared to the No update version. Finally, the cross update shows the most powerful re-
sults, +9.4% on the success rate and +7.8% on SPL. The results indicate that cross updating improves
performance by making image and object features informative.

TSGM can handle the real noisy world. Figure 5 shows paths and topological semantic graphs
from navigation experiments using a Jackal robot. The episodes examined in the real world are
sampled from hard episodes with curves. Nonetheless, our agent demonstrated successful navigation
by stopping at the correct goal location. The supplementary video shows more paths, with the graph
being incrementally built over time.

5 Conclusion and Limitation

The proposed method explores while incrementally generating a semantic topological graph using
landmarks such as objects. The core idea of our method is derived from animal behavior, which
uses landmarks as a navigational cue. Contextual information is taken from the constructed graph
to discover an efficient path to the goal. We demonstrate that TSGM performs efficiently and ef-
fectively, with significant performance improvements, particularly in SPL. The proposed method is
demonstrated using a Jackal mobile robot to show its effectiveness for practical visual navigation in
the real-world.

While it is expected to be suitable for finding objects since object contexts are successfully trained
in TSGM, a limitation of the proposed method is that no experiments on object-goal navigation are
conducted, due to time constraint. We may adapt TSGM to object-goal navigation in the future.

8

Acknowledgments

This work was supported by the Institute of Information & communications Technology Planning
& Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2019-0-01309, Develop-
ment of AI Technology for Guidance of a Mobile Robot to its Goal with Uncertain Maps in In-
door/Outdoor Environments, (50%) and No. 2019-0-01190, [SW Star Lab] Robot Learning: Effi-
cient, Safe, and Socially-Acceptable Machine Learning, (50%))

References
[1] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. Anderson, D. Teplyashin, K. Si-

monyan, A. Zisserman, R. Hadsell, et al. Learning to Navigate in Cities Without a Map. In
Neural Information Processing Systems (NeurIPS), 2018.

[2] K. Chen, J. P. de Vicente, G. Sepulveda, F. Xia, A. Soto, M. Vázquez, and S. Savarese. A Be-
havioral Approach to Visual Navigation with Graph Localization Networks. Robotics: Science
and Systems (RSS), 2019.

[3] D. Gordon, A. Kadian, D. Parikh, J. Hoffman, and D. Batra. SplitNet: Sim2Sim and Task2Task
Transfer for Embodied Visual Navigation. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[4] J. Yang, Z. Ren, M. Xu, X. Chen, D. Crandall, D. Parikh, and D. Batra. Embodied Vi-
sual Recognition. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2019.

[5] T. Chen, S. Gupta, and A. Gupta. Learning Exploration Policies for Navigation. International
Conference on Learning Representations (ICLR), 2019.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention Is All You Need. In Neural Information Processing Systems (NeurIPS),
2017.

[7] A. Kumar, S. Gupta, D. Fouhey, S. Levine, and J. Malik. Visual Memory for Robust Path
Following. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[8] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese. Scene Memory Transformer for Embodied
Agents in Long-Horizon Tasks. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.

[9] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-Parametric Topological Memory for Naviga-
tion. In International Conference on Learning Representations (ICLR), 2018.

[10] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and plan-
ning for visual navigation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[11] E. Parisotto and R. Salakhutdinov. Neural Map: Structured Memory for Deep Reinforcement
Learning. International Conference on Learning Representations (ICLR), 2018.

[12] J. F. Henriques and A. Vedaldi. MapNet: An Allocentric Spatial Memory for Mapping Envi-
ronments. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[13] G. Avraham, Y. Zuo, T. Dharmasiri, and T. Drummond. EMPNet: Neural Localisation and
Mapping using Embedded Memory Points. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[14] Y. Lv, N. Xie, Y. Shi, Z. Wang, and H. T. Shen. Improving Target-driven Visual Navigation
with Attention on 3D Spatial Relationships. arXiv preprint arXiv:2005.02153, 2020.

[15] H. Du, X. Yu, and L. Zheng. Learning Object Relation Graph and Tentative Policy for Visual
Navigation. In European Conference on Computer Vision (ECCV), 2020.

9

[16] Y. Qiu, A. Pal, and H. I. Christensen. Target driven visual navigation exploiting object rela-
tionships. arXiv preprint arXiv:2003.06749, 2020.

[17] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to Explore
using Active Neural SLAM. International Conference on Learning Representations (ICLR),
2020.

[18] O. Kwon, N. Kim, Y. Choi, H. Yoo, J. Park, and S. Oh. Visual Graph Memory with Un-
supervised Representation for Visual Navigation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2021.

[19] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta. Neural Topological SLAM for Visual
Navigation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[20] E. Beeching, J. Dibangoye, O. Simonin, and C. Wolf. Learning to Plan with Uncertain Topo-
logical Maps. In European Conference on Computer Vision (ECCV), 2020.

[21] J. A. Pérez-Escobar, O. Kornienko, P. Latuske, L. Kohler, and K. Allen. Visual landmarks
sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal
cortex. Elife, 5:e16937, 2016.

[22] E. Chan, O. Baumann, M. A. Bellgrove, and J. B. Mattingley. From objects to landmarks: the
function of visual location information in spatial navigation. Frontiers in psychology, 3:304,
2012.

[23] T. S. Collett and P. Graham. Animal navigation: path integration, visual landmarks and cogni-
tive maps. Current Biology, 14(12):R475–R477, 2004.

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

[25] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. Gibson Env: Real-World Percep-
tion for Embodied Agents. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[26] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven
Visual Navigation in Indoor Scenes using Deep Reinforcement Learning. In IEEE interna-
tional conference on robotics and automation (ICRA), 2017.

[27] M. Hahn, D. S. Chaplot, S. Tulsiani, M. Mukadam, J. M. Rehg, and A. Gupta. No RL, No Sim-
ulation: Learning to Navigate without Navigating. In Neural Information Processing Systems
(NeurIPS), 2021.

[28] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Kr-
ishnan. Supervised contrastive learning. In Neural Information Processing Systems (NeurIPS),
2020.

[29] J. Li, P. Zhou, C. Xiong, and S. C. Hoi. Prototypical Contrastive Learning of Unsupervised
Representations. International Conference on Learning Representations (ICLR), 2021.

[30] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural Message Passing
for Quantum Chemistry. In International Conference on Machine Learning (ICML), pages
1263–1272. PMLR, 2017.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347, 2017.

[32] J. Ye, D. Batra, A. Das, and E. Wijmans. Auxiliary Tasks and Exploration Enable Objectgoal
Navigation. In IEEE International Conference on Computer Vision (ICCV), 2021.

[33] S. N. Weber and H. Sprekeler. Learning place cells, grid cells and invariances with excitatory
and inhibitory plasticity. Elife, 7:e34560, 2018.

10

	Introduction
	Related Work
	TSGM: Topological Semantic Graph Memory
	Problem Statement
	Graph blackMemory blackConstruction
	Cross Graph Mixer
	Memory Attention Module
	Action Policy Network
	Optimization

	Experimental Evaluation
	Baselines
	Experiment Settings
	Results

	Conclusion and Limitation

