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Abstract

World models (WMs) demonstrate strong capa-
bilities in prediction, generation, and planning
tasks. Existing WMs primarily focus on unstruc-
tured data while cannot leverage the ubiquitous
structured data, often represented as graphs, in
the digital world. While multiple graph foun-
dation models have been proposed, they focus
on graph learning tasks and cannot extend to
diverse multi-modal data and interdisciplinary
tasks. To address these challenges, we propose the
Graph World Model (GWM), a world model that
supports both unstructured and graph-structured
states with multi-modal information and repre-
sents diverse tasks as actions. The core of a
GWM is a generic message-passing algorithm
to aggregate structured information, either over
a unified multi-modal token space by converting
multi-modal data into text (GWM-T) or a uni-
fied multi-modal embedding space by modality-
specific encoders (GWM-E). Notably, GWM in-
troduces action nodes to support diverse tasks,
where action nodes are linked to other nodes via
direct reference or similarity computation. Exten-
sive experiments on 6 tasks from diverse domains,
including multi-modal generation and matching,
recommendation, graph prediction, multi-agent,
retrieval-augmented generation, and planning and
optimization, show that the same GWM out-
performs or matches domain-specific baselines’
performance, benefits from multi-hop structures,
and demonstrate strong zero-shot/few-shot ca-
pabilities on unseen new tasks. Our codes for
GWM is released at https://github.com/
ulab-uiuc/GWM.
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1. Introduction
A world model (WM) (Ha & Schmidhuber, 2018) constructs
the world observations as states and predicts future states
based on given actions. Modern world models are trained
with massive data (Liu et al., 2024b; Cui & Gao), demon-
strating successful prediction, generation, and planning ca-
pabilities. However, existing world models do not directly
generalize to structured data, primarily graphs, that are ubiq-
uitous in science (Jin et al., 2018; You et al., 2018) and
industry (Ying et al., 2018; You et al., 2022) and can be fur-
ther enriched with multi-modal information (Ektefaie et al.,
2023). Therefore, our paper aims to raise attention to this
pressing research question: Can we extend a WM to handle
graph-structured data across a broad range of tasks?

Existing WMs mainly focus on unstructured data. For ex-
ample, iVideoGPT (Wu et al., 2024a) and Genie (Bruce
et al., 2024) are successful world models over video data.
However, the relations and structures in the data are rarely
explored in these works. Although some works (Zhang et al.,
2021; Zhu et al., 2022) attempt to model structured data in
WM using graphs, they have focused solely on planning
problems in a specific domain. In recent years, researchers
have also explored the concept of the Graph Foundation
Model (GFM) (Liu et al., 2023a; Chen et al., 2024a). How-
ever, these methods are confined to predefined graph learn-
ing tasks, which cannot easily extend to: (1) multi-modal
input data including images and text, (2) diverse tasks be-
yond standard graph prediction tasks, and (3) data without
explicit structure, i.e., standard unstructured data.

To address these challenges, we propose the Graph World
Model (GWM) that embeds the capabilities of the graph
into the WM, which models the current state as a graph
and the action as a node (see Table 1 for comparison with
existing methods). Various tasks can be expressed as action
nodes; for example, in a graph prediction task, predicting
the label of a given node/edge/subgraph leads to intended
action nodes that link relevant nodes in the state graph, i.e.,
target nodes, to the action node; in a retrieval-augmented
generation (RAG) task, we can also represent a user query
as an unintended action node that links to target nodes in
the state graph via embedding similarities.

To build GWMs, we first introduce a simplified token-based
GWM (GWM-T), which integrates multi-modal data like
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Table 1. Comparison with existing representative works from
three perspectives: task type, data structure, and model type.
Compared with existing WM and GFM, GWM can tackle multi-
domain tasks and be applied to both structured and unstructured
data.

Method Task Type Data Structure Model Type

Genie (Bruce et al., 2024) Video generation Unstructured WM
L3P (Zhang et al., 2021) Planning Structured WM
BioBridge (Wang et al.) Biomedical domain Structured GFM
LLAGA (Chen et al., 2024a) Graph domain Structured GFM

GWM-T Multiple domains Both GWM
GWM-E Multiple domains Both GWM

image, table, and text into text modality and represents them
as nodes in a graph state. We further develop a token-level
message-passing algorithm that aggregates the neighbor in-
formation to update the text representation of the state node.
Finally, the target nodes on the state graph and prompted
action nodes will be fed into multi-modal decoders such as
LLMs and Stable Diffusion (Rombach et al., 2022). Despite
its simplicity, GWM-T sometimes suffers from high token
costs and limited context length. Inspired by latent diffusion
models, which introduced modeling in latent space rather
than directly on pixels like diffusion to enhance model per-
formance and efficiency, we further develop an embedding-
based GWM (GWM-E). GWM-E first employs modality-
specific encoders to process different modalities into node
embeddings. Then it utilizes embedding-level message pass-
ing to update the node embedding. Finally, the multi-modal
information in target state nodes is consolidated through a
multi-hop projector before passing them to the decoders.

We conduct extensive experiments on 6 tasks from di-
verse domains, including world prediction (multi-modal
generation and matching, recommendation, graph predic-
tion), world generation (multi-agent collaboration, retrieval-
augmented generation), and world optimization (planning
and optimization), with both proposed GWM variants and
domain-specific baselines. Results show that (1) GWMs
generalize across domains, as the same GWM outperforms
or matches domain-specific baselines’ performance, (2)
graph information matters in GWM, as GWMs benefit from
multi-hop graph information, and (3) GWMs demonstrate
strong zero-shot/few-shot capabilities on unseen new tasks.

2. Graph World Model
2.1. World Model Preliminaries

A world model aims to predict future states based on the
current state and action, which contains the following main
components: (1) State. The state s of the world model
estimates the observation of the world. It usually consists of
multi-modal information and the state of the t step/time slot
can be depicted as st. (2) Action. The action at at step/time

t is task-related. It can be a real-world operation, a code
function in the digital world, and even some queries and
instructions. (3) Transition. The transition P (st+1|st, at)
depicts the transit probability from the current state st to its
next state st+1 after the execution of action at.

2.2. Multi-modal World Represented by Graphs

Graph for state modeling. We define the world state as
a graph G = (V, E) to represent multi-modal data with
complex relationships, shown in Figure 1. Specifically,
V = {v} represents the set of nodes where each node v =
[va, vb, ve] consists of multi-modal information, including
image va, table vb, and text ve modality; when a modality
is absent, the corresponding tensor will be empty. E = Ep ∪
Em} is the edge set consists of explicit edges Ep and implicit
edges Em. Explicit edges Ep are often those established
through expert knowledge or ground truth observations. For
example, in the ogbn-arxiv dataset (Hu et al., 2020), edges
are determined based on references between papers and
historical collaborations between authors. Implicit edges
Em are those constructed through connections represented
by embedding similarities in the dataset. A typical example
is in many protein datasets (Heumos et al., 2023; Stuart
et al., 2019; Stuart & Satija, 2019), where edges are obtained
based on the similarity of certain node feature embeddings.

Different levels of world action and state transition. We
model the action a as an action node that queries the current
state nodes v to obtain the target nodes vr using function R,
whose process can be formulated as vr = R(v, a). We fur-
ther categorize the world’s actions into two types, as shown
in Figure 1: one is directly related to the specific structures
on the graph, called intended action ad. It includes three
levels: node-level, edge-level, and graph-level. The other
is indirectly related to the specific structures on the graph
through semantic relations such as Retrieval-augmented
Generation (RAG), called unintended action au. As shown
in Figure 1, to implement this action, we can first calculate
the similarity between the action node and state nodes, and
then retrieve the top-k state nodes for querying. According
to the introduction in Section 2.1, we can conclude that an
action causes a transition of state st+1 = ftr(st, at), which
includes three types: update nodes, update edges, and up-
date graphs. Here, ftr means a transition function, which
can be a neural network.

2.3. Instantiations of GWM

As shown in Figure 2, We have listed some representative
instantiations that can be unified into a graph world model
from three aspects: (a) world prediction, (b) world genera-
tion, and (c) world optimization.

World prediction. (1) Multi-modal generation and
matching. As shown in Figure 2(a), the task includes
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Figure 1. Multi-modal world state transition can be modeled via graphs. We model the current state as a graph and each node contains
one or more modalities from image, table, and text. Further, the world action is modeled as an action node that queries the current state
nodes. We categorize actions into two types: intended actions, which include three levels—node, edge, and graph—and unintended
actions, whose implementation involves similarity computation similar to RAG. Finally, the transition function updates states at three
different levels based on state and action: update nodes, update edges, and update graphs.

two subtasks. The multi-modal generation task (Rombach
et al., 2022; Zhang et al., 2023a) involves predicting miss-
ing modalities given the available modal information and
their interconnections. Specifically, it considers clusters
of corresponding modalities (such as an image, table, and
text describing the same entity) as state nodes, and the re-
lationships between clusters, such as similarity, are treated
as edges. Thus, the action node here is at the node level.
The multi-modal matching task (Rombach et al., 2022),
similar to CLIP’s pre-training task (Radford et al., 2021),
predicts the correspondence between modalities. It treats
each modality as a state node and the correspondences be-
tween modalities (including cross-modality similarity re-
lationships) (Jin et al., 2024) as edges. Here, the action
node is at the edge level. (2) Recommendation. Recom-
mendations (Ni et al., 2023; Isinkaye et al., 2015; Ko et al.,
2022) are based on the historical interactions and features
of users and items to predict future interactions, as shown in
Figure 2(b). Specifically, it models the user nodes and item
nodes as state nodes. Moreover, the action node is edge-
level. (3) Traditional graph prediction. Traditional graph
prediction (Kipf & Welling, 2016; Veličković et al., 2017b;
Hamilton et al., 2017b) primarily focuses on three types of
tasks: node-level, edge-level, and graph-level. We follow
previous work’s settings of nodes and edges and define the
action nodes of three levels.

World generation. (4) Multi-agent collaboration. As
shown in Figure 2(d), the purpose (Zhuge et al., 2024; Liu
et al., 2023b; Wu et al., 2024b) of this task is to gener-
ate task-oriented outputs based on the interaction between
agents and external knowledge, as well as communica-
tion among agents. Specifically, its state nodes consist
of agent nodes with different profiles, along with multi-
modal nodes in external knowledge. Its edges include
agent-agent and agent-knowledge relationships. The ac-
tion node is graph level and the target nodes primarily in-
clude various agent nodes (Zhuge et al., 2024; Liu et al.,

2023b). (5) Retrieval-augmented generation. The purpose
of Retrieval-Augmented Generation (RAG) is to enhance the
generation capabilities of Large Language Models (LLMs)
by retrieving information from external knowledge (Lewis
et al., 2020; Gao et al., 2023; Zhao et al., 2024). Recent
studies such as GraphRAG (Edge et al., 2024; Peng et al.,
2024) have shown that modeling the relationships between
data chunks in external knowledge can enhance the genera-
tive capabilities of RAG. As illustrated in Figure 2(e), we
model data chunks as nodes and the similarity of embed-
dings between chunks as edges. As introduced in Section
2.2, we design an unintended action node for RAG tasks.

World optimization. (6) Planning and optimization.
World optimization involves generating the next best de-
cision based on a sequence of historical decisions (Chen
et al., 2021; Zheng et al., 2022; Siebenborn et al., 2022).
Many studies have shown that modeling the relationships
between historical decisions using graphs can enhance the
decision-making effectiveness of world optimization (Jiang
et al., 2018; Munikoti et al., 2023). Following them, we
model decision states as nodes. The edges between these
state nodes are often modeled based on their relationships,
such as distance relationships (Prates et al., 2019) and the
similarity of embeddings (Munikoti et al., 2023; Jiang et al.,
2018). We model the action node as the graph level.

3. Token-based GFM
3.1. Multi-modality as token

One of the easiest ways to unify multi-modalities is to trans-
fer them into text. Specifically, as shown in Figure 3, for im-
age nodes va, we utilize a pretrained image-to-text LLaVA
model (Liu et al., 2024a) L to transform them into text nodes
vta = L(va). For table nodes vb, we employ a table-prompt
model T to transform them into text nodes vtb = T (vb)
given the column names and feature values. Specifically,
each value is paired with the corresponding column in the
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Figure 2. Instantiations of GWM. (a) Multi-modal generation and matching contains two sub-tasks. For multi-modal generation, it
models modal clusters as nodes, whereas for multi-modal matching, it models nodes for each modality. It includes edges that represent
inter-modal correspondences and cross-modal similarities. For these two types of subtasks, there are node-level and edge-level action
nodes, respectively. (b) The state nodes of recommendation include user nodes and item nodes. Moreover, its edges are primarily derived
from user-item interactions. We model edge-level action nodes to perform interaction prediction. (c) In traditional graph prediction, we
follow existing work to construct task nodes and edges, and model three levels of action nodes according to different types of tasks. (d)
The state nodes of multi-agent collaboration include agent nodes and multi-modal nodes from external knowledge. Its edges primarily
consist of communications between agents and interactions between agents and external knowledge. We set up a graph-level action node
to generate content based on the interactions of agents. (e) Retrieval-augmented generation treats each data chunk as a state node and
builds edges through the embedding similarity between chunks. For this task, we have established unintended action nodes. (f) For
planning and optimization, we model each decision as a state node and construct edges based on their relationships. We have established
graph-level action nodes to generate the next decision.

format of “{column 1} is {value 1}, {column 2} is {value
2}, ...”. Finally, we used a prompt template Pu (specified
Table 23 in Appendix C) to unify the three modal nodes into
a single text node vc = Pu(v

ta, vtb, ve).

3.2. Token-level message passing

In contrast to traditional graph message passing (Kipf &
Welling, 2016; Hamilton et al., 2017b; Veličković et al.,
2017b), we employ token-level message passing here,
which aggregates the text information of neighboring nodes.
Specifically, as shown in the middle part of Figure 3, for the
each unified text node vc, the node embeddings update of
the l-th layer is represented as:

h(l)
v = fv

(
CONCAT(h(l−1)

v , {h(l−1)
u , u ∈ N(v)})

)
, (1)

where h
(l)
v is the node text presentation after l iterations,

hv
(0) has been initialized as hv

(0) = vc. In addition, N(v)
denotes the direct neighbors of node v and fv(·) denotes
prompting strategy functions (specified in Table 24 of Ap-
pendix C) to unify nodes information of different hops.

3.3. Instruction tuning

Based on token-level message passing, we can obtain node
text representations hv for each node. Combining the dis-
cussion in Section 2.2, we identify the target nodes vr and
their node text representations hvr, along with the action
node a and the state node. Further, we describe the action
node using text and utilize a task-oriented prompt template
Psa (specified in Appendix C) to combine the information
from the target nodes and the action node, as shown in the
right part of Figure 3. In response to the different modalities
in next states, we designed two types of decoders. We first
designed stable diffusion (SD) to generate images.

Instruction tuning of SD. SD operates by performing dif-
fusion in a compressed latent space rather than directly on
pixels. Initially, the system maps an input image x to a
lower-dimensional latent code z = Enc(x) through an en-
coder network. The generated latent representation z′ is sub-
sequently transformed back into image space via a decoder
network, producing the final output x′ = Dec(z′). This
latent representation z′ is generated by the diffusion model
using textual guidance from a prompt cT = Psa(hvr, a).
The fundamental optimization objective for training SD can
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Figure 3. Framework of GWM. For both token-based and embedding-based GFM, we initially unify the multi-modal current state into
graph nodes, conduct message passing, and then combine actions to predict the next state across different modalities through respective
decoders. The key distinctions are: 1) Token-based GWM integrates multi-modalities into text, whereas embedding-based GWM uses
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be expressed mathematically as:

L = Ez∼Enc(x),cT ,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, h(cT ))∥2

]
(2)

During each iterative step t, a specialized denoising net-
work ϵθ(·) estimates noise patterns by jointly processing
three inputs: the current latent state zt, a temporal posi-
tion indicator t, and encoded text features h(cT ). The text
features h(cT ) ∈ Rd×lcT are extracted using CLIP’s text
encoder (Radford et al., 2021) h(cT ) = CLIP(cT ), where
lcT represents the prompt length and d denotes the feature
dimensionality.

Instruction tuning of LLM. We then design LLM to gen-
erate texts for both text and table modalities. We followed
the standard instruction tuning practice (Zhang et al., 2023b;
Peng et al., 2023), which encourages LLMs to adhere to
user requests when returning the outputs. For the input in-
struction Psa(hvr, a), we supply a response representing
the next predicted states, consisting of t tokens and denoted
as y = {y1, . . . yt}. We train the LLM to yield fSFT via

LSFT = −
∑
t

logPfSFT(yt|Psa(hvr, a), y1, . . . yt−1). (3)

4. Embedding-based GFM
Although token-based GFM can relatively simply construct
a multi-modal world, it is still limited by the high token cost
and a restricted multi-hop field of view. Inspired by stable
diffusion, which introduces modeling in latent space rather
than directly on pixels to enhance model performance and
efficiency, we have introduced embedding-based GFM as
shown in the bottom half of Figure 3.

4.1. Multi-modality as embedding

The embedding-based GFM unifies the multi-modal nodes
in the embedding space. Firstly, as shown in Figure 3,
for each modality of the node, we would assign a specific
encoder. For the text modality ve, we utilize a BERT model
as the encoder Eb to obtain its embedding et. As for the
table node vb, we first transform it into text description as
discussed in Section 3.1 and then utilize a BERT model
as the encoder Eb to obtain its embedding eb. Finally, we
deploy a CLIP Ec model to encode the image node va into
image embedding ea. We finally obtain the node embedding
ev = CONCAT(ea, et, eb) by concatenating the embeddings
of all modalities involved with this node. Specifically, if a
node misses some modalities, we use zero vectors for them.

4.2. Embedding-level message passing

In this section, we first model the relationships between
nodes on the graph through multi-hop aggregation, then ag-
gregate the information from different modalities within the
nodes through cross-modal fusion into unified embeddings
to pass to the subsequent decoders.

Multi-hop aggregation. We designed a simplified GCN
(Wu et al., 2019; He et al., 2020a) to implement multi-hop
aggregation, which directly accomplishes parameter-free
feature aggregation at the node feature level. Specifically,
for the adjacency matrix A between nodes, we first nor-
malize it to obtain the matrix Ã = D− 1

2AD− 1
2 , where D

represents the degree matrix of A. Then, for the node vec-
tor Xe composed of all node embeddings ev, we use the
obtained normalized adjacency matrix Ã to perform l-hop
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graph aggregation: X(l)
e = Ãl ∗Xe, where X(l)

e is the l-hop
graph embedding. We retain the embeddings of the first L
hops [Xe, X

(1)
e , . . . , X

(L)
e ] to the subsequent modules.

Cross-modal fusion. We further apply a parameterized
projector fc to transform the multi-modalities in the node
to unified embeddings: X(l)

c = fc(X
(l)
e ), where X

(l)
c is the

unified node embedding. Specifically, we utilize a simple
MLP as projector fc and output the L hops embeddings
XG = [Xc, X

(1)
c , . . . , X

(L)
c ] to the decoders. Note that

GWM-E can be extended to heterogeneous graphs by per-
forming separate multi-hop aggregations for each edge type,
followed by flattening the resulting node embeddings into a
sequence format suitable for input into the LLM decoder.

4.3. Projector tuning

As discussed in Section 3.3, in this section we discuss the
tuning of projectors for two different modalities separately.

Projector tuning of SD. We first incorporate graph con-
ditioning tokens hG(cG) = XG into the SD models, func-
tioning concurrently with the pre-existing text conditions
hT (cT ): h(cT , cG) = [hT (cT ), hG(cG)] ∈ Rd×(lcT +lcG ),
where lcG is the length of the graph condition. The training
objective then becomes:

L = Ez∼Enc(x),cT ,cG,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, h(cT , cG))∥2

]
.

(4)
Projector tuning of LLM. We describe the action node
a using text as in Section 3.3. We further introduce graph
tokens XG into LLM. The training objective of LLM is
to maximize the probability of generating the correct next
states. Combining the discussion in Section 3.3, we train
the LLM to yield fSFT via

LSFT = −
∑
t

logPfSFT(yt|XG, a, y1, . . . yt−1). (5)

We use a training approach similar to prefix tuning (Li &
Liang, 2021), where we fix the LLM’s parameters and only
fine-tune the projector fc’s parameters.

5. Experiments
We employ one unified GWM model across multiple
tasks, comparing its performance against domain-specific
methods. Initially, we introduce the tasks within the GWM
framework.

Task description. The details of the tasks are summarized
across three aspects in Table 9 of the Appendix, with further
information on tasks and datasets available in Appendix A,
and specific action node prompts in Appendix C.

• World prediction: It contains three subtasks. (1) Multi-
modal generation and matching (Multi-modal): We

investigate the node-level multi-modal generation task,
where the goal is to predict missing images based on tex-
tual captions. We use data from Goodreads (Jin et al.,
2024) and the Multi-Modal-Paper dataset (detailed in Ap-
pendix A.1). The generated images are evaluated using
CLIP Score (Radford et al., 2021) and DINOv2 (Oquab
et al., 2023). We compare our approach against several
baselines, including Stable Diffusion 1.5 (SD-1.5) (Rom-
bach et al., 2022), its fine-tuned variant (SD-1.5 FT), the
image-to-image model ControlNet (Zhang et al., 2023a),
and the SOTA INSTRUCTG2I model (Jin et al., 2024).
Meanwhile, our edge-level multi-modal matching task
evaluates the correspondence between different modal-
ities, using Contrastive MLP (Liu et al., 2022), CLIP
(Radford et al., 2021), and fine-tuned CLIP on metrics
such as Accuracy, Recall, and F1. Please note that since
the multi-modal matching task of Multi-Modal-Paper also
includes matching between text and tables, CLIP cannot
be applied to this subtask.

(2) Recommendation (Rec): As Table 11 of Appendix
A.2 illustrates, we utilize three benchmark datasets of
varying scales—Baby, Sports, and Clothing—from Ama-
zon’s real-world product collections (McAuley et al.,
2015). These datasets are commonly used in existing
multi-modal graph recommendation systems (Wei et al.,
2019a; 2020a). For these edge-level tasks, we benchmark
our GWM model against recent state-of-the-art recom-
mendation approaches, including FREEDOM (Zhou &
Shen, 2023), as well as representative graph-based mod-
els such as LightGCN (He et al., 2020a), MMGCN (Wei
et al., 2019b), and GRCN (Wei et al., 2020b). We use
Recall and F1 Score as the primary evaluation metrics.
(3) Traditional graph prediction (Graph): We utilize
Cora (Chen et al., 2024b), PubMed (Chen et al., 2024b),
and HIV (Wu et al., 2018) datasets. For the Cora and
PubMed datasets, we perform node-level and edge-level
tasks, while for the HIV dataset, we undertake graph-
level tasks. We compare GWM against two traditional
graph baselines, GCN (Kipf & Welling, 2016) and GAT
(Veličković et al., 2017b), as well as two GFM baselines,
LLAGA (Chen et al., 2024a) and OFA (Liu et al., 2023a).
We adopt accuracy as the metric. Details can be seen in
Appendix A.3.

• World generation: It contains two sub-tasks. (1) Multi-
agent collaboration (Multi-agent): We utilize a multi-
modal agent benchmark called AgentClinic (Schmidgall
et al., 2024) (in Appendix A.4) to evaluate LLMs within
simulated clinical environments. This environment is
structured as a graph, with nodes representing different
profile-based agents such as patients, measurements, and
moderators, and containing various modalities of external
knowledge including medical images and patient records.
The edges represent interactions between agents and their
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Table 2. Multi-modal generation results on Goodreads and
Multi-Modal-Paper. This task is to predict the missing modality
based on the given modality. Compared to specific baselines in
image generation, GWM achieved the best results.

Goodreads Multi-Modal-Paper

Model CLIP DINOv2 CLIP DINOv2

SD-1.5 42.16 14.84 52.62 23.64
SD-1.5 FT 45.81 18.97 58.49 24.13
ControlNet 42.20 19.77 52.89 24.77

INSTRUCTG2I 50.37 25.54 56.37 18.80

GWM-T 47.46 20.91 59.92 23.10
GWM-E 45.23 20.87 59.84 26.03

Table 3. Multi-modal matching results on Goodreads and
Multi-Modal-Paper. It aims to predict the correspondence be-
tween different modal-ities. For Goodreads, this task is to predict
text-image correspondences. As for Multi-Modal-Paper, it aims
to predict text-image, text-table, and table-image correspondences.
Note that CLIP and CLIP FT cannot be applied to Multi-Modal-
Paper since it includes matching tasks beyond text-image.

Goodreads Multi-Modal-Paper

Model Accuracy Recall F1 Score Accuracy Recall F1 Score

Contrastive MLP 54.70 54.67 54.79 51.77 51.55 50.31

CLIP 83.80 83.80 83.84 - - -
CLIP FT 92.60 92.58 92.61 - - -

GWM-T 84.22 85.66 85.29 88.26 90.35 90.11
GWM-E 88.82 89.73 89.06 96.23 97.21 97.13

engagement with knowledge resources. Given the objec-
tive of integrating information from all agents to answer
medical questions, we define this as a graph-level task.
We compare our approach with three LLM-based base-
lines: CoT (Wei et al., 2022), ToT (Yao et al., 2024),
and Few-Shot (Madotto et al., 2021), as well as two ad-
ditional baselines fine-tuned on the AgentClinic dataset.
FT refers to a LLaMA-3-8B model fine-tuned directly on
the task. Longformer (Beltagy et al., 2020) is a strong
baseline for long-document understanding. We use Accu-
racy, Recall, and F1 Score as evaluation metrics to assess
the correctness of the generated responses. (2) Retrieval-
augmented generation (RAG): We utilize LongBench
v2 (Bai et al., 2024), a benchmark designed for challeng-
ing long-context question-answering (in Appendix A.5).
Following previous work like GraphRAG (Edge et al.,
2024), we divide long context into chunks as nodes of
the graph, and the edges between nodes are the simi-
larity of their BERT embeddings. We conduct compar-
isons with two RAG-based baselines—BM25 (Robertson
et al., 2009) and Dragon (Lin et al., 2023)—and three
long-context LLMs (128k), including Mistral Large 2,
Command R+, and GPT-4o mini. Accuracy serves as our
evaluation metric.

• World optimization (Optimization): Many existing
works (Ho & Ermon, 2016; Hussein et al., 2017; Yang

Table 4. Recommendation on Baby, Sports, and Clothing. Com-
pared with three classical graph baselines, GWM achieved state-
of-the-art results on most metrics.

Baby Sports Clothing

Model Recall F1 Score Recall F1 Score Recall F1 Score

FREEDOM 60.35 66.16 63.47 70.53 70.20 78.40

LightGCN 51.11 38.22 85.36 91.32 69.08 77.21
MMGCN 57.34 61.31 61.69 68.08 64.09 71.26

GRCN 74.35 82.47 57.31 61.23 57.60 61.74

GWM-T 70.84 75.08 84.29 88.60 71.73 74.26
GWM-E 76.72 84.74 88.78 90.32 75.27 84.06

Table 5. Traditional graph prediction results on Cora, PubMed,
and HIV. It covers representative tasks at the node-level, edge-
level, and graph-level. Compared to classic graph baselines and
GFM methods, our GWM can match their performance with one
unified model.

Model Cora PubMed HIV

Task Type Node Link Node Link Graph

GCN 78.86 90.40 74.49 91.10 86.72
GAT 82.76 93.70 75.24 91.20 87.84

LLAGA 89.22 89.18 95.03 89.18 85.42
OFA 73.21 93.12 77.80 96.39 92.04

GWM-T 81.92 88.24 92.91 91.88 92.20
GWM-E 83.03 94.31 84.22 94.01 93.86

et al., 2024) attempt optimization tasks by imitating the
trajectory of expert strategies. Here, we utilize the expert
strategy dataset from the text-based embodied task ALF-
World (Shridhar et al., 2020; Yang et al., 2024). We model
each decision state as graph nodes and derive the edges
between nodes based on the similarity of the state images
associated with the decisions. We compare GWM with
three LLM baselines—COT (Wei et al., 2022), TOT (Yao
et al., 2024), and T5 (Raffel et al., 2020) fine-tuned on our
dataset (T5 FT) —using BERT-Score (Zhang et al., 2019)
(Precision, Recall, and F1 Score) as metrics. Details can
be seen in Appendix A.6.

Implementation details. We train and test a single GWM
on all tasks, comparing it with domain-specific baselines for
each task. Specifically, for the LLM module, we uniformly
use Llama-3-8B, and for stable diffusion, we use SD-v1-
5. For the image-to-text model used in GWM-T, we use
LLaVA-1.5-7B. The image encoder and text decoder used
in GWM-E are CLIP and BERT models, respectively. In
addition, our multi-hop projector uses an n-hop MLP to
aggregate features from different hops, where n-hop refers
to the number of neighborhood hops of the graph nodes
used. To ensure the training efficiency of the models, we
set the maximum token length for all models at 2k. We use
Adam optimizer (Diederik, 2014) for model training and
gradually decay the learning rate with LambdaLR scheduler.
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All the experiments are conducted on NVIDIA A6000 GPUs.
Please refer to Appendix B for other implementation details.

Table 6. Multi-agent collaboration results on AgentClinic. This
task is to answer medical questions by leveraging interactions
between agents and external knowledge sources. Compared to
classic LLM baselines, GWM-T achieves state-of-the-art results.

Model Accuracy Recall F1 Score

COT 45.00 33.42 32.25
TOT 35.00 33.71 29.71

Few-shots 40.00 40.63 29.37

Longformer 25.00 20.20 14.00
FT 45.00 45.40 44.00

GWM-T 50.00 46.42 48.20
GWM-E 45.00 39.57 35.56

5.1. A single GWM matches the performance of
domain-specific methods across multiple tasks

We train a unified GWM on all tasks and test it across all
tasks without further fine-tuning, compared with domain-
specific baselines under each task. Specifically, for world
prediction, we first report the multi-modal generation and
matching results in Table 2 and Table 3. Subsequently,
we report the recommendation results in Table 4, and the
traditional graph prediction results in Table 5. As for world
generation, we report the multi-agent collaboration results
in Table 6 and the retrieval-augmented generation results
in Table 7. For world optimization, we report the results in
Table 8.

We can observe that: (1) A single GWM achieves SOTA re-
sults in multi-modal generation (Multi-Modal-Paper), multi-
agent collaboration, retrieval-augmented generation, as well
as planning and optimization, and also performs comparably

Table 7. Retrieval-augmented generation on LongBench v2. It
is a challenging long-context question-answering task that is cat-
egorized into easy and hard levels. Compared to classic RAG
baselines and LLM models with extended contexts, GWM with
limited context length achieved the best results. The result also
demonstrates the superiority of GWM-E over GWM-T in tasks
involving long contexts.

Model Overall Easy Hard

BM25 (2k) 27.45 41.18 20.59
Dragon (2k) 23.53 35.29 17.65

Mistral Large 2 (128k) 26.31 29.42 24.45
Command R+ (128k) 27.43 30.19 26.32
GPT-4o mini (128k) 29.01 30.23 28.03

GWM-T (2k) 29.40 35.71 21.74
GWM-E (2k) 33.32 39.16 29.52

Table 8. Planning and optimization results on ALFWorld. It
is to evaluate how well the methods can imitate the trajectory
of expert strategies to effectively assist in solving optimization
problems. Compared to classic LLM baselines and text generation
baselines, GWM-E has achieved the best results.

Model Precision Recall F1 Score

Normal 89.62 88.86 89.21
COT 86.87 87.74 87.27

T5 FT 92.06 91.52 91.82

GWM-T 88.10 87.05 87.42
GWM-E 93.27 92.36 92.13

to domain-specific baselines in other tasks. This demon-
strates GWM’s ability to generalize and its applicability
across a broad range of tasks. (2) GWM demonstrates
promising capabilities in some highly challenging tasks,
such as long-context RAG (shown in Table 7). GWM with
a context length of 2k can outperform LLM models with a
context length of 128k in RAG tasks, showcasing GWM’s
potential in understanding and reasoning with long texts.
(3) The design of the latent embedding enables GWM-E to
outperform GWM-T in five out of seven tasks with approxi-
mately 5-10 times fewer token costs. This demonstrates the
efficiency and effectiveness of embedding-based message
passing.

5.2. GWM benefits from multi-hop graphs

To explore whether multi-hop graphs can enhance the per-
formance of GWM, we compared the effectiveness of four
different hop settings with a no-graph baseline using GWM-
E on six tasks, as illustrated in Figure 4. Specifically, we
measured the average performance across five settings for all
tasks. For Multi-modal tasks, we use DINOv2 and F1 Score
to calculate average performance, while for Rec, Agent,
and Optimization tasks, we exclusively use the F1 Score.
Accuracy metrics were employed for the remaining tasks.
Graphs have consistently enhanced GWM-E performance
across all tasks, showing a minimum relative gain of 20%
on graph-related tasks. However, an increased hop number
does not always lead to better performance since it can cause
over-smoothing and introduce redundant information.

5.3. GWM boosts zero-shot/few-shot performance

To validate the zero-shot/few-shot capabilities of GWM,
we conduct experiments with GWM-E and GWM-T on the
Agent and RAG tasks, as shown in Figure 5 (“-T” and “-E”
respectively represent the experimental results of GWM-T
and GWM-E). Here, Single Data refers to training GWM
solely on the Agent or RAG task. Zero-shot refers to train-
ing GWM on tasks other than Agent or RAG and testing
it on Agent or RAG. Fine-tuned GWM refers to training
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Figure 4. Multi-hop graphs enhance GWM’s performance
across representative tasks in six domains. We can observe
that the introduction of graphs has benefited GWM-E across all
tasks compared to no graph. Moreover, excessive hops can lead to
over-smoothing, thereby decreasing performance.

GWM on tasks other than Agent or RAG, followed by few-
shot fine-tuning with 10% of the data from Agent or RAG.
We can observe that GWM adapts effectively to new tasks
using only a small amount of domain-specific training data.
Moreover, we observe that the zero-shot results of GWM on
the RAG task are even better than those from Single Data,
indicating that GWM’s strong generalization ability greatly
benefits tasks with limited training data like Agent or RAG.

6. Additional Related Work
Graph for Modelling Relations. Graphs are highly effec-
tive in modeling complex relationships (Fey et al., 2023;
Cao et al., 2023; Gao & Xu, 2020; Chen et al., 2022; Wu
et al., 2022; Yang et al., 2021), extracting nodes and edges
to model relational data with embeddings. Graph Neural
Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al.,
2017a; Veličković et al., 2017a; Schlichtkrull et al., 2017)
have emerged as a dominant approach, particularly in recom-
mendation systems (Min et al., 2022) and social networks
(Wu et al., 2020). To further address the vast array of tasks
and data, scholars have proposed the GFM (Chen et al.,
2024a; Liu et al., 2023a) to explore GNNs’ zero-shot or
few-shot capabilities (Fey et al., 2023; Cao et al., 2023; Gao
& Xu, 2020; Chen et al., 2022) to tackle challenges such as
the cold start problem in recommendations.

World Model. The WM (Ha & Schmidhuber, 2018) is to
construct the world observations as states and predict future

Agent-T RAG-T Agent-E RAG-E
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rf

or
m

an
ce

Single Data
Zero-shot
Fine-tuned GWM

Figure 5. GWM boosts zero-shot/few-shot performance on
multi-agent collaboration (Agent) and retrieval-augmented
generation (RAG) tasks. Note that “-T” and “-E” respectively
represent the experimental results of GWM-T and GWM-E. It
can be observed that GWM can quickly adapt to new tasks with a
small amount of domain-specific training data. Moreover, GWM’s
strong generalization ability can boost the performance of Agent
and RAG.

states based on given actions. Existing WMs (Wu et al.,
2024a; Bruce et al., 2024) primarily focus on how to utilize
unstructured data to predict state transitions, thereby enhanc-
ing the effectiveness of sequence generation tasks. Genie
(Bruce et al., 2024) trained a foundation world model using
a massive amount of unlabelled, serialized internet videos,
which has provided benefits for the planning outcomes of
downstream tasks. Additionally, some WMs (Zhang et al.,
2021; Zhu et al., 2022) have attempted to integrate struc-
tured data with GWM. L3P (Zhang et al., 2021) uses graphs
to model each step of the agent’s decision-making process
and their connections, thus enhancing scalable planning in
reinforcement learning. However, they are still largely con-
fined to planning and optimization scenarios, which limits
their potential for task generalization as WMs. Thus we
develop GWM that integrates the capabilities of graphs with
WM to generalize across diverse tasks.

7. Conclusion
We propose GWM, a unified framework that uses a graph
world state to tackle diverse prediction, generation, and
planning tasks. Across six benchmarks, GWM matches
domain-specific baselines while benefiting from multi-hop
graph structures, showing strong generality and flexibility.
It also improves zero-shot and few-shot performance, in-
dicating strong cross-task generalization. GWM currently
supports text, table, and image modalities, with plans to
extend to more. While the current implementation focuses
on homophilous graphs, we aim to expand it to support both
homophilous and non-homophilous structures for broader
applicability. Its modular design also makes it a flexible
base for future multi-modal graph reasoning tasks.
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Impact Statement
The WM serves as a unified framework for prediction, gen-
eration, and decision-making across various applications.
While traditional WMs are constrained to single-modality
and unstructured data, our proposed GWM enhances them
by embedding-level message passing and aggregation to
integrate structured and multi-modal data, bridging the gap
between unstructured and structured processing. GWM
demonstrates significant potential as a foundational graph-
based model for real-world multi-modal tasks; however, its
current scope is limited by the number of supported modal-
ities and the simplicity of its graph architecture, necessi-
tating further advancements for broader applicability and
enhanced relational modeling. Future applications should
also prioritize ethical considerations, recognizing that ef-
forts are needed to ensure that GWM’s responses are reli-
able, unbiased, and safe in real-world deployments, thereby
preventing potential harm to users. In addition, the data
utilized in this work are collected in compliance with appli-
cable laws and licensing agreements. Their usage is also
transparent and harmless.

The security of Large Language Models (LLMs) has always
been a concern. Unfortunately, current LLMs sometimes
produce harmful and biased information unexpectedly. Our
proposed method uses LLMs to generate simulated queries
and summary responses, which are only used to construct
a graph of records and connect text chunks from long doc-
uments. However, more work is needed in real-world ap-
plications to ensure that LLMs’ responses are reliable and
harmless, so that they do not harm users.
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A. More on GWM Task
This section discusses the detailed processing procedure
for each dataset collected in GWM. We summarize their
general information in Table 9.

A.1. Multi-modal generation and matching

Dataset descriptions. In this study, we utilize two datasets
for multi-modal generation and matching: the Goodreads
dataset (Wan et al., 2019) and our curated Multi-Modal-
Paper dataset.

(1) Goodreads: The Goodreads dataset is a large-scale col-
lection of book-related metadata, textual descriptions, and
cover images, widely used in prior multi-modal research (Jin
et al., 2024). The Goodreads dataset is structured as a graph,
where each book is represented as a node, and edges signify
similar-book semantics.

(2) Multi-Model-Paper: Multi-Modal-Paper dataset is a
curated dataset of academic papers, incorporating textual
content, figures, tables, and metadata to facilitate research
on scholarly document analysis. The raw LaTeX files of
the papers were collected from ArXiv1 using the ArXiv
API, in accordance with the papers’ licenses, which are
primarily CC0 or CC-BY 4.0, permitting redistribution and
sharing. Using carefully selected survey papers from various
domains of Artificial Intelligence (AI), including Natural
Language Processing (NLP), Computer Vision (CV), Bio-
informatics, and Robotics, as seed papers, we employ a
breadth-first search (BFS) algorithm to gather cited papers.
Then, we traverse through the abstract syntax tree built from
the LaTeX file to extract graph-structured multi-modal data
for each gathered paper.

For the multi-modal generation task, we sample figure-
caption pairs for training and evaluation. GWM and base-
line models are tasked with reconstructing the figures from
the provided captions. For the multi-modal matching task,
we sample cited-citing pairs using reference relationship,
namely the macro command ”\ref”. The cited-citing pairs
are usually figure-text or table-text pairs.

A detailed statistical overview of the Goodreads and Multi-
Modal-Paper datasets is presented in Table 10.

Baselines details. For multi-modal generation tasks, we em-
ploy two text-to-image baseline models, SD-1.5 and SD-1.5
FT, along with an image-to-image baseline model, Control-
Net.

• SD-1.5: A pre-trained Stable Diffusion v1.5 model (Rom-
bach et al., 2022) used for text-to-image generation with-
out task-specific fine-tuning.

1https://arxiv.org/ We thank ArXiv for providing open access
interoperability.
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Table 9. Detailed summarization of all collected datasets in GWM. We summarize the dataset names, tasks, action level, multi-modality,
nodes, and edges in the table.
Dataset Task Action Level Multi-modality Nodes Edges

Goodreads Multi-modal generation/matching Node level Text/image Text/image nodes Similar-book semantic
Multi-Modal-Paper Multi-modal generation/matching Node level Text/image/table Text/image/table nodes References
Baby Recommendation Link level Text/table/image User/item nodes User-item interactions
Sports Recommendation Link level Text/table/image User/item nodes User-item interactions
Clothing Recommendation Link level Text/table/image User/item nodes User-item interactions
Cora Traditional graph prediction Node/edge level Text Research paper nodes Citation
PubMed Traditional graph prediction Node/edge level Text Research paper nodes Citation
HIV Traditional graph prediction Graph level Text Atoms nodes Atoms bonds
AgentClinic Multi-agent collaboration Graph level Text/image Agent/image/text nodes Agent-agent/image/text
LongBench v2 Retrieval-augmented generation Unintended action Text Chunk nodes Chunk-chunk similarity
ALFWorld Planning and optimization Graph level Text/image State nodes State images similarity

Table 10. Data statistics for multi-modal generation and match-
ing. In Multi-Modal-Paper, there are 58565 text-nodes, 7380
figure-nodes, and 6792 table-nodes.

Dataset #Node #Edges

Goodreads 93,475 637,210
Multi-Modal-Paper 72,737 51,840

• SD-1.5 FT: Stable Diffusion v1.5 models, each fine-tuned
separately on the training splits of the Goodreads and
Multi-Modal-Paper datasets.

• ControlNet: An extension of Stable Diffusion that incor-
porates structural guidance, such as edge maps or depth
maps, to enhance control over generated images (Zhang
et al., 2023a).

We use three baselines for multi-modal matching: Con-
trastive MLP, CLIP, and CLIP FT. Since the vertices of the
edge in the Multi-Modal-Paper dataset can include tables,
namely the text-table pair that are not suitable for the CLIP
model, we exclusively use Contrastive MLP for this dataset.

• Contrastive MLP (Liu et al., 2022): A multi-layer per-
ceptron trained to predict multi-modal matching by pro-
cessing embeddings from different modalities. The text
and table embeddings are encoded by BERT while the
image embedding is encoded by CLIP. Embeddings from
different modalities are padding to the same dimension.

• CLIP: A pre-trained vision-language model designed for
image-text alignment, using contrastive learning to map
corresponding image and text embeddings into a shared
space (Radford et al., 2021).

• CLIP FT: A fine-tuned version of CLIP, adapted to the
specific dataset to enhance multi-modal matching perfor-
mance.

Table 11. Data statistics for recommendation. It includes three
datasets of different scales, with the sizes ranging from small to
large as follows: Baby, Sports, and Clothing.

Dataset #User #Item #Edges Sparsity

Baby 19,445 7,050 160,792 99.883%
Sports 35,598 18,357 296,337 99.955%
Clothing 39,387 23,033 278,677 99.969%

A.2. Recommendation

Dataset descriptions. In the recommendation task, we
conduct extensive evaluations using three Amazon datasets
extensively recognized in prior research (McAuley et al.,
2015), specifically: Baby, Sports, and Outdoors, as well as
Clothing Shoes, and Jewelry. For simplicity, these datasets
are hereafter referred to as Baby, Sports, and Clothing, re-
spectively. Utilizing the 5-core setting, we filter inactive
users and items with less than five interactions. Each dataset
encompasses both visual and textual modalities and we
use the extracted visual and textual features from existing
work (Zhou, 2023). Here the visual modality is the product
image and the textual modality is the product description.
The characteristics of these datasets are shown in Table 11.

Baselines details. We compare GWM with three represen-
tative GNN baselines.

• LightGCN: Employs a simplified graph convolutional
network to learn user and item interaction graph (He et al.,
2020b).

• MMGCN: Learns user preferences across multiple
modalities via message-passing on modality-specific user-
item graphs, improving recommendations in multimedia
contexts (Wei et al., 2019a).

• GRCN: Refines interaction graphs using multimedia con-
tent to identify and remove noisy edges, thereby sharpen-
ing the recommendation process (Wei et al., 2020a).
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A.3. Traditional graph prediction

Dataset descriptions. In the traditional graph prediction
task, we evaluate GWM on Cora, PubMed, and HIV datasets.
(1) Cora (Chen et al., 2024b): Cora is a citation network
in the computer science domain, where nodes represent re-
search papers and edges denote citation relationships. Each
node includes the paper’s title and abstract as text features,
with labels indicating paper categories. Tasks on Cora in-
clude category prediction (node level) and citation link iden-
tification (link level). (2) PubMed (Chen et al., 2024b):
PubMed is a biomedical citation network, similar to Cora,
with nodes representing papers and edges indicating cita-
tion relationships. (3) HIV (Liu et al., 2023a): HIV is a
molecular dataset constructed from MOLHIV dataset (Wu
et al., 2018) that contains over 40,000 compounds annotated
for their ability to inhibit HIV replication. Molecular struc-
tures and graph representations are generated from SMILES
strings, with atoms (nodes) and bonds (edges) described
using natural language.

Baselines details. The settings for the baselines primar-
ily follow LLAGA (Chen et al., 2024a) and OFA (Liu
et al., 2023a). We convert all nodes and labels in the Cora,
PubMed, and HIV datasets into text. For all methods, we
use BERT to obtain text embedding. We divide all datasets
into training, validation, and test sets in an 8:1:1 ratio.

• GCN (Kipf & Welling, 2017): Applies spectral-based
convolution operations to capture local graph structures
and propagate information across nodes, serving as a
fundamental baseline for graph-based learning.

• GAT (Veličković et al., 2017a): Enhances node represen-
tation learning by incorporating attention mechanisms,
allowing adaptive weighting of neighboring nodes to im-
prove feature aggregation.

• LLAGA (Chen et al., 2024a): Integrates LLM with graph
structures to enhance reasoning and information retrieval
in multi-modal and structured data scenarios.

• OFA (Liu et al., 2023a): Unifies vision, language,
and multi-modal learning tasks within a single frame-
work, leveraging pre-trained knowledge to facilitate cross-
modal understanding and adaptation.

A.4. Multi-agent collaboration

Dataset descriptions. In the multi-agent collaboration task,
we evaluate GWM on AgentClinic (Schmidgall et al., 2024)
benchmark, specifically AgentClinic-NEJM collected from
the New England Journal of Medicine (NEJM) case chal-
lenges. Each case in AgentClinic-NEJM is multimodal,
comprising a case description, patient profile, clinical pho-
tograph, measurement results, and five candidate diagnoses.
We partition AgentClinic-NEJM into training, validation,

and test sets using a 4:1:1 split ratio. To simulate real-world
clinical procedures, we employ the simulated clinical en-
vironments from AgentClinic to gather dialogues between
the patient and doctor, along with physical examination
results. This environment is modeled as a graph, where
nodes represent various profile-based agents and edges cap-
ture the interactions between agents and their engagement
with knowledge resources. We utilize Meta-Llama-3-70B-
Instruct2 as backbone model for simulation. In the final
diagnosis procedure, we apply both GWM and LLM base-
lines for comparison, where the graph information is con-
verted into textual format before being processed by LLM
baselines.

Baselines details. We compare GWM with three classic
LLM baselines adopting different reasoning strategies. We
use Meta-Llama-3-8B-Instruct3 as the backbone model to
align with GWM.

• CoT: Adopts Chain-of-Thought (Wei et al., 2022) prompt-
ing, which enhances reasoning by decomposing complex
problems into intermediate steps, improving performance
on multi-step reasoning tasks.

• ToT: Adopts Tree-of-Thought (Yao et al., 2024) prompt-
ing, which explores multiple reasoning paths in a tree-like
structure, enabling iterative evaluation and refinement for
more robust decision-making.

• Few-shots: Adopts Few-shot (Brown et al., 2020) prompt-
ing, where the model is provided with a limited number
of in-context examples to guide task-specific reasoning
without requiring fine-tuning.

A.5. Retrieval-augmented generation

The purpose of Retrieval-Augmented Generation (RAG) is
to enhance the generation capabilities of Large Language
Models (LLMs) by retrieving information from external
knowledge (Lewis et al., 2020; Gao et al., 2023; Zhao et al.,
2024). We introduce its dataset and baselines as follows:

Dataset descriptions. We employ LongBench v2 (Bai
et al., 2024), a benchmark specifically designed to test
long-context understanding and reasoning. This benchmark
comprises 503 challenging multiple-choice questions, with
contextual lengths ranging from 8,000 to 2 million words,
spanning six major task categories: Single-Doc QA, Multi-
Doc QA, Long In-context Learning, Long-dialogue History
Understanding, Code Repository Understanding, and Long
Structured Data Understanding. The questions are stratified
into easy and hard levels based on the difficulty encountered
by human experts and models during their resolution. In

2https://huggingface.co/meta-llama/Meta-Llama-3-70B-
Instruct

3https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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alignment with methodologies from previous studies such
as GraphRAG (Edge et al., 2024), we segment long contexts
into chunks that serve as graph nodes, with edges defined
by the similarity of their BERT embeddings. Building on
this, we select the Top-k (k=5 in our setting) chunks with
the highest similarity to the question’s embedding to feed
into the GWM. For this task, we divided the dataset into
training, validation, and test sets in an 8:1:1 ratio.

Baselines details. We conduct comparisons with two
RAG-based baselines—BM25 (Robertson et al., 2009) and
Dragon (Lin et al., 2023)—and three long-context LLMs
(128k), including Mistral Large 24, Command R+5, and
GPT-4o mini6. Their details are as follows:

• BM25: A widely-used ranking function in information
sparse retrieval. It inputs the retrieved context along with
the question into the Llama-3-8B model to generate a
response.

• Dragon: It employs contrastive learning and other train-
ing tricks to finetune its ability to retrieve memory chunks.
Using the Llama-3-8B model, it processes the retrieved
context and the question to produce a response.

• Mistral Large 2: Mistral Large 2 from Mistral AI boasts
123 billion parameters, with a context limit of 128 k to-
kens. This model is one of the largest currently available,
offering exceptional depth in language understanding and
generation capabilities, suited for tackling the most de-
manding NLP tasks across various domains.

• Command R+: Command R+ by Cohere is a massive lan-
guage model with 104 billion parameters, also supporting
a context size of up to 128 k tokens. It is optimized for un-
derstanding and executing complex commands, making
it particularly effective in interactive applications where
precise and nuanced language comprehension is critical.

• GPT-4o mini: GPT-4o mini, developed by OpenAI, is a
variant of the GPT-4 series. Unlike its larger counterparts,
specific details about the model’s size in terms of param-
eters are not provided, but it is designed to handle a max-
imum context size of 128k tokens. This model is geared
towards applications requiring high-quality text genera-
tion with potentially limited computational resources.

A.6. Planning and optimization

This task is designed to measure how effectively different
methods can imitate the trajectory of expert strategies, which
is very helpful for planning and optimization tasks.

4https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
5https://huggingface.co/CohereForAI/c4ai-command-r-plus
6https://openai.com/index/gpt-4o-mini-advancing-cost-

efficient-intelligence/

Dataset descriptions. We employ the expert strategy
dataset from the text-based embodied task framework, ALF-
World (Shridhar et al., 2020; Yang et al., 2024). This dataset
provides detailed descriptions of the expert’s strategic state
at each decision point, incorporating both images and text,
along with the corresponding decisions made in text format.
In our approach, we represent each decision state as nodes
within a graph and establish edges between these nodes
based on the similarity of the state images linked to each
decision. Our total sample size is 10,000, and it is divided
into training, validation, and test sets in an 8:1:1 ratio.

Baselines details. For all baselines, we first use LLaVA-1.5-
7B to convert the image of each state into a text description.

• Normal: It directly inputs the text description of the
current state into Llama-3-8B to get the response.

• COT: It adopts Chain-of-Thought (Wei et al., 2022)
prompting into baseline Normal to enhance reasoning
ability when predicting.

• T5 FT (Raffel et al., 2020): It is a versatile language
model designed by Google Research, which treats every
language problem as a text-to-text task, enhancing its
adaptability across a broad range of NLP applications.
Here we finetune it on the dataset of this task.

B. Hyper-parameters
For the GWM-E, we employ an n-hop MLP, where for the
LLM decoder each MLP has dimensions of 2048*4096, and
for the SD decoder, each MLP has dimensions of 2048*768.
We fix the parameters of LLM and only fine-tune the pa-
rameters of MLP. For GWM-T, we select a maximum of 2k
token-limited hops for each task to ensure a balance between
efficiency and performance. We apply Lora (Lora rank = 8)
(Hu et al., 2021) for efficient training. We have summarized
the hyperparameters for training different models in Table
12.

Table 12. Hyper-parameter configuration for model training.
Parameter GWM-T LLM GWM-T SD GWM-E LLM GWM-E SD

Optimizer AdamW AdamW AdamW AdamW
Adam ϵ 1e-8 1e-8 1e-8 1e-8

Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Weight decay 1e-2 1e-2 1e-2 1e-2

Batch size per GPU 4 1 10 16
Gradient Accumulation 8 4 1 4

Epochs 4 5 1 30
Resolution - 512 - 256

Learning rate 3e-4 1e-5 3e-4 1e-5
Backbone SD Llama-3-8B SD-v1-5 Llama-3-8B SD-v1-5

C. Prompt Usage of GWM
We summarize all the prompts we used in GWM in this
section. We first introduce the action prompts in GWM.
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Specifically, we have summarized the action prompts for
multi-modal generation and matching in Tables 13 and 14.
The action prompts for recommendations are summarized
in Table 15. Additionally, the action prompts for traditional
graph prediction are outlined in Tables 16, 17, 18, and 19.
Moreover, we have also summarized the action prompts for
multi-agent collaboration, retrieval-augmented generation,
and planning and optimization in Tables 20, 21, and 22.
Then, we introduce prompts used in GWM-T. We summa-
rize the prompt Pu of multi-modality as tokens in GWM-T
in Table 23. Moreover, we introduce the prompt fv(·) of
aggregating central node and neighbor nodes in GWM-T in
Table 24.

D. Qualitative Comparisons for All Tasks of
GWM

These tables present comprehensive qualitative comparisons
across all task categories evaluated in our GWM frame-
work study. Each table demonstrates the superior perfor-
mance of our Graph World Model (GWM) variants com-
pared to state-of-the-art baselines through concrete exam-
ples. Table 25 showcases multi-modal generation capabili-
ties where GWM-T successfully predicts missing modalities
from given inputs. Table 26 illustrates multi-modal match-
ing tasks where GWM-E accurately determines correspon-
dence between different modalities. Table 27 demonstrates
recommendation performance where GWM-E correctly pre-
dicts user-item connections. Table 28 highlights traditional
graph prediction tasks where GWM-E excels in node clas-
sification. Table 29 presents multi-agent collaboration sce-
narios where GWM-T integrates multiple agent contexts
for medical diagnosis. Table 30 shows retrieval-augmented
generation capabilities where GWM-E effectively combines
retrieved documents with user queries. Finally, Table 31
demonstrates planning and optimization tasks where GWM-
E predicts optimal decision-making behaviors in embodied
environments. These qualitative results consistently vali-
date the effectiveness of our approach across diverse task
domains.

E. Training and Inference Efficiency
Accurately comparing the training and inference efficiency
of GWM with other FMs is highly challenging because
many FMs are not designed to address multimodal prob-
lems and utilize various architectures. We can only compare
the efficiency between GWM and LLM-based FMs from
principles. For GWM-T, its efficiency shows no fundamen-
tal difference from other LLM-based FMs, as both are based
on the standard instruction tuning. For GWM-E, its training
process only requires fine-tuning the projector as stated in
section 4.3, and its embedding-based method also saves a
significant amount of token cost, making it more efficient.

For GWM-E, it takes approximately 7 hours (∼ 1
4 of GWM-

T) of training time on four NVIDIA A6000 GPUs described
in implementation details of section 5, and the inference
time per case averages 0.213s (similar to GWM-T). More-
over, GWM-E significantly reduces memory usage with a
shorter token length of 140.23 (∼ 1

14 of GWM-T).
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Table 13. Action prompt of multi-modal generation.

This is a multi-modal generation task. Please predict the missing modality based on the given
modality: {modality}.

Table 14. Action prompt of multi-modal matching.

This task involves matching multi-modal information. Given two modalities: {modality 1}
and {modality 2}, please determine whether they correspond with each other.

Table 15. Action prompt of recommendation.

This is a recommendation task. Given the user node and item node: {user node} and {item
node}, please tell me whether these two nodes should connect to each other.

Table 16. Action prompt of node classification of Cora.

Given a node-centered graph: {node}, each node represents a paper, we need to classify the
center node into 7 classes: Case Based, Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning, Theory, please tell me which class the
center node belongs to?

Table 17. Action prompt of node classification of PubMed.

Given a node-centered graph: {node}, each node represents a paper about Diabetes, we need
to classify the center node into 3 classes: Diabetes Mellitus Experimental, Diabetes Mellitus
Type 1, and Diabetes Mellitus Type 2, please tell me which class the center node belongs to?

Table 18. Action prompt of link prediction of Cora and PubMed.

Given two nodes information: {node 1} and {node 2}, please tell me whether two center
nodes in the subgraphs should connect to each other.

Table 19. Action prompt of graph classification of HIV.

Human immunodeficiency viruses (HIV) are a type of retrovirus, which induces acquired
immune deficiency syndrome (AIDs). Please determine whether this molecule {molecule} is
effective for this assay.
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Table 20. Action prompt of multi-agent collaboration.

This is a Multi-Agent Collaborative Generation task for creating dynamic conversational
interactions. Given a user query: {user query} and context of three distinct agents: {Patient
Agent Context}, {Measurement Agent Context}, and {Moderato Agent Context}, Please
generate a well-rounded response to the user’s question.

Table 21. Action prompt of retrieval-augmented generation.

This is a Retrieval-Augmented Generation task for improving response quality in dialogue
systems. Given a user query: {user query} and a set of retrieved documents: {retrieved
documents}, the goal is to generate a coherent and contextually relevant response. Please
generate a response that integrates information from the retrieved documents to accurately
address the user’s query.

Table 22. Action prompt of planning and optimization.

This is an embodied household task, please predict the next decision-making behavior based
on multimodal historical information: {historical information}.

Table 23. Prompt Pu of multi-modality as token in GWM-T.

The image’s text description is: {image’s text description}, original text is: {original text},
table description is: {table description}.

Table 24. Prompt fv(·) of aggregating central node and neighbor nodes in GWM-T.

The text description of the central node is: {center node}, and the text descriptions of the
neighboring nodes are: {neighbor nodes}.
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Table 25. Task description and output comparison of multi-modal generation. This task is to predict the missing modality based
on the given modality. Here we utilize one case of Goodreads dataset as examples. We show the output results of GWM-T, the best
performing GWM, and ControlNet , the strongest baseline.

Task Description

Task Name Multi-modal generation

Given modality Action prompt Ground truth

Title: The
Shark-Infested

Custard

This is a multi-modal
generation task.

Please predict the
missing modality

based on the given
modality:
{modality}.

Method Output Results

ControlNet

GWM-T
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Table 26. Task description and output comparison of multi-modal matching. This task is to predict whether two modalities correspond
with each other. Here we utilize one case of Multi-Modal-Paper dataset as examples. We show the output results of GWM-E, the best
performing GWM, and Contrastive MLP, the strongest baseline. Note that modality can be an image, a table, or a text.

Task Description

Task Name Multi-modal matching

Modality 1: figure Modality 2: text Action prompt Ground truth

Illustration of
different formats of
STL expressions. (a)
Different expression
formats of the same
STL. (b) The binary
tree representation of

STL.

This task involves matching
multi-modal information. Given

two modalities: {modality 1} and
{modality 2}, please determine

whether they correspond with each
other.

yes

Method Output Results

Contrastive MLP no

GWM-E yes

Table 27. Task description and output comparison of recommendation. This task is to predict whether the user node and the item node
are connected. Here we utilize one case of Baby dataset as examples. We show the output results of GWM-E, the best performing GWM,
and LightGCN, the strongest baseline.

Task Description

Task Name Recommendation

User node Item node Action prompt Ground truth

User online product reviews
series: I struggled to find

full slips, especially larger
ones. The first one was too
small; the second fit well
and was affordable. The
beads looked stunning,

perfect for beadwork. The
earrings broke immediately
due to poor quality. I love
the 3 flower sister Hawaii

glass beads on my Pandora
bracelet. They’re pretty and
large, and my eight-year-old
finds them comfy enough to

sleep in ...

This is a recommendation
task. Given the user node

and item node: {user node}
and {item node}, please tell
me whether these two nodes
should connect to each other.

no

Method Output Results

LightGCN yes

GWM-E no
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Table 28. Task description and output comparison of traditional graph prediction. This task aims to perform predictions at three
different levels: node, link, and graph. Here we utilize one case of Cora’s node prediction. We show the output results of GWM-E, the
best performing GWM, and LLAGA, the strongest baseline.

Task Description
Task Name Traditional graph prediction

Node Action prompt Ground truth
Learning under persistent drift: In this paper we

study learning algorithms for environments which
are changing over time. Unlike most previous
work, we are interested in the case where the

changes might be rapid but their ”direction” is
relatively constant. We model this type of change

by assuming that the target distribution is
changing continuously at a constant rate from one
extreme distribution to another. We show in this
case how to use a simple weighting scheme to

estimate the error of an hypothesis, and using this
estimate, to minimize the error of the prediction.

Given a node-centered graph:
{node}, each node represents a

paper, we need to classify the center
node into 7 classes: Case Based,

Genetic Algorithms, Neural
Networks, Probabilistic Methods,

Reinforcement Learning, Rule
Learning, Theory, please tell me

which class the center node belongs
to?

Theory

Method Output Results
LLAGA Neural Networks
GWM-E Theory
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Table 29. Multi-agent collaboration task and output comparison. Disease-related query answering through agent interaction and
external knowledge. Results show GWM-T vs COT baseline. Note: Medical images may cause discomfort but are from real datasets.

Task Description
Task Multi-agent collaboration

User Query Patient Agent Moderator Agent
53-year-old man, 3-year history:

itchy rash, Raynaud’s,
dysphagia, burning hands.

Exam: firm papules on forehead
with glabellar grooves, waxy

papules on hands with
thickening and contractures.

Similar changes on nose, lips,
ears, trunk, feet. No

telangiectasia/calcinosis.
Sensory neuropathy in

hands/arms/face. Normal
thyroid. IgG-monoclonal

gammopathy, normal bone
marrow.

Choices: (A) AL amyloidosis
(B) Multiple myeloma (C)

Scleredema (D)
Scleromyxedema (E) Systemic

sclerosis

Role: 53-year-old patient with 3-year
symptoms including itchy rash, firm

forehead papules causing brow grooves,
waxy hand papules with thickening and

finger contractures. Experience
Raynaud’s phenomenon, dysphagia,

burning hands, and numbness in
hands/arms/face. Aware of normal
thyroid tests and abnormal blood
protein but unaware of diagnosis

implications.

Moderator organizing case information:
Test results: Normal thyroid function,

IgG-monoclonal gammopathy detected,
normal bone marrow biopsy.

Key findings: Extracellular yellow-brown
deposits in dermis on skin biopsy.

Measurement Agent Action Prompt Ground Truth
Multi-Agent Collaborative Generation

task for dynamic conversational
interactions. Generate response using
Patient, Measurement, and Moderator

agent contexts for the given user query.

D

Method Output Results

COT Analysis of patient symptoms and test results suggests monoclonal gammopathy
with characteristic skin findings. DIAGNOSIS: Multiple myeloma (B)

GWM-T D
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Table 30. Task description and output comparison of retrieval-augmented generation. This task is to generate a response that
integrates information from the retrieved documents to accurately address the user’s query. Here we utilize one case of LongBench v2
dataset as examples. We show the output results of GWM-E, the best performing GWM, and GPT-4o mini, the strongest baseline.

Task Description

Task Name Retrieval-augmented generation

User query Document Action prompt Ground truth

What is the correct answer to
this question: You are given a
grammar book of Kalamang
language, now translate the

following Kalamang sentence
into English: Faisal emun me
mindi don bolonet me ma he

kademor. Choices: (A) Faisal’s
mother is still angry at him for a
little thing like that. (B) Faisal’s
mother turns furious at him for a
big thing like that. (C) Faisal’s

mother gets frustrated at him for
a big thing like this. (D) Faisal’s
mother gets angry at him for a

little thing like that.
Format your response as

follows: ”The correct answer is
(insert answer here)”.

There are very few households
with two fluent

Kalamang-speaking parents and
children born after 1990, but
even in those households the

children are not raised in
Kalamang. As indicated above,
non-fluent speakers have a good
passive command of Kalamang
... Fluent Kalamang speakers do
not necessarily shift to Papuan

Malay when they join the
conversation, but they are not

expected to actively contribute,
although they can express

themselves in a simple way in
Kalamang ...

This is a
Retrieval-Augmented
Generation task for

improving response quality
in dialogue systems. Given a

user query: {user query}
and a set of retrieved

documents: {retrieved
documents}, the goal is to

generate a coherent and
contextually relevant

response. Please generate a
response that integrates
information from the

retrieved documents to
accurately address the user’s

query.

D

Method Output Results

GPT-4o mini A

GWM-E D

Table 31. Planning and optimization task and output comparison. Agent decision-making prediction using ALFWorld dataset. Results
show GWM-E vs T5 FT baseline.

Task Description
Task Planning and optimization

Image Text Action Prompt Ground Truth

Task: put a potato
in countertop

Embodied household task:
predict next decision-making
behavior based on multimodal

information.

go to
garbagecan 1

Method Output Results
T5 FT go to microwave 1

GWM-E go to garbagecan 1
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