Under review as a conference paper at ICLR 2026

BLOB-Q: BOOSTING Low BIT VIT QUANTIZATION
VIA GLOBAL OPTIMIZATION ON MODEL DISTORTION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present a novel Mixed-Precision Post Training Quantization (PTQ)
approach for Vision Transformers (ViTs). Different with prior works which typi-
cally optimize the output error of current layer (layer distortion), when performing
quantization, our approach directly minimizes the output error of the last layer of
the model (model distortion). As model distortion is highly related to accuracy,
our approach can maximally maintain the accuracy even when quantized to low bit
widths. We formulate the quantization of ViTs as a model distortion optimization
problem, given the constraint of size. By solving the optimization problem, the
optimal bit allocation across layers, i.e., the optimal bit width of each layer, can
be obtained, with minimized model distortion. Directly solving the optimization
problem is an NP-hard problem. We propose to adopt the second-order term of the
Taylor series expansion to approximate model distortion, where an important addi-
tivity property can be derived under the approximation. Utilizing the second-order
additivity property, the optimization problem can be decomposed into sub-problems
and solved efficiently in an iterative manner. Specifically, we propose a dynamic
programming algorithm to solve the optimization problem and efficiently find the
globally optimal solution with only linear time complexity. Extensive experiments
on six ViT models demonstrate the effectiveness of our approach. Results show
that our approach significantly improves state-of-the-art and can further reduce the
size of ViT models to 4 bits to 6 bits without hurting accuracy.

1 INTRODUCTION

Inspired by the success of the Transformer architecture in Natural Language Processing (NLP)
Vaswani et al.| (2017); |(Conneau et al.| (2020); [Devlin et al.| (2019); [Liu et al.| (2019)); Radford et al.
(2018}, Vision Transformer (ViT)|Dosovitskiy et al.|(2021); [Touvron et al.| (2021); |L1u et al.| (2021a)
has become the mainstream architecture in Computer Vision and achieved state-of-the-art results in
various vision tasks, from classification |Krizhevsky et al.|(2012), segmentation He et al.| (2017) and
style transfer |Gatys et al.|(2016); Johnson et al.|(2016) of images to the synthesis of images [Karras
et al.| (2018)). However, the high accuracy of ViT models comes at the cost of high computational
complexity [ Xu et al.| (2024); Geng et al.|(2024). ViT models typically require tens of millions or even
more parameters to obtain a powerful performance. For example, DeiT/Touvron et al.|(2021) contains
about 340 millions of parameters with 12 Transformer blocks. Such a large volume of parameters and
its associated memory cost make it very difficult to deploy ViT models on resource-limited mobile
devices (e.g., phones, drones, watches, automatic cars, etc).

Main Challenges. Quantization |[Han et al.| (2015); Zhu et al.|(2017); [Zhang et al.| (2018)); Hubara
et al. (2016); [Zhou et al.|(2017;2016); |[Rastegari et al.| (2016) is an effective approach to compress
deep neural networks. In this paper, we focus on Post-Training Quantization (PTQ) for ViT models.
PTQ does not require retraining or fine-tuning the model after quantization and is more efficient
and feasible, since retraining itself is time-consuming, and even impossible in some cases when the
training dataset is not available. What’s more, quantization with mixed-precision can benefit the
accuracy. Because parameters in different layers react differently to quantization, instead of using
equal bit width to quantize all layers, allocating different bit widths across the layers based on their
sensitivity to quantitation is more reasonable and can lead to higher precision. To find the optimal bit
allocation of layers, one challenge is that search space of the hyperparameters increases exponentially
with the number of layers. Given L layers and B bit width options, the search space is O(B*), where



Under review as a conference paper at ICLR 2026

in a deep neural network, L can be tens or hundreds of layers. Such a huge search space could make
it extremely time-consuming for a heuristic search method, such as reinforcement learning |Sutton &
Barto| (2018)), to find a solution.

Existing Problems. Prior PTQ works for ViT models have several drawbacks. First, most existing
works only consider layer distortion, i.e., the output error of current layer, when deciding the bit
width and other quantization configurations of a layer. Because output error accumulates across
layers, layer distortion can not reflect the real impact on the model. Small layer distortion may
lead to a large output error in the last layer of the model. Using layer distortion as an indicator to
make the decision of quantization configurations is not reasonable. Second, prior works typically
use heuristic search methods (e.g., reinforcement learning) to find the bit allocation of layers. The
heuristic search methods have high time complexity, require considerable computing resources, and
may fall into a local solution in most cases. There are some other works using gradient descent
methods or analytical solutions under the assumptions of the distributions of parameters. Again, these
gradient descent methods can not guarantee a global-optimal solution and usually fall into a local
solution. The analytical solutions require that parameters obey specific distributions (e.g., Laplacian
distribution), which may not hold in practice.

Our Contributions. We propose a novel Mixed-Precision PTQ approach for ViTs. Our approach
directly minimizes model distortion, i.e., the output error of the last layer, to maximally maintain
the accuracy of the model. By solving the minimization problem, our approach can obtain optimal
bit allocation of the layers with minimal model distortion. As the model distortion minimization
problem is an NP-hard problem, we thus adopt the second-order term of the Taylor series expansion
to approximate model distortion. We derive an important additivity property of model distortion
under second-order approximation, which is that the model distortion caused by the quantization
of all layers equals to the sum of all model distortion due to the quantization of individual layers.
Utilizing this additivity property, the whole problem can be decomposed into sub-problems. We
then develop an efficient dynamic programming algorithm to find the global-optimal solution of
the problem with only linear time complexity. To the best of our knowledge, this is the first work
that proposes a method to find the global-optimal solution for mixed-precision quantization. We
summarize our contributions as follows:

* We propose a new Mixed-Precision PTQ approach for ViTs, which directly minimizes model
distortion caused by quantization. Our approach finds the optimal bit allocation of layers
with minimized model distortion and can well maintain the accuracy even when quantized

to very low bit widths.
* We propose an efficient method to solve the model distortion minimization problem by

adopting second-order approximation and utilizing the additivity property. An ultra-fast
dynamic programming algorithm is developed to find the global-optimal solution with only

linear time complexity.
* Our approach significantly outperforms state-of-the-art. For the first time, at 6 bits, we

report the PTQ results on ViTs without hurting accuracy (loss < 1%). At 4 bits, our approach
noticeably improves the PTQ results up to 11.49% compared with prior arts.

2 RELATED WORKS

Post-Training Quantization (PTQ). Model quantization can be generally categorized into
Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ), where the latter PTQ
performs quantization for a trained model. Recently, PTQ is more preferred as it is more lightweight
without requiring to intensive training-from-scratch. Retrain-free |[Nagel et al.| (2020a); |Li et al.
(2020); Zhao et al.| (2019)); Frantar & Alistarh|(2022) approaches have become ones of desired traits
of scalable PTQ for modern models. Plenty of PTQ techniques have been explored for ViTs|Liu et al.
(2021b); L1 et al.| (2023); |L1iu et al.| (2023a); Lin et al.[(2022); D1 Wu! (2020); |Ding et al.|(2022); Li &
Gu| (2023), mostly at 8 bits. Few others |Yuan et al.|(2021) explored low bit PTQ down to 4 bits with
noticeable accuracy drops. We achieve 4-bits PTQ with vastly shrinked accuracy gaps, and 6-bits
PTQ with full-precision level accuracies.

Mixed-Precision Quantization (MPQ). Adapting to different sensitivity to quantization on different
layers of the model, MPQ aims to allocate varying bit widths within the model (commonly in
layerwise granularity). Reinforcement-Learning (RL) based approaches like HAQ |Wang et al.| (2019)



Under review as a conference paper at ICLR 2026

and AutoQ Lou et al.|(2020) pioneer MPQ towards searching optimal bit allocation, but can be costly
for PTQ. Recent reconstruction based method OBQ [Frantar & Alistarh|(2022) are compatible with
mixed-precision quantization, but are limited to layerwise optimization with greedy solver.

Model Distortion Minimization. To make Feature HAQ LAPQOBQ BRECQ HAWO FTGAVIT BLOBQ
the quantization strategy aware of task |vodellevelOptimization v v x x x  x v
loss, model-level (Loss-aware) optimiza- | Global-OptimalSolver % % % x  x x
tion approaches like AdaRound |Nagel et al. Mixed-Precision v x x x v x
(2020a) and BRECQ L1 et al.| (2020) are for- Second-order Method % v v v v v
mulated on model-level loss to layerwisely

(or blockwisely) reconstruct the quantiza- Figure 1: Comparisons of different PTQ techniques.
tion rounding. LAPQ Nahshan et al.[(2021)) and PTQ4ViT |Yuan et al.| (2021} also construct model-
level objectives to search for optimal quantization parameters, but PTQ4ViT ends up local solutions,
while LAPQ relies on a complicated multi-stage optimization procedure. Fig. [T]illustrates a compari-
son with our most related works.

ANENEN

3 PRELIMINARIES AND PROBLEM STATEMENTS

Following prior works on Mixed-Precision Quantization (MPQ), e.g., 'Wang et al.| (2019); Dong et al.
(2019); IL1u et al.| (2021b)); |Chen et al.| (2023), we explore the MPQ problem for ViTs. Compared to
Uniform-Precision Quantization (UPQ) which uses the same bit width throughout the model, MPQ
works have shown better accuracy via unevenly allocating bit widths in the model. The general goal
of MPQ is to solve the best quantization configuration, a.k.a. searching a set of bit widths BZW e RE
and BZA e R” for all L layer weights and activations respectively in a model.

Layer Distortion Minimization. Previously, most PTQ approaches Nagel et al.|(2020b); L1 et al.
(2020); IDong et al.| (2019); |L1u et al.| (2021b); (Chen et al.[(2023) avoid optimizing on a model-level
objective as it is NP-hard for non-linear DNNs. They generally can be summarized into the following
framework, that individually solves a series of layer-level problems capturing thg\local impact of

quantization on current layer output, under a generic compression constraint R(W) < R that the

total size R of the quantized model parametrized by all layer weights W = {ﬁ/\l, ﬁ/\g, e W//\L} is
under a budget size R:

argrnirlle(Ob(31)7 st. R(W)<R. (1)
Wi l

Here O; denotes the output of the layer and b\l denotes the output of the quantized layer. Such layer
distortion minimization framework works well for previous Uniform-Precision Quantization (UPQ)
works |[Nagel et al.|(2020b); L1 et al.| (2020) that reconstruct the quantized weight locally (layervAvisely
or blockwisely) via adjusting rounding parameters in the specific form of arg ming;, Ex (101, O||%).
Most recent Mixed-Precision Quantization (MPQ) attempts Dong et al.|(2019); |Liu et al.| (2021b));
Chen et al.| (2023) also deduct from this layer distortion minimization to search for optimal bit
allocation resulting to ranking sensitivity by e.g., nuclear forms |Banner et al.| (2018)) and Hessian
terms |Dong et al.[(2019).

Model Distortion Minimization. Despite most previous PTQ works circumvent the intimidating
global optimization and resort to exploring local effect of quantization for efficient solution, in this
paper, we aim to tackle the more difficult model-level optimization. Since the effect of quantization
on model distortion directly links to the eventual model accuracy, theoretically it leads to a more
accurate Mixed-Precision Quantization (MPQ) solution. Formally, model distortion minimization
refers to the following framework:

argminT'(O, 0), st. R(W,A)<R, 2)

Wi, A
where it directly optimizes the best quantization that leads to minimal model distortion in the output
of the last layer O = Op. Unlike many MPQ works which only search for weight quantization
configurations, we include both weights and activations ﬁ\/l, Al in the MPQ optimization. Similar
with most prior works, we define distortion I" as squared L2-distance: I'(O, 6) =Ex(]|O — GHQF)



Under review as a conference paper at ICLR 2026

The obvious challenge to tackle the above model-level optimization framework practically is the non-
trivial task to find out close form relationship between perturbation on layer weights and activations
of non-linear models. Reinforcement Learning (RL) based method like HAQ |Wang et al.|(2019)
can get close-to-optimal solution for smaller CNNs, but can be extremely time-consuming to search
a solution especially when model sizes scale up in modern models like ViTs. Layerwise pruning
methods with a model-level objective like LAMP Lee et al.|(2020) relies on greedy solver with no
guarantee on global-optimum.

3.1 SECOND-ORDER APPROXIMATION AND ADDITIVITY PROPERTY

Recent works on model pruning [Kurtic et al.|(2022);|Yang et al.|(2023) indicate that second-order
methods are essential for accurate layerwise pruning. This encourages us to explore the possibility
to adopt a second-order approach for a quantization problem instead and potentially enhance the
performance of Mixed-Precision Quantization. Recalling that the formulation of second-order
Taylor expansion w.r.t. model output with small perturbation AW, on layer weight W is O =
O+ JT(W)AW, + %AVVIT H;* AW, we start from applying second-order Taylor expansion at
the model convergence point for both weight and activation quantizatiorﬂ

2

) )

where I'; (O, O) 4,00, 6) are the L2-distortion I'(O, 6) with the quantized Wi, A, respec-
tively, and AW, and AAl are the perturbation on layer weights and activations respectively by

quantization (e.g. AW, = W; — W)), H;*, H}" are the hessian matrices on W}, A, respectively
w.r.t. model output. Based on second-order Taylor approximation, we discover the following property
when doing arbitrary quantization:

A 1 w
I, (0,0) = Ex <H2AWFHZ AW,

2
A~ 1
) T4,(0.0) = Ex (‘QAA?HZ“AAZ

Property 1 (Second-Order Additivity). The expected model distortion T'(O, 6) between the output

of a pretrained model O and a quantized one O on dataset X can be approximated into the sum of
model distortion due to the quantization of individual layers:

r(0,0) =Ex(|O0 - 0|%) ~ Zr (0,0) +Zr (0,0), )

We provide a mathematical derivation for the additivity property in Appendix [A] and empirical
evidences in Appendix[A.2] This property also tells us that instead of optimizing the original model
distortion which is NP-hard, we can instead solve an integer programming problem on layerwise
contributions to the model distortion as in below Corollary.

Corollary 1 (Second-Order Model Distortion Optimization). Given Eq. 4| the model distortion
minimization problem in Eq.[2|can be turned into additive global objective:

argmanI‘ (0,0) +ZF (0,0), st. R(T/)[\CA) < R. Q)
Wi, A

Since bit-widths B}, BlA of single layer only control the quantization of single layer weights W; and
activations A, they also only affect FV/l\/l and T’ A of current layer. Furthermore, as the size constraint

R can be instantiated as the linear function of bit-widths i.e., R(W, A) = Y, BV |[W,|o+Bi*| Ai o,
The model distortion minimization problem in Eq.[5]is equivalent to a integer programming problem:

argmanF (0, O +ZF (O O) s.t. ZBlWHVVlHo —l—BlAHAlHo <R, 6)
B B 1

with only the concrete values of FVAVZ and I' 4 under different bit widths needed to be obtained via
calibration, detailed in Section.d] Supported by the additivity property in Eq.[d] we can guarantee to
attain the global-optimal of the Model-level objective in Eq. [2|by solving the integer programming
problem. We eventually devise a non-greedy solver for problem Eq. [] detailed in Section. [5

"Prior works indicate first-order term can be regarded vanished on converged model



Under review as a conference paper at ICLR 2026

4 CALIBRATION FOR SECOND-ORDER MODEL DISTORTION

There are still remaining major challenges to leverage Property 1 for quantization practically for
empirical ViTs. For H", some existing second-order pruning methods [Kurtic et al.|(2022); Yang
et al.| (2023) pointed out some on possible ways for us. For H“, some second-order PTQ methods
like BRECQ|Li et al.| (2020) involve Hessian on activations H ¢ but are designed for guiding weight
quantization. Moreover, there was no attempt to seamlessly weld different Hessian approximation
schemes (e.g. gradient|Yang et al.|(2023), empirical Fisher |[Kurtic et al.|(2022), and diagonal gradient
product|Li et al.| (2020)) for unified weight and activation MPQ search.

In this work, we unify the second-order approximation for Mixed-Precision Quantization (MPQ)
search of both weights and activations. We start by selecting empirical Fisher |[Kurtic et al.| (2022])
scheme for approximating Hessian for both weight H" and activation H*“, to avoid potential
mismatch of using different schemes in the unified allocation problem in Eq. 4}

Definition 1 (Empirical Fisher Kurtic et al. (2022)). The Hessian H” € R**? of weight W €
Rérowxdeot (d = ... d.o1) can be estimated on calibration dataset X oq of N samples given the
Jacobian matrix J,,(W') of the weight matrix on n-th sample as HY = kI + + Zf:[ J.(W)JIT (W).
K is predefined hyperparameter.

Empirical Fisher was originally used to approximate Hessian of layer weights in pruning. We
attempt to similarly approximate Hessian of layer activations in this work as H® = xkI; +

+ ZQ{ J.(A)J](A). However, even with such Hessian estimation, it is obviously still too ex-
pensive for processing real models to store large chunks of Hessian matrices for all layers. To
solve global objective in Eq. ﬁ], we need to sample all values of I'y; and T, A of L layers under all

possible quantized VVZ and Al during calibration. Therefore, we need SO d?) memory space to
accommodate all layers Hessian matrices alone, which is near quadratic to the model size. In fact,
there are still plenty of rooms for overhead and memory reductions, as we show that the expensive
time and spatial costs can be significantly reduced in the followings.

Second-Order Approximation for Weights. For approximating distortion caused by weight quanti-
zation FVT/Z , to obtain Hessian matrix based on empirical Fisher, we first consider using the approxi-

mated Hessian (Definition 1) to convert the second-order term inside L2 norm of Eq. dinto
1 1 K 1
T T _ 2 T 2

where we notice it no longer needs to store the full Hessian and instead mainly the inner product
between J,, (W), AW e R? which is a scalar value. The asymptotic time and spatial complexity of
this form is then O((2N + 2)d + N) and ©(2d + N) respectively, which only has linear complexity
w.r.t. the parameter size d. This form is still space for further improvement to parallelize the
>, 1dL (W)AW |3 for all N samples to trade for more time efficiency with parallel computing
on GPUs. This can be done by concatenating N samples of Jacobians into J 5 (W) € RY*? and
obtain a N-dimensional variable P* = J{(W)AW € RY. Then the time cost can be slightly
reduced to O((N + 2)d + 2N) by calculating 5% trace(P*P®T) instead, with slightly more space
©(2d + N?) to store the intermediate vector P™. Finally, since the above empirical Fisher estimation
already encapsulates an averaging process on calibration data, everything inside expectation of I'g;;
(see Eq.[) is already invariant to the data samples. Therefore the final expectation calculation step
is unnecessary for weight quantization. Hence, the final second-order model distortion for weight
quantization can be summarized as:

;Vtrace(PwaT) ®)

Empirically, we observe the overhead of second-order calibration ranges from merely around 3 to
18 minutes between the smallest and the largest ViTs (ViT-S/224 and ViT-B/384) on a 4-L40 GPU
server. We will give detailed efficiency analysis in the experimental section.

I,(0.0) ~ Z|awi|3 +

Second-Order Approximation for Activations. To scalably approximate the second-order model
distortion for activation I A,» most ideas from above FVT/Z work with an exception. Since the

activation map changes for different data samples, we need to keep N copies of activations AN =



Under review as a conference paper at ICLR 2026

{AM AP AN} which raises another question how to similarly get P from AN € RN *dT
and Jy € RY*4T (T is the number of visual tokens in ViTs) recalling from P™ above. Here we
calculate it with a slight variation as P® = diag(Jx(AY)AANT) e RY. With other parts similar
to the case of weight quantization above, this gives the following formulation:

A K 1
['4(0,0) ~ §HAAI||§ + ﬁtface(PzaPzaT) )

The time and space complexity would be O ((N?+ N)|s;|o+N) and O(2N|s;]o + N?) respectively,
which are still only linear complexity. We have a more detailed analysis in supplemental materials.

Efficiency of Second-Order Cal-
ibration.  After the above opti-
mization, the calibration process is
now streamlined to a one-time for-

Table 1: Time and spatial complexity of the second-order
calibration for whole model. Dy, and D 4 denote the total
parameter size and total feature map size for a model respec-

- - tively.
ward+backward pass on calibration
set to obtain necessary gradient infor- Weight Activation
mation Jy (W), Jy(A), followedby ~“Time | O(NI + (N + 2)Dy) O((N?+ N)Da)
applying Eq. [8|and Eq. [9]individually =~ “Space | ©@(2max; [W;], + N?I) | O(2N max; [A;]o + N2

to rapidly approximate global output
distortions I'wy,, I' 4, under arbitrary quantizing weights and activations. In practlce one may iterate

through a finite set of different quantlzatlon conﬁguratlons to sample W A, e. g. a set of possible
bit-widths and quantization step sizes, etc. We summarize the estimated end to-end time and space
complexity analysis in Tab.

The total calibration time costs scale linearly with the sizes of parameters and activation states, and
the maximum memory required is capped at the layer with largest weight or activation footprints
(|Wilo and | A;]o). In Tab.|l| we omit the cost for quantization itself. This calibration scheme is
also compatible with blockwise MPQ (assign bit-width on a block of weight/activation within layer).
Compared to vanilla layerwise MPQ, blockwise MPQ does not increase much time overhead and has
less memory requirement as one can deduct from Tab. [I] as it can be seen as changing the problem
space with now total number of weight/activation blocks becomming the number of layers and each
with less parameter sizes. We explain more blockwise MPQ settings in experiment section.

5 GLOBAL OPTIMAL SOLVER VIA DYNAMIC PROGRAMMING

We adopt Dynamic Programming (DP) algorithm to recursively solve the integer problem by de-
composing the whole problem into multiple sub-problems and then processing each sub-problem
separately. Defining the state function required by DP as S(I,7) € R is a function of discrete values
layer [ € [1, L] and remaining model total bits € [1, R], this indicates the the minimal achievable
model distortion at current intermediate state. Then the DP algorithm can be completed by the
following state transferring function to recursively solve the original problem at state S(L, R):

S(l, ’I“) = 1£j§B{Fq(zl’bl)(O’ O) + S(l —1,r— bldl)}, (10)
where Z; represents the either one between W, and A; and we treat states for weights and activates
the same as they both contribute to the total bit budget R. ¢(Z;,b) is the optimal b-bit quantizer
for input Z;, B is the maximum allowed bit-width for each layer (we set to B = 10). We set the
boundary condition of S(0,:) = 0. As we populate through the above states S(I,r) , we use another
function G(I,r) € Z to record all intermediate selections of b; made:

G(l,r) = argmin{Ty(z, ) (0,0) + S(l — 1,7 — bidy)}. (11

1<b1<B
Using G(I, ), we can iterate through layers to find the optimal bit-width B; at layer .

The theoretical time complexity of the DP-based solver is O(2LRB?), as we have 2L x R different
states since we consider two variable bit-widths i.e. weight and activation for each layer. It shows the
algorithm scales linearly with the model size. Moreover, the solution found by dynamic programming
is the globally optimal solution. Taking advantages of modern parallel compute like GPU, the
DP-solver can be further accelerated towards practical usages. We provide more details of our



Under review as a conference paper at ICLR 2026

Algorithm 1 BLOB-Q: Model-level Global-optimal Mixed-precision Quantization Algorithm.

Require: Calibration dataset X.,; with /N samples, pretrained model with L layers, maxmimum allowed
bit-width B, target total model size R.
Ensure: Optimal bit-widths for layer Weights and activations B}” , Bi* e R,1 <[ < L.
1: A forward+backward pass on X to get AE\L,), In(Wh), In(Ay) = Start calibration.
2: for each layerl € [1, L] do
3: for each bit b € [1, B] do

4 W, = q(Wy,b), A = q(A;,b) = Quantize weights and activations to b-bit.
5: AW, =W, — ‘//I\/'l, AA; = A — Al = Quantization errors.
6: PY =3 (W)AW,, Pf = diag(Jn(A)AA]NT)
7: Toow,.0) (O, 0) = 5|AWY|3 + g trace(P{P"T). = Model Distortion w.r.t. W-quant. (Eq. ﬁl
8 Lya,0(0, 6) = 5|AA|3 + 55 trace(P*P*"). = Model Distortion w.r.t. A-quant. (Eq. Ei
9 end for each
10: end for each
11: Create matrices S, G € R?#+1-7 & Start DP-solver (Secl5).
12: Initialize S[1, r]<« 0, Vr € [1, R] if I = O else o0.
13: for each layer ! € [1,2L] do > (have 2L for both weights and activations)
14: for each size r € [1, R| do
15: Update S[1, r] using Eq.[T0] Update G[1, r] using Eq.[T]] = Recursively populate states.
16: end for each
17: end for each
18: BXV =G[2L,R] = Last layer weight bit-width.
19: for each layer [ reversely from L to 1 do = Recursively obtain layerwise bit-widths.
20: BlA =G[21, R - BZWHVVlHO] = optimal activation bit-width.
21:  R< R-B"|Wio
22: BN =cG[21-1, R - B{||Ai|o] o> layerwise weight bit-width.

23: R< R- B{|Alo
24: end for each

implemented DP-solver in the supplementary materials, incorporating strategies like vectorized
updating and Run-length coding, with source code attached. Empirically, we find that DP-solver only
requires to perform in few seconds as we show in Tab. [5] We provide the end-to-end pseudocode of
our proposed BLOB-Q algorithm in Algo. [T]

To this end, we proposed a unified second-order approximation scheme for model output distortion
caused by the quantization of both weights and activations. We started by discovering an important
property on ViT models under second-order taylor approximation, which allows us to transform
the NP-hard Global distortion optimization problem into subproblems. This allows us to solve the
model distortion minimization problem in a global-optimal and non-greedy manner via Dynamic
Programming. Finally, utilizing Hessian matrix information, we developed an ultra-fast algorithm
to calculate the second-order distortion during post-training calibration efficiently considering the
practical settings.

6 EXPERIMENTS

Implementation Details. We randomly select 64 samples from the ImageNet training set as the
calibration dataset without any augmentations, and evaluate the quantized ViTs on full validation set.
We conduct all experiments on Nivida 4-L40 with 48GB of VRAM on each GPU. For bias correction,
we adopt the strategies same as [Liu et al.|(2021b) to rectify the layerwise output distribution. For
finetuning, we use the same optimizer and criterion as original ViT strategy, with learning rate 1r
= 1075 with batchsize of 128 for larger ViT-B/384 and DeiT-B/384 and 256 for the rest. We quantize
all the Conv2D and Linear layers in ViTs, including the first and last layer and excluding LayerNorm
and Embedding layers. For quantizer, we choose vanilla symmetric uniform quantizer for both
weights and activations. We perform blockwise MPQ in the experiments as earlier introduced in
Section[4] i.e. allocating a group of channels in the layer weight/activation once a time, where we set
the blocksize to 64-channels for larger ViT-B/384 and DeiT-B/384 and 32-channel for the rest. We
provide more details in supplementary materials.



Under review as a conference paper at ICLR 2026

Main Results. We compare our approach with prior Post-Training Quantization (PTQ) methods for
ViTs at six ViT models (ViT-S, ViT-B, ViT-B/384, DeiT-S, DeiT-B, and DeiT-B/384) on the ImageNet
validation dataset, including PTQ Liu et al.|(2021b), PTQ4ViT Yuan et al.| (2022), Percentile |Li et al.
(2019), EasyQuant |[Wu et al.|(2020), APQ-ViT [Ding et al.| (2022)), NoisyQuant |Liu et al.| (2023b)),
I-ViT [Li & Gul (2023), and FQ-ViT [Lin et al.| (2021). Tab. [2]illustrates the results. Our approach
consistently outperforms the baseline methods in most of the cases, especially at low bit widths.
Speficailly, at 4 bits, our approach outperforms other methods by 1.72% and 11.49% on ViT-S and
ViT-B, respectively. On DeiT-S and DeiT-B, at 4 bits, our approach outperforms others by 6.15% and
3.54%, respectively. It is worth mentioning that our approach can quantize the ViT models to 6 bits
without hurting accuracy (loss < 1%). We notice that most method can obtain very well accuracy at 8
bits. This is because that 8 bits are long enough to maintain the precision.

Table 2: Results on the ImageNet validation dataset when ViT mdoels are quantized to 4 bits, 6 bits,
and 8 bits. Top-1 classification accuracy is evaluated. MP denotes quantization with Mixed-Precision.
For a fair comparison, we report the results with the same average bit widths. For example, 4 MP
means that we quantize the ViT Models into 4 bits on average across the layers. The best result of
each group is highlighted with bold.

Method Size (Bit) | ViT-S ViT-B  ViT-B/384 DeiT-S DeiT-B  DeiT-B/384
Full Precision 32 81.39%  84.54% 86.05% 79.87%  81.85% 83.12%
PTQ4ViT|Yuan et al.[(2022) 4 42.57%  30.69% - 34.08%  64.39% -
APQ-ViT Ding et al.|(2022) 4 4795% 41.41% - 43.55%  67.48% -
RepQ-ViT|Li et al.|(2023) 4 65.60%  68.48% - 69.03%  75.61% -
BLOB-Q 4 MP 67.32% 79.97% 71.20% 75.18% 79.48% 80.17%
PTQ|Liu et al.|(2021b) 6 MP 70.24%  75.26% 46.88% 75.10%  77.47% 68.44%
PTQ4ViT |Yuan et al.|(2022) 6 78.63%  81.65% 83.34% 76.28%  80.25% 81.55%
Percentile|Li et al.|(2019) 6 MP 67.74%  77.63% 77.60% 70.49%  73.99% 78.24%
EasyQuant|Wu et al.|(2020) 6 75.13%  81.42% 82.02% 73.26%  75.86% 81.26%
APQ-ViT Ding et al.|(2022) 6 79.10%  82.21% - 77.76%  80.42% -
RepQ-ViT|Li et al.|(2023) 6 80.43%  83.62% - 77.76%  80.42% -
NoisyQuant Liu et al.|(2023b) 6 78.65%  82.32% 83.22% 77.43%  80.70% 81.65%
BLOB-Q 6 MP 80.53% 83.66% 85.20%  79.22% 81.58% 82.72%
PTQ|Liu et al.|(2021b) 8 MP 80.46%  76.98% 85.35% - 75.94% -
PTQ4ViT|Yuan et al.|[(2022) 8 81.00% 84.25% 85.82% 79.47%  81.48% 82.97%
Percentile|Li et al.|[(2019) 8 MP 7877%  80.12% 82.53% 73.98%  75.21% 80.02%
EasyQuant|Wu et al.[(2020) 8 80.75%  83.89% 85.53% 76.59%  79.36% 82.10%
APQ-ViT Ding et al.|(2022) 8 81.25% 84.26% - 79.78%  81.72% -
NoisyQuant|Liu et al.|(2023b) 8 81.15% 84.22% 85.86% 79.51%  81.45% 82.49%
I-ViT|Li & Gu|(2023) 8 81.27%  84.716% - 80.12%  81.74% -
FQ-ViT|Lin et al.|(2021) 8 - 83.31% - 79.17%  81.20% -
BLOB-Q 8 MP 81.54% 84.84% 85.93% 79.59% 81.75% 82.85%

Ablation Studies. Both model distortion minimization and global-optimal solution contribute to the
results. We conduct an ablation study to evaluate the effectiveness of each of them, which is shown in
Tab. [3] In the ablation study, we evaluate the results of three methods which are (a) minimize layer
distortion with a local solution, (b) minimize model distortion with a local solution, and (c) minimize
model distortion with a global-optimal solution. As we can see in Tab. [3] both of model distortion
minimization and global-optimal solution can make a noticeable impact on the accuracy. For example,
at 4 bits, with model distortion minimization, the accuracy is improved from 0.11 to 20.52 on ViT-S.
With a global-optimal solution, the accuracy is improved from 20.25 to 61.45. Similarly noticeable
results can be also observed on other models and bit widths.

Impact of the Calibration Set. We evaluate the impact of the calibration set on our approach. Tab.
illustrates the results of our approach with 32 and 64 calibration images. First, our approach only
requires a very small calibration set to obtain the statistical data of model distortion. We notice that
increasing the calibration size from 32 images to 64 images, our approach can obtain slightly higher
accuracy. With more calibration images (e.g., 128), the accuracy can not be improved any more but
the computation complexity can be significantly increased. We thus use 64 calibration images in all
of our experiments.

Executive Time. We also evaluate the execution time of the optimization method and compare it
with other baselines, including PTQ4ViT [Yuan et al.|(2022), REPQ-ViT [Li et al.|(2023)), EasyQuant
Wau et al.|(2020), and NoisyQuant|Liu et al.[(2023b). Our method is much faster than others by orders



Under review as a conference paper at ICLR 2026

Table 3: Ablation studies of our approach. The effectiveness of model distortion minimization and
global-optimal solution are evaluated. We use a greedy algorithm to find a local solution in this
table. For layer distortion, we use the output error of current layer in the learning objective. The
supplementary materials provide more details about the local solution.

Comparison Size ViT-S ViT-B  ViT-B/384 DeiT-S DeiT-B  DeiT-B/384
Layer Distortion + Local | 4 Bits | 0.11% 0.10% 0.09% 0.10% 0.12% 0.12%
Model Distortion + Local | 4 Bits | 20.52%  1.25% 0.60% 0.16%  16.51% 49.92%
Model Distortion + Global | 4 Bits | 61.45% 77.31%  51.69%  75.14% 79.21% 79.46 %
Layer Distortion + Local | 6 Bits | 0.10% 0.12% 0.11% 0.17% 14.01% 50.80%
Model Distortion + Local | 6 Bits | 62.87% 15.27% 11.04% 40.25%  44.08% 74.70%
Model Distortion + Global | 6 Bits | 78.88% 83.47% 84.71% 79.21% 81.58% 82.72%
Layer Distortion + Local | 8 Bits | 39.81%  1.25% 14.43% 0.12%  45.81% 76.08%
Model Distortion + Local | 8 Bits | 67.78%  52.34% 61.23% 74.88%  80.81% 81.12%
Model Distortion + Global | 8 Bits | 81.37% 84.78%  85.69%  79.64% 81.76% 82.99 %

Table 4: Impact of calibration size on the results. We randomly select 32 or 64 images from the
ImageNet training dataset as the calibration set.

Bit Width 4 Bits 6 Bits 8 Bits
Calibration Size | 32 Images 64 Images 32 Images 64 Images 32Images 64 Images
ViT-S 51.04% 59.71% 81.90% 79.98% 83.26% 81.30%
ViT-B 78.82% 74.51% 84.10% 83.58% 84.46% 83.95%
ViT-B/384 66.01% 52.09% 84.42% 85.18% 85.35% 86.01%
DeiT-S 68.75% 72.80% 78.12% 78.97% 81.25% 79.51%
DeiT-B 78.12% 78.96% 81.25% 81.81% 81.25% 81.78%
DeiT-B/384 78.59% 79.06% 82.25% 82.72% 82.59% 82.56%

of magnitute. As shown in Tab. E], our method is 72 x faster than PTQ4ViT |Yuan et al.[(2022), 85x
faster than REPQ-ViT Li et al.|(2023), 146 x faster than EasyQuantWu et al.|(2020), and 543 x faster
than NoisyQuant|Liu et al.| (2023b)). Different with prior works which need to search the solution
from a huge space with exponential complexity, our method utilizes the additivity property and adopts
dynamic programming find the global-optimal solution. As a result, our optimization algorithm
has only linear time complexity and is much faster than others. We anaylzed the time and memory
efficiency in more detail in Appendix [D.4}

Table 5: Evaluation of the executive time of optimization. We test the time of our dynamic program-
ming algorithm to find the global-optimal bit allocation. For other baseline methods, we run their
code on the same hardware (Nvidia L40) to evaluate the time.

Method Executive Time of Optimization Method (s)
ViT-S ViT-B DeiT-S DeiT-B
4Bits 6Bits 8Bits 4Bits 6Bits 8Bits 4Bits 6Bits 8Bits 4Bits 6Bits 8 Bits
PTQ4ViT|Yuan et al.|(2022) | 103.8 101.4 101.4 1932 1824 1962 100.6 100.2 100.8 196.8 198.0 207.6

REPQ-ViT|Li et al.|(2023) 1234 126.1 1188 247.0 2479 2528 1142 1190 119.1 2446 2519 2516
EasyQuant|Wu et al.[(2020) | 211.1  211.5 211.1  463.0 463.6 4640 2143 2124 2112 463.0 463.6  463.7
NoisyQuant|Liu et al.|(2023b) | 781.0 780.8 784.5 1844.5 1850.4 1851.5 787.6 777.7 7783 18452 1848.6 18484
BLOB-Q 1438 1.209 1.298 1.749 2291 2.236 1408 1329 1.212 1814 2121 2.276

7 CONCLUSION

In conclusion, we novelly introduced BLOB-Q, a global-optimal model distortion minimized Mixed-
precision Quantization method. Our approach builds on a key property observed in ViT models
under second-order Taylor approximation, enabling the transformation of the NP-hard global dis-
tortion optimization problem into manageable subproblems. We further proposed a non-greedy and
lightweight DP-solver to solve MPQ bit-allocations that finds globally optimal solutions. Furthermore,
we proposed a unified hessian approximation scheme, accompanied by an ultra-fast algorithm with
minimal memory footprint, ensuring scalability of the method. Experiments show that BLOB-Q
significantly boost PTQ performance on ViT models, and successfully bridge the performance gap on
as low as 4-bit even without retraining.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We ensure to provide all necessary details to reproduce the experimental results shown. In the
Supplementary Materials, we provide the source code, containing:

» Experimentation scripts for second-order calibration and DP-solver to 4/6/8-bits.
* Code for bias-correction and retraining for auxiliary results.
* A README file providing sample commands and information on how to run all scripts.

REFERENCES

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

Jun Chen, Shipeng Bai, Tianxin Huang, Mengmeng Wang, Guanzhong Tian, and Yong Liu. Data-free
quantization via mixed-precision compensation without fine-tuning. Pattern Recognition, 143:
109780, 2023.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised
cross-lingual representation learning at scale. In ACL, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In arXiv, 2019.

Yongle Zhao Ming Zhang Debing Zhang Ying Fu Di Wu, Qi Tang. Easyquant: Post-training
quantization via scale optimization. 2020.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu.
Towards accurate post-training quantization for vision transformer. In Proceedings of the 30th
ACM international conference on multimedia, pp. 5380-5388, 2022.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In arXiv, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview!
net/forum?id=YicbFdNTTy.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475-4488,
2022.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks.
In CVPR, 2016.

Xue Geng, Zhe Wang, Chunyun Chen, Qing Xu, Kaixin Xu, Chao Jin, Manas Gupta, Xulei Yang,
Zhenghua Chen, Mohamed M Sabry Aly, et al. From algorithm to hardware: A survey on efficient
and safe deployment of deep neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. In CVPR, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks:
Training neural networks with low precision weights and activations. In arXiv:1609.07061, 2016.

J. Johnson, A. Alahi, and F.-F. Li. Perceptual losses for real-time style transfer and super-resolution.
In ECCV, 2016.

10


https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Under review as a conference paper at ICLR 2026

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In ICLR, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NeurIPS, 2012.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 4163-4181, 2022.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. In International Conference on Learning Representations, 2020.

Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized network
for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2810-2819, 2019.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In International
Conference on Learning Representations, 2020.

Zhikai Li and Qingyi Gu. I-vit: Integer-only quantization for efficient vision transformer inference.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17065-17075,
2023.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for
post-training quantization of vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17227-17236, 2023.

Yang Lin, Tianyu Zhang, Peigin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quantiza-
tion for fully quantized vision transformer. arXiv preprint arXiv:2111.13824, 2021.

Yang Lin, Tianyu Zhang, Peigin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quantiza-
tion for fully quantized vision transformer. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, pp. 1173-1179, 2022.

Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Noisyquant:
Noisy bias-enhanced post-training activation quantization for vision transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20321—
20330, June 2023a.

Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Noisyquant:
Noisy bias-enhanced post-training activation quantization for vision transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20321-20330,
2023b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. In arXiv, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In /CCV, 2021a.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
for vision transformer. Advances in Neural Information Processing Systems, 34:28092-28103,
2021b.

Qian Lou, Feng Guo, Minje Kim, Lantao Liu, and Lei Jiang. Autoq: Automated kernel-wise neural
network quantizations. In /CLR, 2020.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. PMLR, 2020a.

11



Under review as a conference paper at ICLR 2026

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197-7206. PMLR, 2020b.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein,
and Avi Mendelson. Loss aware post-training quantization. Machine Learning, 110(11-12):
3245-3262, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. In arXiv, 2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-NET: Imagenet classification using
binary convolutional neural networks. In arXiv preprint arXiv:1603.05279, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347-10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv, 2017.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8612-8620, 2019.

Di Wu, Qi Tang, Yongle Zhao, Ming Zhang, Ying Fu, and Debing Zhang. Easyquant: Post-training
quantization via scale optimization. arXiv preprint arXiv:2006.16669, 2020.

Kaixin Xu, Zhe Wang, Chunyun Chen, Xue Geng, Jie Lin, Xulei Yang, Min Wu, Xiaoli Li, and Weisi
Lin. Lpvit: Low-power semi-structured pruning for vision transformers. In European Conference
on Computer Vision, pp. 269-287. Springer, 2024.

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 18547-18557, 2023.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization framework for vision transformers with twin uniform quantization. arXiv preprint
arXiv:2111.12293, 2021.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptg4vit: Post-training
quantization for vision transformers with twin uniform quantization. In European conference on
computer vision, pp. 191-207. Springer, 2022.

D. Zhang, J. Yang, D. Ye, and G. Hua. Lg-nets: learned quantization for highly accurate and compact
deep neural networks. In ECCV, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. PMLR, 2019.

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization: Towards lossless
cnns with low-precision weights. In arXiv preprint arXiv:1702.03044, 2017.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. In arXiv preprint arXiv:1606.06160, 2016.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal Frossard. Adaptive
quantization for deep neural network. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

C. Zhu, S. Han, H. Mao, and W.J. Dally. Ternary weight networks. In ICLR, 2017.

12



Under review as a conference paper at ICLR 2026

A PROOF OF PROPERTY 1 (SECOND-ORDER ADDITIVITY)

Recall that AW; and AA; are the perturbation on layer weights and activations respectively by

quantization, i.e., AW; = W, — VVl,AAl A — Al The derivation of Property 1 utilizes a basic
assumption as follows:

Assumption 1. Quantization perturbation Layer-independency Zhou et al.| (2018): The
perturbation on weight/activation by individual quantizing on each layer is (1) zero-
meaned: V1 <i< L EAW;) = E(AA;) = 0, and (2) independent across layer:
V1<i+#j<LEAW,)EAW,) =E(AA,)E(AA;) =EAW;)E(AA;) =

We provide more discussion and evidences in Appendix [A.T]

Proof. According to second-order taylor series expansion when under perturbations on [-th layer’s
weight (first order term can be neglected on pretrained models):

A~ 1
O~0+ 5AWITHZ"“AWZ, (12)

The L2 distortion when all the layer weights are perturbated can be written as

#(0,0) = Ex [Ho OF]~]EXl(ZZ: AWTHwAW) (ZZI;AWJTH}”AWJ-)
i=1 j=1

l T
1 1
=]EX[Z <2AWiTH;vAWi> (ZAWJ-TH;“AW])

13)
The summation inside expectation can be further swap out with the expectation:
I'5(0,0) ~ 2 Ex| AW HYTAW, AW H AW;]. (14)

1,j=1

Further utilize independency assumption in Assumption 1 on the expectation on matrices: (replace
Ex with E for visual simplicity)

~ 1 w w
T'w(0,0) ~ JE[AW,|H; TE[AW, AW, |HYE[AW;]. (15)

Notice that (1) E[AW;] and E[AW}] in the above complies with the zero-mean assumption when
i # j in Assumption 1, (2) E[AWZ-AWJT] = 0 since assumption 1 indicates AW; and AW are
independent, and (3) the fact that all-zero matrix multiplied with any matrix results in zero, we can
eliminate such cross terms ¢ # j in the summands, resulting in:

2

> . (16)

The above derivation also applies to the case of activation quantization, resulting:

2
). (17)

Therefore, the original expected L2 distortion under weights and activation perturbation is:

)

l
A 1
I'%(0,0)~ Y E <H2AWZ-TH;”AW}-
1=1

l
A~ 1
1(0,0)~ > E (‘2AAZ-TH;1AA¢
=1

l

2 4,(0.0)

2 l 1
) M E (‘QAAZ H'AA,
=1

(18)

l

)~ X

l

Z (‘ AW, HY AW;

13



Under review as a conference paper at ICLR 2026

VIT-S ViT-B DeiT-S DeiT-B

— 4-bit —— 4-bit — 4-bit 500 ﬁ — 4-bit

6-bit 6-bit 6-bit 6-bit

— g-bit ] — s-bit ; — &-bit > 400 — &-bit
- 400 300

o
=3
S

I
o
S

w

=3

S

o
=3
S

w
=3
S

200

=

o

o
N
=3
S

S
o
blocks.0.attn.qkv

blocks.5.attn.proj
g

blocks.11.mlp.fcl

blocks.11.attn.qkv

100

N o 1 L \

[ \ .

o

-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.0l 0.02 -0.02 -0.01 0.00 0.01 0.02
m — 4bit 500 — abit 300 q — 4bit 500 [ — a-bit
oy 200 6-bit 2 400 6-bit N 250 6-bit S 400 6-bit
e — 8bit g — 8-bit b — 8bit e — 8bit
2150 S 300 £ 200 £
E g E g 300
N i S 150 ;
g 100 % 200 P % 200
3 ¥ ¥ 100 <
o <] 4 o
=7 L et 11 i I NI IR i jim
0 0 0

o

-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02
300
500 W — a-bit — 4-bit — 4-bit m — 4-bit
o 6-bit o 600 6-bit < 300 6-bit o 250 6-bit
2 400 S - —— 8bi =3 —— 8bi a —— 8bi
pr3 8-bit = 8-bit £ 8-bit 2 200 8-bit
] = £
© 300 € 400 T 200 £ 10
° = 3 3
™ §: S ©
¥ 200 i Y] $ 100
§ g 200 é 100 §
= = A = =
=" ° il SN N e I I I
[ I 0 0 0

o

-0.02 —0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 —0.02 -0.01 0.00 0.01 0.02
200 [ — a-bit 800 | — abit 300 — 4ebit ﬂ — abit
g 6-bit o 6-bit = 250 6-bit N 6-bit
2 150 — 8-bit £ 600 — 8-bit £ — 8-bit & 300 — 8-bit
< = 2 200 =3
®© € € € 200
o 100 11 400 - 150 I
g L £ 100 L
8 50 8 200 8 g 100
® L ] ° [N LT 1 ° / |
0 0 0 0
—0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 001 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02

Figure 2: Empirical statistics of histogram of weight perturbation AW, when quantizing individual
layers. We randomly select 4 layers from each models to display the distribution quantization error
matrices under various bit-widths. We use the same symmetric uniform quantizer with least MSE
scaling factors.

A.1 EVIDENCES OF ASSUMPTION USED

We now show the empirical observations on real ViT models to further support the assumptions used
in the above theoretical proof.

Assumption 1 (1): Zero-mean: Fig. [2]illustrates the distributions of weight perturbation AW
in different layers of different models with different bitwidths. Under majority circumstances, the
distributions of the element-wise perturbations display a symmetric pattern around zero, supporting
that zero-mean assumption holds universally for ViTs.

Assumption 1 (2): Interlayer independency: Interlayer independency can be evaluated by observing
the covariance between AW, and AW;. Fig. @illustrates the the full pair-wise combination of all
quantizable layers in the model, where each entry is a sample of covariance of layerwise weight
perturbation of two layers averaged on a random batch of images from ImageNet. It displays a clear
diagonal pattern that the covariances vanish on off-diagonal locations where ¢ # j, which is observed
on all 4 ViTs. This supports the interlayer-independence assumption.

A.2 EVIDENCES OF ADDITIVITY

To further support the theoretically discovered Property 1 (Section [A]), we further provide direct
empirical evidences on ViT models as in Fig. @] and Fig. 5] at low bit width weight/activation
quantization from 5 bits down to 2 bits. As one can see, at 4 to 5 bits, most of points lie in the
diagonal meaning that the additivity property holds well. However, when the bit width is less than 4

14



Under review as a conference paper at ICLR 2026

VIiT-S ViT-B DeiT-S DeiT-B
0 0 0 F 0
4 4 4 4
8 8 8 8

layer j

"
0 4 812162024283236404448

layer i

0 4 812162024283236404448

layer i

"
0 4 812162024283236404448

layer i

0 4 812162024283236404448

layer i

Figure 3: Empirical statistics of covariance matrix E(|AW;AW;||?) when quantizing individual
layers in pretrained model. Deeper blue color indicates larger value, vice versa.

bits, outlier points start to increase. In practice, our approach can quantize the model into 6 bits to 8
bits without hurting accuracy. There is a noticeable accuracy drop when the model is quantized to
lower bit width (e.g, 4 bits or less).

5-bit 4-bit 3-bit 2-bit
= 1072 . .
h=]
S
2 o 10-2
(a] % 10-3 . *
3 s & < 5
§ 1074 "N' $ 107 .;‘\ ;. ‘e
5 | 7 rd rd =
o o . had .o’.

1074

1073

Approx. Model Distortion

1073

Approx. Model Distortion

1073

Approx. Model Distortion

1072

Approx. Model Distortion

Figure 4: Empirical Evidences of Second-order additivity property on ViT-S. The X-axis represents
the model distortion when approximating via second-order additivity property (Property 1) when
quantizing all layer weights. The Y-axis represents the real model distortion by directly measuring
the L2 distortion on model output. Data points inclines to the diagonal lines very well, showing that
the additivity property holds.

- 5-bit 4-bit 3-bit 2-bit
c ° . < o
o o . 't > .
5 .', o o r". 107 »*
@ o -~ S ?
Q0 ’ o 108 e .
- 4 * o o
8 s 0 ¥ Py P
=] . . o’ 10-3 "o .
= & - ¢ $
= 10 - -~ »° ~
[ o - 104 o ¢
v . P »

(4 10°4 % s .

1072

Approx. Model Distortion

1074 10-2

Approx. Model Distortion

1073 1072 1074

Approx. Model Distortion

1073 104

Approx. Model Distortion

1073

Figure 5: Empirical Evidences of Second-order additivity property on DeiT-B. The X-axis represents
the model distortion when approximating via second-order additivity property (Property 1) when
quantizing all layer activations. The Y-axis represents the real model distortion by directly measuring
the L2 distortion on model output. Data points inclines to the diagonal lines very well, showing that
the additivity property holds.

B RELATION BETWEEN MODEL DISTORTION AND MODEL ACCURACY

Our BLOB-Q method optimizes the mixed-precision bit-allocation directly on model distortion, i.e.
the L2 distortion on model output between FP and quantized model. This is based on the hypothesis
that model distortion directly reflects the task performance. To evaluate this hypothesis, we evaluate
this correlation on empirical models in Fig. @ As it shows, the model distortion is closely correlated
to accuracy under various model bit-rates under 3 models, where the large distortion is associated

15



Under review as a conference paper at ICLR 2026

with poor model accuracy. This strongly supports the hypothesis that is also one of the motivations of
BLOB-Q.

ViT-S ViT-B ViT-B/384
80 80
70 80
60
60
50 60
40 40
40
30
20 20 20
10
0 0 0
1 2 3 4 5 02 07 12 17 0 1 2 3 4

Figure 6: Model Distortion (X-axis) vs. Model Accuracy (Y-axis). We quantize each model to
decreasing target mixed-precision bit-widths using BLOB-Q. We evaluate the average L2 distortion
on 128 calibration images from ImageNet training set.

C PARALLEL DP-SOLVER DESIGN

A naive DP-solver can be implemented based on Section 4 which by default performs sequentially on
CPU, but we can harness the parallel-computing power of GPU to further accelerate the theoretical
time cost to enable DP-Solver for larger models at scale. DP-solver to solve the integer problem
which can be regarded as finding the minimally achieveable bitwidth (“weight”) for each group of
to-be-quantized layer weight/activation (“item”). In the first step, since from Eq. 10 we can see that
the states S[1, : ] only depends on previous layer S[1-1, : ], and the fact that the final solutions
are only related to G, thus we can reduce the memory cost of the outer-most loop (Algorithm 1 L13)
by allocate a smaller 2-by-R matrix for S to reduce the memory allocation by L/2 times. This avoids
OOM issue on large models like DeiT-B/384 with higher target rates e.g. 8-bit. Secondly, in the states
updating in DP-solver (Algorithm 1 L13-17), the number of states needed to iterate the inner-loop can

be actually reduced to Zi d; B < R as this is the largest reachable accumulated sizes when all visited
layers (from 1-st to [-th) quantized to the maximum bitwidth B. This can reduces the complexity for
the nested for-loop by virtually half. Also, to avoid OOM for large layer sizes, we perform parallel
state updating piecewisely for the inner-loop, allowing us to adjust the piece length to fully utilize
VRAM. Finally, for the matrix G, we can offload it to storage layerwisely for G[1, : ] since as Eq.
11 indicates it does not depend on G of other layers, and we can load back to perform Algorithm
1 L19-23. However, for large models e.g. DeiT-B with target bit-rate of 8-bit, the storage needed
for offloaded G can be as large as a long matrix of 50 x 8.6 x 107 x 8 x 8bytes ~ 256G B, which
is unacceptable. We notice that due to the discrete behavior of the state transfer, at each layer, a
lot of entries in G repeat themselves for as long as d;. Therefore we perform run-length-coding to
encode G before offloading to storage and efficiently decode it back for the final steps of the algorithm.
Empirically this significantly reduces the encoded size of G to only around 20MiB for DeiT-B model.
The attached source code contains the complete details of the proof-of-concept implementation of the
above described parallel DP-solver.

D ADDITIONAL EXPERIMENT RESULTS

D.1 RESULTS WITH FINETUNING

Although BLOB-Q does not require finetuning to compete with plenty of SOTA methods as in Tab. 1
in main text, for completeness we investigate the effect of finetuning on top of raw BLOB-Q results.
As illustrated in Tab.[6] we can see that finetuning burings noticeable gain from the retraining-free
results on all 6 models in most cases, especially the case under low bit rate like 4-bit MP. On higher
bit rates (6/8-bit), given the already small performance gaps from dense model, finetuning brings
small improvements for most cases, and maintains similar performances of retraining-free results for

16



Under review as a conference paper at ICLR 2026

Table 6: Additional Finetuning results after Post-training Quantization (marked as “+ FT”). Top-1
classification accuracy is evaluated. MP denotes quantization with Mixed-Precision. For a fair
comparison, we report the results with the same average bit widths. For example, 4 MP means that
we quantize the ViT Models into 4 bits on average across the layers. The best result of each group is
highlighted with bold.

Method Size (Bit) | ViT-S ViT-B  ViT-B/384 DeiT-S DeiT-B  DeiT-B/384
Full Precision 32 81.39%  84.54% 86.05% 79.87%  81.85% 83.12%
PTQ4ViT|Yuan et al.[(2022) 4 42.57%  30.69% - 34.08%  64.39% -
APQ-ViT Ding et al.|(2022) 4 4795% 41.41% - 43.55% 67.48% -
RepQ-ViT]|Li et al.[(2023) 4 65.60%  68.48% - 69.03% 75.61% -
BLOB-Q 4 MP 67.32% 79.97% 71.20% 75.18%  79.48% 80.17%
BLOB-Q + FT 4 MP 68.53% 80.66% 72.39% 7742% 80.15% 81.0%
PTQ|Liu et al.|(2021b) 6 MP 70.24%  75.26% 46.88% 75.10%  T7.47% 68.44%
PTQ4ViT|Yuan et al.|(2022) 6 78.63%  81.65% 83.34% 76.28%  80.25% 81.55%
Percentile|Li et al.|(2019) 6 MP 67.74%  77.63% 77.60% 70.49%  73.99% 78.24%
EasyQuant|Wu et al.|(2020) 6 75.13%  81.42% 82.02% 73.26%  75.86% 81.26%
APQ-ViT Ding et al.|(2022) 6 79.10%  82.21% - 77.76%  80.42% -
RepQ-ViT|Li et al.|(2023) 6 80.43%  83.62% - 77.76%  80.42% -
NoisyQuant|Liu et al.|{(2023b) 6 78.65%  82.32% 83.22% 77.43%  80.70% 81.65%
BLOB-Q 6 MP 80.53% 83.66% 85.20% 79.22%  81.58% 82.72%
BLOB-Q + FT 6 MP 80.31% 84.23% 85.15% 79.53% 81.85% 82.98 %
PTQ|Liu et al.|(2021b) 8 MP 80.46%  76.98% 85.35% - 75.94% -
PTQ4ViT|Yuan et al.|(2022) 8 81.00% 84.25% 85.82% 7947%  81.48% 82.97%
Percentile|Li et al.|(2019) 8 MP 7877%  80.12% 82.53% 73.98%  75.21% 80.02%
EasyQuant|Wu et al.[(2020) 8 80.75%  83.89% 85.53% 76.59%  79.36% 82.10%
APQ-ViT Ding et al.|(2022) 8 81.25%  84.26% - 79.78%  81.72% -
NoisyQuant |Liu et al.|(2023b) 8 81.15%  84.22% 85.86% 79.51%  81.45% 82.49%
I-ViT|Li & Gu|(2023) 8 81.27%  84.76% - 80.12% 81.74% -
FQ-ViT|Lin et al.|(2021) 8 - 83.31% - 79.17%  81.20% -
BLOB-Q 8 MP 81.54% 84.84% 85.93% 79.59%  81.75% 82.85%
BLOB-Q + FT 8 MP 81.47% 84.89% 86.01% 79.719% 81.89% 83.04%

few others. We currently finetune for only 100 iterations on ImageNet training set. With dedicated
hyperparameter tuning, e.g. with larger epochs and other optimizer choices, we may see even more
performance gain.

D.2 SCALABILITY OF LOWER QUANTIZATION BIT-WIDTH

Beyond the 4-bit quantization that most existing methods, we further evaluated the quantization
results on even lower bit-width (3-bit), and we found more significant improvement on 3-bit compared
to others, up to 41.15% on ViT-L as shown in Tab.[7} As claimed in our paper, one of our main
contributions of this paper is to boost the performance of ViT quantization on low bit-width. This is
useful in practice when the model is required to be quantized to very small sizes for deployment.

Table 7: Extended experiments on under 3-bit. Both weights and activations are quantized.

Method Bit-width VIiT-B  ViT-L
NoisyQuant|Liu et al.|(2023b)) 3 0.138 1.72
RepQ-ViT |[Li et al.|(2023) 3 0.27 0.85
Ours 3 MP 36.36 42.87

D.3 BIT ALLOCATION STATISTICS

We some example visualizations of the bit allocations resulted from BLOB-Q on ViTs. Fig.[7]and
Fig.[8]show the distribution of the avagerged bits allocated blockwisely inside each layer under two
ViT models, ViT-S and ViT-B, and quantized to 4 and 6-bits respectively. We notice some patterns
for the allocation results. Firstly, aligning with previous observations in many compression works
that first and last layers are usually sensitive to quantization thus requires more bits, we also observe
similar phenomenon on ViTs especially for activation quantization. Beside that, we also found an

17



Under review as a conference paper at ICLR 2026

interesting pattern that the fc1 layers in latter transformer blocks requires slightly more bits to
quantize their activations, which is constantly observed under multiple settings.

Gradually lower bits

Average bit-widths of weights block[n].fcl layers: more bltS

|
Il Average bit-widths of activations

= © N U W RO N RO

[y

last layer: most bits
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 7: Bit allocation visualization of BLOB-Q on 4-bit ViT-B. We show the averages of bit rates
allocated to each block of weight/activation tensor within each layer.

8

Average bit-widths of weights block[n].fcl Iayers mor bItS
Average bit-widths of activations

= O g 0 W =R,O N

—_

last layer: most bits e
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 8: Bit allocation visualization of BLOB-Q on 6-bit ViT-B. We show the averages of bit rates
allocated to each block of weight/activation tensor within each layer.

D.4 EMPIRICAL TIME AND MEMORY COSTS

Fig.0]shows the time costs of our proposed BLOB-Q compared to the most competitive methods to
us. BLOB-Q consists of (1) BLOB-Q-Calib a one-time calibration on weight/activation quantization
which can be used to solve MPQ with arbitrary target rates, and (2) BLOB-Q-DP the DP-solver
to get final solution for a specific bit-width target (e.g. 4/6/8-bit). As the figure shows, our method
displays minimal optimization times (BLOB-Q-DP) and significantly faster than NoisyQuant [Liu|
(2023b). Moreover, the total times (BLOB-Q-Total) combining two steps together still remain
competitive within manageable range. Note that in practice, the calibration is only required to perform
once and versatile to arbitrary target bit rates, therefore the calibration time (BLOB-Q-Calib) does
not significantly contribute to overall time consumption for e.g. multi-target scenario.

Fig.|10|shows the memory costs of calibrating ViT models on L40 machine. As it shows, the VRAM
memory required to perform PTQ ranges reasonably between around 2GB and 6GB for the evaluated
models, making our BLOB-Q accessible to more use cases.

D.5 MORE VIT VARIANTS AND NON-TRANSFORMER MODELS

We further evaluate the scalability of our method to other ViT variants, including ViT-L and Swin
variants like Swin-T and Swin-S, as well as pre-ViT architectures like ResNet-18. As shown in Tab.[8]
we observe consistent advantage compared to baseline method on various bit-widths, especically for
lower bit-widths where we improve from baseline method by up to 11.24% under 4-bit. This shows
that the effectiveness of the BLOB-Q framework is not constrained to ViT architecture.

18



Under review as a conference paper at ICLR 2026

ORepQ-VIT @ EasyQuant
OBLOB-Q-DP  mBLOB-Q-Calib

M NoisyQuant

ORepQ-ViT @ EasyQua

nt M NoisyQuant

15.00 BLOB-Q-Total OBLOB-Q-DP  mBLOB-Q-Calib  BLOB-Q-Total
30.00
10.00 20.00
5.00 10.00
0.00 0.00
4 Bits 6 Bits 8 Bits 4 Bits 6 Bits 8 Bits
(@) ViT-S (b) VIT-B
Figure 9: Time costs (minutes) of different PTQ methods.
6061 6026
6000 5374 5332
%)
2 4000
2
Q 1958 192
£ 2000 9 °
2 J
0
ViT-S ViT-B ViT-B/384 DeiT-S DeiT-B DeiT-B/384

Figure 10: VRAM Memory consumptions (MB) of BLOB-Q calibration.

Table 8: More ViT variants and CNNs results on ImageNet-1k .

Method W-bit  A-bit | VIT-L Swin-T Swin-S ResNet-18
Full Precision 32 32 | 85.59 81.2 83.23 71.61
BLOB-Q 8§MP 8MP | 85.82  8l1.12 83.11 71.74
BLOB-Q 6MP O6MP | 8577 80091 82.82 70.23
BLOB-Q 4MP 4MP | 77.09 7641 80.53 63.02

D.6 SCALABILITY TO LANGUAGE MODELS

Aside from vision tasks, we also explored the performance of BLOB-Q on language models. We
evaluated on a decoder-only model OPT-350M [Zhang et al.|(2022)). From the results on text generation
task shown in Tab. 9} BLOB-Q also preserve generation quality on wikitext2 dataset with bearable
drop in perplexity ( PPL). The performance could be further boosted by incorporating more LLM-
specific quantizer such as GPTQ [3] quantizer as well as additional finetuning.

Table 9: BLOB-Q on language model OPT-350M results on text generation.

Model Method  Bit-width ~ Wikitext2 PPL |
OPT-350M FP 32 23.5607
OPT-350M BLOB-Q 8 MP 25.7557
OPT-350M BLOB-Q 6 MP 25.9515
OPT-350M BLOB-Q 4 MP 34.6864

19




Under review as a conference paper at ICLR 2026

D.7 GENERALIZED RESULTS ON DOWNSTREAM TASK

To evaluate generalizibility of the proposed BLOB-Q beyond standard image classification task, we
conduct PTQ experiments on three pretrained Mask-RCNN models with different ViT backbones:
Swin-T and Swin-S, obtained by varying training settings such as with multi-scale training data.

Table 10: Detection and segmentation performances under different bit widths on COCO2017 val
dataset. T means models with multi-scaled training. MaskRCNN-SWIN-T' is evaluated.

. . . Bbox mAP Mask mAP
Method  Bit Width  Model Size MB) | |\ \p 1 AP@50 mAP@75 | mAP mAP@50 mAP@75
Original &) 18259 DT 652 68 | 393 622 22
BLOB-Q 6 (MP) 34.24 418 644 465 | 389 615 419
BLOB-Q 5 (MP) 2953 396 631 30 | 373 601 39.6
BLOB-Q 4 (MP) 282 329 560 353 | 332 538 354

Table 11: Detection and segmentation performances under different bit widths on COCO2017 val
dataset. T means models with multi-scaled training. MaskRCNN-SWIN-T is evaluated.

O . Bbox mAP Mask mAP
Method  Bit Width  Model Size MB) | | \p 1 AP@50 mAP@75 | mAP mAP@50 mAP@75
Original 3 182.59 360 681 504 | 416 652 a7
BLOB-Q 6 (MP) 34.24 450 674 493 | 411 646 442
BLOB-Q 5 (MP) 2953 425 649 472 | 399 623 434
BLOB-Q 4 (MP) 282 262 4638 265 | 277 458 295

Table 12: Detection and segmentation performances under different bit widths on COCO2017 val
dataset. T means models with multi-scaled training. MaskRCNN-SWIN-S is evaluated.

O . Bbox mAP Mask mAP
Method  Bit Width  Model Size MB) | | \p 1 AP@50 mAP@75 | mAP mAP@50 mAP@75
Original 3 364.16 82 699 528 | 432 671 6.0
BLOB-Q 6 (MP) 49.53 472 694 518 | 427 666 46.0
BLOB-Q 5 (MP) 4128 460 679 510 | 420 652 453
BLOB-Q 4 (MP) 33.02 279 454 310 | 284 444 313

We first demonstrate the effectiveness of the proposed BLOB-Q on extremely low bit rates for three
ViT-based detection models. We observe a consistent advantage over the uniform quantization method
on detection scores across different models and bit rate targets (4 to 6-bit). In Table[T0| Table [TT}
and@, we achieved near-FP (full-precision) model performance on 6-bit, where three models only
drop 0.9-1% on bbox mAP and < 1% drop on mask mAP from their respective FP models. On 6-bit
BLOB-Q induces less detection error compared to the uniform baseline, while on lower bit rates like
5-bit, the performance gap becomes even larger, where we are still able to boost the mAP to the level
comparable to FP models. Particularly, we observe a significant boost on extremely low bit such
as 4-bit. Compared to the three 4-bit models obtained by uniform quantization where all detection
scores are extremely poor, we significantly improve the performances to acceptable ranges using
BLOB-Q. Specifically, we improve the bbox mAP score by around 22 x, from mere 1.4 to 33.0 by
employing BLOB-Q. The other two models also show similar improvement.

Figure 11: Visualization of the detection results. First row shows uniform INT4 quantizaiton results
and second row shows F-LBQ INT4 results.

20



Under review as a conference paper at ICLR 2026

Qualitative Results. Fig.|11|shows the qualitative detection results on COCO 2017 validation images.
At bit rates as low as 4-bit, we observe that although there are some cases of incomplete bounding
boxes (e.g., the boat in the second image), the detection quality is generally decent and drastically
better than the baseline results.

E QUANTIZATION WITH MIXED-PRECISION ON HARDWARE

In practice, there are three stages of data movement for Mixed-Precision Quantization on hardware:
global memory stage, buffer stage, and processing stage (or compute unit stage). At global memory
stage, weights are stored and packed based on bit-width to maximize storage efficiency. Then at
buffer stage, weights will be unpacked and aligned before sending to compute unit. For example, if
a) memory has a 16-bit word, b) weights are quantized to 4-bit, and c) 8-bit int is used in compute
logic, then a 16-bit word will be unpacked to 4 weights and each weight will be padded to a 8-bit
integer with zero-padding. Last, the unpacked and padded weights will be sent to compute units. The
hardware dynamically processes weights with different bit widths based on the memory packing and
alignment mechanisms.

Here is an example when weights are quantized to 4-bit, with bitwise operations involved in the
process. Assume the length of a memory word is 16-bit. 4 weights are packed into a single word. Let
w1 = 0xA (1010 in binary), w2 = 0x4 (0100 in binary), w3 = 0x5 (0101 in binary), and w4 = 0x7
(0111 in binary) denote 4 weights. They will be packed into a word:

packed_word = [wl w2 w3 w4] = 1010 0100 0101 0111 (packed into a 16 bit word).

When the packed data is fetched from global memory to buffer, bitwise operations are used to extract
the individual values from the packed word. For example, to extract the 4-bit weight w1, perform a
bitwise AND operation with a mask and shift the result: mask = 0xFO0O (in binary: 1111 0000 0000
0000),

extract wl : packed_word & mask >> 12.

If 8-bit int is used in compute logic, each weight will be padded to a 8-bit integer,
padding : wl = 0000 1010, w2 = 0000 0100, w3 = 0000 0101, w4 = 0000 0111.
The padded weights will be then sent to compute unit.

We implemented 8-bit and 4-bit matrix multiplication and convolution for GPU acceleration based
on Nvidia’s CUTLASS template librar as CUDA extensions to python-based main process, and
replaced them with Pytorch’s default convolution and linear module and tested the speed up on
GPUs. Since Nvidia’s TensorCore is supported on Ampere machines with the lasted versions of
the CUDA compiler, our implementation leverages the TensorOp GEMM:s provided by CUTLASS.
For INT8 and INT4 convolution, we adopt the implicit convolution for signed 8-bit (s8) and
signed 4-bit (s4) respectively. For INT4 operations, since Pytorch does not support s4 data type,
we first perform packing operations for both inputs and weights (quantized to effective 4-bit but
contained in torch.int8 data type), which packs two adjacent s4 values into a byte, then
transfer them from pytorch in s8 type to C++. The packed s8 data are further casted into s4 type
using reinterpret_cast<cutlass:int4b_t «>. We implemented the packing for two s4
values f1, fo as below:

pack(fl, fg) = fl L4+ fQ + 16 - H(fg < 0) (19)

This packing process is implemented in parallel to reduce the overhead when applied to tensors.

To efficiently utilize CUDA kernels, CUTLASS adopts 128-bit vector memory access. As a result,
INTS8 convolution and matmul require the input channels to be a multiple of 16, and the INT4
ones require a multiple of 32 instead. Therefore, we pad the input channels to meet this alignment
requirement for INT4 or INT8 inference. We then utilize the implemented INT4 and INTS8 oper-
ations to perform mixed-precision quantization on Vision Transformers (ViTs). We constrain the
quantization parameters and bit allocation options to only 4 and 8 bits. We evaluate such constrained
mixed-precision on DeiT-B when quantied to 6 bits on average. Tab. [I[3|shows the performance of
the inference time on DeiT-B and the speedup under different batch sizes. The Mixed-Precision
Quantization at 6 bits on average with the above implementation can bring up to 1.6x speedups.

https://github.com/NVIDIA/cutlass

21


https://github.com/NVIDIA/cutlass

Under review as a conference paper at ICLR 2026

Table 13: Benchmark performances of Mixed-Precision Quantization at 6 bits on DeiT-B inference
using INT8 and INT4 GEMM on Nvidia A100.

. Time Cost (ms)
Baich Size | 37 "4 128 256
FP32 238 242 240 238
6 Bits 145 144 152 1.54
Speedup 1.64 168 158 1.55

E.1 DISCUSSION ON MEMORY BANDWIDTH

To explore the empirical benifit of adopting a mixed-precisioned quantization recipe compared
to uniform quantization, we conducted further comparison of our mixed-precision approach with
uniform quantization method, regarding the hardware performance. Firstly, we compare the inference
latency with the SOTA uniform quantization method (RepQ-ViT) on an 80GB-A100 GPU platform,
with a high memory bandwidth at 2.039 TB/s. Tab.[I4] summarizes the inference speed resulting from
our mixed-precision quantization approach. In Tab.[T4] we choose the settings of two models for
both approaches where accuracy loss is less than 0.5%. For all settings, we show the average latency
on 8192 test images with batchsize of 64. The results show we gain latency speedups from uniform
quantization up to 19%, without hurting accuracy.

Table 14: GPU latency (ms) of mixed-precision inference compared to uniform quantization.

Method Latency on DeiT-S  Latency on DeiT-B
FP 65.4 179
RepQ-ViT (Uniform) 10.5 113
Ours (MP) 8.78 102

E.2 DISCUSSION ON THE EFFECT ON MEMORY BANDWIDTH

We also evaluated the hardware performance on two hardware platforms: TPU V3 and Eyeriss,
which are the neural-network-target hardware accelerators targeted for edge devices. The memory
bandwidths on these platforms are much less than A100 GPU, at 12.5GB/s and 1GB/s for TPU and
Eyeriss respectively. Using the standard SCALE-sim simulator, we simulated the inference speed
on DeiT-S and DeiT-B, when deployed onto the two hardware platforms. Tab. [I5]summarizes the
inference speed resulting from our mixed-precision quantization approach, compared with RepQ-ViT.
In Tab. [I5] we also choose the settings of both approaches where accuracy loss is less than 0.5%.
As we can see, our mixed-precision quantization approach can further reduce the inference time
noticeably by up to 25%, compared with the uniform quantization approach. The improvement comes
from the low-bit quantization of our approach. As the proposed mixed-precision quantization can
quantize models to lower bit widths, it thus leads to smaller model size and less memory read/write
time.

Table 15: Hardware performance on Edge devices with different memory bandwidths.

Latency on DeiT-S (ms) | Latency on DeiT-B (ms)

Method TPUV3  Eyeriss | TPUV3  Eyeriss

FP 10.8 646.4 18.6 11132
RepQ-ViT (Uniform) 9.1 449.7 15.7 774.4
Ours (MP) 6.8 3373 12.9 580.8

22



	Introduction
	Related Works
	Preliminaries and Problem Statements
	Second-Order Approximation and Additivity Property

	Calibration for Second-Order Model Distortion
	Global Optimal Solver via Dynamic Programming
	Experiments
	Conclusion
	Proof of Property 1 (Second-Order Additivity)
	Evidences of Assumption Used
	Evidences of Additivity

	Relation between Model distortion and Model Accuracy
	Parallel DP-solver Design
	Additional Experiment Results
	Results with Finetuning
	Scalability of Lower Quantization Bit-width
	Bit Allocation Statistics
	Empirical Time and Memory Costs
	More ViT variants and Non-transformer models
	Scalability to Language Models
	Generalized Results on Downstream Task

	Quantization with Mixed-Precision on Hardware
	Discussion on Memory Bandwidth
	Discussion on the effect on Memory Bandwidth


