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Abstract

This paper considers the problem of learning temporal task specifications, e.g.1

automata and temporal logic, from expert demonstrations. Task specifications are a2

class of sparse memory augmented rewards with explicit support for temporal and3

Boolean composition. Three features make learning temporal task specifications4

difficult: (1) the (countably) infinite number of tasks under consideration; (2) an5

a-priori ignorance of what memory is needed to encode the task; and (3) the discrete6

solution space - typically addressed by (brute force) enumeration. To overcome7

these hurdles, we propose Demonstration Informed Specification Search (DISS):8

a family of algorithms requiring only black box access to a maximum entropy9

planner and a task sampler from labeled examples. DISS then works by alternating10

between conjecturing labeled examples to make the provided demonstrations less11

surprising and sampling tasks consistent with the conjectured labeled examples.12

We provide a concrete implementation of DISS in the context of tasks described by13

Deterministic Finite Automata, and show that DISS is able to efficiently identify14

tasks from only one or two expert demonstrations.15

1 Introduction16

Expert demonstrations provide an accessible and expressive means to informally specify a task,17

particularly in the context of human-robot interaction. In this work, we study the problem of18

inferring, from demonstrations, tasks represented by formal task specifications, e.g., automata and19

temporal logic. The study of task specifications is motivated by their ability to (i) encode historical20

dependencies; (ii) incrementally refine the task via composition, and (iii) be semantically robust to21

changes in the workspace. However, learning such symbolic specifications is difficult, due to the22

often combinatorially large search space and lack of gradient-based feedback that can be leveraged.23

Prior works in this space have used methods ranging from enumeration [20] to mutation-based24

sampling [11]. In order to more efficiently search for explanatory task specifications, this work25

introduces a family of approximate algorithms, called Demonstration Informed Specification Search26

(DISS), that systematically reduces the problem of learning from demonstrations into a series of27

specification identification problems, e.g., finding a DFA that is consistent with a set of example28

strings [8], a problem more generally referred to as Grammatical Inference [7].29

To ground our discussion, we introduce a running example.30

1.1 Running Example Consider an agent operating in an environment with different regions,31

which we present as a colored 8x8 discretized world for demonstrative purposes, shown in Fig 1. The32

agent can attempt to move up, down, left, or right. With probability 1/32, wind will push the agent33

down, regardless of the agent’s action. The black path is the prefix of an episode, in which the agent34

attempts to move left, slips into a blue region (�), visits a brown region (�), and then proceeds35

downward.36
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Figure 1

Given the black demonstration, ξb, and the prior knowledge that37

the agent’s task implies that it will avoid red regions (�), what task,38

represented as a Deterministic Finite Automaton (DFA), explains39

the agent’s behavior?40

Upon inspecting the demonstration, one might hypothesize that the41

complete path formed by extending ξb with the grey dashed lined42

to � is a positive example of the task. Appealing to Occam’s razor,43

one might conjecture that the task was just to reach � and avoid �.44

However, under this hypothesis and assuming a temporal discount, ξb45

is quite surprising. For one, the detour to visit � seems unjustified.46

Furthermore, why would the agent not take the red dashed path47

directly to �?48

start

Figure 2

To remedy these concerns, one might conjecture that the agent’s true49

task requires visiting� after visiting� - thus explaining why the agent50

does not take the red dashed path. Similarly, the demonstration seems51

less surprising if one assumes that the agent needs to avoid red regions52

- thus explaining why the agent does not take the light blue dotted path.53

The result is the task represented by the DFA shown in Fig 2. We54

shall later systematize this line of reasoning and provide a learner that55

recovers an explanatory DFA given a demonstration.56

The above example also illustrates a few features that motivate learning57

task specifications. First and foremost, task specifications directly encode the set of acceptable58

behaviors and model temporal dependencies. This stands in contrast to Markovian rewards where59

the encoded task is intimately tied to the details of the dynamics model such as the transition60

probabilities, time resolution, and workspace configuration [1]. Second, task specifications have well61

defined compositions, e.g., conjunction and sequential ordering, side stepping many classes of reward62

bugs stemming from ad-hoc composition [21, 2]. This avoids the need to fine tune learned tasks,63

which undercuts the original purpose of learning the task representations [13]. Finally, learning task64

specifications from demonstrations enables learning classes of sparse rewards, a key primitive in65

sparse-feedback reinforcement learning techniques such as hindsight experience replay [3].66

1.2 Related Work The problem of learning objectives by observing an expert has a rich and67

well developed literature dating back to early work on Inverse Optimal Control [10] and more68

recently via Inverse Reinforcement Learning (IRL) [15]. In IRL, an expert demonstrator optimizes an69

unknown reward function by acting in a stochastic environment. The goal of IRL is to find a reward70

function that explains the agent’s behavior. A fruitful approach has been to cast IRL as a Bayesian71

inference problem to predict the most probable reward function [16]. To make this inference robust to72

demonstration/modeling noise, one commonly appeals to the principle of maximum causal entropy [9,73

24]. Intuitively, this results in a forecasting model that is no more committed to any given action74

than the data requires (formalized as bounding the worst-case expected description length of future75

demonstrations).76

While powerful, traditional IRL provides no principled mechanism for composing the resulting reward77

artifacts and requires the relevant historical features (memory) to be a-priori known. Furthermore, it78

has been observed that small changes in the workspace, e.g., moving a goal location or perturbing79

transition probabilities, can change the task encoded by a fixed reward [21, 1].80

To address these deficits, recent works have proposed learning Boolean task specifications, e.g. logic81

or automata, which admit well defined compositions, explicitly encode temporal constraints, and82

have workspace independent semantics. The development of this literature mirrors the historical path83

taken in reward based research, with works adapting optimal control [12, 6], Bayesian [17, 23], and84

maximum entropy [22] IRL approaches.85

A key difficulty for the task specification inference from demonstrations literature is how to search an86

intractably large (often infinite) concept class. In particular, and in contrast to the reward setting, the87

discrete nature of automata and logic, combined with the assumed a-priori ignorance of the relevant88

memory required to describe the task, makes existing gradient based approaches either intractable or89

inapplicable. Instead, current literature either (syntactically) enumerates concepts [21, 6, 17, 23] or90

hill climbs via simple probabilistic (syntactic) mutations [12, 5].91
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1.3 Contributions Specific contributions of our work include:92

1. A proxy function whose gradient (i) informs the search for an explanatory task specification; and93

(ii) is computed with black-box access to a maximum entropy planner;94

2. A reduction from learning specifications from demonstrations to learning from labeled examples;95

3. A guided hill-climbing algorithm that is agnostic to the underlying task representation and96

dynamics model. For example, changing the task representation only requires providing a97

specification identification algorithm for that class of tasks. Examples include learning decision98

trees, DFAs, symbolic automata, etc., and99

4. An open-source (MIT license) implementation of DISS for learning DFAs that we apply in an100

empirical setting from prior literature.101

The choice of DFAs as the task representation for our experiments was motivated by two main102

observations. First, DFAs explicitly encode memory, making the contribution of identifying relevant103

memory more clear. Next, to our knowledge, all other techniques for learning finite path properties104

from demonstrations focus on syntax defined concept classes. As a result, these existing techniques105

conflate search efficiency with their concept classes’ inductive biases. On the other hand, DFAs106

constitute a very large and mostly unstructured concept class1, which allow for learning without107

user-defined inductive biases.108

1.4 Algorithm Overview Demonstration Informed Specification Search (DISS) operates by109

cycling between three components (shown in Fig 3).110

labeled path
(ξt, ξt /∈ ϕt)

select
labeled examples

Xt+1

task: ϕtCandidate
Sampler

Example
Buffer

Surprisal
Guided Sampler

(Sec 4)

(Sec 3)

(Sec 2, Sec 5)

Figure 3: Overview of DISS.

111

1. Example Buffer: Given previous iterations, the112

example buffer yields a set of positive and nega-113

tive example paths. Based on Simulated Anneal-114

ing [18].115

2. Candidate Sampler: Given a set of labeled ex-116

amples and an optional previous candidate task,117

the candidate sampler draws a candidate task that118

is consistent with a set of labeled examples.119

3. Surprisal Guided Sampler (SGS): Given task ϕ,120

the SGS algorithm samples a labeled path that is suspected to be mislabeled by ϕ.121

Paper Structure In the sequel, we will formalize the problem statement and agent model based122

on the extensive literature on maximum causal entropy agent models (Sec 2); (ii) formulate an123

approximate solution using simulated annealing (Sec 3); (iii) derive a proposal distribution which124

tries to find mislabeled paths; and (iv) provide empirical evidence for the efficacy of this algorithm125

for learning DFAs.126

2 Preliminaries and Problem Statement127

2.1 Dynamics Model We model the expert demonstrator as operating in a Markov Decision128

Process (MDP), M = (S,A, s0, P ), where (i) S denotes a finite set of states, (ii) A(s) denotes129

the finite set of actions available at state s ∈ S, (iii) s0 is initial state, and (iv) P (s′ | a, s) is the130

probability of transitioning from s to s′ when applying action a ∈ A(s). We will make two additional131

assumptions about M . First, we assume a unique (always reachable) sink state, i.e., P ($ | a, $) = 1,132

denoting “end of episode”. Second, we shall assert the Luce choice axiom, which requires that each133

action, a ∈ A(s), be distinct, i.e., no actions are interchangeable or redundant at a given state [14].134

A path, ξ, is an alternating sequence of states and actions starting with s0: ξ = s0
a0−→ . . .

a1−→ sn.135

Any path, ξ, can be (non-uniquely) decomposed into a prefix, ρ, concatenated with a suffix, σ, denoted136

ξ = ρ � σ. We allow σ to be of length 0. The last state of ξ is denoted by last(ξ) def
= sn. A path137

is complete if it contains $ exactly once, and thus last(ξ) = $. We denote by Paths$ the set of all138

complete paths, and by Paths the set of all prefixes of Paths$, i.e., paths that contain $ at most once.139

1The number of DFAs grows super exponentially in the alphabet size and maximum number of states, e.g.,
given an alphabet of size four, there are already many many more than 100,000 DFAs with at most 4 states.
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2.2 Task Specifications A task specification (or task), ϕ, is a subset of paths equipped with a size140

function that measures its description complexity, i.e.,141

ϕ ⊆ Paths$ size : Φ→ R≥0, (1)

where Φ is a task specifications, called a representation class. A labeled example is tuple, x = (ξ, l),142

corresponding to a complete path and a binary label, l ∈ {0, 1}. An example, (ξ, l), is consistent143

with task ϕ if l = [ξ ∈ ϕ]. A collection of labeled examples, X = x1, . . . , xn, is consistent with a144

task, ϕ, if they are all consistent.145

Example 2.1. Our running example used DFAs over the alphabet Σ = {�,�,�,�,�} as its146

representation class. For a DFA task ϕ, a path, ξ, belongs to ϕ if the corresponding color sequence147

ends in an accepting (concentric circle) state. For instance, let ξb and ξr be the completed black and148

red paths shown in Fig 1 and define Xbg = {(ξb, 1), (ξr, 0)}. The DFA shown in 2 is consistent with149

Xbg . We take the size of ϕ to be the number of bits to encode the DFA using stuttering semantics, i.e.,150

default self loops. The concrete encoding is provided by the DFA python library [4].151

Finally, a candidate sampler (or identifier), is a map from labeled examples, X, and an optional152

reference task, ϕ ∈ Φ to a distribution over consistent tasks in Φ. The lack of a task (either because153

no reference is provided or no task is consistent, denoted ⊥. This distribution is denoted I(• | ϕ,X).154

2.3 Policies and Demonstrations A (history dependent) policy, π(a | ξ), is a distribution over155

actions, a, given a path, ξ, where a ∈ A(last(ξ)). A policy, π, is (p, ϕ)-competent if the probability156

of satisfying ϕ using π is p, i.e., Pr(ξ ∈ ϕ | π,M) = p. A demonstration, is a path, ξ∗, generated by157

a employing a policy π in an MDP M , ξ ∼ (π,M).158

Task Inference from Demonstrations Problem (TIDP): Let M , Φ, and P be a fixed MDP,
representation class, and task prior, respectively. Further, let π∗ be a (p∗, ϕ∗)-competent
policy, π∗, where p∗, ϕ∗, and π∗ are all unknown. Given a multi-set of i.i.d. demonstrations,
ξ∗1 , . . . ξ

∗
m ∼ (π∗,M), find:

ϕ ∈ arg max
ψ∈Φ

Pr(ξ∗1 , . . . ξ
∗
m | ψ,M) · P (ψ |M). (2)

By itself, the above formulation is ill-posed as Pr(ξ∗1 , . . . ξ
∗
m |M,ϕ) is left undefined. What remains159

is to derive a suitable agent model and discuss how to manipulate likelihoods in this model.160

2.4 Task Motivated Agents Following [22], we propose using the principle of maximum causal161

entropy to assign a bias-minimizing belief of generating the demonstrations given a candidate task.162

Here bias-minimizing is taken to mean miniminizing the worst case prediction log-loss [24], i.e., the163

worst-case number of bits needed to encode the the actions of the agent.164

We start by defining the causal entropy on arbitrary sequences of random variables. Let X1:i
def
=165

X1, . . . ,Xi and Y1:i
def
= Y1, . . . ,Yi denote two sequences of random variables. The entropy of X1:i166

causally conditioned on Y1:i is:167

H(X1:i || Y1:i)
def
=

i∑
t

H(Xi | Y1:t,X1:t−1) (3)

where, H(X | Y)
def
= EX [− ln Pr(X | Y)], denotes the entropy of X (statically) conditioned on168

Y . Intuitively, causal conditioning enforces that past variables do not condition on events in the169

future. This makes causal entropy particularly well suited for robust forecasting in sequential decision170

making problems, as agents typically cannot observe the future [24].171

For MDPs, the unique policy, πϕ, that maximizes entropy subject to a finite horizon and to being172

(p, ϕ)-competent exponentially biases towards higher value actions: lnπ(a | ξ) def
= Vλ(ξ � a)− Vλ(ξ).173

The state and action values are recursively given by the following smoothed Bellman-backup [24]:174

Vλ(ξ)
def
=


λ · ϕ(ξ) if ξ ∈ Paths$,

LSEa∈A(last(ξ)) Vλ(ξ � a) if ξ ∈ Paths \ Paths$,

Es′ [Vλ(ξ � s′) | s, a] if (ξ = x � s � a) ∧ (s, a ∈ S ×A).

(4)

4



Here LSEx f(x)
def
= ln

∑
x e

f(x) and λ, called the rationality, is set such that Pr(ξ ∈ ϕ | πλ,M) = p.175

Unfortunately, p is typically not known. In such cases, the competency of the agent can be treated as176

a hyper-parameter or estimated empirically, e.g., pϕ ≈ 1/m
∑m
i=1[ξ ∈ ϕ]. The former is useful when177

given on a few demonstrations and the latter is useful when given a large number of demonstrations.178

Finally, when λ is induced from ϕ, we shall write Vϕ, and πϕ.179

Explainability of a task The surprisal (or information content) of (i.i.d.) demonstrations,180

ξ∗1 , . . . ξ
∗
m, is the negative log likelihood of the demonstrations under (π,M):181

h(ξ∗1 , . . . ξ
∗
m | π,M)

def
= −

m∑
i=1

ln Pr(ξi | π,M). (5)

Note that the likelihood of i.i.d., demonstrations from (π,M) is simply exp(−h(ξ∗1 , . . . ξ
∗
m)). Given182

a fixed MDP, M , and a fixed collection of demonstrations, ξ1, . . . , ξm, we define the task surprisal,183

ϕ, as:184

h(ϕ)
def
= h(ξ∗1 , . . . ξ

∗
m | πϕ,M) (6)

Solving a TIDP requires minimizing h plus the negative log prior, which can be taken as size(ϕ).185

3 Example Buffer186

Given our maximum causal entropy agent model, we employ simulated annealing to approximately187

solve the TIDP problem. At a high level, Simulated Annealing (SA) [18] is a probabilistic optimization188

method that seeks to minimize an energy function U : Z → R ∪ {∞}. To run SA, one requires189

three ingredients: (i) a cooling schedule which determines a monotonically decreasing sequence190

of temperatures; (ii) a proposal (neighbor) distribution q(z′ | z); and (iii) a reset schedule; which191

periodically sets the current state, zt, to one of the lowest energy candidates seen so far.192

A standard simulated annealing algorithm then operates as follows: (i) An initial z0 ∈ Z is selected;193

(ii) Tt is selected based on the cooling schedule; (iii) A neighbor z′ is sampled from q(• | zt); (iv) z′194

is accepted (zt+1 ← z′) with probability:195

Pr(accept | z′, zt) =

{
1 if dU > 0

min
{
1, e

dU/Tt

}
otherwise

, (7)

where dU def
= U(z) − U(z′); (v) Finally, if a reset is triggered, zt+1 is sampled from previous196

candidates, e.g., uniform on the argmin.197

For DISS, we will start by expressing the posterior distribution on tasks in the form:198

Pr(ϕ | ξ∗1 , . . . ξ∗m,M) ∝ e−U(ϕ), (8)

where the energy, U , is given by:199

U(ϕ)
def
= θ · size(ϕ) + h(ϕ), (9)

and θ ∈ R determines the relative weight of the size. That is, we appeal to Occam’s razor and assert200

that the task distribution is exponentially biased towards simpler tasks, where simplicity is measured201

by the description length of the task, size(ϕ), and the description length (i.e. surprisal) of ξ∗1 , . . . ξ
∗
m202

under (πϕ,M).203

Using the language of SA, we define DISS as follows: (i) z ∈ Z is a tuple, (X, ϕ), of labeled204

examples and a task specification; (ii) z0 = (∅,⊥); (iii) the proposal distribution, q(X′, ϕ′ | X, ϕ)205

is defined to first sample a concept using an identification map, ϕ′ ∼ I(X), then run SGS (defined206

below) on ϕ′ to conjecture a labeled path ξ, yielding X′′ = X ∪ {(ξ, ξ /∈ ϕ′)}. Next, drop examples207

from X′′ with probability pdrop; (iv) resets occur every κ ∈ N time steps. If a reset is triggered,208

Xt+1, is sampled from softmini≤tU(ϕi), and ϕt+1 is sampled from I(• | ⊥,Xt+1). This process of209

accepting, rejecting, and resetting defines the example buffer.210

4 Surprise Guided Sampler (SGS)211

The key innovation of DISS is defining a proposal distribution over labeled examples which constrains212

the concept sampler to find more and more explanatory (less surprising) tasks.213
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Figure 4: Prefix tree and computation graph with 12 nodes for the paths shown on the left.

We start by discussing the prefix tree of the demonstrations. As we shall see, the prefix tree will serve214

as a mechanism to reason about the various paths not taken.215

Let ξ∗1 , . . . ξ
∗
m be a multi-set of demonstrations (paths) and denote by T = (N,E) the prefix tree216

of the ξ∗1 , . . . ξ
∗
m, where N and E are the prefixes (nodes) and edges of T , respectively. Each node217

ρ ∈ N , corresponds to a prefix of at least one of the demonstrations. Given two prefixes ρ, ρ′ ∈ N ,218

ρ′ is a descendent of ρ if ρ′ = ρ � y. An edge connects parent ρ to child ρ′ if ρ′ is the one action (or219

state) extension of ρi. For each edge, (ρ, ρ′) ∈ E, we define the edge traversal count, #(ρ,ρ′), as the220

number of demonstrations, ξ∗, such that ξ∗ = ρ′ � y. A node, ρ, is said to be an ego node if its prefix221

ends in a state, i.e. last(ρ) ∈ S. A node that is not an ego node is called an environment (env) node.222

A path, ξ, pivots at node ρ if ρ is the longest prefix of ξ in N . The pivot actions (and pivot states)223

of a node, ρ, are the set of available actions (states) that result in pivoting at ρ, i.e.,224

Aρ
def
= {a | ρ � a ∈ Paths \N} Sρ

def
= {s | ρ � s ∈ Paths \N}. (10)

Example 4.1. Consider the MDP shown in Fig 4 with two paths ξ∗1 and ξ∗2 shown as a green dashed225

and black solid line resp. The prefix tree of {ξ∗1 , ξ∗2} is shown on in the middle. For convenience an226

index is associated with each node (prefix). There is a path that pivots at every node except node ρ2,227

since both possibilities (slipping/not slipping) appear in the demonstrations yielding Sρ2 = ∅.228

Next, observe that because weighted averaging and LSE are commutative, one can aggregate the229

values of a set of actions or set of states (environment actions). This motivates defining the pivot230

value of a node ρ as:231

Vϕρ
def
=

{
LSEa/∈Aρ Vϕ(ρ � a) if i is ego,
Es[Vϕ(ρ � s) | ρ,M, s /∈ Sρ] if i is env,

(11)

We shall denote by Vϕ ∈ RN the node-indexed vector of pivot values associated with task ϕ under232

our maximum entropy agent model. We note two properties of pivot values. First, pivot values strictly233

increase as the language of a task specification is made larger:234

Proposition 4.2 (Pivot values respect subsets). Let ξ be a complete path that pivots at node i. If235

ϕ ( ψ and ξ ∈ ψ \ ϕ, then Vϕi < Vψi .236

Proof. Follows inductively from the monotonicity of E,
∑

, and ln.237

Second, using the soft Bellman backup (4), one sees that the pivot values entirely determine the238

values, V , of the prefixes of the demonstrations (an example is shown on the right of Fig 4). Namely,239

let V̂k(V) denote the derived value at node k in the prefix tree, and let Pr(i  k | V) denote240

the probability of transitioning from node i to node k under the (local) policy: eV̂j(V)−V̂i(V). This241

motivates defining the surprisal of the local policy induced by the pivot values as follows:242

Let T = (N,E) be a prefix tree of demonstrations, ξ∗1 , . . . ξ
∗
m. The pivot surprisal of given T is243

map, ĥ : Rd → R, where d is the number of nodes that can be pivots and:244

ĥ(V)
def
= −

∑
(i,j)∈E

#(i,j) · ln Pr(i j | V). (12)

Importantly, the task surprisal factors through the pivot surprisal, i.e., h(ϕ) = ĥ(Vϕ).245
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4.1 Pivot surprisal gradients Motivated by the question “Given a candidate task, what counter-246

factuals still require explanation?”, we ask a related question: “How could the pivot values change247

to make the demonstrations more likely?” For example, for ego nodes, one might want to make the248

value of the observed actions large and the pivot value small. The result would be an agent with no249

incentive to pivot. Unfortunately, changing a pivot value changes the policy in a non-local way, e.g.,250

changing V9 in Fig 4 also changes the policy for nodes 9, 8, 2, and 1. Fortunately, Prop 4.3 shows that251

upstream effects are easily summarized by the gradient of ĥ, with a proof provided in the appendix.252

Proposition 4.3 (∇ĥ determined by local policy). Letting pxy(V) denote the probability of
starting at node x and pivoting at y:

∂ĥ

∂Vk
=
∑

(i,j)∈E
i is ego

#(i,j) ·
(
pik(V)− pjk(V)

)

pxy(V)
def
= Pr(x y | V) ·

(
1−

∑
(y,z)∈E

Pr(y  z | V)

)
.

(13)

Note that Prop 4.3 illustrates that gradients are simple to compute given only access to the policy253

on the prefix tree. Further, focusing on any given edge one observe that (13) captures the trade-off254

between (i) making the actions taken more optimal by decreasing the value of other actions; (ii)255

making the actions taken less risky by increasing the value of possible outcomes.256

Mislabeled counter-factuals Because of the expressivity of representation classes like DFAs,257

there is concern that globally optimizing ĥ will overfit to the demonstrations and ignore the prior258

distribution. Thus, our goal is not to simulate gradient descent under ∇ĥ, but to instead help identify259

counter-factual paths that require explanation. Props 4.2 and 4.3 yields the following observation.260

Let ξ be a complete path with pivot ρ such that: ξ ∈ ϕ ⇐⇒ ∂ĥ
∂Vρ > 0. If ξ is a likely path under πϕ261

(and thus has a large effect on V) and the pivot surprisal gradient ∂ĥ
∂Vρ is large in absolute value, then262

ξ may be mislabeled by ϕ. For example, if the gradient at pivot ρ is positive, the surprisal and can be263

decreased by removing path, ξ from the candidate task ϕ.264

Algorithm 1: Surprise Guided Sampler
Input: ϕ,X, T ,M, β
Compute πϕ given M and T .

Let D = softmaxρ

(
− 1
β

∣∣∣ ∂ĥ∂Vρ ∣∣∣) .
Return ρ ∼ D and ξ ∼ (πϕ,M) s.t.

i ξ pivots at i.
ii ξ ∈ ϕ ⇐⇒ ∂ĥ

∂Vi > 0.
iii ∃ϕ′ ∈ Φ s.t. ϕ′ is consistent with:

X ∪ {(ξ, ξ /∈ ϕ)}.

Using these insights we propose surprise guided sam-265

pling (Alg 1) which samples a path to relabel based266

on (i) how likely it is under πϕ and (ii) the magni-267

tude and sign of the gradient at the corresponding268

pivot. Combined with an identification algorithm, I,269

repeated applications of Alg 1 yields an infinite (and270

stochastic) sequence of tasks resulting from incre-271

mentally conjecturing mis-labeled paths.272

Importantly, note that Alg 1 only requires a black273

box maximum entropy (MaxEnt) planner to enable274

assigning edge probabilities, Pr(i  j | V), and275

sampling suffixes given a pivot. If the satisfaction276

probability of an action is also known, i.e., Prξ′(ξ ·277

ξ′ ∈ ϕ | ξ,M, πϕ), then one can more efficiently sample suffixes using Baye’s rule.278

5 Experiments279

In this section, we illustrate the effectiveness of DISS by having it search for a ground truth specifica-280

tion, represented as a DFA, given the expert demonstrations in the workspace from our motivating281

example (shown in Fig 1). This inference problem is derived from previous benchmarks proposed282

in [21, 22]. As we expand on below, the key difference is that the representation classes in the prior283

work are much smaller, i.e., of sizes 930 and 14 tasks respectively. Here we shall work with all DFAs284

over the alphabet, Σ = {�,�,�,�,�}. As previously discussed, this representation class grows285

super exponentially, e.g., there are many more than 100,000 DFAs with at most 4 states.286
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To start, denote the (dotted) green path in Fig 1 that goes directly to � by ξg. Simiarly, denote the287

(solid) black path by ξb that immediately slips into �, visits �, then proceeds towards �. This path288

is incomplete, with a possible extension, σb, shown as a dotted line. The ground truth task is the289

right DFA in Fig 2. We consider two TIDP instances which vary the representation class and the290

provided demonstrations. These variants respectively illustrate that (i) the full specification can be291

learned given unlabeled complete demonstrations; and (ii) our method can be used to incrementally292

learn specifications from unlabeled incomplete demonstrations. In particular, we will show that DISS293

supports incorporating prior knowledge about the task, e.g., rules learned from natural language or294

prior demonstrations.295

1. Monolithic: ξg and ξb�σb are provided as (unlabeled) complete demonstrations. The representation296

class is MinDFA.297

2. Incremental: ξb is provided as an (unlabeled) incomplete demonstration. The representation class,298

R, is a variant of MinDFA that incorporates prior knowledge. Let ϕ′ denote the three state DFA299

for avoiding � and reaching �. If a task, ϕ is inR, then {�,��} ⊆ concept(ϕ) ⊆ concept(ϕ′).300

That is, prior knowledge is provided that you must reach �, you must avoid �, and you know two301

positive examples. The size of ϕ is given by: size(ϕ) = size′(ϕ)− size′(ϕ′), where size′ is the302

size function for the MinDFA representation class.303

For both experiments, the size weight, θ, was set to 1/50. For reference, the ground truth task uses304

about ≈ 40 nats.305

Candidate Sampler. To implement I, we adapted an existing SAT-based DFA identification306

algorithm [19] to enumerate the first 20 consistent DFAs, To make I(ϕ′ | ϕ,X) respect the size prior307

on DFA, we sampled a DFA from the enumerated DFAs, exponentially weighted by the number of308

bits needed to describe ϕ′ given ϕ. That is, the sampling was weighted by the change in the number309

of states and the introduction/removal of labeled edges. Further details on our implementation of310

I, along with a discussion of other component implementations and their hyperparameters, can be311

found in the Appendix.312

5.1 Baselines. As mentioned in the introduction, existing techniques for learning specifications313

from demonstrations use various syntactic concept classes, each with their own inductive biases.314

Thus, we implemented two DFA-adapted baselines that act as proxies for the enumerative [21, 6, 17,315

23] and probabilistic hill climbing style [12, 5] algorithms of existing work:316

1. Prior Guided Enumeration. This baseline uses the same SAT-based DFA identification algorithm317

to enumerate DFAs in ordered by the size prior. This is done by finding the N smallest DFAs318

in lexicographic order (node then edges) as above and then ordering by size. N = 80 in319

the monolithic experiment and N = 40 in the incremental experiment. As an alternative to320

DISS’s competency assumption, we allow the enumerative baseline to restrict the search to task321

specifications that accept the provided demonstrations.322

2. Random Pivot DISS. As mentioned above, we will evaluate DISS on various SGS temperatures,323

one of which has β =∞. This results in a (labeled example) mutation based search with access324

to the same class of mutations as DISS, but samples pivots uniformly at random, i.e., no gradient325

based bias. Note that this ablation still samples suffixes conditioned on the sign of the gradient,326

and thus the mutations are still partially informed by the surprisal.327

5.2 Results and Analysis To simplify our analysis, we present time in iterations, i.e., number328

of sampled DFAs, rather than wall clock time. This is for three reasons. First, for each algorithm,329

the wall clock-time was dominated by synthesizing maximum entropy planners for each unique330

DFA discovered, but the choice of planner is ultimately an implementation detail2. Second, because331

many DISS iterations correspond to the same DFAs (due to resets and rejections) the enumeration332

baseline explored significantly more unique DFAs than DISS (a similar effect occurs with the333

random pivot baseline, since the different pivots give more diverse example sets). This results in the334

baselines spending more time planning than DISS, thus increasing their time per iterations. Third,335

the enumeration baseline first enumerates DFAs in lexicographic order (without planning) and then336

computes the energies in order of increasing size. This incurs a significant (≈15s) overhead. Thus,337

using wall clock-time would further skew the results below in DISS’s favor.338

2For reference the used for this experiment planner took around 4-10s per DFA.
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Search efficiency Fig 5a shows the minimum energy of DFA discovered by iteration for the339

monolithic experiment. For space, the same plot for the incremental experiment is provided in340

the appendix. To reduce variance, we take the median of 5 runs for each β. We see that for both341

experiments, DISS was able to significantly outperform the enumeration baseline (recall that energy342

is the negative log of the probability) and tended to degrade in its search efficiency as β increased.343

For example, in the incremental setting, lnβ < −5 typically required only 1-2 iterations (compared344

to the 13 iterations of enumeration)! For reference, the benchmark this experiment was based on [21]345

used a syntactic variant of the incremental representation class and evaluated 172 (out of 930) tasks.346

The key takeaways are that: (1) DISS is significantly more (cycle) efficient at finding explanatory347

DFAs than prior based enumeration; (2) Relying on the surprisal gradient (by decreasing the pivot348

temperature) enables efficient exploration in large concept classes; (3) Using a stronger inductive349

bias such as asserting partial knowledge of the specification increases the search efficiency of DISS;350

DISS can be effective even with a few incomplete and unlabeled examples.351

Diversity of DFAs In addition to finding the most probable DFAs much faster than the baselines,352

DISS also found more high probability DFAs. The most probable DFA found by DISS for monolothic353

experiment is shown in Fig 5b. The incremental variant is similar, with an additional edge to the sink354

failure state enforced by the prior knowledge. We observe that for both experiments, DISS is able to355

learn that if the agent visits �, it needs to visit � before �. Nevertheless, our learned DFAs differ356

from ground truth, particularly when it comes to the acceptance of strings after visiting �. We note357

that a large reason for this is that our domain and planning horizon make the left most � effectively358

act as a sink state. That is, the resulting sequences are effectively indistinguishable, with many even359

having the exact same energy. In Fig 5b, we make such edges lighter, and note that the remainder of360

the DFAs show good agreement with the ground truth. This limitation is standard in learning from361

demonstrations.362

6 Conclusion363

This paper considers the problem of learning history dependent task specifications, e.g. automata364

and temporal logic, from expert demonstrations. We empirically demonstrate how to efficiently365

explore intractably large concept classes such as deterministic finite automata to find probable task366

specifications. The proposed family of algorithms, Demonstration Informed Specification Search367

(DISS), requires only black box access to (i) a Maximum Entropy planner; and (ii) an algorithm for368

identifying concepts, e.g., automata, from labeled examples. While we showed concrete examples for369

the efficacy of this approach, several future research directions remain. First and foremost, research370

into faster and model-free approximations of maximum entropy planners would enable a much larger371

range of applications and domains. Similarly, while large, the demonstrated concept class was over372

a small number of pre-defined atomic predicates. Future work thus includes generalizing to large373

symbolic alphabets and studying more expressive specification formalisms such as register automata,374

push-down automata, and (synchronous) products of automata.375
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