
Published as a conference paper at ICLR 2021

Entropic gradient descent algorithms
and wide flat minima

Fabrizio Pittorino1,2, Carlo Lucibello1, Christoph Feinauer1,
Gabriele Perugini1, Carlo Baldassi1, Elizaveta Demyanenko1,
Riccardo Zecchina1

1AI Lab, Institute for Data Science and Analytics, Bocconi University,
20136 Milano, Italy
2Dept. Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy

Abstract

The properties of flat minima in the empirical risk landscape of neural
networks have been debated for some time. Increasing evidence suggests
they possess better generalization capabilities with respect to sharp ones.
In this work we first discuss the relationship between alternative measures
of flatness: The local entropy, which is useful for analysis and algorithm
development, and the local energy, which is easier to compute and was
shown empirically in extensive tests on state-of-the-art networks to be the
best predictor of generalization capabilities. We show semi-analytically in
simple controlled scenarios that these two measures correlate strongly with
each other and with generalization. Then, we extend the analysis to the
deep learning scenario by extensive numerical validations. We study two
algorithms, Entropy-SGD and Replicated-SGD, that explicitly include the
local entropy in the optimization objective. We devise a training schedule
by which we consistently find flatter minima (using both flatness measures),
and improve the generalization error for common architectures (e.g. ResNet,
EfficientNet).

1 Introduction

The geometrical structure of the loss landscape of neural networks has been a key topic of
study for several decades (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016). One area
of ongoing research is the connection between the flatness of minima found by optimization
algorithms like stochastic gradient descent (SGD) and the generalization performance of the
network (Baldassi et al., 2020; Keskar et al., 2016). There are open conceptual problems
in this context: On the one hand, there is accumulating evidence that flatness is a good
predictor of generalization (Jiang et al., 2019). On the other hand, modern deep networks
using ReLU activations are invariant in their outputs with respect to rescaling of weights
in different layers (Dinh et al., 2017), which makes the mathematical picture complicated1.
General results are lacking. Some initial progress has been made in connecting PAC-Bayes
bounds for the generalization gap with flatness (Dziugaite & Roy, 2018).

The purpose of this work is to shed light on the connection between flatness and generalization
by using methods and algorithms from the statistical physics of disordered systems, and to
corroborate the results with a performance study on state-of-the-art deep architectures.

Methods from statistical physics have led to several results in the last years. Firstly, wide
flat minima have been shown to be a structural property of shallow networks. They exist
even when training on random data and are accessible by relatively simple algorithms, even
though coexisting with exponentially more numerous minima (Baldassi et al., 2015; 2016a;

1We note, in passing, that an appropriate framework for theoretical studies would be to consider
networks with binary weights, for which most ambiguities are absent.

1



Published as a conference paper at ICLR 2021

2020). We believe this to be an overlooked property of neural networks, which makes them
particularly suited for learning. In analytically tractable settings, it has been shown that
flatness depends on the choice of the loss and activation functions, and that it correlates
with generalization (Baldassi et al., 2020; 2019).

In the above-mentioned works, the notion of flatness used was the so-called local entropy
(Baldassi et al., 2015; 2016a). It measures the low-loss volume in the weight space around a
minimizer, as a function of the distance (i.e. roughly speaking it measures the amount of
“good” configurations around a given one). This framework is not only useful for analytical
calcuations, but it has also been used to introduce a variety of efficient learning algorithms
that focus their search on flat regions (Baldassi et al., 2016a; Chaudhari et al., 2019; 2017).
In this paper we call them entropic algorithms.

A different notion of flatness, that we refer to as local energy in this paper, measures the
average profile of the training loss function around a minimizer, as a function of the distance
(i.e. it measures the typical increase in the training error when moving away from the
minimizer). This quantity is intuitively appealing and rather easy to estimate via sampling,
even in large systems. In Jiang et al. (2019), several candidates for predicting generalization
performance were tested using an extensive numerical approach on an array of different
networks and tasks, and the local energy was found to be among the best and most consistent
predictors.

The two notions, local entropy and local energy, are distinct: in a given region of a complex
landscape, the local entropy measures the size of the lowest valleys, whereas the local
energy measures the average height. Therefore, in principle, the two quantities could vary
independently. It seems reasonable, however, to conjecture that they would be highly
correlated under mild assumptions on the roughness of the landscape (which is another way
to say that they are both reasonable measures to express the intuitive notion of "flatness").

In this paper, we first show that for simple systems in controlled conditions, where all relevant
quantities can be estimated well by using the Belief Propagation (BP) algorithm (Mezard &
Montanari (2009)), the two notions of flatness are strongly correlated: regions of high local
entropy have low local energy, and vice versa. We also confirm that they are both correlated
with generalization.

This justifies the expectation that, even for more complex architectures and datasets, those
algorithms which are driven towards high-local-entropy regions would minimize the local
energy too, and thus (based on the findings in Jiang et al. (2019)) would find minimizers that
generalize well. Indeed, we systematically applied two entropic algorithms, Entropy-SGD
(eSGD) and Replicated-SGD (rSGD), to state-of-the-art deep architectures, and found that
we could achieve an improved generalization performance, at the same computational cost,
compared to the original papers where those architectures were introduced. We believe these
results to be an important addition to the current state of knowledge, since in (Baldassi et al.
(2016b)) rSGD was applied only to shallow networks with binary weights trained on random
patterns and the current work represents the first study of rSGD in a realistic deep neural
network setting. Together with the first reported consistent improvement of eSGD over SGD
on image classification, these results point to a very promising direction for further research.
While we hope to foster the application of entropic algorithms by publishing code that can
be used to adapt them easily to new architectures, we also believe that the numeric results
are important for theoretical research, since they are rooted in a well-defined geometric
interpretation of the loss landscape.

We also confirmed numerically that the minimizers found in this way have a lower local
energy profile, as expected. Remarkably, these results go beyond even those where the eSGD
and rSGD algorithms were originally introduced, thanks to a general improvement in the
choice for the learning protocol, that we also discuss; apart from that, we used little to no
hyper-parameter tuning.

2



Published as a conference paper at ICLR 2021

2 Related work

The idea of using the flatness of a minimum of the loss function, also called the fatness of the
posterior and the local area estimate of quality, for evaluating different minimizers is several
decades old (Hochreiter & Schmidhuber, 1997; Hinton & van Camp, 1993; Buntine & Weigend,
1991). These works connect the flatness of a minimum to information theoretical concepts like
the minimum description length of its minimizer: flatter minima correspond to minimizers
that can be encoded using fewer bits. For neural networks, a recent empirical study (Keskar
et al., 2016) shows that large-batch methods find sharp minima while small-batch ones find
flatter ones, with a positive effect on generalization performance.

PAC-Bayes bounds can be used for deriving generalization bounds for neural networks
(Zhou et al., 2018). In Dziugaite & Roy (2017), a method for optimizing the PAC-Bayes
bound directly is introduced and the authors note similarities between the resulting objective
function and an objective function that searches for flat minima. This connection is further
analyzed in Dziugaite & Roy (2018).

In Jiang et al. (2019), the authors present a large-scale empirical study of the correlation
between different complexity measures of neural networks and their generalization perfor-
mance. The authors conclude that PAC-Bayes bounds and flatness measures (in particular,
what we call local energy in this paper) are the most predictive measures of generalization.

The concept of local entropy has been introduced in the context of a statistical mechanics
approach to machine learning for discrete neural networks in Baldassi et al. (2015), and
subsequently extended to models with continuous weights. We provide a detailed definition
in the next section, but mention here that it measures a volume in the space of configurations,
which poses computational difficulties. On relatively tractable shallow networks, the local
entropy of any given configuration can be computed efficiently using Belief Propagation,
and it can be also used directly as a training objective. In this setting, detailed analytical
studies accompanied by numerical experiments have shown that the local entropy correlates
with the generalization error and the eigenvalues of the Hessian (Baldassi et al., 2015; 2020).
Another interesting finding is that the cross-entropy loss (Baldassi et al., 2020) and ReLU
transfer functions (Baldassi et al., 2019), which have become the de-facto standard for neural
networks, tend to bias the models towards high local entropy regions (computed based on
the error loss).

Extending such techniques for general architectures is an open problem. However, the local
entropy objective can be approximated to derive general algorithmic schemes. Replicated
stochastic gradient descent (rSGD) replaces the local entropy objective by an objective
involving several replicas of the model, each one moving in the potential induced by the loss
while also attracting each other. The method has been introduced in Baldassi et al. (2016a),
but only demonstrated on shallow networks. The rSGD algorithm is closely related to Elastic
Averaging SGD (EASGD), presented in Zhang et al. (2014), even though the latter was
motivated purely by the idea of enabling massively parallel training and had no theoretical
basis. The substantial distinguishing feature of rSGD compared to EASGD when applied to
deep networks is the focusing procedure, discussed in more detail below. Another difference
is that in rSGD there is no explicit master replica.

Entropy-SGD (eSGD), introduced in Chaudhari et al. (2019), is a method that directly
optimizes the local entropy using stochastic gradient Langevin dynamics (SGLD) (Welling &
Teh, 2011). While the goal of this method is the same as rSGD, the optimization techniques
involves a double loop instead of replicas. Parle (Chaudhari et al., 2017), combines eSGD and
EASGD (with added focusing) to obtain a distributed algorithm that shows also excellent
generalization performance, consistently with the results obtained in this work.

3 Flatness measures: local entropy, local energy

The general definition of the local entropy loss LLE for a system in a given configuration w
(a vector of size N) can be given in terms of any common (usually, data-dependent) loss L

3



Published as a conference paper at ICLR 2021

as:
LLE (w) = − 1

β
log

∫
dw′ e−βL(w′)−βγd(w′,w). (1)

The function d measures a distance and is commonly taken to be the squared norm of the
difference of the configurations w and w′:

d(w′, w) =
1

2

N∑
i=1

(w′i − wi)
2 (2)

The integral is performed over all possible configurations w′; for discrete systems, it can
be substituted by a sum. The two parameters β and γ̃ = βγ are Legendre conjugates
of the loss and the distance. For large systems, N � 1, the integral is dominated by
configurations having a certain loss value L∗ (w, β, γ) and a certain distance d∗ (w, β, γ) from
the reference configuration w. These functional dependencies can be obtained by a saddle
point approximation. In general, increasing β reduces L∗ and increasing γ̃ reduces d∗.

While it is convenient to use Eq. (1) as an objective function in algorithms and for the
theoretical analysis of shallow networks, it is more natural to use a normalized definition
with explicit parameters when we want to measure the flatness of a minimum. We thus also
introduce the normalized local entropy ΦLE (w, d), which, for a given configuration w ∈ RN ,
measures the logarithm of the volume fraction of configurations whose training error is
smaller or equal than that of the reference w in a ball of squared-radius 2d centered in w:

ΦLE (w, d) =
1

N
log

∫
dw′ Θ (Etrain (w)− Etrain (w′)) Θ (d− d (w′, w))∫

dw′ Θ (d− d (w′, w))
. (3)

Here, Etrain(w) is the error on the training set for a given configuration w and Θ (x) is the
Heaviside step function, Θ (x) = 1 if x ≥ 0 and 0 otherwise. This quantity is upper-bounded
by zero and tends to zero for d → 0 (since for almost any w, except for a set with null
measure, there is always a sufficiently small neighborhood in which Etrain is constant). For
sharp minima, it is expected to drop rapidly with d, whereas for flat regions it is expected to
stay close to zero within some range.

A different notion of flatness is that used in Jiang et al. (2019), which we call local energy.
Given a weight configuration w ∈ RN , we define δEtrain(w, σ) as the average training
error difference with respect to Etrain(w) when perturbing w by a (multiplicative) noise
proportional to a parameter σ:

δEtrain(w, σ) = Ez Etrain(w + σz � w)− Etrain(w), (4)

where � denotes the Hadamard (element-wise) product and the expectation is over normally
distributed z ∼ N (0, IN ). In Jiang et al. (2019), a single, arbitrarily chosen value of σ was
used, whereas we compute entire profiles within some range [0, σmax] in all our tests.

4 Entropic algorithms

For our numerical experiments we have used two entropic algorithms, rSGD and eSGD,
mentioned in the introduction. They both approximately optimize the local entropy loss
LLE as defined in Eq. (1), for which an exact evaluation of the integral is in the general case
intractable. The two algorithms employ different but related approximation strategies.

Entropy-SGD. Entropy-SGD (eSGD), introduced in Chaudhari et al. (2019), minimizes
the local entropy loss Eq. (1) by approximate evaluations of its gradient. The gradient can
be expressed as

∇LLE(w) = γ (w − 〈w′〉) (5)

where 〈·〉 denotes the expectation over the measure Z−1e−βL(w′)−βγd(w′,w), where Z is a
normalization factor. The eSGD strategy is to approximate 〈w′〉 (which implicitly depends on
w) using L steps of stochastic gradient Langevin dynamics (SGLD). The resulting double-loop
algorithm is presented as Algorithm 1. The noise parameter ε in the algorithm is linked to

4



Published as a conference paper at ICLR 2021

Algorithm 1: Entropy-SGD (eSGD)
Input :w
Hyper-parameters :L, η, γ, η′, ε, α

1 for t = 1, 2, . . . do
2 w′, µ← w
3 for l = 1, . . . , L do
4 Ξ← sample minibatch
5 dw′ ← ∇L (w′; Ξ) + γ (w′ − w)

6 w′ ← w′ − η′dw′ +
√
η′ εN (0, I)

7 µ← αµ+ (1− α)w′

8 w ← w − η (w − µ)

Algorithm 2: Replicated-SGD (rSGD)
Input : {wa}
Hyper-parameters : y, η, γ, K

1 for t = 1, 2, . . . do
2 w̄ ← 1

y

∑y
a=1 w

a

3 for a = 1, . . . , y do
4 Ξ← sample minibatch
5 dwa ← ∇L (wa; Ξ)
6 if t = 0 mod K then
7 dwa ← dwa +Kγ (wa − w̄)

8 wa ← wa − η dwa

the inverse temperature by the usual Langevin relation ε =
√

2/β. In practice we always set
it to the small value ε = 10−4 as in Chaudhari et al. (2019). For ε = 0, eSGD approximately
computes a proximal operator (Chaudhari et al., 2018). For ε = α = γ = 0, eSGD reduces to
the recently introduced Lookahead optimizer (Zhang et al., 2019).

Replicated-SGD. Replicated-SGD (rSGD) consists in a replicated version of the usual
stochastic gradient (SGD) method. In rSGD, a number y of replicas of the same system,
each with its own parameters wa where a = 1, ..., y, are trained in parallel for K iterations.
During training, they interact with each other indirectly through an attractive term towards
their center of mass. As detailed in Baldassi et al. (2016a; 2020) in the simple case of shallow
networks (committee machines), the replicated system, when trained with a stochastic
algorithm such as SGD, collectively explores an approximation of the local entropy landscape
without the need to explicitly estimate the integral in Eq. (1). In principle, the larger y the
better the approximation, but already with y = 3 the effect of the replication is significant.
To summarize, rSGD replaces the local entropy Eq. (1) with the replicated loss LR:

LR({wa}a) =

y∑
a=1

L(wa) + γ

y∑
a=1

d (wa, w̄) (6)

Here, w̄ is a center replica defined as w̄ = 1
y

∑y
a=1 w

a. The algorithm is presented as
Algorithm 2. Thanks to focusing (see below), any of the replicas or the center w̄ can be
used after training for prediction. This procedure is parallelizable over the replicas, so that
wall-clock time for training is comparable to SGD, excluding the communication which
happens every K parallel optimization steps. In order to decouple the communication period
and the coupling hyperparameter γ, we let the coupling strength take the value Kγ. In our
experiments, we did not observe degradation in generalization performance with K up to 10.

Focusing. A common feature of both algorithms is that the parameter γ in the objective
LLE changes during the optimization process. We start with a small γ (targeting large
regions and allowing a wider exploration of the landscape) and gradually increase it. We
call this process focusing. Focusing improves the dynamics by driving the system quickly
to wide regions and then, once there, gradually trading off the width in order to get to
the minima of the loss within those regions, see Baldassi et al. (2016b;a). We adopt an
exponential schedule for γ, where its value at epoch τ is given by γτ = γ0(1 + γ1)τ . For
rSGD, we fix γ0 by balancing the distance and the data term in the objective before training
starts, i.e. we set γ0 =

∑
a L(wa)/

∑
a d(wa, w̄) for rSGD. The parameter γ1 is chosen such

that γ increases by a factor 104. For eSGD, we were unable to find a criterion that worked
for all experiments and manually tuned it.

Optimizers. Vanilla SGD updates in Algorithms 1 and 2 can be replaced by optimization
steps of any commonly used gradient-based optimizers.

5



Published as a conference paper at ICLR 2021

5 Detailed comparison of flatness measures in shallow
networks

In this section, we explore in detail the connection between the two flatness measures and the
generalization properties in a one-hidden-layer network that performs a binary classification
task, also called a committee machine. This model has a symmetry that allows to fix all
the weights in the last layer to 1, and thus only the first layer is trained. It is also invariant
to rescaling of the weights. This allows to study its typical properties analytically with
statistical mechanics techniques, and it was shown in Baldassi et al. (2020) that it has a rich
non-convex error-loss landscape, in which rare flat minima coexist with narrower ones. It is
amenable to be studied semi-analytically: for individual instances, the minimizers found by
different algorithms can be compared by computing their local entropy efficiently with the
Belief Propagation (BP) algorithm (see Appendix B.1), bypassing the need to perform the
integral in Eq. (1) explicitly. Doing the same for general architectures is an open problem.

For a network with K hidden units, the output predicted for a given input pattern x reads:

σ̂(w, x) = sign

[
1√
K

K∑
k=1

sign

(
1√
N

N∑
i=1

wkixi

)]
(7)

We follow the numerical setting of Baldassi et al. (2020) and train this network to perform
binary classification on two classes of the Fashion-MNIST dataset with binarized patterns,
comparing the results of standard SGD with cross-entropy loss (CE) with the entropic
counterparts rSGD and eSGD. All these algorithms require a differentiable objective, thus
we approximate sign activation functions on the hidden layer with tanh(βx) functions, where
the β parameter increases during the training. The CE loss is not invariant with respect to
weight rescaling: we control the norm of the weights explicitly by keeping them normalized
and introducing an overall scale parameter ω that we insert explicitly in the loss:

L(w) = Ex,σ∼D f(σ · σ̂(w, x), ω) (8)

Here, we have defined f(x, ω) = −x2 + 1
2ω log(2 cosh(ωx)) as in Baldassi et al. (2020). The ω

parameter is increased gradually in the training process in order to control the growth rate
of the weight norms. Notice that the parameter β could also be interpreted as a norm that
grows over time.

As shown in Baldassi et al. (2020), slowing down the norm growth rate results in better
generalization performance and increased flatness of the minima found at the end of the
training. To appreciate this effect we used two different parameters settings for optimizing
the loss in Eq.(8) with SGD, that we name “SGD slow” and “SGD fast”. In the fast setting
both β and ω start with a large value and grow quickly, while in the slow setting they start
from small values and grow more slowly, requiring more epochs to converge. For rSGD, we
also used two different “fast” and “slow” settings, where the difference is in a faster or slower
increase of the γ parameter that controls the distance between replicas.

The results are shown in Fig. 1. In the left panel, we report ΦLE computed with BP around
the solutions found by the different algorithms, as a function of the distance from the solution.
Even if the slow SGD setting improves the flatness of the solution found, entropy-driven
algorithms are biased towards flatter minima, in the sense of the local entropy, as expected.
In the central panel we plot the local energy profiles δEtrain for the same solutions, and we
can see that the ranking of the algorithm is preserved: the two flatness measures agree. The
same ranking is also clearly visible when comparing the generalization errors, in the right
panel of the figure: flatter minima generalize better 2.

2In the appendix B.3 we show that the correlation between local entropy, local energy and
generalization holds also in a setting where we do not explicitly increase the local entropy.

6



Published as a conference paper at ICLR 2021

0.00 0.05 0.10 0.15 0.20 0.25 0.30
d

0.012

0.010

0.008

0.006

0.004

0.002

0.000

lo
ca

l e
nt

ro
py

SGD fast
SGD slow
rSGD fast
rSGD slow
eSGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

tra
in

 e
rr

or
 d

iff
er

en
ce

SGD fast
SGD slow
rSGD fast
rSGD slow
eSGD

0.04 0.05 0.06 0.07 0.08
test error

0

50

100

150

200

250

300

350

fre
qu

en
cy

SGD fast
SGD slow
rSGD fast
rSGD slow
eSGD

Figure 1: Normalized local entropy ΦLE as a function of the squared distance d (left),
training error difference δEtrain as a function of perturbation intensity σ (center) and test
error distribution (right) for a committee machine as defined in Eq. 7, trained with various
algorithms on the reduced version of the Fashion-MNIST dataset. Results are obtained using
50 random restarts for each algorithm.

6 Numerical experiments on deep networks

6.1 Comparisons across several architectures and datasets

In this section we show that, by optimizing the local entropy with eSGD and rSGD, we are
able to systematically improve the generalization performance compared to standard SGD.
We perform experiments on image classification tasks, using common benchmark datasets,
state-of-the-art deep architectures and the usual cross-entropy loss. The detailed settings of
the experiments are reported in the SM. For the experiments with eSGD and rSGD, we use
the same settings and hyper-parameters (architecture, dropout, learning rate schedule,...) as
for the baseline, unless otherwise stated in the SM and apart from the hyper-parameters
specific to these algorithms. While it would be interesting to add weight normalization
(Salimans & Kingma (2016)) with frozen norm, as we did for committee machine, none of
the baselines that we compare against uses this method. We also note that for the local
energy as defined in Eq. 4, the noise is multiplicative and local energy is norm-invariant if
the model itself is norm-invariant.

While we do some little hyper-parameter exploration to obtain a reasonable baseline, we
do not aim to reproduce the best achievable results with these networks, since we are only
interested in comparing different algorithms in similar contexts. For instance, we train
PyramidNet+ShakeDrop for 300 epochs, instead of the 1800 epochs used in Cubuk et al.
(2018), and we start from random initial conditions for EfficientNet instead of doing transfer
learning as done in Tan & Le (2019). In the case of the ResNet110 architecture instead, we
use the training specification of the original paper (He et al., 2016).

Dataset Model Baseline rSGD eSGD rSGD×y
CIFAR-10 SmallConvNet 16.5± 0.2 15.6± 0.3 14.7± 0.3 14.9± 0.2

ResNet-18 13.1± 0.3 12.4± 0.3 12.1± 0.3 11.8± 0.1
ResNet-110 6.4± 0.1 6.2± 0.2 6.2± 0.1 5.3± 0.1
PyramidNet+ShakeDrop 2.1± 0.2 2.2± 0.1 1.8

CIFAR-100 PyramidNet+ShakeDrop 13.8± 0.1 13.5± 0.1 12.7
EfficientNet-B0 20.5 20.6 20.1± 0.2 19.5

Tiny ImageNet ResNet-50 45.2± 1.2 41.5± 0.3 41.7± 1 39.2± 0.3
DenseNet-121 41.4± 0.3 39.8± 0.2 38.6± 0.4 38.9± 0.3

Table 1: Test set error (%) for vanilla SGD (baseline), eSGD and rSGD. The first three
columns show results obtained with the same number of passes over the training data. In the
last column instead, each replica in the parallelizable rSGD algorithm consumes the same
amount of data as the baseline.

7



Published as a conference paper at ICLR 2021

0 20 40 60 80 100 120 140 160
epochs

11

12

13

14

15

16

17

18

19

20

to
p1

 te
st

 e
rr

or
 (

%
)

SGD
rSGD (y=3)
eSGD (L=5)
rSGD×y (y=3)

ResNet18, CIFAR10

0 50 100 150 200 250
epochs

38

40

42

44

46

48

to
p1

 te
st

 e
rr

or
 (

%
)

SGD
rSGD (y=3)
eSGD (L=5)
rSGD×y (y=3)

ResNet50, Tiny ImageNet

Figure 2: Left: Test error of ResNet-18 on CIFAR-10. Right: Test error of ResNet-50 on
Tiny ImageNet. The curves are averaged over 5 runs. Training data consumed is the same
for SGD, rSGD and eSGD. Epochs are rescaled by y for rSGD and by L for eSGD (they are
not rescaled for rSGD×y).

All combinations of datasets and architectures we tested are reported in Table 1, while
representative test error curves are reported in Fig. 2. Blanks correspond to untested
combinations. The first 3 columns correspond to experiments with the same number of
effective epochs, that is considering that in each iteration of the outer loop in Algorithms
1 and 2 we sample L and y mini-batches respectively. In the last column instead, each
replica consumes individually the same amount of data as the baseline. Being a distributable
algorithm, rSGD enjoys the same scalability as the related EASGD and Parle (Zhang et al.,
2014; Chaudhari et al., 2017).

For rSGD, we use y = 3 replicas and the scoping schedules described in Sec. 4. In
our explorations, rSGD proved to be robust with respect to specific choices of the hyper-
parameters. The error reported is that of the center replica w̄. We note here, however, that
the distance between the replicas at the end of training is very small and they effectively
collapse to a single solution. Since training continues after the collapse and we reach a
stationary value of the loss, we are confident that the minimum found by the replicated
system corresponds to a minimum of a single system. For eSGD, we set L = 5, ε = 1e−4 and
α = 0.75 in all experiments, and we perform little tuning for the the other hyper-parameters.
The algorithm is more sensitive to hyper-parameters than rSGD, while still being quite
robust. Moreover, it misses an automatic γ scoping schedule.

Results in Table 1 show that entropic algorithms generally outperform the corresponding
baseline with roughly the same amount of parameter tuning and computational resources.
In the next section we also show that they end up in flatter minima.

6.2 Flatness vs generalization

For the deep network tests, we measured the local energy profiles (see Eq. (4)) of the
configurations explored by the three algorithms. The estimates of the expectations were
computed by averaging over 1000 perturbations for each value of σ. We did not limit
ourselves to the end result, but rather we traced the evolution throughout the training and
stopped when the training error and loss reached stationary values. In our experiments,
the final training error is close to 0. Representative results are shown in Fig. 3, which
shows that the eSGD and rSGD curves are below the SGD curve across a wide range of
σ values, while also achieving better generalization. Similar results are found for different
architectures, as reported in Appendix B.3. This confirms the results of the shallow networks
experiments: entropic algorithms tend to find flatter minima that generalize better, even
when the hyper-parameters of the standard SGD algorithms had already been tuned for
optimal generalization (and thus presumably to end up in generally flatter regions).

8



Published as a conference paper at ICLR 2021

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

SGD

92 (6.9, 16.6)
120 (1.2, 13.5)
180 (0.23, 13.7)
260 (0.15, 13.3)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

eSGD

92 (7.4, 18.2)
120 (0.5, 12.4)
180 (0.14, 12.0)
260 (0.12, 11.8)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

rSGD

92 (5.5, 13.2)
120 (0.54, 12.0)
180 (0.08, 11.9)
260 (0.02, 11.9)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0
comparison epoch=260

SGD (0.15, 13.3)
eSGD (0.12, 11.8)
rSGD (0.02, 11.9)

Figure 3: Evolution of the flatness along the training dynamics, for ResNet-18 trained on
CIFAR-10 with different algorithms. Figures show the train error difference with respect to
the unperturbed configurations. The value of the epoch, unperturbed train and test errors
(%) are reported in the legends.The last panel shows that minima found at the end of an
entropic training are flatter and generalize better. The value of the cross-entropy train loss
of the final configurations is: 0.005 (SGD), 0.01 (eSGD), 0.005 (rSGD).

7 Discussion and conclusions

We studied the connection between two notions of flatness and generalization. We have
performed detailed studies on shallow networks and an extensive numerical study on state
of the art deep architectures. Our results suggest that local entropy is a good predictor
of generalization performance. This is consistent with its relation to another flatness
measure, the local energy, for which this property has already been established empirically.
Furthermore, entropic algorithms can exploit this fact and be effective in improving the
generalization performance on existing architectures, at fixed computational cost and with
little hyper-parameter tuning. Our future efforts will be devoted to studying the connection
between generalization bounds and the existence of wide flat regions in the landscape of the
classifier.

References

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina.
Subdominant dense clusters allow for simple learning and high computational perfor-
mance in neural networks with discrete synapses. Phys. Rev. Lett., 115:128101, Sep
2015. doi: 10.1103/PhysRevLett.115.128101. URL https://link.aps.org/doi/10.1103/
PhysRevLett.115.128101.

Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Alessandro Ingrosso, Carlo Lucibello,
Luca Saglietti, and Riccardo Zecchina. Unreasonable effectiveness of learning neural
networks: From accessible states and robust ensembles to basic algorithmic schemes.
Proceedings of the National Academy of Sciences, 113(48):E7655–E7662, 2016a. ISSN
0027-8424. doi: 10.1073/pnas.1608103113. URL https://www.pnas.org/content/113/
48/E7655.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo
Zecchina. Local entropy as a measure for sampling solutions in constraint satis-
faction problems. Journal of Statistical Mechanics: Theory and Experiment, 2016
(2):P023301, February 2016b. ISSN 1742-5468. doi: 10.1088/1742-5468/2016/02/
023301. URL http://stacks.iop.org/1742-5468/2016/i=2/a=023301?key=crossref.
a72a5bd1abacd77b91afb369eff15a65.

9

https://link.aps.org/doi/10.1103/PhysRevLett.115.128101
https://link.aps.org/doi/10.1103/PhysRevLett.115.128101
https://www.pnas.org/content/113/48/E7655
https://www.pnas.org/content/113/48/E7655
http://stacks.iop.org/1742-5468/2016/i=2/a=023301?key=crossref.a72a5bd1abacd77b91afb369eff15a65
http://stacks.iop.org/1742-5468/2016/i=2/a=023301?key=crossref.a72a5bd1abacd77b91afb369eff15a65


Published as a conference paper at ICLR 2021

Carlo Baldassi, Enrico M. Malatesta, and Riccardo Zecchina. Properties of the geometry of
solutions and capacity of multilayer neural networks with rectified linear unit activations.
Phys. Rev. Lett., 123:170602, Oct 2019. doi: 10.1103/PhysRevLett.123.170602. URL
https://link.aps.org/doi/10.1103/PhysRevLett.123.170602.

Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning landscape
in neural networks around wide flat minima. Proceedings of the National Academy of
Sciences, 117(1):161–170, 2020. ISSN 0027-8424. doi: 10.1073/pnas.1908636117. URL
https://www.pnas.org/content/117/1/161.

Wray L Buntine and Andreas S Weigend. Bayesian back-propagation. Complex systems, 5
(6):603–643, 1991.

Pratik Chaudhari, Carlo Baldassi, Riccardo Zecchina, Stefano Soatto, and Ameet Talwalkar.
Parle: parallelizing stochastic gradient descent. CoRR, abs/1707.00424, 2017. URL
http://arxiv.org/abs/1707.00424.

Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume Carlier.
Deep relaxation: partial differential equations for optimizing deep neural networks. Research
in the Mathematical Sciences, 5(3):30, 2018.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and Experi-
ment, 2019(12):124018, 2019.

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le.
Autoaugment: Learning augmentation policies from data. CoRR, abs/1805.09501, 2018.
URL http://arxiv.org/abs/1805.09501.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural
networks with cutout. CoRR, abs/1708.04552, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. 34th International Conference on Machine Learning, ICML 2017,
3:1705–1714, 2017.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data, 2017.

Gintare Karolina Dziugaite and Daniel M. Roy. Entropy-SGD optimizes the prior of a
PAC-bayes bound: Data-dependent PAC-bayes priors via differential privacy, 2018. URL
https://openreview.net/forum?id=ry9tUX_6-.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. CoRR,
abs/1610.02915, 2016. URL http://arxiv.org/abs/1610.02915.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
June 2016. doi: 10.1109/CVPR.2016.90.

Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the Sixth Annual Conference
on Computational Learning Theory, COLT ’93, pp. 5–13, New York, NY, USA, 1993.
Association for Computing Machinery. ISBN 0897916115. doi: 10.1145/168304.168306.
URL https://doi.org/10.1145/168304.168306.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42,
1997. doi: 10.1162/neco.1997.9.1.1. URL https://doi.org/10.1162/neco.1997.9.1.1.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them, 2019.

10

https://link.aps.org/doi/10.1103/PhysRevLett.123.170602
https://www.pnas.org/content/117/1/161
http://arxiv.org/abs/1707.00424
http://arxiv.org/abs/1805.09501
https://openreview.net/forum?id=ry9tUX_6-
http://arxiv.org/abs/1610.02915
https://doi.org/10.1145/168304.168306
https://doi.org/10.1162/neco.1997.9.1.1


Published as a conference paper at ICLR 2021

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. CoRR, abs/1609.04836, 2016. URL http://arxiv.org/abs/1609.04836.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
CoRR, abs/1905.00397, 2019. URL http://arxiv.org/abs/1905.00397.

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific
Publishing Company, 1987.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pp. 8024–8035, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in neural information processing
systems, pp. 901–909, 2016.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks, 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pp.
681–688, 2011.

Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regularization. CoRR,
abs/1802.02375, 2018. URL http://arxiv.org/abs/1802.02375.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k
steps forward, 1 step back. In Advances in Neural Information Processing Systems, pp.
9593–9604, 2019.

Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic averaging
sgd, 2014.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-
vacuous generalization bounds at the imagenet scale: A pac-bayesian compression approach,
2018.

A Local Entropy and Replicated Systems

The analytical framework of Local Entropy was introduced in Ref. Baldassi et al. (2015),
while the connection between Local Entropy and systems of real replicas (as opposed to the
"fake" replicas of spin glass theory (Mézard et al., 1987)) was made in Baldassi et al. (2016a).
For convenience, we briefly recap here the simple derivation.

We start from the definition of the local entropy loss given in the main text:

LLE (w) = − 1

β
log

∫
dw′ e−βL(w′)− 1

2βγ‖w
′−w‖2 . (9)

We then consider the Boltzmann distribution of a system with energy function βLLE (w)
and with an inverse temperature y, that is

p(w) ∝ e−βyLLE(w), (10)

11

http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1905.00397
http://arxiv.org/abs/1802.02375


Published as a conference paper at ICLR 2021

where equivalence is up to a normalization factor. If we restrict y to integer values, we can
then use the definition of LLE to construct an equivalent but enlarged system, containing
y + 1 replicas. Their joint distribution p(w, {wa}a) is readily obtained by plugging Eq. (9)
into Eq. (10). We can then integrate out the original configuration w and obtain the marginal
distributional for the y remaining replicas

p({wa}a) ∝ e−βLR({wa}a), (11)
where the energy function is now given by

LR({wa}a) =

y∑
a=1

L(wa) +
1

2
γ

y∑
a=1

‖wa − w̄‖2, (12)

with w̄ = 1
y

∑
a w

a. We have thus recovered the loss function for the replicated SGD (rSGD)
algorithm presented in the main text.

B Flatness and local entropy

B.1 Local entropy on the committee machine

In what follows, we describe the details of the numerical experiments on the committee
machine. We apply different algorithms to find zero error configurations and then use Belief
Propagation (BP) to compute the local entropy curve for each configuration obtained. We
compare them in Fig. 1, along with the local energy computed by sampling and their test
errors.

We define a reduced version of the Fashion-MNIST dataset following Baldassi et al. (2020):
we choose the classes Dress and Coat as they are non-trivial to discriminate but also different
enough so that a small network as the one we used can generalize. The network is trained on
a small subset of the available examples (500 patterns) binarized to ±1 by using the median
of each image as a threshold on the inputs; we also filter both the training and test sets to
use only images in which the median is between 0.25 and 0.75.

The network has input size N = 784 and a single hidden layer with K = 9 hidden units.
The weights between the hidden layer and the output are fixed to 1. It is trained using
mini-batches of 100 patterns. All the results are averaged over 50 independent restarts. For
all algorithms we initialize the weights with a uniform distribution and then normalize the
weights of the hidden units norm before the training starts and after each weight update.
The β and ω parameters are updated using exponential schedules, β(t) = β0 (1 + β1)

t and
ω(t) = ω0 (1 + ω1)

t, where t is the current epoch. An analogous exponential schedule is used
for the elastic interaction γ for rSGD and eSGD, as described in the main text. In the SGD
fast case, we stop as soon as a solution with zero errors is found, while for SGD slow we stop
when the cross entropy loss reaches a value lower than 10−7. For rSGD, we stop training as
soon as the distance between the replicas and their center of mass is smaller than 10−8. For
eSGD, we stop training as soon as the distance between the parameters and the mean (µ in
Algorithm 1) is smaller than 10−8.

We used the following hyper-parameters for the various algorithms:

SGD fast : η = 2 · 10−4, β0 = 2.0, β1 = 10−4, ω0 = 5.0, ω1 = 0.0;

SGD slow : η = 3 · 10−5, β0 = 0.5, β1 = 10−3, ω0 = 0.5, ω1 = 10−3;

rSGD fast : η = 10−4, y = 10, γ0 = 2 · 10−3, γ1 = 2 · 10−3, β0 = 1.0, β1 = 2 · 10−4, ω0 = 0.5,
ω1 = 10−3;

rSGD slow : η = 10−3, y = 10, γ0 = 10−4, γ1 = 10−4, β0 = 1.0, β1 = 2 · 10−4, ω0 = 0.5,
ω1 = 10−3;

eSGD : η = 10−3, η′ = 5 · 10−3, ε = 10−6, L = 20, γ0 = 10.0, γ1 = 5 · 10−5, β0 = 1.0,
β1 = 10−4, ω0 = 0.5, ω1 = 5 · 10−4;

For a given configuration w obtained by one of the previous algorithms, we compute the
local entropy through BP. The message passing involved is similar to the one accurately

12



Published as a conference paper at ICLR 2021

detailed in Appendix IV of Ref. Baldassi et al. (2020), the only difference here being that
we apply it to a fully-connected committee machine instead of the tree-like one used in
Ref. Baldassi et al. (2020). We thus give here just a brief overview of the procedure. We
frame the supervised learning problem as a constraint satisfaction problem given by the
network architecture and the training examples. In order to compute the local entropy, we
add a Gaussian prior centered in w to the weights, N (w,∆). The variance ∆ of the prior
will be related later to a specific distance from w. We run BP iterations until convergence,
then compute the Bethe free-energy fBethe(w,∆) as a function of the fixed point messages.
Applying the procedure for different values of ∆ and then performing a Legendre transform,
we finally obtain the local entropy curve ΦLE(w, d).

B.2 Flatness curves for deep networks

In this Section we present flatness curves, δEtrain(w, σ) from Eq. (4), for some of the deep
networks architecture examined in this paper.

Results are reported in Figs 4 and 5 for different architectures and datasets. The expectation
in Eq. (4) is computed over the complete training set using 100 and 400 realizations of the
Gaussian noise for each data point in Figs 4 and 5 respectively. In experiments where data
augmentation was used during training, it is also used when computing the flatness curve.

0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

25

30

35

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

EfficientNetB0, CIFAR100
SGD (2.1, 20.5)
rSGD (1.5, 19.5)

0.00 0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

5

6

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e
PyramidNet+ShakeDrop, CIFAR100
SGD (2.0, 13.9)
rSGD (2.2, 12.7)

0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

ResNet50, Tiny ImageNet
SGD (1.2, 45.4)
rSGD (0.63, 39.7)
eSGD (0.04, 41.3)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

DenseNet121, Tiny ImageNet
SGD (2.3, 41.3)
rSGD (1.1, 38.3)
eSGD (2.5, 38.5)

Figure 4: Train error difference δEtrain from Eq. (4), for minina obtained on various
architectures, datasets and with different algorithms, as a function of the perturbation
intensity σ. Unperturbed train and test errors (%) are reported in the legends. The values
of the train cross-entropy loss for the final configurations are: EfficientNet-B0: 0.08 (SGD),
0.06 (rSGD); PyramidNet 0.07 (SGD), 0.07 (rSGD): ResNet-50: 0.04 (SGD), 0.006 (eSGD),
0.1 (rSGD); DenseNet: 0.1 (SGD), 0.2 (eSGD), 0.12 (rSGD).

The comparison is performed between minima found by different algorithms, at a point
where the training error is near zero and the loss has reached a stationary value. We note

13



Published as a conference paper at ICLR 2021

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

tr
ai

n 
er

ro
r 

di
ffe

re
nc

e

epoch=80

SGD (7.5, 13.3)
rSGD (1.84, 7.5)
eSGD (6.6, 11.5)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0
epoch=92

SGD (0.24, 6.6)
rSGD (0.04, 5.8)
eSGD (0.1, 5.9)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0
epoch=160

SGD (0.008, 6.3)
rSGD (0.0, 5.3)
eSGD (0.0, 5.4)

Figure 5: Train error difference δEtrain from Eq. (4) for ResNet-110 on Cifar-10. Values
are computed along the training dynamics of different algorithms and as a function of the
perturbation intensity σ. Unperturbed train and test errors (%) are reported in the legends.
The values of the train cross-entropy loss for the final configurations are: 0.001 (SGD), 0.0005
(eSGD), 0.0005 (rSGD).

here that this kind of comparison is sensitive to the fact that the training errors at σ = 0 are
close to each other. If the comparison is made for minima that show different train errors,
the correlation between flatness and test error is not observed.

We report a generally good agreement between the flatness of the δEtrain curve and the
generalization performance, for a large range of σ values.

B.3 Correlation of flatness and generalization

In this section we test more thoroughly the correlation of our definition of flatness with
the generalization error. The entropic algorithms that we tested resulted in both increased
flatness and increased generalization accuracy, but this does not imply that these quantities
are correlated in other settings.

For the committee machine we tested in different settings that the local entropy provides the
same information as the local energy, and that they both correlate well with the generalization
error, even when entropic algorithms are not used. An example can be seen in Fig. 6, where
the same architecture has been trained with SGD fast (see B.1) and different values of the
dropout probability. The minima obtained with higher dropout have larger local entropy
and generalize better.

In order to test this correlation independently in deep networks, we use models provided in the
framework of the PGDL competition (see https://sites.google.com/view/pgdl2020/).
These models have different generalization errors and have been obtained without using local
entropy in their training objective.

We notice that the local entropy and the local energy are only comparable in the context of
the same architecture, as the loss landscape may be very different if the network architecture
varies. We therefore choose among the available models a subset with the same architecture
(VGG-like with 3 convolutional blocks of width 512 and 1 fully connected layer of width
128) trained on CIFAR-10. Since the models were trained with different hyperparameters
(dropout, batch size and weight decay), they still show a wide range of generalization errors.

Since we cannot compute the local entropy for these deep networks, we restrict the analysis
to the computationally cheaper local energy (see Eq. 4) as a measure of flatness.

As shown in Fig. 7 we report a good correlation between flatness as measured by the train
error difference (or local energy, at a given value of the perturbation intensity σ, namely

14

https://sites.google.com/view/pgdl2020/


Published as a conference paper at ICLR 2021

0.00 0.05 0.10 0.15 0.20 0.25 0.30
d

0.012

0.010

0.008

0.006

0.004

0.002

0.000

lo
ca

l e
nt

ro
py

pdrop = 0
pdrop = 0.25
pdrop = 0.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

tra
in

 e
rr

or
 d

iff
er

en
ce

pdrop = 0
pdrop = 0.25
pdrop = 0.4

0.04 0.05 0.06 0.07 0.08
test error

0

20

40

60

80

100

120

140

160

fre
qu

en
cy

pdrop = 0
pdrop = 0.25
pdrop = 0.4

Figure 6: Normalized local entropy ΦLE as a function of the squared distance d (left),
training error difference δEtrain as a function of perturbation intensity σ (center) and test
error distribution (right) for a committee machine trained with SGD fast and different
dropout probabilities on the reduced version of the Fashion-MNIST dataset. Results are
obtained using 50 random restarts for each algorithm.

σ = 0.5) and test error, resulting in a Pearson correlation coefficient r(12) = 0.90 with
p-value 1e-4.

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
test error

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tra
in

 e
rro

r d
iff

er
en

ce

y = 3.5x - 0.2

Figure 7: Train error difference δEtrain from Eq. (4) in function of test error for a fixed
value of the perturbation intensity σ = 0.5, for minima obtained on the same VGG-like
architecture and dataset (CIFAR-10) and with different values of dropout, batch size and
weight decay. Each point shows the mean and standard deviation over 64 realizations of the
perturbation. The models are taken from the public data of the PGDL competition.

C Deep networks experimental details

In this Section we describe in more detail the experiments reported in the Table 1 of the main
text. In all experiments, the loss L is the usual cross-entropy and the parameter initialization
is Kaiming normal. We normalize images in the train and test sets by the mean and variance
over the train set. We also apply random crops (of width w if image size is w × w, with
zero-padding of size 4 for CIFAR and 8 for Tiny ImageNet) and random horizontal flips. In

15



Published as a conference paper at ICLR 2021

the following we refer to the latter procedure by the name "standard preprocessing". All
experiments are implemented using PyTorch (Paszke et al., 2019).

For the experiments with eSGD and rSGD, we use the same settings and hyper-parameters
used for SGD (unless otherwise stated and apart from the hyperparameters specific to these
two algorithms).

For rSGD and unless otherwise stated, we set y = 3, K = 10 and use the automatic
exponential focusing schedule for γ reported in the main text.

For eSGD, we use again an exponential focusing protocol. In some experiments, we use
a value of γ0 automatically chosen by computing the distance between the configurations
w′ and w after a loop of the SGLD dynamics (i.e. in the first L steps with γ = 0) and
setting γ0 = L(w)/d(w′, w). Unfortunately, this criterion is not robust. Therefore, in some
experiments the value of γ0 was manually tuned. However, we found that eSGD is not
sensitive to the precise value but to the order of magnitude.

We choose γ1 such that γ is increased by a factor of 10 by the end of the training. Unless
otherwise stated, we set the the number of SGLD iterations to L = 5, SGLD noise to
ε = 10−4 and α = 0.75. Moreover, we use 0.9 Nesterov momentum and weight decay in both
the internal and external loop. As for the learning rate schedule, when we rescale the total
number of epochs for eSGD and rSGD, we use a rescaled schedule giving a comparable final
learning rate and with consequently rescaled learning rate drop times as well.

C.1 CIFAR-10 and CIFAR-100

SmallConvNet The smallest architecture we use in our experiments is a LeNet-like
network LeCun et al. (1998):

Conv(5× 5, 20) −MaxPool(2)− Conv(5× 5, 50)−MaxPool(2)−Dense(500)−Softmax

Each convolutional layer and the dense layer before the final output layer are followed by
ReLU non-linearities.

We train the SmallConvNet model on CIFAR-10 for 300 epochs with the following settings:
SGD optimizer with Nesterov momentum 0.9; learning rate 0.01 that decays by a factor of 10
at epochs 150 and 225; batch-size 128; weight decay 1e-4; standard preprocessing is applied;
default parameter initialization (PyTorch 1.3). For rSGD we set lr = 0.05 and γ0 = 0.001.
For eSGD, we train for 60 epochs with: η = 0.5 that drops by a factor of 10 at epochs 30
and 45; η′ = 0.02; γ0 = 0.5; γ1 = 2 · 10−5.

ResNet-18 In order to have a fast baseline network, we adopt a simple training procedure
for ResNet-18 on CIFAR-10, without further optimizations. We train the model for 160 epochs
with: SGD optimizer with Nesterov momentum 0.9; initial learning rate 0.01 that decays by
a factor of 10 at epoch 110; batch-size 128; weight decay 5e-4; standard preprocessing.

For rSGD we set K = 1 and learning rate 0.02. For eSGD, we train for 32 epochs with initial
learning rate η = 0.25 that drops by a factor of 10 at epochs 16 and 25; η′ = 0.01. In the
case in which we drop the learning rate at certain epochs, we notice that it is important not
to schedule it before that the training error has reached a plateau also for eSGD and rSGD.

ResNet-110 We train the ResNet-110 model on CIFAR-10 for 164 epochs following the
original settings of He et al. (2016): SGD optimizer with momentum 0.9; batch-size 128;
weight decay 1e-4. We perform a learning rate warm-up starting with 0.01 and increasing it
at 0.1 after 1 epoch; then it is dropped by a factor of 10 at epochs 82 and 124; standard
preprocessing is applied.

For both eSGD and rSGD, we find that the learning rate warm-up is not necessary. For
rSGD we set γ0 = 5e-4. For eSGD, we train for 32 epochs with initial learning rate η = 0.9
that drops at epochs 17 and 25, SGLD learning rate η′ = 0.02 and we set γ0 = 0.1 and
γ1 = 5 · 10−4.

16



Published as a conference paper at ICLR 2021

PyramidNet+ShakeDrop PyramidNet+ShakeDrop (Han et al., 2016; Yamada et al.,
2018), together with AutoAugment or Fast-AutoAugment, is currently the state-of-the-
art on CIFAR-10 and CIFAR-100 without extra training data. We train this model on
CIFAR-10 and CIFAR-100 following the settings of Cubuk et al. (2018); Lim et al. (2019):
PyramidNet272-α200; SGD optimizer with Nesterov momentum 0.9; batch-size 64; weight
decay 5e-5. At variance with Cubuk et al. (2018); Lim et al. (2019) we train for 300 epochs
and not 1800. We perform a cosine annealing of the learning rate (with a single annealing
cycle) with initial learning rate 0.05. ShakeDrop is applied with the same parameters as
in the original paper (Yamada et al., 2018). For data augmentation we add to standard
preprocessing AutoAugment with the policies found on CIFAR-10 (Cubuk et al., 2018) (for
both CIFAR-10 and CIFAR-100) and CutOut (Devries & Taylor, 2017) with size 16.

For rSGD, we use a cosine focusing protocol for γ, defined at epoch τ by γτ =
0.5γmax cos (πτ/τtot), with γmax = 0.1. On CIFAR-10, we decrease the interaction step
K from 10 to 3 towards the end of the training (at epoch 220) in order to reduce noise and
allow the replicas to collapse.

EfficientNet-B0 EfficientNet-B0 is the base model for the EfficientNet family. In this
section we train EfficientNet-B0 on CIFAR-100, starting from random initial conditions.
We follow the same settings as Tan & Le (2019), with some differences: we train for 350
epochs with RMSprop optimizer with momentum 0.9; batch-size 64; weight decay 1e-5; initial
learning rate 0.01 that decays by 0.97 every 2 epochs. We rescale image size to 224× 224
and as data augmentation we apply standard preprocessing (with zero-padding of size 32)
adding AutoAugment with the policies found on CIFAR-10 (Cubuk et al., 2018). For rSGD
we set γ0 = 5e− 6. For eSGD we used initial learning rate η = 0.5 that decays by 0.92 every
2 epochs and η′ = 0.05.

C.2 Tiny ImageNet

ResNet-50 Entropic algorithms are effective also on more complex datasets. We train
ResNet-50 on Tiny ImageNet (data downloaded from: "Tiny ImageNet Visual Recognition
Challenge") for 270 epochs with: SGD optimizer with Nesterov momentum 0.9; initial
learning rate 0.05 that decays by a factor of 10 at epochs 90, 180 and 240; batch-size 128;
weight decay 1e-4. Standard preprocessing is applied together with Fast-AutoAugment with
the policies found on ImageNet (Lim et al., 2019).

For eSGD we train the model for 50 epochs with η = 0.8 that drops by a factor of 10 at
epochs 18, 36, 48 and η′ = 0.02.

DenseNet-121 For DenseNet-121 on Tiny ImageNet, the setting is the same as ResNet-50,
except that we train the model for 200 epochs with learning rate drops at epochs 100 and
150.

For eSGD we train the model for 40 epochs with η = 0.5 that drops by a factor of 10 at
epochs 25 and 30, η′ = 0.02 and we set γ0 = 1.0 and γ1 = 2 · 10−5

17

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/

	Introduction
	Related work
	Flatness measures: local entropy, local energy
	Entropic algorithms
	Detailed comparison of flatness measures in shallow networks
	Numerical experiments on deep networks
	Comparisons across several architectures and datasets
	Flatness vs generalization

	Discussion and conclusions
	Local Entropy and Replicated Systems
	Flatness and local entropy
	Local entropy on the committee machine
	Flatness curves for deep networks
	Correlation of flatness and generalization

	Deep networks experimental details
	CIFAR-10 and CIFAR-100
	Tiny ImageNet


