Under review as a conference paper at ICLR 2026

TOWARDS EFFICIENT UNROLL GENERALIZATION IN
LEARNED OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have demonstrated that learned optimizers (LOs) can be compet-
itive and sometimes even outperform hand-designed counterparts, highlighting
their potential as a pathway toward developing better optimization algorithms.
Yet, despite this promise, meta-generalization remains a major challenge for LOs.
In particular, they often struggle to maintain stable convergence over long unrolls,
as they are typically meta-trained only on short horizons. While extending the
unroll length during meta-training may seem like a natural remedy, in practice it
substantially increases computational cost (at least linearly) and frequently leads
to divergence or collapse due to compounding errors. To improve the long unroll
generalization of LOs, we propose a novel meta-training scheme called Efficient
Long-horizon Learning (ELO), which leverages a replay buffer to efficiently ex-
tend unroll length during meta-training without adding extra meta-training cost. In
addition, it integrates online behavior cloning to stabilize meta-training and poten-
tially inherit the generalization benefits of hand-designed optimizers. We evaluate
ELO on a variety of vision and language tasks, showing its success in achieving
long-unroll generalization in practical scenarios.

1 INTRODUCTION

The remarkable achievements of deep neural networks have been closely tied to the evolution of
optimization algorithms (Sun et al.l [2019; |Sun, 2020; |Abdulkadirov et al., 2023). Learned Op-
timizers (LOs), as a rising paradigm, have demonstrated the ability to discover superior update
rules(Andrychowicz et al., 2016; Metz et al.; |Chen et al., [2020; Thérien et al.| 2024)), achieving
faster and better convergence than hand-designed optimizers on certain tasks. Despite their poten-
tial, LOs are still far from mature (Wichrowska et al.| [2017). A key challenge is that they often
saturate quickly or even gradually diverge when evaluated on very long unrolls in downstream tasks
(e.g., 10 x larger than the maximum unroll length used in meta-training), which is critical for prac-
tical model training.

In this work, we focus on improving the unroll generalization of LOs in an efficient way. We observe
that common meta-training setups not only struggle to generalize to long unrolls, but also inadver-
tently waste training resources. To address this, we introduce an efficient long-horizon learning
paradigm (ELO), which effectively “recycles” computational resources and reallocating them to-
ward long-unroll meta-training. ELO integrates a replay buffer(Ross et al., [2011)), enabling LOs
to experience very long unrolls during meta-training without incurring extra computational cost,
thereby equipping them with stronger long-horizon generalization. However, naively applying a
replay buffer destabilizes meta-training in its early stages due to compounding errors (Ross et al.,
20115 Ross & Bagnell, 2014)). To address this, we further incorporate behavior cloning(Rajaraman
et al.| [2020; |Torabi et al.,|2018)), guiding the LO to imitate a hand-designed optimizer (Adam, in our
case) while still allowing it to improve beyond the teacher.

Our main contributions are as follows:
* We introduce a replay buffer mechanism that enables LOs to observe sufficiently long un-

rolls during meta-training without additional computational overhead.

* We propose a behavior cloning strategy to stabilize early meta-training and to transfer po-
tential generalization benefits from an expert optimizer.

Under review as a conference paper at ICLR 2026

Inner steps

_—
0—-N-1 ;
‘r > e ﬁ_>£meta_>v¢0
4

’ > o0 ’_>£meta_>v¢1
4

Optimizee A Optimizer

Figure 1: Overview of the meta-training of a LO. At each outer step ¢, the optimizer (LO) parameters
¢ are used to update the optimizee parameters 6,, over a sequence of IV inner steps. During this
unroll, at every inner step n, a meta-loss £ is computed based on the optimizee’s performance.
These per-step losses are accumulated to form £™¢?, The resulting meta-gradient V¢, is then
used to update the optimizer parameters, producing ¢;41. This iterative process enables the LO to
improve its update rules across successive outer steps.

Outer steps
IT-L<0

* We empirically demonstrate that, across both vision and language tasks, ELO consistently
outperforms strong hand-designed and learned baselines.

2 RELATED WORK

Learned Optimizers (LOs). LOs employ trainable models (e.g., MLP) to replace hand-crafted
optimization algorithms (Andrychowicz et al., 2016)). Previous literature has proposed a variety of
approaches to improve LOs. [Metz et al.; [2022)) explored new architectures and large-scale training
regimes for LOs. [Yang et al.|(2021)); |[Thérien et al.| (2024) introduced techniques such as maximal
update parameterization to leverage LOs in the training of large-scale models. (Chen et al., [2020)
explored applying imitation learning to LOs, typically in an off-policy manner to build stronger
baselines. But such approaches inevitably suffer from compounding error due to their alternating
offline training.

Replay Buffers. Replay buffers are widely used in reinforcement learning (RL)(Ross et al., 2011}
Liu & Zoul2018;|Zhang & Sutton,[2017) and continual learning (CL)(Rolnick et al.,|2019;|Chaudhry
et al.|[2021). They act as a core mechanism to store trajectories or transitions collected during train-
ing, enabling the learner to sample from past experiences rather than relying solely on the most
recent data. In RL, this helps break temporal correlations(Mnih et al., 2015), improve sample ef-
ficiency(Schaul et al., |2015), and stabilize learning, while in CL it plays a key role in alleviating
catastrophic forgetting(Rolnick et al.l 2019} Buzzega et al.|[2020). Instead of leveraging its conven-
tional replay benefits, we use replay buffer in our work to enable efficient sampling for long unroll
meta-training.

Behavior Cloning. Behavior Cloning (BC)(Rajaraman et al., [2020; [Torabi et al., [2018)) is one of
the most widely used paradigms in imitation learning(Pomerleau, |1988; (Osa et al., [2018; [Liu et al.,
2021)), where the objective is to approximate an expert policy by directly regressing from observed
states to expert actions. Formally, given a dataset of expert demonstrations D = {(x;,a})}¥,,
where z; € X’ denotes the state and a] € A is the corresponding expert action, the goal is to learn a
policy 7y : X — A, parameterized by 6, that closely approximates the expert’s behavior. A simple

Under review as a conference paper at ICLR 2026

5000

””” Random Mt) 10 —— LO (naive)
"""" uffer Init
4000 . Ll —— LO (Buffer only)
< K Jeie 9 _
g 1 . i 2 —— ELO-LO
23000 R S 2
- o loile® it i j s
= ol e}
g 2000 :.:... . ” g
j] 7
1000
6 \,\—WN\’WWV\/‘/
0
0 20 40 60 80 100 0 1000 2000 3000 4000 5000
Outer Training Step Outer Training Step

Figure 2: Left: Buffer-based initialization allows the unroll length to grow more efficiently than
random initialization. Right: ELO ensures the stability of meta-training when LO encounter very
long unrolls.

version of behavior cloning solves the supervised regression problem(Florence et al.,|2022):

N

. . 1

T = arg min my NZH@(@)—@?H; (D
i=1

In our work, we leverages online behavior cloning primarily as a stabilizer for buffer-based meta-
training, enabling efficient long-unroll meta-training.

3 OVERVIEW OF LEARNED OPTIMIZERS

In our work, we adopt the small_fc_lopt architecture (Metz et al., 2022)) as LO, a three-layer
MLP with ReLU activations(Nair & Hinton} 2010). The optimizer takes as input a feature vector
(e.g. gradient, momentum, rms, etc.) for each parameter in the optimizee and outputs an update
direction, d, and magnitude, m. That is, fs(-) = [d, m], where f is the learned optimizer and ¢ are
its parameters. The optimizee’s parameters 6 are then updated as follows:

0 = 0,1 — Mid x 2™, 2)

where A\, and \q are hyper-parameters. In general, learning the meta-parameters, ¢, involves solving
an optimization problem of the form (Thérien et al., 2024):

N
min Erp| 3 L1405 0)]. (3)
n=1

where D is a distribution of tasks. The objective seeks to minimize the sum of per-timestep losses
over the training horizon N. General pipeline of how a LO is trained is shown in Figure

4 EFFICIENT LONG-HORIZON LEARNING

In this section, we first analyze the limitations of commonly adopted meta-training frameworks in
terms of unroll generalization and computational efficiency. To address these issues, we introduce
Efficient Long-horizon Learning (ELO), which leverages a replay buffer to extend unroll lengths
observed during meta-training without incurring additional computational cost. To further stabilize
buffer-based training and improve overall generalization, we incorporate an online behavior cloning
strategy. Details are provided in Algorithm [I]

4.1 UNROLL INITIALIZATION FROM REPLAY BUFFER FOR LOS

Random Initialization. In existing meta-learning setups for learned optimizers, every unroll is
randomly initialized(Metz et al. 2019; Thérien et al., |2024), with the unroll length N sampled

from a log-uniform distribution: p(N) = levmaw N € (Nmin, Nmax), an example is pro-
Nmi

vided in Figure |ZI In practice, Nyin and Npyax arg ﬁsually set to be small (e.g. Ny, = 100 and

Under review as a conference paper at ICLR 2026

Algorithm 1: Efficient Long-horizon Learning (ELO)

Input: The size M of replay buffer, the threshold P, of applying

buffer initialization.

Initialize: Replay buffer B = {s1, s2,...,8m},m < M, where

s, indicates a inner state.
fort=0,1,2,...,T — 1do
Sample Pg ~ Uniform(0,1);
if (Pg > Pth) A (t > O) then
Randomly select s, from B (K := m¢(s))

else

| Randomly initialize inner state (K = 0)
end
sample Npush € [K, N + K) N Z;
forn=K K+1,K+2 ..,,K+N—-1do
07y = 0, + A0
09,1 = On + A6S;

Oni1 = (1 —)07ty + 09,

nr’n

Sn+4+1 = (9n+17<n+1);
ifn == Npush then

Lrmets = (1— ay) L0, 00) + 0y LIF (0,3 6,)

Notation:

we highlight buffer-
related operations in
green and behavior
cloning (BC)-related
components in yellow
for clarity.

‘H: Adam

O: learned optimizer

0: parameters of opti-
mizee

¢: parameters of LO

¢: auxiliary accumula-
tors (e.g. momentum)
m¢(s): projection oper-
ator extracting the step
index from state s

Pg: probability of
buffer init

K start step of inner
loop

B enqueue(B, sy,), m< M Npush: inner step to
< enqueue(dequeue(B), s,,), m= M’ push into B)
g: meta-gradient
end estimator, we use
end persistent evolution
gt = g(Zf,(LI(VH L£reta (@it 99 ¢, at)); strategies (PES)

U: update operator

b1 =U(gs, t; P1)
end

Nmax = 1,000), to mitigate compounding errors. The expected number of times that an inner step
n contributes to the meta-gradient across training is proportional to

Ninax

Pr[N > n| = _ = _n 4
[] /n N log Nmax log —]I\\?“ax @

Nmin min

Nmax 1 B IOg

For early steps, Pr[N > n] — 1 as n — Ny, and for later steps, Pr[N > n] — 0asn — Nyqz-
As a result, the LO prefers to optimize the early training regime, and melts down on long unroll
optimization.

A better way is to gradually increase NV, to include longer unrolls during meta-training. How-
ever, since the unroll length of downstream tasks is task-agnostic, Ny,ax typically has to grow quite
large to cover most cases. Because meta-training for LOs is typically very expensive, and its com-
putational cost scales almost linearly with the unroll length, this makes it impractical for real-world
applications.

Buffer Initialization. In the above schemes, a substantial amount of compute were wastes on early
unroll training. Because the learned optimizer (LO) constantly revisits the initial inner steps at each
unroll, even after it has already become proficient at optimizing them. To improve this, we propose
to maintain a replay buffer that stores intermediate checkpoints (inner states) from ongoing unrolls.
When initializing a new unroll, instead of always restarting from a random initialization, the LO has
a probability of being initialized from one of the buffered checkpoints. This doesn’t add additional
training cost, but shifts computation away from repeatedly revisiting the earliest trajectory segments
and reallocates it toward training on longer effective unrolls. An example of unroll sampling using
buffer initialization is shown in Figure 2]

Under review as a conference paper at ICLR 2026

7.00+ : 7.00 :
6.75 | —— AdamW 6.75 ; —— AdamW
1 . 1 .
6.50 - ! —— LO (naive) 6.50 ! —— LO (naive)
1 1
§ 6.25 ; —— LO (curriculum) @ 6.25 ; —— LO (curriculum)
| 1 _ Q ! — -
= 6.001 i ELO-LO = 6.00 i ELO-LO
g 5.75 8 575
& 5 . = 5. .
5.50 ! 5.50 !
i i
5.25 i 5.25 i
\Meta-train Horizon = 1000 IMeta-train Horizon = 1000
5.00 + 1 t t t t + 5.00 t 1 t t t t t
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step

Figure 3: In-distribution (ID) evaluation on ImageNet-1K (32x32) using a 3-layer MLP with hidden
width 128. We report both training loss (Left) and validation loss (Right) across 10, 000 steps. The
red dashed line indicates the meta-training horizon (N = 1000).

Specifically, we design the buffer 3 as a queue of default size |[B| = 4. Let Py, € (0,1) be a
threshold parameter. At the beginning of each unroll, we draw Pz ~ Uniform(0, 1). If Pg > Py,
the new unroll is initialized from a randomly chosen checkpoint in B; otherwise, it is initialized
from scratch. To further increase the probability of sampling very long unrolls, we replace log-
uniform sampling with uniform sampling for the unroll length. By decreasing the threshold F;y,, the
expected unroll length E[N] of the mixture distribution shifts upwards, thereby increasing Pr[N >
Niarge]. This encourages the LO to dedicate more attention on long unroll optimization learning.
Besides, keeping P, > 0 guarantees that the LO can occasionally review the initial regime. Detailed
descriptions of how buffer works are highlight in yellow in Algorithm 1]

4.2 COMPOSITION OF OPTIMIZATION TRAJECTORIES

Our goal is to expose the LO to sufficiently long unrolls across meta-training, which motivates
setting a small threshold P;,. However, this likely results in generating large unroll length IV in the
early stages of meta-training, which can be problematic, as shown in Figure 2] At this stage, the
LO remains underfit and tends to produce suboptimal optimization trajectories. Formally, let the
optimizee trajectory 7 be defined as T = {(6,,, A0,,)}N_,, where

Opy1 =06, +A0,, n=0,...,N—1, (5)
and
A0, = f(A6<n§ to, (b) (6)
Approximation errors €, accumulate over time, which yields
N
on = 0% <D &N " lenl, 0
n=1

where « is the Lipschitz constant (Bubeck et al.| [2015) of the update dynamics, typically large in
early meta-training. As N grows, the accumulated error |6 — 03 || can amplify exponentially,
a phenomenon commonly referred to as compounding error. As a result, the task-driven meta-
gradients from the last inner step V¢£§\°}Sk (0n—1; @) degenerates into pure noise, and the cumulative
meta-gradients 2521 VL1255 (6,,_1; ¢) becomes highly uninformative, making the training hard
to progress.

To stabilize meta-training, we propose to incorporate hand-designed optimizers (we use Adam in
this paper) to improve the trajectory, given their well-known ability to generate stable and high-
quality optimization paths. Specifically, for any inner step n, we combine the trajectory produced
by Adam and the one produced by the LO in the following way:

0M, =0, + AOK,
09,1 =0, + AOS, (8)

0n+1 = (1 - at) 931-[-&-1 + ()ét97(?+1,

Under review as a conference paper at ICLR 2026

~
~

| !
1 1
| —— AdamW | —— AdamW
6 i —— LO (naive) 67 i —— LO (naive)
! . ! .
2 ! — LO (curriculum) @ ! —— LO (curriculum)
o5 T g 5 T
;‘ i — ELO-LO — i — ELO-LO
= -
Ba ' 84
& & B
) 1
i i
3 i 3 i
i T i
'\/IeLa train Horizon = 1000: IMeLa train Horizon = 1000
2 2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step

Figure 4: Out-of-distribution (OOD) evaluation on ImageNet-1K (32x32) using a ResNet18. We
report both training loss (Left) and validation loss (Right) across 10, 000 steps. The red dashed line
indicates the meta-training horizon (N = 1000).

where H and O denote Adam and LO, respectively, and «; gradually increases from O to 1 as the
outer step ¢ grows (a; = t 7(t € Z, 0 <t < T)). This would effectively reduce x to a small value

in the early phase of meta- trammg, as [|0% — 0% < |05 — 0%l at this stage. As the meta-training
progresses, the quality of the trajectories generated by the LO are expected to gradually improve.
Accordingly, the weighting gradually shifts from relying entirely on Adam to relying fully on the
LO. This adaptive transition ensures that every unroll trajectory during meta-training remains of
high quality, thereby avoiding redundant meta-training and instability that noisy trajectories would
otherwise introduce.

4.3 ONLINE BEHAVIOR CLONING

For any inner step n, directly relying on the fused trajectories makes the task-driven meta-loss
Lt255(0,,5 ¢, o) less informative to LO during early stage meta-training, as 6,, is dominant by 67
at this time. We then leverage a regularization loss £5¢(67¢, 9,(?) to guide the LO at each inner step
n, replacing the noisy £:%*%(6,,; ¢, ;) with a more accurate signal. £2¢(67¢,09) is defined as:

n »’n

Ly (0}, 05)) = ZHH(9 07113)

?’L77L

While training the LO solely under £%n(6n*,09) ensures stability, its performance will be in-
herently bounded by that of Adam. Our ultimate goal, by contrast, is to train an LO capable of
surpassing hand-designed optimizers on specific tasks. To this end,we further propose to combine

£b¢(67¢09) with L195%(0,,: ¢, o) through a convex combination:

L0, 095 ¢, a0) = (1 —) LE(OF,09) + o LI (056,), (10)

n»”“n? n»’n

where « is set the same as in Eq. [§] In this way, the meta-gradients are initially dominated by
£b¢(67¢09), ensuring stable training signals in the early meta-training stage, and potentially al-
lowing the LO to absorb generalization benefits from Adam. At this stage, it also mitigates noisy
meta-gradients that would otherwise arise from the underfitting of the LO, thereby further acceler-
ating its convergence. Over time, the meta-gradients gradually shift towards being fully driven by
L1k (0,,; ¢, o), encouraging the LO to discover superior optimization rules. Illustrative uses of

trajectory fusion and expert forcing are highlighted in yellow in Algorithm

5 EMPIRICAL EVALUATION

In this section, we evaluate ELO through extensive experiments across vision and language domains,
using various datasets and architectures. We empirically show:

* How buffer initialization achieves efficient long unroll sampling, and the effect of setting
different buffer threshold P;},.

Under review as a conference paper at ICLR 2026

8.5 ! 8.5 !
8.0 i — AdamW 8.0 i —— AdamW
7.5 | —— LO (naive) 7.5 | —— LO (naive)
1 K ! 4
© 7.0 ! —— LO (curriculum) w70 ! —— LO (curriculum)
=] 1 o 1
E16.5 i —— ELO-LO 365 ; — ELO-LO
‘5 6.0 ! % 6.0 !
x@ 5.5 IMeta-train Horizon = 1000 s iMeta-train Horizon =_1000
5.0 5.0
45 E e et ey U 4.5
1
4.0 L 4.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step

Figure 5: Out-of-distribution (OOD) evaluation on FineWeb 10B using gpt2-mini. We report both
training loss (Left) and validation loss (Right) across 10,000 steps. The red dashed line indicates the
meta-training horizon (N = 1000).

* Across in distribution (ID) and out of distribution (OOD) tasks, ELO constantly surpasses
other baselines in very long unroll regime.

* We ablate each component of ELO to assess its role and interactions with the others.

5.1 EXPERIMENTAL SETUP

Meta-training. Our experimental setup and meta-training pipeline largely follow that of (Metz
et al.,[2022; Thérien et al.,[2024)), with best hyper-parameters applied for each baseline. Specifically,
our optimzers follow the small_fc_lopt architecture and are 3-layer MLPs with a hidden width of 32
as LOs, which take a variety of input features (e.g. gradient, momentum, rms, etc.) inspired by
(Maheswaranathan et al.| 2021)). For all LO baselines, we meta-train using AdamW (Loshchilov &
Hutter|2017) with an initial learning rate of 3 x 10~3. The step_mult \; and exp_mult A\, mentioned
in Eq. [2] are both set to 0.001 by default. For ELO-LO, the expert is set to Adam(Kingma &
Ba, 2014) with learning rate 1 x 103, although we also experimented with other hand-designed
optimizers (e.g. AdamW) as the expert but did not yet observe improvements beyond Adam. The
meta-trainings are performed on ImageNet-1K (Deng et al.|[2009)), resized to 32 x 32, using a batch
size of 4096, for 5,000 outer steps with an maximum unroll length of 1,000. For LO (curriculum),
the maximum unroll length grows from 1,000 to 10,000 as outer step t proceeds. Standard data
augmentations such as random flipping, cropping, and translation, are applied during meta-training
to avoid overfitting(Krizhevsky et al.l 2012; (Cubuk et al., 2018). Instead of using standard ES
algorithm, we estimate meta-gradients using persistent evolution strategies (PES) (Vicol et al.| 2021)
for faster training, with a truncation length of 50.

Meta-testing. We conduct evaluation across various vision and language tasks using different
models. For vision tasks, we evaluate on ImageNet-1K (32x32 resolution) using two representa-
tive architectures: a 3-layer MLP with hidden width 128, and ResNet-18 (He et al., 2016a:b)). Both
models are trained with a batch size of 4096, using the same augmentations as in meta-training.
For langue tasks, we employed the popular FineWeb-10B (Penedo et al.| [2024) dataset along with
the GPT-2-mini (Radford et al.l [2019) model. Due to computational constraints, the batch size for
language experiments is set to 512. For all AdamW (Loshchilov & Hutter, [2017) baselines, we set
the weight decay to be 1 x 10~*, and search the best learning rate from [0.01, 0.007, 0.004, 0.001,
0.0007, 0.0004, 0.0001] for each task.

5.2 REPLAY BUFFER VS. BEHAVIOR CLONING

We begin by providing a brief analysis of the meta-training process.

Sampling efficiency. As shown in Figure [2| (Ieft), although buffer initialization requires exactly
the same computational cost as random initialization (evidenced by the equal lengths of the two line
segments in each column), it significantly increases the effective unroll length N. In this case, we set
the buffer threshold P;;, = 0.1; lowering P, further increases the expected unroll length, whereas
raising it has the opposite effect.

Under review as a conference paper at ICLR 2026

Meta-training stability. However, using the buffer alone leads to severe compounding errors during
meta-training, which can cause the training process to become unstable or even collapse. As shown
in Figure 2] (right), training with buffer-only initialization causes the final meta-loss to converge
toward ~ 6.91 (corresponding to the entropy of a uniform random output over 1,000 classes, i.e.,
log 1000), reducing the LO to random guessing(Goodfellow et al.,[2016). In contrast, when behavior
cloning is additionally applied, the meta-loss remains consistently stable throughout meta-training,
demonstrating the effectiveness of this combination.

5.3 EFFECT OF BUFFER THRESHOLD P},

We use P;, to control both the expected and

maximum lengths of the sampled unrolls. To 7.00
better understand how downstream performance
varies with P, we conduct experiments on
ImageNet-1K (32x32) using an MLP with hid-
den width 128. Specifically, we meta-train ELO- S
LO under different values of Py, (0.01, 0.05, £°%%
0.1, 0.2, 0.3, 0.5, 0.7) and evaluate their per- g 570
formance. As shown in Figure [6] the best re- 5.50

6.75
6.50

2
2 6.25

1
. . . i
sults are achieved when Py, = 0.2, while either 5.25 hotota i Horison = 1000
5.00 L f f f t t
decreasing or increasing Py, leads to degraded o 2000 4000 6000 8000 10600
performance. Training Step

We hypothesize that this phenomenon arises
because reducing P, from 0.7 to 0.2 appro-
priately reallocates computational resources to-
ward longer unrolls, thereby enhancing long-
horizon learning. However, further decreasing
P;y, causes insufficient training on short unrolls,
which in turn weakens the optimizer’s ability to
handle both short and long unrolls effectively. In
subsequent comparative experiments, we therefore adopt the ELO-LO meta-trained with the best-
performing threshold for all tasks.

Figure 6: Effect of buffer threshold F;;, on down-
stream performance. The best performance oc-
curs at P, = 0.2, while both lower and higher
thresholds degrade generalization due to insuffi-
cient coverage of short or long unrolls.

5.4 EVALUATING GENERALIZATION TO LONG UNROLLS

We evaluate the long-horizon generalization ability of ELO across both vision and language tasks.
During meta-training, the maximum unroll length sampled is limited to 1,000, while evaluation is
extended to 10, 000-step unrolls to assess performance far beyond the meta-training horizon. Ex-
periments cover multiple model architectures, including MLPs and ResNet-18 on ImageNet-1K
(32%32), as well as GPT2-mini on the FineWeb-10B dataset.

As shown in Figures 3] [4] and[5] ELO-LO consistently achieves the lowest final training loss across
all tasks, outperforming strong baselines such as AdamW, naive-LO, and curriculum-LO. While
AdamW maintains stable convergence but plateaus at higher loss values, naive-LO quickly flattens
and even diverges beyond the training horizon. By contrast, ELO-LO matches AdamW’s stability
while continuing to reduce loss on long unrolls.

To further validate generalization, we also evaluate on held-out test sets. As summarized in Ta-
ble[I] ELO-LO consistently achieves the highest accuracy and the lowest test loss across all bench-
marks, confirming that the method provides stable improvements in both in-distribution and out-of-
distribution evaluation.

5.5 ABLATING ELO’S COMPONENTS

We further disentangle the contributions of ELO’s core components through a systematic ab-
lation study. Specifically, we evaluate (i) a naive LO meta-trained with random initializa-
tion, (ii) a variant with uniform unroll sampling, (iii) the addition of behavior cloning (BC),
and (iv) the complete LoL-LO framework that integrates both BC and the replay buffer.
We further disentangle the contributions of each component in ELO through ablation studies.

Under review as a conference paper at ICLR 2026

Table 1: Best performance of different methods on vision and language tasks. For vision tasks
(ImageNet-1K (32x32)), we report test accuracy (%). For language tasks (FineWeb-10B), we report
test cross entropy loss.

Method ImageNet-1K ImageNet-1K FineWeb-10B
MLP ResNet18 GPT2-mini

Metric Acc. (%) Acc. (%) CE-Loss

AdamW 8.26 35.62 4.31

LO (naive) 6.69 33.83 4.29

LO (curriculum) 7.77 31.96 4.44

ELO-LO 8.77 36.51 4.13
As shown in Figure [/| the naive LO quickly 7.00 .
saturates and fails to improve beyond a moder- 6.75 : —— LO (naive)
ate level of unroll generalization. Incorporat- 6.50 i —— LO (uniform)
ing uniform unroll sampling alleviates this is- 2 625 | —— LO-BC
sue by making the training trajectories sparser. E 6.00 ; — ELO-LO

Adding BC enables the LO to inherit the strong
inductive bias of Adam, leading to a notice-
able improvement in unroll generalization even
without buffer support. Finally, combining be-
havior cloning with the replay buffer yields the
complete LoL-LO, which achieves the strongest
long-horizon generalization. Note that we do not
report a “buffer-only” variant, as introduced in

E575
&5

5.50

5.25
Meta-train Horizon = 1000

5.00

0 2000 4000 6000

Training Step

8000 10000

Figure 7: Ablation study on ImageNet-1K

subsection 5.2] using buffer initialization with-

out behavior cloning often causes meta-training
to become unstable or even collapse.

(32x32) with a 3-layer MLP (width 128). We
showed how each component contributes to long
unroll generalization.

6 DISCUSSION.

We have validated that ELO brings clear improvements for long unroll optimization across various
tasks. In this work, we primarily used Adam as the expert. We also made some preliminary attempts
with more advanced hand-designed optimizers such as AdamW (Loshchilov & Hutter, 2017 and
Muon (Jordan et al.l |2024). However, we found it challenging to make these alternatives work
reliably in practice, and further effort is still required in this direction. Another important limitation
lies in scale. Because meta-training LOs is extremely resource-intensive, our experiments have been
limited to smaller models and datasets. As a result, the LOs trained still struggle to generalize
effectively to optimizing very large-scale architectures, a capability that is essential for practical
deployment. Despite this, ELO provides a promising step forward by effectively improving the
efficiency and stability of meta-training. Looking ahead, we plan to extend our exploration to large-
scale datasets and models, paving the way for LOs trained with ELO to serve as practical alternatives
to state-of-the-art hand-designed optimizers in real-world systems.

7 CONCLUSION.

In this work, we introduced ELO: An efficient long horizon meta-training scheme for learned op-
timization. By leveraging replay buffers with expert guidance from online behavior cloning, ELO
stabilizes meta-training, allowing the optimizer to learn from very long unrolls from the beginning of
training. Our experiments across vision and language benchmarks demonstrate that learned optimiz-
ers meta-learned with ELO consistently outperform strong baselines, highlighting ELO’s potential
as a practical and effective meta-training framework for improving learned optimizers’ generaliza-
tion to longer training horizons.

Under review as a conference paper at ICLR 2026

REFERENCES

Ruslan Abdulkadirov, Pavel Lyakhov, and Nikolay Nagornov. Survey of optimization algorithms in
modern neural networks. Mathematics, 11(11):2466, 2023.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231-357, 2015.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920-15930, 2020.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hind-
sight to anchor past knowledge in continual learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 6993-7001, 2021.

Tianlong Chen, Weiyi Zhang, Jingyang Zhou, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training stronger baselines for learning to optimize. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
51f4efbfb3el8f4eal053c4d3d282c4e2—-Abstract.htmll

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on robot learning, pp. 158—168. PMLR, 2022.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630—-645. Springer, 2016b.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/\

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, and Tie-Yan Liu.
Curriculum offline imitating learning. Advances in Neural Information Processing Systems, 34:
6266-6277, 2021.

10

https://proceedings.neurips.cc/paper/2020/hash/51f4efbfb3e18f4ea053c4d3d282c4e2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51f4efbfb3e18f4ea053c4d3d282c4e2-Abstract.html
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Under review as a conference paper at ICLR 2026

Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. In 2018 56th
annual allerton conference on communication, control, and computing (Allerton), pp. 478-485.
IEEE, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, and Jascha Sohl-Dickstein. Re-
verse engineering learned optimizers reveals known and novel mechanisms. Advances in neural
information processing systems, 34:19910-19922, 2021.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up, 2022. URL https://arxiv. org/abs/2211.09760.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556-4565. PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers. In Confer-
ence on Lifelong Learning Agents (CoLLAs), 2022. URL http://github.com/google/
learned_optimizationl

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J] Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1-179, 2018.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914-2924, 2020.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627-635. IMLR Workshop and Conference
Proceedings, 2011.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

11

http://github.com/google/learned_optimization
http://github.com/google/learned_optimization

Under review as a conference paper at ICLR 2026

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research
Society of China, 8(2):249-294, 2020.

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics, 50(8):3668-3681, 2019.

Benjamin Thérien, Charles Etienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and Eu-
gene Belilovsky. plo: Compute-efficient meta-generalization of learned optimizers, 2024. URL
https://arxiv.org/abs/2406.00153.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled com-
putation graphs with persistent evolution strategies. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 10553—
10563. PMLR, 2021.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and gen-
eralize. In International conference on machine learning, pp. 3751-3760. PMLR, 2017.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084—17097,
2021.

Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv preprint
arXiv:1712.01275, 2017.

A APPENDIX

To be added!

12

https://arxiv.org/abs/2406.00153

	Introduction
	Related Work
	Overview of Learned Optimizers
	Efficient Long-horizon Learning
	Unroll Initialization from Replay Buffer for LOs
	Composition of Optimization Trajectories
	Online Behavior Cloning

	Empirical Evaluation
	Experimental Setup
	Replay Buffer vs. Behavior Cloning
	Effect of Buffer Threshold Pth
	Evaluating generalization to Long unrolls
	Ablating ELO's components

	Discussion.
	Conclusion.
	Appendix

