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Abstract: This paper presents a framework for learning vision-based robotic policies for1

contact-rich manipulation tasks that generalize spatially across task configurations. We fo-2

cus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH) task3

trained from a small number of demonstrations. We propose EquiContact, a hierarchical4

policy composed of a high-level vision planner (Diffusion Equivariant Descriptor Field,5

Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant ACT,6

G-CompACT). G-CompACT operates using only localized observations (geometrically7

consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB images)8

and produces actions defined in the end-effector frame. Through these design choices, we9

show that the entire EquiContact pipeline is SE(3)-equivariant, from perception to force10

control. We also outline three key components for spatially generalizable contact-rich poli-11

cies: compliance, localized policies, and induced equivariance. Real-world experiments12

on PiH tasks demonstrate a near-perfect success rate and robust generalization to unseen13

spatial configurations, validating the proposed framework and principles. The experimental14

videos are attached as multimedia materials.15

Keywords: Contact-rich task, Imitation Learning, Compliant Control, Geometric Control,16

SE(3)-Equivariance17

1 Introduction18

Imitation learning has recently shown significant success in expanding the capabilities of machine19

learning in real-world robotics applications [1, 2, 3, 4, 5, 6, 7]. Similar to the trend seen in large20

language models (LLMs), there is a growing belief that large-scale data can unlock generalizable,21

vision-based policies for robotics [8, 1]. However, such policies often lack spatial generalizabil-22

ity and therefore require a large amount of data to learn robust behaviors [9]. An alternative line23

of recent research focuses on leveraging symmetry—particularly equivariance—to enhance spatial24

generalizability, thereby improving sample efficiency during training [10, 9].25

In this paper, we propose EquiContact, a hierarchical SE(3) vision-to-force equivariant policy for26

spatially generalizable contact-rich tasks. Our proposed method consists of two main components.27

The first is a high-level planner consisting of a Diff-EDF model [11], which uses global point cloud28

data to provide a local reference frame for placing the peg relative to the hole. The second, low-29

level compliant visuomotor policy is a variant of ACT [6], which we refer to as Geometric Compliant30

ACT (G-CompACT). This policy handles detailed motion and contact interaction using force-torque31

feedback and RGB inputs from wrist-mounted cameras. A key design feature of G-CompACT is that32

it only relies on local information—specifically, the force-torque signal in the end-effector frame,33

a geometrically consistent error vector (GCEV) [9], and wrist camera inputs. The output of G-34

CompACT is the desired pose and admittance gains, which are then sent to the geometric admittance35

controller (GAC) module to execute compliant control. The overall framework of EquiContact is36

summarized in Fig. 1.37

We emphasize that our contribution is on the structural framework rather than the specific choice of38

algorithms. For example, one could replace the Diff-EDF with other equivariant methods, such as39

ET-SEED [12], or replace the ACT with the DP or their variants, e.g., Diffusion Transformer (DiT)40

[13]. The main contributions of this paper are as follows:41
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Figure 1: We propose an EquiContact, a hierarchical, provably SE(3) vision-to-force equivariant policy for
spatially generalizable contact-rich tasks. The proposed EquiContact consists of G-CompACT and Diffusion-
EDF. The G-Compact plays a localized policy over the reference frame provided by the Diffusion-EDF, making
our framework generalizable to unseen scenarios during evaluation. The G-CompACT is trained only on the
fixed platform pose (left-upper part) but is then deployed to previously unseen platforms, both in translation
and rotation (left-lower part), demonstrating SE(3) vision-to-force equivariance and resulting spatial general-
ization.

1. We propose EquiContact, a hierarchical, provably SE(3)-equivariant policy from point clouds42

and RGB inputs to interaction forces for executing contact-rich tasks.43

2. We demonstrate that EquiContact achieves near-perfect success rates and spatial generalizability44

in real robot experiments involving tight insertions.45

3. We identify three key principles for spatially generalizable contact-rich manipulation: Com-46

pliance, Localized Policy (Left invariance), and Induced Equivariance. These enable SE(3)-47

equivariant behavior without requiring explicitly equivariant neural networks [10].48

From these key principles, we propose a general framework to enhance the spatial generalization and49

interpretability of vision-based policies, namely, “anchoring localized policy on globally estimated50

reference frame.” We emphasize that our work provides complementary insights to recent trends of51

robot learning [1, 8, 13, 2] that aim to build generalist policies from a large-scale demo dataset. Our52

principles offer structural guidelines to improve spatial generalizability through SE(3) equivariance.53

We note that this work is the workshop version of a previously submitted article, [14].54

Problem Scenario Our primary focus is to provide a learning-based solution for a peg-in-hole55

task, a classic representative of contact-rich, force-based robotic manipulation and assembly tasks,56

using vision. The robot first needs to pick up the peg and then insert it into the hole, as shown57

in Fig. S1, relying only on vision and proprioception. We assume only that the peg is upright58

in the scene. To demonstrate spatial generalizability, we collect expert demonstrations for the G-59

CompACT in a setting with a fixed, known hole pose. Then, the benchmark and proposed methods60

trained only with demonstration collected from the fixed hole are evaluated across arbitrarily trans-61

lated and rotated test scenarios, i.e., spatially out-of-distribution scenarios.62

2 Solution Approach and Main Result63

We now describe our proposed EquiContact policy, which integrates a high-level vision-based plan-64

ner—Diffusion Equivariant Descriptor Field (Diff-EDF)—with a low-level compliant visuomotor65

policy—Geometric Compliant control Action Chunking Transformer (G-CompACT). G-CompACT66

itself consists of a behavior cloning module built on a transformer-based CVAE architecture, fol-67

lowed by a geometric admittance controller (GAC). Because of the page limit, we first focus on the68

insertion task, which will later be extended to include the picking task to complete the full pipeline69

implementation. The Diff-EDF and G-CompACT are trained separately but are combined as a whole70

pipeline during inference time, as shown in Fig. 1.71
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Diffusion-Equivariant Descriptor Field (Diff-EDF) Diff-EDF [11] is a diffusion-based manip-72

ulation policy with a bi-equivariant structure on SE(3) transformations for pick-and-place tasks.73

Diff-EDF takes two point clouds as input: the scene point cloud Oscene captured by two exter-74

nal RGBD cameras with calibrated extrinsics (Fig. S1), and the gripper point cloud Ograsp in the75

end-effector frame, with or without a grasped object. Diff-EDF outputs a pose g
EDF

∈ SE(3)76

representing the estimated target pose of the object of interest, e.g., the pose of the hole, as follows:77

g
EDF

= fθ1(Oscene,Ograsp) (1)
where the neural network fθ1 implements the mapping. The key property of Diff-EDF is a scene78

equivariance property, which is written by: glgEDF
= fθ1(gl ◦ Oscene,Ograsp) [11]. We refer the79

readers to Supplementary Material SII.1 for the details of the Diff-EDF.80

Geometric Admittance Control We implement the geometric impedance control (GIC) proposed81

in [15, 16] in the geometric admittance control (GAC) setup [9]. We first note that we follow the82

notation used in [9]. Let the end-effector pose be denoted as g ∈ SE(3) in a homogeneous matrix83

representation, or simply g = (p,R), where p ∈ R3 is a position of the end-effector and R ∈ SO(3)84

is a rotation matrix of the end-effector. Given the desired end-effector pose gd = (pd, Rd), the85

desired end-effector dynamics for the GAC setup is given as follows:86

MV̇ b +KdV
b + f

G
= Fe, where f

G
=

[
fp
fR

]
=

[
RTRdKpR

T
d (p− pd)

(KRR
T
d R−RTRdKR)

∨

]
, (2)

where M ∈ R6×6 is symmetric positive definite desired inertia matrix, Kd ∈ R6×6 symmetric posi-87

tive definite damping matrix, Fe ∈ R6 is external wrench applied to the end-effector in end-effector88

body frame and V b ∈ R6 is a body-frame end-effector velocity. Further, f
G
= f

G
(g, gd,Kp,KR) ∈89

R6 is a elastic wrench, where f̂
G
∈ se∗(3), with Kp,KR ∈ R3×3 symmetric positive stiffness ma-90

trices for the translational and rotational dynamics, respectively, and (·)∨ denotes the vee-map. The91

implementation details of GAC are presented in the Supplementary Material SII.2.92

Geometric Compliant control Action Chunking with Transformers (G-CompACT) In [9], the93

authors proposed a recipe for SE(3) equivariant policies, which involves a left invariance property94

and policy representation in the end-effector body frame. Following this principle and recent devel-95

opments on relative action representations (similar to [17]), we structure our G-CompACT policy at96

time instance k to take observations composed of: 1) Geometrically Consistent Error Vector (GCEV)97

proposed in [9] (e
G

), 2) FT sensor in the end-effector frame to capture contact behaviors (Fe), and 3)98

RGB images from wrist cameras (Iw). The model returns N chunks of action sequences: 1) relative99

pose from the current end-effector frame (grel), and 2) admittance gains (K̄p, K̄R). Formally, the100

G-CompACT can be summarized as101

a(k) = πθ2(o(k)), where

a(k) ≜ {(grel(k + i), K̄p(k + i), K̄R(k + i))}Ni=1, o(k) ≜ (e
G
, Fe, Iw)(k),

(3)

with i = 1, · · · , N denoting the index of action chunk. The GCEV e
G
= e

G
(g, g

EDF
) is defined as102

e
G
(g, g

EDF
) =

[
RT (p− p

EDF
)

(RT
EDF

R−RTR
EDF

)∨

]
, (4)

where g is current end-effector pose and g
EDF

is a reference frame obtained from the Diff-EDF. The103

relative actions grel(k+ i) are projected back to the spatial frame by ḡd(k+ i) = g(k) · grel(k+ i).104

The temporary signals (ḡd, K̄p, K̄R)(k + i) is then filtered via the temporal aggregation, leading to105

(gd,Kp,KR)(k), which are then provided to the GAC controller (2).106

Main Result: SE(3)-Equivariance of EquiContact Now we show the main result of EquiCon-107

tact: SE(3) vision-to-force equivariance. Following the argument of [9], we focus on the elas-108

tic wrench f
G

in (2) of the GAC equation, since it is the main driving force that pulls the109

peg into the hole. Let EquiContact be written as hθ so that hθ(g, gref , Fe) 7→ f
G

, i.e., hθ :110

SE(3) × SE(3) × se∗(3) → se∗(3), where gref ∈ SE(3) is the pose representation of the object111

of interest, e.g., hole assembly (see Fig. S2). As the gref is unknown, it is observed via Oscene by112

external RGBD cameras and Iw by wrist cameras. Then, the main proposition that demonstrates113

SE(3) vision-to-force equivariance is presented as follows:114
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Proposition 1. The EquiContact Policy hθ is equivariant if it is described relative to the spatial115

frame.116

Due to space constraints, we will elaborate on the proof and its associated details in the Supplemen-117

tary Material SII.118

3 Experimental Result119

To validate the effectiveness of our proposed EquiContact framework and its underlying design120

principles (Compliance, Localized Policy, and Induced Equivariance), we compare EquiContact121

against three benchmark approaches: ACT with world-frame observation and action representation,122

executed with and without GAC, and CompACT [18]. We conducted a series of benchmark tests to123

demonstrate the effectiveness of each component in the proposed approach. The overall results are124

summarized in Table S1. Note that in this benchmark test, we first focused on the placement task,125

i.e., the insertion task, and extended the main algorithm to the full pick-and-place task. The full126

details of the experimental results are shown in the Supplementary Material SIII.127

Demonstration of Compliance The role of compliance is demonstrated by comparing the same128

default ACT [6] model running with and without the compliant control in the in the 1st and 2nd129

rows of Table S1. Without the compliant control, the ACT model shows significantly lower success130

rates, which demonstrates that the presence of compliant control is almost a deciding factor between131

success and failure for contact-rich tasks. To further demonstrate the effectiveness of the task-132

adaptive gains, we compare the fixed gain case (2nd row) and adaptive gain case (CompACT, 3rd133

row). Although the success rate does not differ, the adaptive admittance gains based on FT feedback134

consistently produce lower interaction forces in all directions, as shown in Fig. S3.135

Demonstration of Equivariance Although the CompACT succeeds in insertion tasks in trained136

scenarios without excessive interaction force, it fails to generalize to spatially unseen configurations137

(denoted as ”OOD” in the 3rd row of Table S1). This is expected, as its observation and action138

representations are defined in the global spatial frame, which neither guarantees nor encourages139

equivariance. Furthermore, the data is only collected at the fixed platform pose, as shown in Fig. 1.140

In contrast, the proposed EquiContact achieves perfect success rates on the translationally unseen141

flat platform, as can be seen in the 4th row of Table S1, and achieves a near-perfect success rate even142

on the tilted platform case.143

From these experimental results, we draw the key takeaway: “anchoring localized policies on144

globally estimated reference frames”, which serves as a general framework to enhance spatial145

generalizability and interpretability of vision-based policies. The detailed elaboration of this take-146

away is presented in the Supplementary Material SIV.147

4 Conclusion148

In this work, we introduced EquiContact, a vision-to-force equivariant policy for spatially general-149

izable contact-rich tasks. By integrating a global reference frame estimator (Diff-EDF) with a fully150

localized visuomotor servoing policy module (G-CompACT), we demonstrate how compliance, lo-151

calized policy, and induced equivariance can be unified to enable the peg-in-hole (PiH) task, a repre-152

sentative contact-rich precision task, under spatial perturbations. We proved the SE(3) equivariance153

of the policy under assumptions on point cloud and image observations and validated its effective-154

ness through real-world experiments on PiH benchmarks. Compared to benchmark methods, our ap-155

proach generalizes to unseen platform positions and orientations while maintaining low contact force156

and near-perfect success rates. Through extensive benchmark studies, we highlighted the effective-157

ness of the three principles – compliance, localized policy, and induced equivariance – for achieving158

spatial generalizability in contact-rich manipulation. We conclude that these principles offer a sim-159

ple yet powerful design guideline for developing spatially generalizable and interpretable robotic160

policies complementing recent trends in end-to-end visuomotor learning and enabling a structured161

divide-and-conquer approach.162
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Supplementary Material
SI Related Works231

Visuomotor Servoing Methods Recently, generative modeling has become mainstream in realizing232

visuomotor servoing policies. Particularly, there are two dominant methods for visuomotor servo-233

ing: Action Chunking with Transformers (ACT) [6] and Diffusion Policy (DP) [5]. ACT utilizes the234

conditional variational autoencoder (CVAE) method as a generative model, whereas DP employs235

denoising diffusion as its generative model. ACT and DP have been extended to other approaches,236

including compliance and force-reactive behaviors [18, 19, 20], as well as structural improvements237

[21, 13, 22]. Our work is most closely related to CompliantACT (CompACT) [18], which inte-238

grates compliant control for visuomotor policies. We have significantly improved CompACT by239

incorporating a provable SE(3) equivariant structure.240

Equivariant Methods Equivariant methods aim to leverage the inherent symmetries of robot tasks,241

typically modeled as group transformations such as SE(3), to improve the sample efficiency of im-242

itation learning. Early approaches, such as Neural Descriptor Fields (NDFs) [23] and Transporter243

Networks [3], incorporated equivariance to SE(3) and SO(2) transformations, utilizing scene point244

clouds and top-down views, respectively. Equivariant Descriptor Fields (EDFs) [24] reformulated245

the NDF approach into a fully end-to-end learning method with SE(3) bi-equivariance property,246

which is further improved by Diffusion-EDF (Diff-EDF) [11] to improve training and inference per-247

formance. Other equivariant models that extract desired keyframes from point clouds include [25].248

3D Equivariant extensions of DP [26, 27, 12] and Flow-Matching [28, 29] policies have been ex-249

plored in recent literature and combine SE(3) equivariant observation encoders with appropriately250

modified diffusion/flow-matching processes.251

Compared to recent works of [17, 30], we generalize the table-top manipulation to contact-rich tasks252

while achieving full SE(3) equivariance from vision to force/control level, bridging vision, control,253

and force interaction under a unified framework. In particular, compared to [30], which represents254

the target policy on the estimated reference frame, we represent the policy on the end-effector frame.255

This is because the estimated reference frame can be noisy, but one can always access perfect infor-256

mation on the current end-effector frame via forward kinematics. Furthermore, the reference frame257

is assumed to be only translated in [30], whereas we assume complete SE(3) transformation of the258

reference frame. Compared to [17], both [17] and our work propose relying only on the wrist camera259

for the localized policy. However, while the global information was proposed to be handled via a260

large field-of-view wrist camera in [17], which is impractical in the real-world implementation, we261

instead utilized a hierarchical structure to handle global information using an external camera. We262

also provide more theoretically sound proof for the SE(3) equivariant visuomotor policy, as well as263

an extension to the control force level. We also did not utilize SO(2) equivariance as in [17] on the264

wrist camera, as our camera is not mounted vertically on the end-effector. Furthermore, utilizing a265

group-equivariant neural network in the pipeline tends to increase the computational burden, as most266

group-equivariant neural networks are not as well-engineered as their non-equivariant counterparts.267

Therefore, we choose to have a high control frequency for the visuomotor policy rather than utilizing268

a group-equivariant neural network with a lower control frequency.269

SII Details of Solution Approach270

SII.1 Details of Diff-EDF271

As mentioned in Section 2, the objective of the Diff-EDF is to obtain the pose g
EDF

∈ SE(3),272

which is the estimated pose of the object of interest gref , as is presented in Fig. S2.273

Let Oref ⊂ Oscene denote the subset of points corresponding to the object of interest (e.g., the274

hole structure, see also Fig. S2). The model is designed to satisfy the following left-equivariance275

property on the point cloud characterization of the target object of interest:276

Assumption 1 (Left-Equivariance of Diff-EDF).

g
EDF

= fθ1(Oref ,Ograsp) =⇒ gl · gEDF
= fθ1(gl ◦ Oref ,Ograsp), (5)
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To meet this assumption, we randomize the pose of the hole-platform assembly during training,277

both translationally and rotationally, with visual distractors in the background. This encourages the278

model to focus on Oref , not the rest of the objects in the scene.279

While this property is not strictly enforced (due to the learned nature of fθ1 ), Diff-EDF utilizes280

equivariant backbone architectures and localized attention mechanisms [31], enabling it to general-281

ize from as few as ∼ 10 demonstrations and have high robustness to left SE(3) transformations.282

To train Diff-EDF, the scene and grasp point clouds are collected together with the target reference283

frames, which represent the desired poses of the end-effector for pick-and-place operations. 15284

demonstrations were collected for the Diff-EDF: 12 samples of the flat platform and 3 samples of285

the tilted platform, both translationally and rotationally randomized. The training process of Diff-286

EDF follows the procedure in [11].287

While the original Diff-EDF supports right-equivariance to handle transformations between the grip-288

per and the grasped object, we did not utilize this feature. In practice, we observed that arbitrary289

peg transformations relative to the gripper introduced additional challenges. First, grasping the peg290

based on an arbitrary transformation leads to imprecise grasps, resulting in object slippage during291

contact. Second, the gripper-object rotation must be estimated continuously in real-time for G-292

CompACT to work under slippage. Instead, we enforced a consistent grasp orientation and relied293

only on the left-equivariance property. We refer the readers to [11, 10] for full details of Diff-EDF.294

SII.2 Implementation Details of GAC295

Given the desired dynamics (2), the desired end-effector pose command g̃d(k) provided to the end-296

effector controller is calculated in discrete time as297

V b
d (k)=V b(k)+Ts ·M−1(Fe(k)−f

G
(k)−KdV

b(k)),

g̃d(k)=g(k) · exp (V̂ b
d (k) · Ts), (6)

where Ts is a sampling time and (̂·) denotes a hat-map. For the details of the GIC/GAC, we refer to298

[15, 9]. The admittance control loop is implemented at a 200Hz rate using ROS2.299

SII.3 Details of G-CompACT300

First, we note that in our hardware setup, we utilized two wrist cameras, Iw,1 and Iw,2, as shown in301

Fig. S1, but they are simply denoted as Iw. Since the images Iw are fed to the transformer encoder302

followed by the visual encoder structure, e.g., ResNet, one can further the G-CompACT in (3) as303

a(k) = π′
θ3(eG

, Fe, z)(k), where z(k) = µϕ(Iw). (7)

where µϕ denotes the visual encoder, and z is the latent variable from the visual encoder. In what304

follows, we introduce the assumption regarding the left-invariant visual representation.305

Assumption 2 (Left-invariant Visual Features). The features from visual encoder µϕ are left invari-306

ant, i.e.,307

z(k) = µϕ(gl ◦ Iw) = µϕ(Iw), ∀gl ∈ SE(3), (8)

where we refer to gl as a left-group action [10]. Originally, gl ∈ SE(3) cannot be applied to the308

image domain. However, with the slight abuse of notation, one can understand the SE(3) action on309

the image as illustrated in Fig. S2.310

The meaning of the visual representation z being left-invariant is that the vision encoder µϕ is trained311

to focus only on group action invariant features, such as the flat surface surrounding the hole on the312

platform. The satisfaction of Assumption 2 can be challenging. To satisfy this assumption, we have313

designed our platform and the surface surrounding the hole assembly so that there are sufficient314

surface features and the cameras primarily see the surface surrounding the hole, not the lower parts315

of the platform. This engineering choice was somewhat ad hoc, as there is no guarantee or sufficient316

inductive bias to encourage the desired behavior. We will demonstrate in later experimental results317

that this assumption may not apply in certain cases.318

The following proposition shows the left-invariance of the G-CompACT method in the end-effector319

frame.320
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Figure S1: (Left) Overview of the workspace for the peg-in-hole assembly task is presented. 2 external cameras
with calibrated extrinsics and 2 wrists cameras are installed. (Right-Top) Peg and hole assembly with 1mm of
clearance. (Right-Bottom) Hole part with flat and tilted (30◦) platforms.

Figure S2: Effects of the left group action gl to the end-effector pose g and the reference frame gref , and to the
wrists cameras Iw,1 and Iw,2. As the left group action is applied on the end-effector, the wrist cameras start to
see not only the optical table but also the outer backgrounds. {s} denotes a spatial frame.

Proposition 2 (Left-invariance of G-CompACT). Suppose that the Assumption 2 holds. Then,321

a(k) = πθ2(gl ◦ o(k)) = πθ2(o(k)). (9)

Proof. The left-translated observation signals o(k) reads that:322

gl ◦ o(k) = (gl ◦ eG
, gl ◦ Fe, gl ◦ Iw). (10)

As was shown in Lemma 1 of [9], the GCEV e
G

is left invariant as323

gl ◦ eG
(g, g

EDF
) = e

G
(glg, glgEDF

) = e
G
(g, g

EDF
).

The force-torque sensor values are left-invariant because they are already defined with respect to the324

end-effector frame [9], and the visual representation vectors satisfy left invariance due to Assump-325

tion 1. Combining all these properties, it follows that326

a(k) = πθ2(gl ◦ o(k)) = π′
θ3(eG

, Fe, z) = πθ2(o(k)), (11)

which shows the left invariance of the G-CompACT policy on the end-effector frame.327

In what follows, we demonstrate that the pose signal produced by G-CompACT is equivariant when328

described in the spatial frame.329
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Corollary 1 (SE(3) Equivariance of G-CompACT). Let the output of G-CompACT in the spatial330

frame be ḡd via (without considering the outputs related to gains)331

ḡd = g ·πθ2(eG
(g, g

EDF
), Fe, Iw). (12)

Then,332

glḡd = glg · πθ2(gl ◦ eG
(g, g

EDF
), gl ◦ Fe, gl ◦ Iw)

= glg · πθ2(eG
(g, g

EDF
), Fe, Iw). (13)

Since the temporary desired pose on the spatial frame signal, ḡd, is SE(3) equivariant, the tempo-333

rally ensembled signal gd is also equivariant. Therefore, by combining the G-CompACT with a spa-334

tial frame representation and temporal ensemble, we will now define the final form of G-CompACT335

as π̂θ2 , which is given by:336

(gd,Kp,KR) = π̂θ2(eG
(g, g

EDF
), Fe, Iw). (14)

and satisfies the following equivariance property:337

(glgd,Kp,KR)(k) = π̂θ2(gl ◦ o(k)). (15)

To train a G-CompACT, we collect the expert demonstration using teleoperation on the fixed pose338

of the platform. During data collection, the expert teleoperator monitors the task’s progress, makes339

real-time movement commands via a SpaceMouse, and adjusts the admittance gains using keyboard340

input to switch between the following predefined gain modes: low-gain mode, high-gain mode,341

insertion mode, and contact mode. The low/high gain mode has low/high gains in all directions, the342

insertion mode has high gains in the z direction of the end-effector frame and low gains elsewhere.343

Finally, the contact mode has low gains in the z direction and high gains elsewhere. We collected344

86 demonstrations to train a near-perfect policy.345

Since we know the fixed pose of the platform a priori, e.g., a ground-truth reference frame, the346

GCEV vector can be calculated for the training process. Nevertheless, the reference frame needs347

to be estimated via Diff-EDF (as g
EDF

) during the inference stage, which may have non-negligible348

errors. To handle this issue, we have added noise to the reference frame gref to calculate e
G

during349

dataset preprocessing. This provides the model with an inductive bias to primarily rely on e
G

values350

for rough alignment and rely on vision feedback for fine-grained motion. The rest of the training351

follows the standard imitation learning pipeline.352

SII.4 EquiContact353

The proposed EquiContact method comprises the high-level Diff-EDF, which serves as a high-level354

vision planner that provides the reference frame to be fed to GCEV, and the low-level G-CompACT,355

which handles fine-grained movement and contact interaction during insertion using real-time vision356

and force feedback. The overall pipeline of the EquiContact is presented in Fig. 1. The SE(3)357

vision-to-force equivariance property of EquiContact is proposed in Proposition 1; we now present358

the proof here.359

Proof. Suppose that the Assumption 1 and 2 hold. Let the object of interest, e.g., a peg for the360

picking task and a hole for the placing task, be observed by Oref , Iw with its pose given by gref ,361

so that the left-translated gl · gref is observed by gl ◦ Oref from the point cloud, and gl ◦ Iw by the362

left-translated end-effector attached wrist camera as described in Fig. S2.363

First, notice that hθ can be fully written as364

hθ(g, gref , Fe) = f
G
(g, π̂θ2(eG

(g, fθ1(Oref )), Fe, Iw)) (16)
= f

G
(g, π̂θ2(eG

(g, g
EDF

), Fe, Iw)︸ ︷︷ ︸
=(gd,Kp,KR)

).
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Then, when both g and gref undergoes a left transformation gl, from Assumption 1 and Corollary 1,365

the following holds:366

hθ(glg, glgref , gl ◦ Fe)

= f
G
(glg, π̂θ2(eG

(glg, fθ1(gl ◦ Oref )), gl ◦ Fe, gl ◦ Iw))
= f

G
(glg, π̂θ2(eG

(glg, glgEDF
), gl ◦ Fe, gl ◦ Iw)) (17)

= f
G
(glg, glgd,Kp,KR) = f

G
(g, gd,Kp,KR)

= hθ(g, gref , Fe).

We note that the second-last equation (SE(3) left-invariance of the elastic wrench) comes from367

Lemma 1 of [9]. Finally, from the result of Proposition 2 of [9], it follows that368

hs
θ(glg, glgref , gl ◦ Fe) = AdT

g-1
l
hs
θ(g, gref , Fe), (18)

where Ad is an Adjoint operator, AdT
g-1
l

is a representation for se∗(3) (wrench) domain for the group369

action gl [9], and superscript s denotes a vector represented in the spatial frame.370

Extensions to Pick Tasks So far, we have described our method in terms of the insertion (place-371

ment) task. The proposed method can be extended to pick tasks in the same manner. The Diff-EDF372

can be utilized to obtain the pick reference frame, which is used for e
G

for the picking G-CompACT.373

The picking G-CompACT is trained in such a way that the manipulator grasps a peg in a fixed,374

aligned pose, which helps EquiContact bypass the right-equivariance issue. For G-CompACT, the375

FT sensor values are not utilized as one of its observations, and it does not output the admittance376

gains; instead, it uses fixed gains.377

SIII Additional Experimental Results378

Here, we present additional experimental results for EquiContact: a result of the full pick-and-place379

pipeline and the failure cases due to dissatisfaction of Assumption 2.

Figure S3: Force profiles of CompACT and ACT with GAC (fixed gains) during insertion tasks are presented.
The CompACT with force-torque sensor inputs and output gains shows lower interaction force in all directions.

380

Full Pick-and-place Pipeline The result of EquiContact for the full pick-and-place task is sum-381

marized in Table S2. The EquiContact also demonstrates a near-perfect success rate in the full382

pick-and-place pipeline for peg-in-hole tasks. However, as the whole task is formulated in sequen-383

tial stages, the error in the previous stage tends to propagate to the following stages, leading to384

slightly increased failure cases.385
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Table S1: Success rates of the insertion policies in real-world experiments for the proposed and benchmark
approaches. “In-Dist.” denotes in-distribution data and “OOD” denotes out-of-distribution data. In addition,
“Flat” and “Titled” in the Test Scenario refer to testing with the flat and tilted platforms, respectively. For the
In-Dist. (in distribution) scenario, the initial pose of the end-effector is randomized around the flat platform.

Methods Observation Action Test Scenario Success
Rate

ACT w/o GAC World Pose World Pose Flat (In-Dist.) 2 / 10

ACT w/ GAC World Pose World Pose Flat (In-Dist.) 20 / 20

CompACT World Pose, FT World Pose, Gains Flat (In-Dist.) 20 / 20
Flat (OOD) 0 / 10

EquiContact
GCEV, FT Relative Pose, Gains Flat (OOD) 20 / 20

(Place, Ours) Tilted (30◦, OOD) 19 / 20

Table S2: Success Rates of the proposed EquiContact for a full pipeline of pick and place.

Test Scenario Success Rate Failure Cases

Flat Platform (OOD) 20 / 20 N/A
Tilted Platform (30◦, OOD) 18 / 20 1 Pick, 1 Place

Table S3: Success Rates of the G-CompACT (insertion) trained with the base dataset and augmented dataset
for the flat platform under the presence of visual distractor scenario and tilted platform with large angle cases.
The evaluation is conducted with the ground-truth reference frames.

Test Scenario Base Dataset Augmented Dataset

W/ Visual Distractor 4 / 10 9 / 10
Tilted Platform (45◦) 5 / 10 9 / 10

Failure Cases and Performance Recovery via Data Augmentation Although the EquiContact386

framework is vision-to-force equivariant in theory, this guarantee holds only under Assumptions 1387

and 2. In particular, Assumption 2, which requires left-invariance of the visual features, is more388

challenging to enforce in practice, as our approach does not explicitly encode this property through389

loss functions or architectural inductive bias. As a result, the proposed G-CompACT algorithm390

shows degraded performance in scenarios with visual distractors or on a more severely tilted plat-391

form (45◦) – see Table S3 (“Base Dataset” column). Note that the larger tilting angle results in more392

out-of-distribution images, as the wrist cameras begin to capture more unseen background scenes,393

as illustrated in Fig. S2. To accommodate this, we augment the base dataset with 20 demos collected394

using the visual distractor on a fixed, flat platform and 20 demos collected from a 30◦ angle of the395

tilted platform. After training with the augmented dataset, the success rates return to normal levels,396

as shown in the “Augmented Dataset” column of Table S3, demonstrating the performance recovery397

achieved through data augmentation.398

SIV Anchoring a Localized Policy on the Reference Frame for Equivariance399

The G-CompACT policy πθ2 operates exclusively on localized inputs: GCEV, FT values in the end-400

effector frame, and images from wrist cameras. Its outputs, relative poses, and admittance gains401

are likewise defined in the local end-effector frame. The localized policy is anchored to a reference402

frame generated by the Diff-EDF planner. This architectural design induces SE(3)-equivariance403

and resulting spatial generalization. Under this principle, one may hypothesize the reason for the404

spatial generalizability of recent vision-language-action models, which utilize both wrist and ex-405

ternal cameras. The wrist camera provides a localized policy, anchored in the reference frame ob-406

tained from the external cameras and proprioceptive information. In fact, learning a reference frame407

from proprioceptive information (e.g., joint position) and the external camera is subtle because of408

its black-box nature. In contrast, our method, which utilizes a point cloud-based reference frame409
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approach, is more interpretable. Thus, we propose “anchoring localized policies on globally esti-410

mated reference frames” as a general framework for the divide-and-conquer philosophy to enhance411

spatial generalization and interpretability. In our case, this structure also enables provable SE(3)412

equivariance via differential geometric design.413
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