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ABSTRACT

Model editing, the process of efficiently modifying factual knowledge in pre-
trained language models, is critical for maintaining their accuracy and relevance.
However, existing editing methods often introduce unintended side effects, de-
grading model performance in unpredictable ways. While much research has fo-
cused on improving editing algorithms, the role of the target knowledge’s intrinsic
properties remains a significant, underexplored factor. This paper addresses this
gap by first proposing the “Knowledge Spectrum,” a systematic framework for
categorizing knowledge based on its real-world popularity, the model’s pre-edit fa-
miliarity, and the linguistic structure of the eliciting question. Our empirical anal-
ysis reveals that these characteristics are strong predictors of editing success and
stability. Informed by these findings, we introduce the “Knowledge-Diagnostic
Framework,” an adaptive strategy that tailors editing intensity to the diagnosed
difficulty of a knowledge item. We demonstrate that this framework significantly
improves success rates for challenging edits while optimizing computational re-
sources. Our work provides a more comprehensive understanding of the factors
governing model editing.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed as knowledge-intensive systems, yet their
parametric knowledge inevitably lags behind a changing world. Model editing—updating a model’s
internal parameters to correct or insert facts without full retraining—has therefore become a practical
necessity [Yao et al.| (2023). Despite rapid progress, edits can introduce unintended side effects,
harming unrelated knowledge or degrading general reasoning |Gu et al.[(2024); |Yang et al.| (2024).
Most prior work addresses these risks by improving how we apply an edit. In contrast, comparatively
little is known about how the nature of the target knowledge itself shapes the difficulty and safety of
editing.

This paper closes that gap. We ask: when does an edit tend to succeed cleanly, and when is it
inherently brittle? Common intuition suggests that not all facts are equal: some are prominent
in training data, some are already correctly (or incorrectly) entrenched in the model, and prompts
differ in the reasoning they elicit. We make this intuition operational by introducing the Knowledge
Spectrum, a simple three-dimensional lens for categorizing target knowledge along: (i) Popularity
(a proxy for exposure in pretraining, measured by real-world signals such as Wikipedia page views);
(ii) Familiarity (whether the model already knows the fact pre-edit, inspired by SIiCK-style probing
Gekhman et al.| (2024))); and (iii)) Question Type (the syntactic form of the eliciting prompt, e.g.,
why vs. which). This framing lets us move beyond one-size-fits-all editing and quantify which kinds
of targets are intrinsically harder or riskier.

Our analysis surfaces three robust regularities. First, inserting unknown facts is consistently easier
and safer than overwriting known ones, indicating resistance from entrenched representations. Sec-
ond, edits involving famous entities (high popularity) succeed more often than those about obscure
entities, consistent with clearer, more localizable internal memories. Third, question type matters:
which-style prompts are the most brittle, while why-style prompts are comparatively forgiving, sug-
gesting different editing pressure on discrete vs. explanatory representations. Notably, AlphaEdit’s
null-space projection provides strong stability across these conditions, but difficulty patterns persist.
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Guided by these findings, we propose the Knowledge-Diagnostic Editing Framework. A
lightweight diagnostic engine first classifies a target along the Knowledge Spectrum. The editor
then adapts its intensity: difficult targets (e.g., known, unfamous, or which-type) receive a stronger
intervention (e.g., repeated AlphaEdit passes), while easy targets receive a single pass. This sim-
ple policy improves success on hard cases and saves compute on easy ones, yielding substantial
end-to-end efficiency gains without sacrificing stability.

In sum, our contribution is threefold. First, we advance a knowledge-centric view of model editing
by introducing the Knowledge Spectrum—capturing popularity, familiarity, and question type—and
showing that these axes reliably predict both editing efficacy and side effects. Second, we broaden
evaluation beyond locality by combining reliability and generalization with general-ability bench-
marks, uncovering degradations invisible to locality-only tests. Finally, we propose the Knowledge-
Diagnostic Editing Framework, an adaptive approach that adjusts edit intensity according to di-
agnosed difficulty, thereby improving success on hard cases while saving compute on easy ones.
Taken together, our results reframe model editing as a knowledge-aware process: the right algo-
rithm matters, but so does the kind of knowledge being changed. Designing editors and evaluations
that account for this structure is key to making edits both reliable and economical.

2 RELATED WORK

Model editing aims to efficiently update the knowledge within a pre-trained language model without
the substantial cost of full retraining. The field has rapidly evolved, yielding a variety of techniques
that can be broadly classified into two main paradigms based on their interaction with the model’s
original parameters|Yao et al.[(2023)); (Wang et al.| (2023).

The first paradigm, parameter-preserving methods, avoids altering the weights of the base LLM.
Instead, new knowledge is introduced by augmenting the model with external components or new,
isolated parameters. Memory-augmented approaches, for example, store updated facts in an exter-
nal datastore. When presented with a relevant query, a retriever fetches the correct information to
guide the model’s generation. A prominent example is SERAC, which employs a separate, smaller
“patch” model to handle edited facts and a classifier to determine whether to invoke the original or
the patch model for a given input Mitchell et al.|(2022). Another strategy involves freezing the orig-
inal model’s weights and inserting a small number of new, trainable parameters, often in the form
of “adapter” layers, which are specifically trained to encapsulate the new knowledge Hartvigsen
et al.| (2024); Yu et al.|(2024). While these methods are non-invasive, they can introduce inference
latency and may struggle with deep knowledge integration, as the model’s core parametric knowl-
edge remains separate from the external updates, potentially leading to knowledge conflicts Xu et al.
(2024).

The second paradigm, parameter-modifying methods, directly intervenes in the model’s internal
weights to insert, alter, or erase information. This paper focuses on this category due to its potential
for creating deeper, more permanent, and more efficient knowledge updates. Traditional fine-tuning
is the classic approach, but it often suffers from catastrophic forgetting. To mitigate this, constrained
fine-tuning methods update only a small subset of the model’s parameters Zhu et al.|(2021)); Rafailov
et al.| (2023). A more precise and influential sub-category is the locate-and-edit paradigm. This
approach is founded on the key insight from interpretability research that factual knowledge in
transformers is not arbitrarily distributed but is often localized within specific feed-forward (FFN)
layers, which can be conceptualized as key-value memories |Geva et al.| (2021). These methods
first use causal analysis to locate the critical model components responsible for storing a specific
fact and then perform a surgical update to modify the stored association Meng et al| (2022a). By
directly altering the model’s internal world representation, this approach avoids the inference latency
of external modules and aims for a more profound and generalizable form of learning.

3 PRELIMINARY

3.1 CORE EDITING ALGORITHMS

Two state-of-the-art locate-and-edit algorithms are central to our investigation: MEMIT and Al-
phaEdit.
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MEMIT (Mass-Editing Memory in a Transformer) is a powerful and scalable implementation
of the locate-and-edit approach, capable of applying thousands of edits in a single batch process
Meng et al.| (2022b). Instead of concentrating an edit on a single layer, MEMIT distributes the
update across several MLP layers identified during the location phase. The update is formulated as
a constrained optimization problem. For a set of new key-value pairs (K7, V1) to be inserted and a
set of existing pairs (Ko, Vp) to be preserved, MEMIT solves for a minimal parameter update AW
that minimizes a joint objective, conceptually represented as:

argmin (|(W + A)Ky = Vil* + AW + 2) Ko — Vo)

The first term enforces the new knowledge, while the second acts as a regularization term to preserve
existing knowledge. By providing an efficient closed-form solution to this problem, MEMIT offers
a practical tool for large-scale editing.

AlphaEdit was developed to address the limitation that methods like MEMIT can still introduce
unintended side effects, especially when edits interfere with one another. It offers a stronger math-
ematical guarantee of safety by employing a two-step process based on null-space projection |[Fang
et al|(2025). First, it identifies the null-space of the preserved knowledge keys (Ky), a “safe” sub-
space where any modification is mathematically guaranteed to have zero impact on the preserved
facts. It computes a projection matrix P such that PKy = 0. Second, it calculates the required
update for the new fact and projects it into this safe null-space before applying it. The objective is
to find an update A that minimizes the error for the new fact, constrained entirely to this safe zone:

argmin ||(W + AP)K; — V4 ||?
A

This approach ensures that the edit is surgically precise with respect to the specified preserved
knowledge, making it particularly robust against certain forms of side effects.

3.2 EVALUATING MODEL EDITING: BEYOND LOCALITY

A rigorous evaluation of a model edit requires assessing its impact from multiple perspectives Yao
et al.| (2023). The primary success of an edit is typically measured by two core metrics: Reliability,
which checks if the model produces the target answer for the exact edit prompt, and Generalization,
which tests if the model can apply the new knowledge to paraphrased versions of the prompt.

However, the greatest challenge lies in evaluating unintended side effects. The mainstream approach
to this has been to measure Locality Meng et al.|(2022a)). This involves testing whether an edit
on a specific fact (e.g., “The Eiffel Tower is in Paris”) has unintentionally altered unrelated but
semantically nearby knowledge (e.g., “The Colosseum is in Rome”). While crucial, this approach
has a narrow scope and may not capture more subtle or widespread forms of model degradation.
Recent studies have begun to highlight that edits can harm a model’s fundamental reasoning and
comprehension skills, even if they pass locality tests |Gu et al.| (2024); Cohen et al.| (2023); [Yang
et al.|(2024).

Our work argues for and contributes to an expanded evaluation paradigm. We posit that a compre-
hensive assessment must also measure the impact on a model’s General Ability. An edit might not
affect other specific facts but could still damage the underlying cognitive machinery of the model.
Therefore, our methodology extends beyond locality checks by testing the post-edit model’s perfor-
mance on a suite of standardized academic benchmarks, such as ARC|Clark et al.[(2018) and Open-
BookQA |Mihaylov et al.| (2018), which are designed to probe core reasoning capabilities rather
than simple fact recall. A drop in performance on these benchmarks signals a deeper and more
concerning side effect.

4 METHODOLOGY

To systematically investigate how the intrinsic properties of knowledge affect model editing, we
designed a comprehensive methodology centered around three key components. First, we formally
define the editing task and its success criteria. Second, we introduce the “Knowledge Spectrum,” a
novel framework for classifying target knowledge. Finally, we propose the Knowledge-Diagnostic
Framework, an adaptive strategy that leverages this classification to optimize editing outcomes.



Under review as a conference paper at ICLR 2026

4.1 TASK DEFINITION AND DESIDERATA

The fundamental goal of model editing is to alter the factual knowledge within a pre-trained lan-
guage model fy to produce an edited model fy/. Formally, given an edit request represented by an
input prompt z. and a desired new output ¥, an editing algorithm A generates a set of modified
parameters 6’ = A(f, x., y.). The resulting edited model, fy/, must satisfy three critical desiderata
to be considered successful:

» Efficacy: The model must successfully learn the new information. This is measured
through two metrics: (1) Reliability, where the model must produce the target answer for
the exact edit prompt (for (ze) — ye), and (2) Generalization, where the model must pro-
vide the same correct answer to paraphrased versions of the original prompt (z.), demon-
strating a deeper understanding rather than surface-level memorization.

* Locality: The edit should be surgically precise, leaving the model’s vast repository of
unrelated knowledge unharmed. The mainstream method for measuring this is by testing a
set of unrelated facts to ensure their outputs remain unchanged.

* General Ability: We argue that true safety extends beyond locality. An edit must not
impair the model’s fundamental cognitive capabilities. We measure this by evaluating the
post-edit model’s performance on a suite of standardized reasoning benchmarks, quantify-
ing any degradation in its general problem-solving skills.

4.2 THE KNOWLEDGE SPECTRUM: A FRAMEWORK FOR ANALYSIS

To move beyond a monolithic view of knowledge, we introduce the Knowledge Spectrum, a three-
dimensional framework for characterizing any target edit. This framework allows us to dissect the
challenges of editing by analyzing knowledge based on its real-world prominence, its status within
the model’s internal belief system, and its linguistic structure.

Popularity measures how well-known an entity or fact is, serving as a proxy for its likely repre-
sentational strength within the model’s pre-training corpus. We hypothesize that facts about famous
entities, having been encountered frequently and in diverse contexts, have more robust and well-
defined neural representations, making them easier to locate and edit. Conversely, obscure facts may
have sparse, diffuse representations that are more difficult to modify reliably. We operationalize this
dimension by using the monthly Wikipedia page views of the subject entity in a given question.
Based on the distribution of these views, we bin each knowledge item into one of two categories:
Famous (high page views) or Unfamous (low page views).

Familiarity assesses the model’s internal “intellectual state” with respect to a fact before any edit is
performed. This dimension distinguishes between overwriting an existing belief and filling a knowl-
edge vacuum. We hypothesize that modifying a pre-existing belief, whether correct or incorrect,
presents greater resistance than inserting a fact about which the model has no prior information.
Inspired by the SliCK framework |Gekhman et al| (2024)), we measure familiarity by probing the
model’s ability to generate the correct answer under various decoding strategies prior to the edit. We
classify knowledge into two groups: Known, where the model can correctly produce the target an-
swer, implying an established neural pathway that must be altered; and Unknown, where the model
is unable to produce the correct answer, representing a “representational void” to be filled.

Question Type considers the linguistic and syntactic structure of the prompt used to elicit the knowl-
edge. Different question forms may trigger different reasoning processes or access different knowl-
edge representations within the model. For example, a question requiring a choice from a discrete
set may target a different neural circuit than one that asks for an explanation. To analyze this, we
categorize the questions in our dataset into eight distinct types based on the leading interrogative
word: Who, What, When, Where, Which, Why, How, and Others. This allows us to system-
atically investigate how variations in the editing prompt’s structure impact both efficacy and side
effects.

4.3 THE KNOWLEDGE-DIAGNOSTIC EDITING FRAMEWORK

Our preliminary experiments confirmed that a one-size-fits-all approach to model editing is subopti-
mal. The success and stability of an edit are heavily contingent on the knowledge’s position within
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Knowledge-Diagnostic Editing Framework

Goal Achieved:
3a. Apply Intensive Edit {74 High Performance
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(1x Repetition)

Goal Achieved:
[%4 Minimized Resources

Figure 1: A conceptual illustration of our Knowledge-Diagnostic Editing Framework. It first diag-
noses the target knowledge across the Knowledge Spectrum and then applies either a standard (1x)
or intensive (5x) editing strategy based on the classification.

the Knowledge Spectrum. To address this, we propose the Knowledge-Diagnostic Editing Frame-
work, an adaptive, two-stage strategy designed to intelligently allocate computational resources and
maximize performance.

Stage 1: The Diagnostic Engine. When a piece of knowledge is targeted for an edit, it is first fed
into our Diagnostic Engine. This engine analyzes the knowledge across the three dimensions of the
Knowledge Spectrum (Popularity, Familiarity, and Question Type). Based on our empirical findings
(detailed in the next section), the engine classifies the edit into one of two categories. Hard Cases
are edits that consistently exhibit lower baseline success rates and higher risk of side effects; these
include knowledge that is ‘Known‘, ‘Unfamous®, or of the “Which‘ question type. All other edits
are classified as Easy Cases.

Stage 2: Adaptive Editing Application. Depending on the diagnosis, a tailored editing strategy is
applied. For ‘Hard Cases‘, where a standard edit is likely to fail, the framework applies an Inten-
sive Edit strategy. In our experiments, this is operationalized as applying a state-of-the-art editing
algorithm (AlphaEdit) multiple times (e.g., 5 repetitions). The explicit goal is to provide sufficient
“force” to overcome the inherent resistance of these difficult edits. For “Easy Cases”, where a sin-
gle edit is likely to succeed, the framework applies a Standard Edit (1 repetition). This adaptive
application of resources allows the framework to improve overall efficacy by focusing effort where
it is most needed, while simultaneously enhancing efficiency by avoiding unnecessary computation
on edits that are already likely to succeed.

4.4 DATASETS AND EVALUATION

The primary dataset for our general analysis is RealTimeQA |Kasai et al| (2022), which contains
a continuous stream of time-sensitive questions sourced from weekly news outlets. Unlike static
benchmarks, it mirrors the real-world need to keep LLMs updated. We preprocess the original
multiple-choice format into a standardized structure suitable for editing, containing fields for the
question, subject, answer, and a human-written rephrased question for testing generalization.

Our evaluation protocol measures both efficacy and side effects. Efficacy is assessed via Reliability
(accuracy on the original question) and Generalization (accuracy on the rephrased question). Side
effects are measured by testing for degradation in General Ability, using the average performance
across standardized reasoning benchmarks, including ARC |Clark et al.| (2018)) and OpenBookQA
Mihaylov et al.[(2018), before and after editing.



Under review as a conference paper at ICLR 2026

Editing Success Rate General Ability
LLaMA-3.1 (8B) LLaMA-3.2 (3B) LLaMA-3.1 (8B) LLaMA-3.2 (3B)

Method Known Unknown Known Unknown Known Unknown Known Unknown

FT 0.30 0.35 0.42 0.48 0.33 0.37 0.36 0.37
MEMIT 0.42 0.49 0.67 0.73 0.45 0.50 0.45 0.47
AlphaEdit 0.84 0.88 0.82 0.87 0.55 0.55 0.49 0.49

Table 1: Comparison of Editing Success Rate (left) and Post-edit General Ability (right) for
Known vs. Unknown knowledge across LLaMA-3.1 (8B) and LLaMA-3.2 (3B).

Editing Success Rate General Ability
LLaMA-3.1 (8B) LLaMA-3.2 (3B) LLaMA-3.1 (8B) LLaMA-3.2 (3B)
Method Famous Unfamous Famous Unfamous Famous Unfamous Famous Unfamous
FT 0.36 0.31 0.54 0.45 0.37 0.33 0.37 0.34
MEMIT 0.48 0.42 0.64 0.55 0.41 0.36 0.46 0.45
AlphaEdit 0.88 0.82 0.82 0.76 0.55 0.55 0.49 0.49

Table 2: Comparison of Editing Success Rate (left) and Post-edit General Ability (right) for
Famous vs. Unfamous knowledge across LLaMA-3.1 (8B) and LLaMA-3.2 (3B).

5 THE IMPACT OF KNOWLEDGE CHARACTERISTICS

5.1 IMPACT OF FAMILIARITY: KNOWN VS. UNKNOWN.

We first investigate whether it is more challenging to modify a belief the model already holds
(Known) versus inserting a completely new fact (Unknown).

The results in Table |1| show a clear and consistent trend: for every model and editing method, the
success rate for editing Unknown knowledge is higher than for Known knowledge. For instance,
using AlphaEdit on LLaMA-3.1, the success rate for Unknown facts is 0.88, compared to 0.84
for Known facts. This performance gap suggests that overwriting a pre-existing, and potentially
entrenched, neural representation faces more resistance than establishing a new representation in a
relative “void.”

Table [T] further illuminates the risks. For less precise methods like FT and MEMIT, editing Known
knowledge is demonstrably more disruptive to the model’s general abilities. This implies that the
process of overwriting an established belief carries a higher risk of collateral damage to adjacent
or underlying reasoning structures. Notably, AlphaEdit exhibits remarkable stability; its null-space
projection mechanism appears highly effective at isolating the edit, resulting in identical General
Ability scores regardless of the knowledge’s familiarity. This indicates a higher degree of safety in
terms of preserving general capabilities, a property we will revisit later.

5.2 IMPACT OF POPULARITY: FAMOUS vS. UNFAMOUS.

Next, we examine whether editing facts about well-known (Famous) entities is different from edit-
ing those about obscure (Unfamous) ones. We hypothesize that an entity’s prominence in the train-
ing data correlates with the clarity of its neural representation. The results are shown in Table 2]

A similarly consistent pattern emerges: editing Famous knowledge yields a higher success rate
across all conditions. Using AlphaEdit on LLaMA-3.1, the rate for famous facts is 0.88, dropping to
0.82 for unfamous ones. This finding supports the hypothesis that the robustness of a fact’s internal
representation is a key determinant of its editability. Locate-and-edit algorithms can more easily
pinpoint and modify the well-defined neural pathways associated with famous entities.

In terms of side effects, Table [2| shows that for FT and MEMIT, editing less-defined Unfamous
knowledge is slightly more disruptive. This may indicate that modifications to weaker or more dif-
fuse representations have a higher tendency to cause unintended interference. Again, AlphaEdit’s
score remains constant across both categories, reinforcing the conclusion that its projection mecha-
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Editing Success Rate General Ability

Method why which who what when where how others | why which who what when where how others
FT 041 035 041 035 035 036 041 040 |046 028 036 031 037 035 041 035

MEMIT 064 039 064 055 046 043 064 053 |055 037 041 049 054 049 039 054
AlphaEdit 0.79 070 079 075 075 073 079 075 |055 055 055 055 055 055 055 055

Table 3: Performance of LLaMA-3.1 (8B) across different question types (reordered). Left: Editing
Success Rate. Right: General Ability.

Editing Success Rate General Ability
Method why which who what when where how others ‘ why which who what when where how others
FT 048 038 043 042 040 038 047 041 |046 036 037 042 038 038 039 0.39

MEMIT 08 075 076 075 079 093 079 076 | 049 042 046 043 045 046 048 048
AlphaEdit 094 083 0.88 086 093 083 088 088 | 049 049 049 050 050 050 049 049

Table 4: Performance of LLaMA-3.2 (3B) across different question types (reordered). Left: Editing
Success Rate. Right: General Ability.

nism effectively insulates general capabilities from the specifics of the edit, regardless of the target’s
representational clarity.

5.3 IMPACT OF QUESTION TYPE.

We now turn to the role of question type, which reflects the linguistic structure of the edit prompt.
Tables [3] and [] present results across eight interrogative categories. Among them, “Why” and
“Which” emerge as the most divergent, consistently defining the upper and lower bounds of editing
success.

Across all models and editing algorithms, “Why”” questions achieve the highest success rates. For
example, with AlphaEdit on LLaMA-3.1, “Why” questions reach a success rate of 0.79, whereas
“Which” questions fall to 0.70. A similar gap is observed for the smaller LLaMA-3.2 model, where
AlphaEdit yields 0.94 on “Why” but only 0.83 on “Which”. These discrepancies suggest that differ-
ent interrogatives engage distinct representational and reasoning pathways inside the model.

We hypothesize that “Which” questions are particularly difficult because they require the model to
select a single discrete option from a constrained set, thereby invoking rigid and competitive factual
associations. Overwriting such tightly coupled representations likely causes stronger interference,
which also explains why “Which” edits tend to produce larger drops in general ability for parameter-
modifying methods like FT and MEMIT. In contrast, “Why” questions often elicit explanatory or
causal reasoning, which draws on more distributed and semantically flexible representations. These
representations appear more amenable to modification, yielding both higher success rates and re-
duced collateral damage.

Interestingly, AlphaEdit demonstrates relative robustness across question types: while performance
still varies, its null-space projection mechanism ensures that side effects on general ability remain
constant (0.55 for LLaMA-3.1 and 0.49 for LLaMA-3.2). This highlights the importance of algo-
rithmic safeguards in mitigating the structural challenges posed by different question forms.

Taken together, these findings show that the syntactic structure of the edit prompt is not a neutral
choice. Certain question types, particularly “Which”, inherently pose greater risks for both efficacy
and stability, underscoring the need for question-aware editing strategies.

6 VALIDATING THE KNOWLEDGE-DIAGNOSTIC FRAMEWORK

The preceding analysis establishes that knowledge characteristics are strong predictors of editing
difficulty. Based on this, we proposed the Knowledge-Diagnostic Framework to improve perfor-
mance by applying an intensive edit strategy only to cases diagnosed as “Hard.” We define Hard
Cases as knowledge that is “Known”, “Unfamous”, or of the “Which” type. We operationalize the
intensive strategy as applying AlphaEdit 5 times. This section empirically validates this approach.
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Popularity Familiarity Question Type
Hard (Unfamous) Easy (Famous) Hard (Known) Easy (Unknown) Hard (Which) Easy (Why)
Model 1x 5x 1x 5x Ix 5x 1x 5x 1x 5x 1x 5x

LLaMA-3.1 0.82 0.87 0.88 0.88 0.84 0.86 0.88 0.88 070 075 0.79 0.80
LLaMA-32 0.76 0.81 0.82 0.83 082 0.8 0.87 0.87 0.83 093 094 094

Table 5: Editing success rates across three dimensions of knowledge characteristics: Popularity
(Famous vs. Unfamous), Familiarity (Known vs. Unknown), and Question Type (Which vs.
Why). Results are reported for both LLaMA-3.1 (8B) and LLaMA-3.2 (3B), under single-edit (1x)
and repeated-edit (5x) conditions.

Metric Baseline (5x for All) Our Framework
Total Compute Time 83.3 hours 56.7 hours
Total Cost $50.00 $34.00
Efficiency Gain - 32%

Table 6: Cost-benefit comparison of a naive intensive strategy versus our adaptive Knowledge-
Diagnostic Framework.

6.1 EXPERIMENTAL VALIDATION

Tables [5] compares the success rates of a standard (1x) edit versus an intensive (5x) edit for our
“Hard vs. Easy” pairs. The results consistently validate our hypothesis. In all three scenarios,
the performance on Hard Cases benefits significantly from the intensive 5x edit, with success rates
rising to match the performance of Easy Cases. For example, the success rate for the hard “Which”
category on LLaMA-3.2 jumps from 0.83 to 0.93. Crucially, this elevated performance now matches
the “Why” category, which was already at a performance plateau (0.94) and did not benefit from
repeated edits. This demonstrates that the intensive strategy effectively closes the performance gap
by overcoming the inherent difficulty of the hard cases, while avoiding wasted computation on easy
cases.

6.2 COST-BENEFIT ANALYSIS

The value of our framework extends beyond efficacy to practical efficiency. We conducted a cost-
benefit analysis based on editing the LLaMA 3.1 8B model on our 2000-item dataset, where 60%
of items are diagnosed as “Hard.” As summarized in Table [6] a naive approach of applying an
intensive 5x edit to all items requires 83.3 hours of A6000 GPU time at a cost of $50.00. In con-
trast, our Knowledge-Diagnostic Framework, which applies intensive edits only to the 60% of hard
cases, achieves a comparable level of performance in just 56.7 hours, costing $34.00. This repre-
sents a 32% reduction in both time and cost, providing a clear economic incentive for adopting a
knowledge-aware, adaptive editing strategy in large-scale applications.

7 CONCLUSION

We present a systematic study of the role that knowledge characteristics play in determining the
outcomes of model editing. By introducing the Knowledge Spectrum, we show that dimensions such
as popularity, familiarity, and question type are not peripheral factors but central predictors of editing
success and stability. Our proposed Knowledge-Diagnostic Framework leverages these insights to
adapt editing strategies according to the diagnosed difficulty of a knowledge item, thereby improving
efficacy while reducing computational cost. Extensive experiments demonstrate that adaptive editing
substantially narrows the performance gap between hard and easy cases, all while safeguarding the
model’s general reasoning capabilities. Beyond technical contributions, our findings highlight a
broader lesson: editing is not merely an algorithmic problem but a knowledge-aware process. Future
work should continue to expand evaluation protocols to capture long-form generation and general
abilities, ensuring that model editing advances are both reliable and holistic. We hope this study
provides a foundation for the development of safer, more efficient, and more interpretable editing
protocols.
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