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ABSTRACT

Although Transformers dominate fields like language modeling and computer
vision, they often underperform simple linear baselines in time series tasks. Con-
versely, linear sequence models provide an efficient, causally biased alternative
that excels at autoregressive processes. However, they are fundamentally limited
to single-sequence modeling and cannot capture inter-variate dependencies in
multivariate time series. Here, we introduce Typhon, a flexible framework that
applies two sequence models to the time and variable dimensions, merging them
with a Dimension Mixer module, allowing the inter-variate information flow in
the learning process. Building on Typhon, we introduce T4 (Test Time Training
with a cross-variate Transformer), which employs a a meta-model for on-the-fly
forecasting across time, and a Transformer across variates to capture their de-
pendencies. The Typhon framework’s flexibility lets us benchmark T4 alongside
various modern recurrent models, revealing that constant-memory recurrence strug-
gles with long-term dependencies and error propagation. To address this, we
introduce Gated Multiresolution Convolution (GMC)—a simple, attention-free
Typhon variant. With a carefully designed constant-size multiresolution memory,
GMC can capture long-term dependencies while mitigating error propagation. Our
experiments validate Typhon’s 2D inductive bias design and demonstrate GMC
and T4’s superior performance across diverse benchmarks.

1 INTRODUCTION

Multivariate time series analysis plays a crucial role in understanding and predicting complex
systems across a wide range of domains such as healthcare, finance, energy, transportation and
weather (Behrouz & Hashemi, 2024; Kaushik et al., 2020; Ivanov et al., 1999; Gajamannage et al.,
2023). The complex nature of such multivariate data raises fundamental challenges to design effective
and generalizable models: An effective model requires to (1) learn complex patterns, including multi-
resolution, trend, and seasonal patterns in the time series data; (2) capture the complex dynamics
of the dependencies between variate axes; and (3) be able to efficiently and effectively scale to
long-context.

The emergence of deep learning has shifted the focus of time series prediction away from traditional
statistical methods toward deep architectures, including Transformer-based (Zhou et al., 2021; Wu
et al., 2021), recurrence-based (Behrouz et al., 2024b; Jia et al., 2023), and temporal convolutional-
based (Bai et al., 2018; Sen et al., 2019). Despite the promising performance of Transformers (Vaswani
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et al., 2017) in various domains (Du et al., 2023; Nguyen et al., 2024; Wu et al., 2021), several studies
have highlighted that the inherent permutation equivariance of attentions in Transformers contradicts
the causal nature of time series and often results in suboptimal performance compared to simple
linear methods (Zeng et al., 2023c). Also, their quadratic complexity can cause significant obstacles
in large-scale time series applications.

Recently, sub-quadratic sequence models demonstrated significant potential as efficient alternatives
to Transformers, mainly due to their efficiency and also ability to learn long-range dependencies
based on their inductive temporal bias (Sun et al., 2024). They, however, lack a two-dimensional
inductive bias of multivariate time series (missing the complex dependencies across both time and
variates), use fixed resolutions (missing the dense information in complex time series data), struggle
with seasonal patterns, and/or rely on static update parameters. Furthermore, natural attempts to
simply employ modern recurrent sequence models for long-term time series forecasting tasks results
in (1) error propagation, and (2) poor performance on out-of-distribution test data. While existing
studies often uses additional modules to mitigate the above challenges (Behrouz et al., 2024b; Zhang
et al., 2023a), these additional modules result in almost doubling the number of parameters, limiting
the number of effective parameters and so the expressive power of the model.

To address, explore, and validate the aforementioned challenges, we present Typhon, a simple yet
effective framework that allows for any sequence model to by extended to 2-dimensional data, and
adapts them for multivariate time series tasks. Typhon uses two sequence models (not necessarily
the same architecture), each of which is responsible to learn the dependencies across one of the
dimensions (i.e. one across time and one across variate dimension). A dimension mixer module then
injects 2D inductive bias into the model and combines the dimension-specific information along both
time and variates.

The flexibility and effectiveness of Typhon, allows us to explore the different combinations of
sequence models across time and variate dimensions. Performing extensive experimental evaluations
on the combinations of recurrent models, SSMs, Transformers, and linear models, we found that while
these hybrid models show outstanding performance in short-term forecasting tasks, they indeed suffer
from error propagation in long-term forecasting and show poor performance when the test data is out
of distribution. To address this, we present two variants of Typhon–Test Time Training + Transformer
(T4), and Gated Multiresolution Convolution (GMC)–that shows outstanding performance in all
downstream tasks: i.e., long-term and short-term forecasting, classification, imputation, and anomaly
detection. T4 utilizes Test Time Training (TTT) layer across time, a meta-in-context model that learn
how to learn at test time. Therefore, due to its meta-learning and causal nature, T4 is capable of
generalization to out-of-distribution data at test time as it is based on test time training and can update
its weights even at test time, adapting itself to new data. T4 further uses a Transformer across variate
dimension. Variate dimension in multivariate time series data is naturally permutation equivariant
and so Transformers are capable of capturing direct correlation of variates.

Evaluating the performance of T4 and comparing it with more than 100 combinations of sequence
models, we find that the recurrent nature of T4 over time still results in error propagation in long-term
forecasting tasks. To overcome this, we present a new variant of Typons, Gated Multiresolution
Convolution (GMC), that is attention and recurrence free. Our experimental results indicate that
GMC and T4 show outstanding performance, outperforming baselines in most cases over a diverse
set of datasets and downstream tasks.

2 RELATED WORK

Multiple mathematical models have been developed across various fields, including healthcare,
meteorology, and finance, to address the challenges of time series forecasting. Research on time
series has evolved from traditional statistical methods—such as those utilizing inherent patterns and
properties of the data for prediction (Winters, 1960; Bartholomew, 1971; Bender & Simonovic, 1994;
Box & Jenkins, 1968)—to modern deep learning solutions that can capture more expressive temporal
correlations. Additionally, techniques like state-space models (SSMs), including the Kalman filter,
have been widely used to model dynamic system behavior (Harvey, 1990; Aoki, 2013; de Bézenac
et al., 2020). In these cutting-edge approaches, various neural architectures have driven remarkable
advances in predictive accuracy and efficiency. Early work in time series forecasting adopted recurrent
neural networks (RNNs)(Elman, 1990) and their variants, such as Long Short-Term Memory (LSTM)
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Figure 1: Typhon integrates temporal mixing for cross-time dependencies, variate mixing for cross-
variate interactions, and dimension mixing to unify temporal and feature representations. Typhon
efficiently models complex multivariate time series dynamics while maintaining scalability.

networks (Hochreiter & Schmidhuber, 1997b) and Gated Recurrent Units (GRUs) (Cho et al., 2014)
due to their sequential nature, followed by the introduction of temporal convolutional networks
(TCNs) (Bai et al., 2018; Wang et al., 2023; Wu et al., 2022), which excel at capturing local patterns
due to their receptive field design. Meanwhile, Transformer-based models (Vaswani et al., 2017),
have further revolutionized time series modeling by leveraging self-attention mechanisms to capture
both short-and long-term dependencies, improving scalability and predictive performance across
various time series tasks (Wen et al., 2022), although their quadratic complexity poses optimization
challenges (Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Liu et al., 2021). Recently, patch-
based methods have been introduced to enhance efficiency in Transformer variants (Zhang & Yan,
2023; Nie et al., 2023). Meanwhile, multilayer perceptrons (MLPs) remain a popular option for time
series forecasting, owing to their simplicity and direct mapping capabilities (Ekambaram et al., 2023).

Recently, deep state-space models have gained significant attention as efficient alternatives to Trans-
formers, which suffer from quadratic complexity These methods combine traditional SSMs with deep
neural networks by parameterizing the sequence mixing layers of a neural network using multiple
linear SSMs, addressing common training drawbacks of RNNs through the convolutional reformula-
tion of SSMs (Gu et al., 2020; 2022a; 2021; 2022b; Smith et al., 2023). A recent advancement in
expressive sequence modeling has emerged by specifying model parameters as functions of inputs,
resulting in more expressive deep SSMs and RNNs (Gu & Dao, 2023; Dao & Gu, 2024; De et al.,
2024), as well as long convolution models (Karami & Ghodsi, 2024).

Most relevant to this work is directly extending the 1-dimensional deep SSMs to their multi-
dimensional analogs. Previous works have studied 2D SSMs. Nguyen et al. (2022) present S4ND, a
multidimensional SSM layer that extends the continuous-signal modeling ability of SSMs to model
videos and images. It not only considers M separate SSM for the M axes, but it also directly treats the
system as a continuous system without discretization step. It has data-independent parameters and
show discritizing each 1D SSM result in resolution invariance and can be computed as a convolution
as well. Baron et al. (2024) present the 2D-SSM layer which is new spatial layer based on Roesser’s
model for multidimensional state space Kung et al. (1977), the most general model for M-axial state
space models. It has data-dependent weights and models images as discrete signals where initial
SSM model is discrete and there is a lack of discretization step but can be computed as a convolution.
The main difference between S4ND and 2D SSM is that S4ND runs a standard 1D SSM over each
axis independently, and those functions are combined to form a global kernel while, 2D SSM learns
multi-dimensional functions over multi-axes data directly. 2D-SSM is a generalization of S4ND in 2
dimensions when setting A2 = A3 = 0 and A1, A4 to be the system matrices. Behrouz et al. (2024b)
discuss this in their extension to 2D-Mamba and 2D-Mamba2.
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3 PRELIMINARIES

3.1 NOTATIONS

We focus on multivariate time series forecasting and classification tasks. Let X = {x1, . . . ,xT } ∈
RT×N denote the input data, where T is the number of time steps and N is the number of features
(variates). The value of feature v at time t is denoted by xt,v. The goal of forecasting tasks, given
an input sequence xi, is to predict the next H time steps, x̃i ∈ RH×N , where H is the prediction
horizon. The goal of classification tasks is to assign a class label to each sequence. Anomaly detection
can be seen as a binary classification task where 0 denotes “normal” and 1 denotes “anomalous.”

3.2 (SEASONAL) AUTOREGRESSIVE PROCESSES

The autoregressive (AR) process is a foundational building block for time series modeling, capturing
causal relationships in sequential data. For an order-p AR process, AR(p), the relationship between a
value xt ∈ Rd and its past p values is given by:

xt =

p∑
i=1

ϕixt−i, (1)

where ϕi ∈ Rd×d are the autoregressive coefficients. This formulation can be extended to account
for seasonal patterns, resulting in a Seasonal Autoregressive (SAR) process, SAR(p, q, s):

xt =

p∑
i=1

ϕixt−i +

q∑
j=1

ηjxt−js, (2)

where s is the seasonal period, and ηj ∈ Rd×d are the seasonal coefficients. Here, the seasonal
component captures periodic dependencies at lag s and its multiples.

4 TYPHON: A DOUBLE-HEADED MODEL WITH 2D INDUCTIVE BIAS

In the Typhon framework, we break the architecture into three components (Figure 1 shows the three
main steps of Typhon).

4.1 TIME MIXER

Learning complex patterns and dependencies across time is a key component for understanding
multivariate time series. Our intuition is to treat the time series data as a sequence of tokens (or
patches) and then employ a sequence model (i.e., Transformers, linear RNNs, linear models, etc.)
to encode the information across time. Notably, this encoding is done for each variate separately
and it is mainly responsible for capturing temporal dependencies. There are, however, three critical
challenges to adapt existing sequence models.

(1) Transformer-based Models: The attention mechanism in Transformers is permutation equivariant
and so is unable to recover autoregressive process by its nature, missing temporal patterns (Behrouz
et al., 2024b). This lack of expressivity causes Transformers to even underperform simple linear
models in several scenarios (Toner & Darlow, 2024); (2) Linear Models: Similar to Transformers,
linear models also suffer from the lack of ability to recover autoregressive process. They further
assume a linear pattern in the temporal dependencies in data, resulting in poor performance in
real-world downstream tasks; (3) Recurrent Models: Contrary to Transformers and linear models,
recurrence-based approaches are not naturally limited. That is, with careful parametrization and
architectural design, recurrent models can recover the autoregressive process (Behrouz et al., 2024b;
Zhang et al., 2023b). However, their recurrence can cause error propagation in inference time, as test
data can be out of distribution with respect to training data (Behrouz et al., 2024b).

Given X ∈ RT×N as the input data, the time mixer module is responsible for capturing and learning
the temporal patterns in each variate X separately. Given a sequence model T (.), a look-back window
length h, and prediction horizon H we use T across time dimension:

yT :T+H = T (Xh:), (3)
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where yT :T+H ∈ RH×N is the prediction output for next H time steps, and Xh: is the data for the
last h time steps.

Later, we introduce two variants of Typhon, in which we specify and explain our time mixer
module. In our experiments, we use Mamba (Gu & Dao, 2023), Transformers (Vaswani et al., 2017),
xLSTM (Beck et al., 2024), and linear layers as the baseline modules for time mixing.

4.2 VARIATE MIXER

In multivariate time series data, understanding dependencies across variates is pivotal in several
real-world scenarios ranging from neurosignals (Behrouz & Hashemi, 2024) and other biosignals
to stock prediction (Wu et al., 2021) and traffic forecasting (Zhou et al., 2021). For example, in
neurosignals (e.g., EEG, MEG, fMRI, etc.) the temporal dependencies is only important up to a
binary label (i.e., active, deactive), while the dependencies of variates (i.e., coactivation of different
brain regions) is a key to classify or forecast brain activity (Behrouz & Hashemi, 2024; 2023).

Our approach to capture such dependencies is to treat the variate as unordered sequences, where each
variate is described by its time stamps: i.e., each variate v is represented by xv ∈ RT , where the i-th
element is the value of variate v at time i. In Typhon, we use a bidirectional sequence model as the
variable mixer module, which is responsible for learning pairwise dependencies of channels. Given a
sequence model V(.), we define V∗(.) as the bidirectional variant of V(.). That is, if V(.) is causal by
its nature, we define:

V∗(x) = V(x) + V(flip(x)), (4)

and if V(x) is bidirectional we naturally define V∗(x) = V(x). As an example, let V(.) be a SSM,
then V∗(.) is defined by Equation 4 as SSMs are naturally causal. On the other hand, Transformers
are permutation equivariant (Xu et al., 2024) and so V = V∗. Therefore, given a sequence model V(.)
and the transpose embedding of the input as in (Liu et al., 2023), the variate mixer module performs
as follows:

yV = V∗(X⊤). (5)

As mentioned earlier, the main reason to define the bidirectional variants of a sequence model V(.) is
the non-causal nature of variates. That is, variates are not naturally ordered and so a causal sequence
model can make model sensitive to the initial order of variates.

4.3 DIMENSION MIXER

In complex real-world scenarios, time and variate dimensions in a multivariate time series system
are inter-connected, meaning that the dependencies of variates can affect the temporal patterns and
vice versa. Accordingly, a powerful model needs to fuse information and learning process across
both directions. To address this, in Typhon, we use a Dimension Mixer module. The main role
of dimension mixer is to fuse information between these two dimension encoders. Given a neural
network D(.), we obtain the final output of Typhon as:

o = D (yT ||yV ) . (6)

There are different choices for D(.) in practice; however, in this paper, we focus on three variants of
linear-model, MLP, and attention.

It is notable that our framework of Typhon is significantly different from linear mixer models such as
TSMixer (Chen et al., 2023). That is, Typhon, utilizes time and variate mixer modules in a parallel
manner, while models like TSMixer consider a stack of time and variate mixers in a sequential
manner. Accordingly, while the input of both time and variate mixer in Typhon is the data (and its
transposed), the input of variate/time mixer in such models is the output of the previous layer.

4.4 IMPROVING TYPHON WITH NORMALIZATION AND TIME SERIES DECOMPOSITION

We present two natural ways to let model adaptively learn to decompose the time series data into
seasonal and trend patterns.

Long-Term and Seasonal Decomposition. Real-world time series data is multi-resolution by its
nature (Zeng et al., 2023c). That is, temporal dependencies and its dynamic is happening in different
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scales. For example, seasonal patterns are patterns in a time series data that repeats every (almost)
fixed period of time (e.g., each day, month, season, etc.), while trend patterns are long-term dynamic
of the data. In this paper, we introduce two different methods to capture these multi-resolution
patterns in time series data.

In the first approach, following previous studies on seasonal patterns in time series data (Behrouz et al.,
2024b), we split the sequence into long-term and seasonal components for specialized processing.
Given the combined temporal and feature representations {h(x)

t ,h
(y)
t }, the decomposition is:

ht = htrend
t + hseasonal

t , (7)

z
(1)
t = σ

(
W1[h

trend
t ;hseasonal

t ] + b1

)
, (8)

ht = σ
(
W2z

(1)
t + b2

)
, (9)

where W1,W2 are learnable parameters and σ is an activation function such as Swish. Note that the
dimension mixer does not need to be linear, though we obeserved that more complicated dimension
mixers seem to lead to overfitting. We use this decomposition method in T4.

Multi-resolution Decomposition. While the above approach in most cases achieves outstanding
performance to model multivariate time series data, in some complex cases, the granularity of patterns
in the time series data is more than 2 levels. Accordingly, an expressive an generalizable model needs
to extract and learn all different multi-resolution patterns in different levels of granularity. Later,
we use a gated multi-resolution convolution to extract and learn different h(ℓi)

t . Accordingly, given
granularity levels of {ℓ1, . . . , ℓk}, we decompose the time series into:

ht = h
(ℓ1)
t + h

(ℓ2)
t + · · ·+ h

(ℓk)
t , (10)

z
(1)
t = σ

(
W1[h

(ℓ1)
t ;h

(ℓ2)
t ; . . . ;h

(ℓk)
t ] + b1

)
, (11)

ht = σ
(
W2z

(1)
t + b2

)
. (12)

4.5 T4: A DOUBLE-HEADED TEST-TIME TRAINING AND TRANSFORMER MODEL

Accordingly, in this section, we present a powerful variant of Typhon, called Test Time Training with
Transformer (T4) model.

Time Mixer. As discussed earlier, a good time mixer module should recover the autoregressive

process and also mitigate the error propagation at test time. Accordingly, we use Test Time Training
layer (TTT) (Sun et al., 2024) as our time mixer. More specifically, TTT is a meta-learning layer that
aims to reconstruct different views of data in its inner-loop. Let X be the input, we corrupt the data
using a linear layer Wθ and reconstruct it using another linear layer Wϕ. Therefore, one can define
the loss function as:

Linner = ||WθX −M× (WϕX)||22, (13)

where M ∈ RN×N is the hidden state of the layer. Note that the above loss function is the loss for the
inner-loop of the meta-learning framework and so learnable parameters of Wθ and Wϕ are considered
hyperparameters in it. Given this loss function and time stamp t, we optimize it using mini-batch GD
with adaptive learning rate of ηt (input-dependent), resulting in the following recurrence:

Mt+1 = Mt + ηt∇Linner (14)

This meta model will learn how to learn at test time. Notably, the recurrence in the above equation is
still valid at test time and so the model is always learning from the data. This adaptive nature and its
continual learning results in more generalization and less sensitivity to out-of-distribution data as
discussed in prior work.

Variate Mixer. Using the above design across time (as the time mixer module) to learn the temporal
patterns in data, we now specify the variate mixer module. While the permutation equivariance
property of Transformers make them less expressive to recover autoregressive process, that is indeed
an advantage for learning patterns across variates. That is, a Transformer architecture with full
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Figure 2: The GMC block processes the input through stacked filters across different resolutions, using
GELU activations and gating mechanisms to enhance expressiveness. The processed representations
are combined and passed to the dimension mixer for integrating temporal and feature interactions,
leveraging either linear or attention-based layers for downstream tasks.

attention is permutation equivariance and so is not sensitive to the order of variates. On the other
hand, recurrent models are causal by nature and while their bidirectional versions can considerably
avoid sensitivity to the order of variates, they cannot be full permutation equivariance. Therefore,
in T4 design, we use an attention mechanism across variates to capture their pairwise dependencies.
More specifically, let X be the input data, we use:

Attention(Q,K,V) = Softmax

(
QK⊤
√
d

)
V (15)

as the variate mixer, where Q = WQX
⊤,K = WKX⊤, and V = WV X

⊤.

Dimension Mixer. For our dimension mixer, we simply use a simple linear layer. The main reason

for this choice was mainly motivated by our experimental observations, in which we did not see a
notable improvement when using non-linear multilayer MLPs and/or attention. It’s likely that more
complex dimension mixers are prone to overfitting. We also use input normalization and long-term
and seasonal decomposition of time series, which we discussed both in the previous subsection.

5 GATED MULTI-RESOLUTION CONVOLUTION

We have now discussed a variant of Typhon where we decompose the time series into two types
of patterns. However, as mentioned earlier, real-world complex time series data can have multiple
scales of granularity and thus require a more general model to capture such temporal multi-scale
patterns. In this section, we present another variant of Typhon in which we use simple multiresolution
convolutions across both time and variates. The multiresolution convolutions allow the model to
capture dependencies in multiple levels and so automatically can extract such patterns, without any
manual decomposition as T4.

We take a similar approach as Luo & Wang (2024) to design a modern convolutional time series model
and use pointwise convolutions. However, to capture both across time and variate dependencies,
we use pointwise convolutuions across both of these dimensions. Figure 2 represents the Gated
Multiresolution Convolution (GMC) block. More specifically, let X ∈ RT×N represent the input
time series, where T is the number of time steps and N is the number of variates. For a convolutional
filter of size k, the operation is defined as:

H
(k)
t = W(k) ∗Xt + b(k),
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where: H(k)
t ∈ RT×d is the output of the convolution at scale k, W(k) ∈ Rk×N×d are the learnable

weights of the convolutional kernel, b(k) ∈ Rd is the bias term, and ∗ denotes the convolution
operator.

Now to accommodate multi-resolution processing (Shi et al., 2023), we recursively apply convolution
filters with size K to the time dimension. Therefore, after s-th iteration, the output of the s-th scale
for filters h0 and h1 is as:

h
(s)
t =

K−1∑
i=0

h
(s−1)
t−2s−1i h0 (16)

q
(s)
t =

K−1∑
i=0

q
(s−1)
t−2s−1i h1. (17)

We simply mix scales by a linear layer in this setup and use Ht to denote the output of this mul-
tiresolution convolution. Therefore, the output, Ht, is the mix of all scales and can learn to weight
different scales in a data-driven manner.

Gated Convolution. To enhance expressiveness, we follow the backbone architecture of modern
sequence models (Dao & Gu, 2024; Gu & Dao, 2023; Behrouz et al., 2024c; Sun et al., 2024) and
add a gating mechanism that modulates the multi-resolution convolution outputs. Let X be the input
data, t be time stamp of recurrence, Ht be the output in the above process, then the gate branch is
defined as:

Gt = σ(WgXt + bg),

where Gt ∈ RT×d is the gating signal, Wg ∈ Rd×d and bg ∈ Rd are learnable parameters, σ is a
non-linear activation function (e.g., GELU or sigmoid). Given this gated branch, we define the output
of the gated convolution as:

Hgated
t = Gt ⊙Ht, (18)

where ⊙ denotes element-wise multiplication. This gating mechanism allows the model to selectively
amplify or suppress specific patterns, enabling a more dynamic representation of the input data.

6 EXPERIMENTS

We evaluate Typhon’s performance on the standard baselines for multivariate time series tasks,
comparing Typhon with the state of the art multivariate time series models, including recent models
like: TimesNet (Wu et al., 2023), ModernTCN (Luo & Wang, 2024), iTransformer (Liu et al., 2024),
Autoformer (Wu et al., 2021), ETSFormer (Woo et al., 2022), CrossFormer (Zhang & Yan, 2023),
FedFormer (Zhou et al., 2022), etc. (Lim & Zohren, 2021; Das et al., 2023; Liu et al., 2022a).
Specifically for time series tasks, we test Typhon’s variants on short term forecasting 6.1, long term
forecasting 6.2, imputation 6.3, and anomaly detection. We further evaluate the significance of
Typhon’s components by performing an ablation study in A.4. We perform a Students t-test and
obtain a p-value less than 0.05 across all tasks.

6.1 SHORT-TERM FORECASTING

We perform experiments in short-term forecasting task on the M4 benchmark dataset datasets (Go-
dahewa et al., 2021) and report the results in Table 1. Notably, the performance of both Typhon’s
variants (i.e., T4 and GMC) are close and both outperform state-of-the-art approaches like Mod-
ernTCN, PatchTST, etc. These results highlight the expressivity of Typhon’s design to capture cross
time dependencies. However, since the data is one dimensional, we find that the best results are
obtained when using 1 layer of Typhon and a linear layer dimension mixer; more layers and advanced
dimension mixers tended to overfit. The complete results are in Table 6.

6.2 LONG-TERM FORECASTING

Despite the outstanding performance of Typhon’s variants, it is not clear if our designs perform
well when we have long-term time series data. Accordingly, we perform experiments in long-term
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Table 1: Average performance on short-term forecasting tasks on the M4 dataset. Full results are
reported in the appendix. We denote GMC as Gated Multiresolution Convolution variant of Typhon,
and T4 as TTT layer and Transformer

Models Typhon (T4) Typhon (GMC) ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗

(Ours) (Ours) 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.917 11.614 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987
MASE 1.744 1.534 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265
OWA 0.932 0.825 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480

Table 2: Average performance on long term forecasting tasks.

Models Typhon (T4) Typhon (GMC) ModernTCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.374 0.399 0.344 0.373 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.275 0.325 0.251 0.307 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.438 0.444 0.398 0.409 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.373 0.410 0.316 0.377 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
Exchange 0.363 0.406 0.298 0.363 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.436 0.278 0.392 0.264 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.245 0.276 0.211 0.258 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

forecasting task on benchmark datasets (Zhou et al., 2021). The summary of results is reported in
Table 2 and full results can be found in Table 7. Typhon outperforms extensively studied MLP-based,
convolution-based, and Transformer-based models providing a better balance of performance and
efficiency, as well as recurrent models. Comparing with other aforementioned state of the art models
that also use time series decomposition (i.e., seasonal and trend pattern), the strong performance of
GMC demonstrate its expressivity in capturing both time and variate dependencies.

6.3 IMPUTATION

Real-world systems work continuously and are monitored by automatic observation equipment but
due to malfunctions, the collected time series can be partially missing, which begs the need for
imputation. We select datasets from the electricity and weather scenarios, where the data-missing
problem is common, including ETT (Zhou et al., 2021), Electricity (Xiao et al., 2018) and Weather.
To compare the model capacity under different proportions of missing data, we randomly mask the
time points in the following ratios: 12.5%, 25%, 37.5%, 50%. The main results are summarized in
Table 3. We have comparable performance to (Luo & Wang, 2024), the current state of the art.

Table 3: Average performance on imputation tasks. We randomly mask 12.5%, 25%, 37.5%, 50% time points
in length-96 time series.

Models Typhon (T4) Typhon (GMC) FedFormer ModernTCN Reformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.027 0.104 0.033 0.124 0.062 0.177 0.020 0.093 0.407 0.410 0.070 0.166 0.045 0.133 0.041 0.143 0.419 0.419 0.027 0.107 0.093 0.206
ETTm2 0.026 0.099 0.029 0.103 0.101 0.215 0.019 0.082 0.288 0.332 0.032 0.108 0.028 0.098 0.046 0.149 0.358 0.404 0.022 0.088 0.096 0.208
ETTh1 0.076 0.186 0.082 0.195 0.117 0.246 0.050 0.150 0.288 0.332 0.141 0.242 0.133 0.236 0.132 0.251 0.358 0.404 0.078 0.187 0.201 0.306
ETTh2 0.058 0.159 0.053 0.148 0.163 0.279 0.042 0.131 0.288 0.332 0.066 0.165 0.066 0.164 0.122 0.240 0.358 0.404 0.049 0.146 0.142 0.306
Weather 0.033 0.051 0.039 0.060 0.099 0.203 0.027 0.044 0.288 0.332 0.034 0.058 0.033 0.057 0.036 0.090 0.358 0.404 0.030 0.054 0.052 0.110

7 CONCLUSION

We present Typhon, a general and flexible framework which adapts 1-dimensional sequence models
to multivariate time series. We use two 1-dimensional sequence models across time and variate
dimensions, apply a dimension mixer to merge these two components, and demonstrate that Typhon
better helps capture the information across time and variate dimensions. We provide a special case of
Typhon - a Gated Multiresolution Convolution architecture - which uses convolutions with iterative
kernel dimensions to retain as much information as possible when moving autoregressively. We
evaluate on a variety of time series tasks demonstrating the state of the art performance of Typhon.
We also ascertain the importance of each component through an ablation study. We believe there is
great potential for improvement of efficiency, particularly in the parallel scan, possibly through using
more hardware-aware implementations and optimizations.
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A APPENDIX

A.1 BACKGROUND INFORMATION: 1-D STATE SPACE MODELS

1D Space State Models (SSMs) are linear time-invariant systems that map input sequence x(t) ∈
RL 7→ y(t) ∈ RL (Aoki, 2013). SSMs use a latent state h(t) ∈ RN×L, transition parameter
A ∈ RN×N , and projection parameters B ∈ RN×1,C ∈ R1×N to model the input and output as:

h′(t) = A h(t) +B x(t), y(t) = C h(t). (19)

Most existing SSMs (Gu et al., 2022b; Gu & Dao, 2023; Behrouz et al., 2024a), first discretize the
signals A,B, and C. That is, using a parameter ∆ and zero-order hold, the discretized formulation
is defined as:

ht = Ā ht−1 + B̄ xt, yt = C ht, (20)

where Ā = exp (∆A) and B̄ = (∆A)
−1

(exp (∆A− I)) . ∆B. (Gu et al., 2020) show that
discrete SSMs can be interpreted as both convolutions and recurrent networks: i.e.,

K̄ =
(
CB̄,CĀB̄, . . . ,CĀL−1B̄

)
,

y = x ∗ K̄, (21)

which makes their training and inference very efficient as a convolution and recurrent model, respec-
tively.
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A.2 EXPERIMENT DETAILS

The experimental details are reported in Table 4.

Table 4: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

Table 5: Experiment configuration of Typhon

Tasks / Configurations Model Hyper-parameter Training Process

k Layers dmin
† dmax

† LR∗ Loss Batch Size Epochs

Long-term Forecasting 5 2 32 512 10−4 MSE 32 10

Short-term Forecasting 5 1 16 64 10−3 SMAPE 16 10

Imputation 3 2 64 128 10−3 MSE 16 10

Classification 3 2 32 64 10−3 Cross Entropy 16 30

Anomaly Detection 3 3 32 128 10−4 MSE 128 10

† dmodel = min{max{2⌈logC⌉, dmin}, dmax}, where C is input series dimension.
∗ LR means the initial learning rate.
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A.3 FULL EXPERIMENTAL RESULTS

A.3.1 SHORT TERM FORECASTING FULL RESULTS

Table 6: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers
indicates the name of ∗former. Stationary means the Non-stationary Transformer.

Models Typhon ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗
(Ours) (2024)) (2023) (2023) (2023) (2022) (2019) (2022) (2022) (2023a) (2022) (2022b) (2021) (2021) (2021)

Y
ea

rl
y SMAPE 13.455 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169

MASE 3.023 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800

OWA 0.801 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Q
ua

rt
er

ly SMAPE 10.243 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313

MASE 1.192 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775

OWA 0.908 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252

M
on

th
ly SMAPE 12.752 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128

MASE 0.937 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614

OWA 0.887 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927

O
th

er
s SMAPE 4.848 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491

MASE 3.236 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355

OWA 1.004 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.917 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200

MASE 1.744 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223

OWA 0.932 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775

A.3.2 LONG TERM FORECASTING FULL RESULTS

Figure 3: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-336
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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Table 7: Long-term forecasting task with different horizons H. The best results are bolded. We include the
results for Patching as well. Note that & represents Typhon with Gated Multiresolution Convolution, ∗ represents
Typhon with TTT-Linear (Sun et al., 2024) and Transformer (Vaswani et al., 2017), % denotes Typhon with
TTT-Linear and Transformer with Patching with patching dimension 4, stride dimension 1, and pad dimension 3.

Typhon∗ Typhon% TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) (ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023c) (2022a) (2022) (2022c) (2021)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.335 0.371 0.324 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.365 0.391 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.398 0.406 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.407 0.431 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.374 0.399 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.174 0.263 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.231 0.302 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.306 0.344 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.389 0.401 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.275 0.325 0.281 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.376 0.399 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.431 0.440 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.461 0.462 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.486 0.476 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.438 0.444 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.301 0.370 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.392 0.403 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.396 0.423 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.406 0.447 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.373 0.410 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
xc

ha
ng

e 96 0.09 0.209 0.089 0.201 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.223 0.338 0.232 0.351 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.401 0.455 0.416 0.445 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.741 0.623 0.771 0.789 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.363 0.406 0.377 0.446 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
af

fic

96 0.461 0.263 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.408 0.277 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.427 0.274 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.449 0.301 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.436 0.278 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.164 0.218 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.208 0.256 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.261 0.267 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.357 0.364 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.366 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.245 0.276 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382
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A.3.3 ANOMALY DETECTION

Table 8: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and
F1-score in percentage respectively. A higher value of P, R and F1 indicates a better performance. For
Typhon models we let & represent Gated Multiresolution Convolution, ∗ denotes TTT-Linear (Sun
et al., 2024) and Transformer (Vaswani et al., 2017), % denotes Typhon with xLSTM (Beck et al.,
2024) and TTT-Linear, and # denotes Typhon with TTT-Linear (Zeng et al., 2023b) and TTT-Linear.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM (1997a) 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer (2017) 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans (2019) 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN (2019) 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer (2021) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ (2021) 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer (2021) 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer (2021) 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL (2022b) 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary (2022b) 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear (2023a) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer (2022) 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS (2022) 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer (2022) 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) (2023) 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) (2023) 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer (2023) 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST (2023) 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN (2024) 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Typhon# (ours) 88.10 82.72 85.33 89.29 76.54 81.23 89.91 55.35 69.80 91.22 95.55 93.33 98.33 88.87 96.96 85.33
Typhon% (ours) 87.31 80.76 83.90 89.54 79.90 81.42 90.05 56.81 70.98 90.02 95.29 92.58 97.91 95.88 96.89 85.54
Typhon∗ (ours) 88.16 82.74 85.05 89.16 88.37 81.79 90.35 58.12 71.55 92.18 95.19 92.30 98.23 96.19 96.97 86.53

A.3.4 IMPUTATION

Figure 4: Visualization of ETTm1 imputation results given by models under the 25% mask ratio setting. The
blue lines stand for the ground truth and the orange lines stand for predicted values.
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A.4 ABLATION STUDY

To evaluate the significance of the Typhon’s design, we perform an ablation study for Gated Multires-
olution Convolution and remove one of its components at each time, keeping other parts unchanged.
We first report Gated Multiresolution Convolution’s performance with each of its components, while
the next row removes dimension mixer, third row removes multiresolution convolution and instead
uses a simple convolution, and the last two rows removes gating from time and variate mixing,
respectively. The results are reported in the appendix and demonstrate that removing each component
significantly degrades the performance of the model, supporting the importance of our design. The
results are similar for T4.

Table 9: Ablation Study Results for Typhon: TTT-Linear and Transformer (T4)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Typhon 0.438 0.444 0.374 0.399 0.373 0.410
Uni.-directional 0.501 0.463 0.485 0.437 0.431 0.523
w/o Dim Mixer 0.522 0.476 0.391 0.414 0.389 0.413
w/o Long term 0.471 0.498 0.361 0.389 0.372 0.401
w/o Seasonal 0.456 0.471 0.357 0.403 0.395 0.425

Table 10: Ablation Study Results for Typhon: Gated Multiresolution (GMC)

Model Variations ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Gated Multiresolution 0.398 0.409 0.344 0.373 0.316 0.377
w/o Dim Mixer 0.448 0.462 0.394 0.419 0.367 0.412
w/o multiresolution 0.405 0.431 0.354 0.383 0.328 0.380
w/o time gating 0.405 0.412 0.366 0.389 0.324 0.379
w/o variate gating 0.400 0.412 0.357 0.383 0.331 0.386
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