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Abstract

We present an ultra-efficient post-training method for shortcutting large-scale pre-
trained flow matching diffusion models into efficient few-step samplers, enabled by
novel velocity field self-distillation. While shortcutting in flow matching, originally
introduced by shortcut models, offers flexible trajectory-skipping capabilities, it
requires a specialized step-size embedding incompatible with existing models
unless retraining from scratch—a process nearly as costly as pretraining itself.

Our key contribution is thus imparting a more aggressive shortcut mechanism
to standard flow matching models (e.g., Flux), leveraging a unique distillation
principle that obviates the need for step-size embedding. Working on the velocity
field rather than sample space and learning rapidly from self-guided distillation in
an online manner, our approach trains efficiently, e.g., producing a 3-step Flux <1
A100 day. Beyond distillation, our method can be incorporated into the pretraining
stage itself, yielding models that inherently learn efficient, few-step flows without
compromising quality. This capability also enables, to our knowledge, the first
few-shot distillation method (e.g., 10 text-image pairs) for dozen-billion-parameter
diffusion models, delivering state-of-the-art performance at almost free cost.

1 Introduction

Recent advancements in accelerating diffusion models [Song et al| [2021b], Ho et al.| [2020]
have significantly reduced the number of denoising steps required for sample generation without
compromising quality. For instance, while DDPM Ho et al.[[2020] typically requires 1000 sampling
steps, DDIM |Song et al.|[2021a] achieves a substantial speed-up with as few as 50 steps. Nevertheless,
as pre-trained diffusion models |Podell et al.[[2024]], Esser et al.| [2024]], [BlackForestLabs| [2024]]
continue to scale to (tens of) billions of parameters, the computational cost remains a critical
bottleneck for real-world applications. Most recent diffusion models favor Flow Matching (FM)
Lipman et al.| [2023]], also known as rectified flow [Liu et al.| [2023]], due to its simplified Ordinary
Differential Equation (ODE) solver and exact likelihood evaluation. FM achieves this by learning a
velocity field that deterministically maps Gaussian noise to clean data along a (nearly-)straight flow
trajectory. However, as detailed in Section[2] only a handful of existing works explicitly optimize the
distillation objective specifically for flow matching models.

Among the related works, shortcut models [Frans et al.|[2025] stand out for their unified approach
to train both multi-step and one-step diffusion with a step-size embedding, allowing the model to
inherently support both modes once properly trained, as further detailed in Section[3.2] The core
idea of shortcut models is to create direct shortcuts along potentially curved trajectories, by always
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predicting the mean direction between two equally spaced timesteps. The challenge, however, is that
the aforementioned property is missing in all existing pre-trained FM models. As a result, naively
applying shortcut methods to standard flow matching would require architectural modifications or
complete retraining from scratch to integrate step-size conditioning.

Motivated by this, and inspired by related works on velocity matching (refer to Section |2 for more
details), we introduce a novel framework for ShortCutting Flow Matching (SCFM) through a highly
efficient distillation paradigm. In contrast to majority existing distillation approaches, SCFM inherits
the end-to-end training manner from shortcut models, while differing substantially in distillation
principle, how step-size information is incorporated, and training algorithm design.

To elaborate on the high-level idea behind this distillation principle, our key insight is that an
obvious obstacle to few-step sampling in flow matching models lies in the inconsistency between
their theoretical formulation and empirical behavior. We ask: what if the entire non-linear velocity
field between noise and data, spanning a long time horizon, could be uniformly forced to a nearly
straight trajectory (e.g., via distillation)? In such cases, the explicit step-size parameter may become
unnecessary, as the model would now align with the theoretical principles of rectified flow, which
naturally supports efficient arbitrary-step sampling. The detailed intuition can be found in Remark [T}
With this in mind, we summarize our key contributions as follows:

* We propose SCFM that operates in velocity space, enforcing linear consistency across all
timesteps. This consistency is jointly derived from both the teacher and an online-inherited
student through a novel dual-target distillation objective. Notably, our approach eliminates the
need for explicit progressive distillation; instead, an end-to-end training scheme automatically
straightens curved velocity trajectories. In contrast to shortcut models, our method does not
rely on an explicit step-size parameter to regulate varying velocities.

* SCFM benefits significantly from self-distillation, enabling highly efficient training and entirely
removing the need for massive dataset to mimic teacher models—a requirement common to
most prior approaches. To demonstrate the novelty and effectiveness of few-shot SCFM, we
validate using as few as 10 training samples, yet still achieved competitive performance. To
our knowledge, this represents the first successful demonstration of few-shot distillation for
large-scale diffusion models.

* Our method is designed to generalize to any pre-trained flow matching model. To validate this,
we successfully distilled a 12B-parameter Flux model BlackForestLabs| [2024] into a 3-step
sampler within a single day on an A100 GPU, achieving SOTA performance in both quantitative
scores and visual quality, without the aid of adversarial distillation |Sauer et al.| [2024bla], a
standard component in all baselines.

2 Related Work

We follow the categorization in a recent survey |Fan et al.| [2025]], existing pre-trained diffusion
distillation methods can be broadly classified based on their training objectives: output/distribution-
based or trajectory-based. Output-based distillation adopts a straightforward approach: minimizing
the discrepancy between the outputs of the teacher and the student. These methods typically employ
sophisticated loss functions. For example, Progressive Distillation (PD) Salimans and Ho| [2022] uses
an {9 loss, while other methods leverage information-theoretic losses such as KL divergence|Yin et al.
[2024] or Fisher divergence Zhou et al.|[2024], just to name a few.

Trajectory-based distillation, on the other hand, focuses on the transformation path from noisy inputs
to clean images. The pioneering work on Consistency Models (CMs) Song et al.|[2023]] introduced the
idea of mapping any noised data point along the trajectory directly to its clean counterpart, enabling
one-step diffusion. More recent approaches extend this idea by targeting near-future noisy states in
the trajectory, rather than the final clean image, as the distillation target. This adjustment results in
more practical and efficient training strategies for popular pre-trained models such as SDXL [Podell
et al.|[2024]. Notable examples include [Luo et al.| [2023]], Wang et al.[[2024], Kim et al.|[2024]], Ren
et al.| [2024]],[Wang et al.|[2025]], and many more.

More recent and advanced pre-trained diffusion models, such as SD3 [Esser et al.| [2024]] and Flux
BlackForestLabs| [2024]], adopt flow matching (a.k.a., rectified flow) |Liu et al.| [2023] as their
underlying trajectory, in contrast to previous approaches like EDMs [Karras et al. [2022]. The
notable advantage of rectified flow is its natural compatibility with few-step diffusion once properly



trained. As hinted in Sectionm in practice, however, class-conditional models often deviate from this
idealized linear trajectory, especially in high-noise regions where the mapping often exhibit curvature.
Consequently, most of the above mentioned distillation algorithms, which were originally developed
for conventional trajectories, are not yet well suited to flow matching models.

Despite this limitation, InstaFlow |Liu et al.| [2024b], a successor to rectified flow |[Liu et al.| [2023],
introduces a two-stage training strategy: pre-training with the rectified flow objective followed by
velocity-based distillation. What sets InstaFlow apart is its distillation is carried out in the velocity
field, which contrasts sharply with strategies that rely on denoised data targets. Perhaps the most
relevant work to ours is the shortcut model Frans et al.|[2025]], which unifies one-step and multi-step
diffusion pre-training by learning in the velocity field and conditioning on step-size throughout
training. Their shortcut principle motivated our approach, which leverages velocity jumping through
a novel distillation targets tailored to pre-trained flow matching dynamics.

Other orthogonal approaches for achieving effective flow matching distillation include LADD [Sauer
et al.| [2024a], a predecessor to the well-known Adversarial Diffusion Distillation (ADD) Sauer et al.
[2024b], which introduces a GAN-like objective |Goodfellow et al.| [2014] based on deceiving a
discriminator. Notably, ADD-style methods are orthogonal to most diffusion distillation techniques,
as the additional adversarial loss is intended to enhance the alignment between the teacher and student.
SANA-Sprint Chen et al.| [2025]] takes a different route by substituting the original flow matching
trajectory. Instead, it adopts TrigFlow Lu and Song|[2025]], a generalized trajectory framework that
unifies flow matching and EDM under continuous-time consistency. Their approach is then combined
with LADD to further improve generation quality.

3 Preliminaries

3.1 Flow Matching Models

Given a data sample xy ~ D drawn from data distribution D, flow matching (a.k.a, rectified flow)
diffusion models learn to reverse the noising process through the following continuous-time trajectory:

x¢ = (1 —t)xg + tz, (1)

where ¢ € [0,1] and z ~ A (0, I). The forward noising process evolves from ¢ = 0 to ¢t = 1, gradually
perturbing x, into z. For notational convenience, we let x; represent the fully noised version of x.
The corresponding ODE with respect to ¢ takes a simple linear form:

9%,
ot
where v; is referred to as the velocity. Given training pairs {xg, X1 }, our objective is to predict
Vi = Vg(xy,t) using a neural network Vg with parameters 8. We note that Vg (x;,t) denotes
the minimal form of the velocity predictor, while a fully parameterized version may be written as
Vo(x¢, t, ¢, w), incorporating a condition ¢ (e.g., a prompt) and a Classifier-Free Guidance (CFG)

scale w|[Ho and Salimans| [2021].

Vi = = X1 — X0, 2

Since x; follows from the normal distribution, the estimator v; = E[v; | x;,t] is unbiased.
Consequently, the Mean Squared Error (MSE) of the estimator ¥, is known to minimize the variance,
meaning that the estimator with the least variance is considered the best in terms of MSE. Finally,
the neural network Vg can be optimized by minimizing the following loss function:

£(8) = Exy o xomnon || Volxe,t) = ve ] 3)

2
= Ex,~D xo~N(0,T) [HVe((l — t)xg + tx1,t) — (x1 — x0)|| }, “
where (@) follows from substituting the trajectory () and velocity (2 definition into (3).

The inference procedure solves the ODE backward from ¢ = 1 to ¢ = 0. An n-step sampler employs
n + 1 predefined timesteps {t; }7"_, where 1 = tq > ¢; > --- > t,, = 0. Samples are then generated
through n iterative updates:

Xiy = Xg, — (i — tig1) Vo (X, 1), X4y ~ N(0,1), ©)

with final output x,, as the generated sample.



3.2 Shortcut Models

As discussed in Section shortcut models Vg (xy, t, d) [Frans et al.|[2025] generalize standard flow
matching by incorporating a variable step size d (e.g., 1/n). The key property is self-consistency
across different step sizes:

Xt42d = Xt — 2dVg (Xt, t, 2d) (6)
%Xt—dVQ(Xt,t,d) —dVe(Xt+d,t+d,d), O<d§ %, (7)

where (6)) and (7)) reflect the compositional property that one 2d-step prediction equals two consecutive
d-steps. Equating (6) and (7) and scale both sides with ﬁ leads to the self-consistency loss:
2
£.c(8) = (Vo (1,1, 2d) = V- (x0,1,2d) ), ®)
where 8~ denotes the stopgrad version of 0 (typically maintained via exponential moving average
(EMA)), and the target Vg- (x¢, ¢, 2d) is computed as:

1 1
Vo- (x¢,t,2d) = §Ve* (x¢,t,d) + ivo* (Xtta,t+d,d). )]

Shortcut models are thus optimized through jointly minimization of:

* The flow matching loss (@) (with d = 0), ensuring basic generation capability.
* The self-consistency loss (8], facilitating shortcut abilities via varied step sizes.

During training, step sizes d in () are uniformly sampled from {1, 2 4 1} to promote multi-

scale consistency. To effectively encode d, rotary positional embedding Su et al.|[2024] is employed
to preserve the relative scaling relationships between different step sizes.

4 The Shortcut Distillation Method

Inspired by (@), (7) and (@), we propose to implicitly train the awareness of d in Vg (x;, t), rather than
including it as an explicit variable as in Section As hinted in Section |1} this naturally encourages
the trajectory to become nearly straight, rather than merely relying on shortcuts along a curved path.

A natural adaptation would extend the framework of PD |Salimans and Ho| [2022] to operate on
velocity fields instead of sample fields, giving rise to an iterative teacher-student distillation process.
The key challenge, then, lies in preserving compatibility with standard diffusion architectures while
accommodating variable step sizes. To this end, consider a sequence of n time intervals {d;}? ;
(which may be non-uniform) satisfying

n

ddi=1, di=ti1—t. (10)
i=1
Building on the self-consistency principles from (6] and (7)), we derive the velocity space consistency:
(di +dit1)Ve (Xtiati) ~ d; Ve (Xtiati) +diy1Ve (Xti+17ti+1)~ (1D
Rearranging terms yields the following form of our distillation target:
d; dit1
Vo (x¢,,t;) = ————Vo(xy,, ti) + ———— Vo (Xt,q, tit1), 12
o (%, ) @ dy) o (xt,,t:) (5 + dped) 0 (X1, tit1) (12)

where we slightly abuse notation by denoting the left-hand side as the training target, even though it
shares the same symbolic form as the intermediate outputs on the right-hand side. Similar to (9)), for
the target computed through the teacher and the EMA model, we replace all instances of € in (T2)
with 8 and 6~ to differentiate the sources.

Equation (T2)) captures the weighted interpolation of velocity fields across time intervals, forming
the foundation for our shortcut distillation process. Next, if one adapts the progressive distillation
pipeline, the first stage would begin with fine-grained step sizes d;, where Vg= (x4, , ;) represents the
velocity prediction directly from the teacher model. The distillation then proceeds through stages



Vo — V- — --- with increasingly coarser-grained d;. However, this naive approach may face
challenges in determining optimal transition points between stages, considering the propagation and
amplification of approximation errors.

Recall from Section [3.2]that shortcut models ground their learning at small step sizes (d — 0) via
(@) while self-bootstrapping at larger steps (d € {271—1}}12052 ™71 via (). Such joint optimization is
theocratically equal to progressive optimization: first training the model at a small step size, and then
learning from the previous model at increasing step sizes. Motivated by these insights, we propose
the ShortCut distillation for Flow Matching (SCFM) objective:
1 /& 2 N 2
Loctm(6) = - (Z (Ve t) = Vo (xint)) + - (Voloeat) = V- (x.1)) ) (13)
i=1 1=k+1

where V- (x;,t) and Vg- (x, ) are calculated through (I2), NN is the total batch size and 0 < k < N
controls the teacher/self-teaching mixing ratio.

Remark 1. The the SCFM loss L.y, can be seen as a generalization of several existing distillation
methods. When £ = N, it encompasses a broad class of existing trajectory-based distillation
approaches (see Appendix [B]for details); setting & = 0 corresponds to a progressive-style distillation
scheme. Analogous to shortcut learning, the first term in (I3)) transfers knowledge from the teacher
model to a coarser student, while the second term self-distills this knowledge into finer-scale students.
This enables implicit progressive self-distillation as suggested in Section [I] leading to asymptotic
convergence toward a one- or few-step sampler within a single training phase.

To build intuition, consider a teacher model with n diffusion steps. The first term trains a student at
~mn/2 steps to coarsely rectify the velocity direction. The second term, at the same time, enforces
consistency between this n/2-step student and finer-scale versions (e.g., n/4 steps). By randomly
sampling target steps from {n/4,n/8, ..., 1} in the second term, the loss ensures self-consistency
across all these finer scales. Interestingly, even if all finer-scale directions are initially wrong, they can
still be rectified through the first term via teacher guidance. Consequently, the second term rapidly
straightens the overall trajectory, while the first term corrects the direction w.r.t. the teacher.

4.1 Training Details

We update the EMA of the stop-gradient parameters 8~ using the conventional update rule:

0" =p0 + (1 — )0, with = 0.999 by default. (14)
To enable efficient post-training, we adopt low-rank adaptation (LoRA) Hu et al.|[2022], where the
model parameters are expressed as 8 = 0, + A8, with 8 denoting the frozen pre-trained weights

and A#@ the trainable LoRA. Let A@~ denote the LoRA parameter corresponding to the stopgrad
model. Since 8~ = 0y + AB~, we can derive the EMA update rule for the LoORA parameters as:

A =0~ — 0y

=pb~ + (1 —p)8 - 0o

= (6o + A07) + (1 — 11)(60 + AB) — 0o

= pA0™ + (1 — p)AB, (15)
where we have used both the update for 8~ in and the LoRA decomposition of 8. To further
accelerate training, we may apply a cyclic restarting strategy to (I3), where A8~ is reinitialized
with the current A8 every fixed number of iterations (e.g., every 1000 steps). For a more in-depth
understanding, we refer readers to the essential Section[5.4] which offers key insights into the final

SCFM training strategy that further improves convergence speed. The vanilla training algorithm is
provided in Algorithm[I] located in Appendix [A]

5 Experiments

In this section, we present empirical studies to evaluate SCFM. We begin by showcasing numerical
and visual comparisons, followed by comprehensive ablations in Section (including few-shot
learning, detailed in Appendix [F) that explores how to achieve the most efficient and performant
SCFM configuration.



Table 1: Comprehensive comparison with SOTA approaches. Latency is measured with resolution
1024 x 1024 in BF16 precision on A100, averaged over 10 runs. The timing specifically reflects
the duration spent within the transformer block loop, excluding pre/post-processing overhead. We
highlight the best and second-best results across all metrics.

Latency FID |
Methods Steps ) (A)FID | (Wirt. base) CLIP 1
Base | SD3.5-Large | 32 15.14 | 18.62 N/A 34.97
B SD3.5L-Turbo 8 1.95 +7.03 (25.65) 8.18 33.81
E SD3.5L-SCFM 8 3.71 +0.32 (18.94) 2.65 33.91
é SD3.5L-Turbo 4 0.94 +6.36 (24.98) 6.98 33.03
= SD3.5L-SCFM 4 1.81 +4.45 (23.07) 6.89 33.40
E SD3.5L-Turbo 3 0.71 +6.85 (25.47) 7.76 32.25
a SD3.5L-SCFM 3 1.31 +5.35 (23.98) 7.41 32.46
Base | Flux.1-Dev 32 15.62 2743 N/A 33.60
Flux-TeaCache-0.6 32 5.36 -2.25 (25.18) 2.18 33.24
Flux-TeaCache-0.8 32 433 -3.15 (24.28) 3.56 32.77
Flux-Hyper-SD 8 3.71 +1.37 (28.80) 3.20 33.46
Flux-TDD 8 3.71 -0.37 (27.06) 4.02 33.17
§ Flux-SCFM 8 3.71 +0.16 (27.59) 2.58 33.76
-‘-E’ Flux-Hyper-SD 4 1.80 -0.64 (26.79) 5.45 32.94
.8 Flux-TDD 4 1.80 -2.62 (24.81) 5.50 32.57
= Flux-Schnell 4 1.80 -6.41 (21.02) 6.76 33.17
= Flux-SCFM 4 1.80 -0.45 (26.98) 4.50 33.20
(2]
=] Flux-Hyper-SD 3 1.33 -1.52 (25.91) 9.65 31.95
Flux-TDD 3 1.33 -4.46 (22.97) 8.26 31.38
Flux-Schnell 3 1.33 -6.58 (20.85) 7.06 33.06
Flux-SCFM 3 1.33 -1.01 (26.42) 6.34 33.10

5.1 Training settings

We conduct our experiments on a filtered subset of the LAION dataset |Schuhmann et al.| [2022],
specifically the LAION-POP dataset|[LaionPop]| [2024]], which contains 600K|samples in total with
aesthetic scores >0.5. For evaluation, we adopt the widely used COCO-30k validation set|Lin et al.
[2014]. All training and evaluation are performed on a single NVIDIA A100 80GB GPU.

We use two large-scale, high-capacity pre-trained flow-matching models as teachers: Flux.1 Dev
(12B) BlackForestLabs| [2024]] and SD3.5 Large (8B) Esser et al.|[2024]]. Our method successfully
distills a 32-step Flux teacher into a 3-step student in under 24 A100 GPU hours, demonstrating
remarkable training efficiency. For comparison, progressive-style distillation methods typically
require thousands of GPU hours [Salimans and Ho| [2022]], highlighting the practical efficiency of
our approach. All experiments are conducted on images resized to approximately 512 x 512 in area.
Since our method operates in the velocity space, we observed no performance degradation when
evaluating at 1024 x 1024 resolution. We use the AdamW optimizer Loshchilov and Hutter|[2019]
with a learning rate of 2e~°, a batchsize of N =16, and set % =0.4 in (T3), chosen bootstrappingly.

Since Flux.1 Dev, denoted as V(x, ¢, ¢, w), is already CFG-distilled using an embedded guidance
representation, we simply randomly sample the CFG scale from the range w € [0, 8], ensuring both
the student and teacher share the same w for consistency. In contrast, SD3.5 does not incorporate CFG
embedding, instead, we sample CFG values from the range [3.5, 5] (as we aim to retain flexibility
at inference time by supporting adjustable CFG scales), rather than distilling to a fixed value. As
a result, our method requires a CFG-conditioned formulation for all velocity predictors V(x, ¢, ¢)
appearing in (I2). As in[Ho and Salimans|[2021], this can be expressed as:

V(x,t,¢) = V(x,t,c) + w(V(x,t, c) = V(x,t, @)), (16)

where () denotes the unconditional (null) prompt. During inference, we find that setting the CFG
scale within the range [4.5, 6] yields stable and reliable results for both models. Alternative methods

“This dataset is publicly available; as specified in Section since our method converges rapidly, we used
only a random subset (<50% of full dataset).
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Figure 1: Visual comparisons on Flux: samples from the original teacher and the TeaCache-
accelerated variant uses 32 sampling steps.

that rely on a CFG embedding can reduce inference cost by avoiding a separate unconditional pass
(thus halving runtime), but typically require architectural changes and substantially more training
from near-scratch. While both approaches are expected to yield similar generation quality, we opt for
the simpler, backward-compatible strategy.

5.2 Evaluation Metrics and Baselines

Our evaluation primarily focuses on the fidelity between the student and teacher models—specifically,
how well the student shortcuts (i.e., preserves) the behavior of the teacher. Additionally, we assess
the standalone quality of the distillation outputs to ensure that acceleration does not come at the cost
of generating visually compelling and semantically adherence results.

To this end, we deviate from conventional FID [Heusel et al.| [2017] evaluation against an open
reference dataset (as commonly done in prior works), instead, we propose to compute the FID between
teacher and student outputs under fixed random seeds. This allows us to directly quantify how much
fidelity is lost when drastically reducing the number of inference steps. This teacher-student FID
serves as a better proxy for evaluating distillation fidelity, especially when the teacher itself is already
a strong pre-trained model. As a complement to the similarity measurement between the student and
teacher models, we evaluate the visual quality and semantic alignment of the accelerated/distilled
model using CLIP [Radford et al/ [2021]], equipped with the checkpoints from [Koukounas et al| [2024]]
over the official OpenAl versions (both base and large), due to their improved image-text alignment
(see Appendix |Gl for detailed comparisons).

Although diffusion distillation is widely studied, to the best of our knowledge, no prior work has
conducted distillation experiments on recent large-scale diffusion models like Flux or SD3.5—apart
from the official releases of Flux-Schnell BlackForestLabs| [2024]] and SD3.5-Turbo Esser et al.
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Figure 2: Visual comparisons on SD3.5-Large: samples from the original teacher uses 32 sampling
steps.

[2024]]. We further note that recent trajectory-based distillation methods such as HyperSD
[2024]] and TDD [Wang et al.| [2025]] were subsequently applied to Flux (and thus were not
included in the official benchmarks reported in their papers); for fair comparison, we use their
publicly released checkpoint weights to establish baselines. Notably, all these baselines have utilized
ADD/LADD for improved performance, whereas ours dose not. On the other hand, we also include
a TeaCache baseline for Flux using their publicly released codeﬂ TeaCache is a
training-free approach that accelerates inference by selectively skipping redundant timesteps based
on output fluctuation, rather than directly reducing the number of steps. As TeaCache introduces a

quality-latency trade-off via a threshold parameter, we evaluate their fastest (0.8) and second-fastest
(0.6) configurations as provided in their official Flux implementation.

5.3 Analysis

We present our main evaluation results in TableI] focusing on the key metrics discussed above. In
particular, we adopt AFID to quantify the distributional shift between the student and teacher models
with respect to a common fixed validation dataset. To further strengthen this comparison, we also
construct a teacher-generated reference dataset using fixed CFG values and random seeds. This
enables a direct, controlled measurement of student-teacher fidelity, isolating the impact of distillation
from other sources of variance. Across all three evaluation metrics—AFID, FID, and CLIP—our
proposed method consistently achieves the best performance.

As noted in Section [5.1} we did not perform CFG embedding distillation for SD3.5; as a result,
our method requires twice the number of function evaluations during inference compared to CFG-
distilled variants like SD3.5-Turbo. Nonetheless, our framework is fully compatible with CFG
embedding distillation, which we leave for possible future exploration. While TeaCache-0.6 achieves
a competitive FID score, it lags behind our method in inference speed and CLIP score. Moreover, our
slowest distilled 8-step student outperforms the fastest TeaCache-0.8 in both speed and generation
quality—despite requiring only a few hours of training—offering a fair and highly efficient alternative
to this training-free approach.

Visual comparisons for Flux are depicted in Figure [T} Our method, SCFM, maintains the highest
fidelity to the 32-step teacher, particularly in the 8-step student, while simultaneously improving
prompt adherence—evident in the 3- and 4-step students. For instance, SCFM better captures details
like “robot painting” and “glowing flowers”. Similar trends are seen in the SD3.5 results in Figure 2}
where the 3- and 4-step students accurately capture prompt-specific concepts like “squared”, “bison”
and “fox”, sometimes better than the teacher. On the other hand, a closer examination of our few-step
samples reveals noticeably improved clarity, detail, sharpness, and composition compared to other

"We omit the SD3.5 version, as TeaCache has not been extended to support this model at the time of
submission, see https://github.com/ali-vilab/TeaCache,
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methods. While the image quality is on par with Flux-Schnell, our approach better preserves the
characteristics of the original Flux-Dev model, as evidenced by the lowest fidelity score and superior
visual consistency with the teacher. Additional visual results are provided in Appendices[H|and[l]

5.4 Further Ablations and Discussion

Given the simplicity of the vanilla SCFM introduced in Section 4] several promising avenues for
further exploration naturally emerge. The following ablation studies trace the empirical motivations
behind the final version of our SCFM training algorithm:

1. As an early reference to Appendix [B] where we compare our method with other distillation
approaches, we consider an ablation in what if we mix the teacher and stopgrad student solvers
in the first term of (I3). Does this impact overall performance or training speed? As shown
in Appendix [C] we observe slight improvement in quantitative results. This indicates that the
training scheme is robust and amenable to further refinements.

2. As hinted at the end of Section employing cyclic restarting for the stopgrad model
can significantly accelerate convergence, confirmed by CLIP score progression curves in
Appendix [D] However, the strategy may become detrimental during very late-stage training,
nevertheless, we find that an 8-step student safely converges by approximately the 2000th
iteration—equivalent to around 10 A100 GPU hours when distilling Flux in our setup.

3. The above findings suggest that a rapidly accumulated stop-gradient model facilitates faster
convergence. Building on this and motivated by the first point, we propose mixing teacher
and stopgrad models with different EMA decay rates in (I3): a “fast” model with a lower
decay parameter (1 = 0.99) and a “slow” model with a higher decay parameter (@ = 0.999).
This dual-EMA strategy eliminates the need for manual cyclic restart, instead enabling a fully
automatic mechanism that leads to even faster convergence. With this setup, the 8-step student
safely converges by around the 1000th iteration (~5 A100 GPU hours), and the overall model
reaches 3-step performance in under 24 GPU hours. Further details are provided in Appendix [E]

4. Inspired by the observations above, we note that SCFM is already highly efficient to train: by
the 1000th iteration, the model has only seen approximately 16k images. This naturally raises
an interesting question of whether few-shot distillation is feasible. In Appendix [F| we explore
this by training on a dataset of only 10 images (simultaneously using this as the batchsize), and
find that the results remain comparable to those achieved using the full training set.

5. Nevertheless, there remains room for additional, less critical ablation studies—such as
investigating the effect of the teacher-student mixing parameter k, which, as briefly mentioned
in Section[d] serves to interpolate between trajectory-based and progressive-style distillation
strategies. However, since the preceding ablations already demonstrate that accelerated self-
distillation (i.e., non-zero k) leads to faster convergence, we consider this particular experiment
to be of lower importance and do not explore it in detail.

We note that the above explorations primarily affect training speed, with negligible impact on the
final converged results. Therefore, all the tables and figures presented in the experimental section
remain valid and unaffected.

6 Conclusion and Future Work

In this work, we presented SCFM, an efficient distillation method that accelerates pre-trained flow
matching diffusion models to very few steps. Experimental results demonstrate that our method
best preserves many-step teacher characteristics. Compared to previous works, the computational
and training data requirements is almost free, providing a compelling alternative to training-free
acceleration methods while delivering significantly better results. Future directions may include:

* Preserving model creativity is a key aspect of distillation quality (i.e., producing diverse samples
under different random seeds). Our experiments show that our method retains many-step teacher
characteristics, including variability, though a quantitative metric is still lacking. This may stem
from our focus on velocity trajectories, whereas common approaches directly predict clean
samples (e.g.,|Song et al.| [2023]], [Yin et al.| [2024]) and yield less diversity. This also indicates
that our method generalizes better in few-shot settings, being less affected by the scarcity of



training samples. Future work may combine both approaches to enhance sample quality and
variability.

* While our approach eliminates the need for step-size embeddings in shortcut models with a
distinct learning paradigm, it is nonetheless encouraging to see the development of highly
efficient algorithms that converts pre-trained flow matching into exact shortcutting.

» Since ADD-style methods can be readily integrated into our framework to potentially enhance
few-step generation, or even enable one-step generation, exploring a velocity-space variant of
LADD may be a promising direction for enhancing velocity consistency.

* Our method is designed to be modality-agnostic and applicable to flow matching in diverse
domains, such as 3D, video, audio and etc. It would therefore be valuable to explore how
practitioners might adopt the algorithm, possibly with domain-specific modifications.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: They are all validated by our experiments in Section [3}
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have listed some of the limitations, such as pursuing one-step generation,
in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our method dose not need assumptions or proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the experimental details in Section[5.1]and algorithmic
details in related appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer: [Yes]
Justification: Code is available at|shortcutfm.github.io.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: See Section[5.11
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper dose not include error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: See Section[5.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the code of ethics and ensured that our work complies with
all outlined guidelines.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: To our knowledge, this work does not pose any direct societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have credited all the original owners of the related assets in Section [3]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs are needed in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Pseudo Code of Vanilla SCFM

First, let L,, := Linspace(1,0,n + 1) denote the set of n + 1 equally spaced discretized timesteps,
decreasing from 1 to 0, where n corresponds to the target number of teacher steps.

Prevalent pre-trained flow matching models often avoid using uniformly spaced discrete ODE steps,
instead applying timestep shifting to improve sample quality Esser et al.|[2024], BlackForestLabs
[2024]. In some cases, the shift may even dynamically depend on image resolution. In this paper, we
focus exclusively on the non-dynamic shift, where the shifted timestep is defined as:

st

Ss(t) = —F——, s > 1. 17
W= TG 1n
For the shift parameter s in (I7), we sample it uniformly from the range [2.5, 4.5] for both Flux and
SD3.5-Large. Intuitively, a larger shift value s concentrates more sampling steps in the high-noise
region (early timesteps), and fewer in the data region (late timesteps), which typically leads to
improved empirical performance compared to uniform scheduling.

While one could design a shift distribution tailored to the number of ODE steps, we observe
that uniform sampling within this range performs comparably to more sophisticated strategies.
Nonetheless, this remains an interesting direction for future exploration. The overall training
procedure for the vanilla SCFM is summarized in Algorithm I}

Algorithm 1 Vanilla SCFM Training

1: Input: Teacher parameters 8", trainable student parameters 0, stopgrad parameters 8~ < 6,
discretized timesteps L,,, number of teacher-guided samples k, and batchsize N
2: while not converged do
3:  Sample data xq ~ D, and noise x; ~ N(0,T)
4:  Sample shift value s € [2.5,4.5]; V¢ € L,, apply shifting ¢ < S;(¢) as in
5.  for first k elements in the batch do
6: Sample three consecutive ¢y, t2, t3 from L,, with a fixed skip of 1
7. for remaining N — k elements in the batch do
8 Sample three consecutive tq,to,t3 from L, with a skip randomly drawn from
{2,4,...,T/4}
9:  xy, < (1 —1t1)x0 + t1x1, then perform a forward pass to obtain Ve (x¢,,t1)
10:  Compute targets Vo= (X1, ,t1) and Vg- (Xy, , t1) using (12)), with either the embedded CFG or
the variant in (T6)). Specifically, set d; < ¢; — t2 and d;+1 < t2 — t3.
11:  Backpropagate 6 using loss (I3) with Vg (x,,t1), Vo= (X¢,,t1) and Vg- (X4, ,%1)
12:  Update the EMA model 8~ according to (I4)
13:  Optional: If cyclic restarting is enabled, reinitialize 8~ < @ at fixed iteration intervals

B Closer Comparison to Other Trajectory-based Distillation Methods

As discussed in Section[2] shortcut distillation represents a novel class of trajectory-based distillation
methods that operates in velocity space rather than directly regressing ODE-simulated samples.
Existing trajectory distillation methods typically employ the following sample-space mappings:

[ (xet) = %, 7 €10,0), (18)

which also requires ODE solving along trajectories. Unlike our velocity-space approach in (12),
conventional methods|Luo et al.|[2023]], Kim et al.| [2024]] enforce consistency through mixing teacher
and student solvers:

Xtiyo = f@‘ (Xti+17ti+1) = fe— (fe* (Xtvti)vtiJrl)' (19

Intuitively, this formulation injects teacher knowledge through the inner teacher ODE solver, and
mixes it with the outer (stopgrad-)student solver. The student thus learns to generate outputs from
arbitrary intermediate states produced by the teacher.

In contrast, shortcut distillation (9) employs consistent solvers for both steps—either using the teacher
Xt,,s = for (for (X¢,t;), tiv1), or the student x4, , = fg- (fo- (X¢, i), ti41), and further combines

20



their outputs through self-distilled bootstrapping. This preserves internal solver consistency while
progressively transferring knowledge from teacher to finer students. Finally, a generalized distillation

loss can be written as
L(0) =D(fo(xt,,t:), fo- (Xt, 15 tig1)). (20)
In light of this loss formulation, we proceed to elaborate on the key differences in greater detail.

Remark 2. For flow matching models, the ODE in simplifies to (). Henceforth, some
previous works may arrive at objectives resembling D((d; + di41)Ve(xy,,t:), diVe (x4, ;) +
di+1Ve- (Xt,41, ti+1)), which superficially resembles our (T2). However, crucial differences exist:

* D in existing works is measured in sample space rather than velocity space. Unless a sample-
wise/adaptive weighting function proportional to 1/(d; + d;11) is explicitly incorporated,
this formulation fails to align with the scaling behavior inherent to flow matching objectives.
To our knowledge, no prior work has proposed such a weighting scheme specifically tailored
to flow matching models, nor is there clear empirical evidence supporting its use.

* Numerically, since d; € (0,1] in (I0), errors computed in sample space are typically
10-100x smaller than those in velocity space. As a result, they require extremely small
learning rates (e.g., 10~%) and significantly more training iterations. For example, [Ren
et al.| |2024] Section 4.1] reports that each distillation stage for a 2.6B-parameter SDXL
requires approximately 200 A100 GPU hours. Some works also consider alternatives to
the standard /5 loss for D, such as the Huber loss, ¢; loss, or perceptual losses like LPIPS
Zhang et al.|[2018]]. This is usually motivated by the observation that sample-space losses
often exhibit greater instability. As a result, more robust loss functions—such as the Huber
loss—are sometimes preferred due to their reduced sensitivity to outliers (e.g., see |Chen
et al. [2025])). In our case, we adopt the standard ¢5 loss, which preserves the optimality of
unbiased estimation in velocity fields, as hinted in Section 3.1}

Nonetheless, as shown in Appendix [C] we explore the possibility of mixing only the teacher solver
with the student—following the practice of some prior works—and observe nearly identical results
with slightly faster convergence. This finding motivates a deeper investigation into how to best
leverage self-distillation, as further explored in Appendices[D]and [E]

C Ablation on The First Term of Loss (13)

As hinted in Appendix [B]and in the first point of Section[5.4] we explore an alternative formulation in
which the solvers used in the first term of (I3)) are interleaved or mixed, as described in (I9), while
keeping the second term unchanged. More formally, similar to Equation (I2)), the modified target
Vo= (x¢,,t;) is computed as

VG* (Xti ) tl) =

di di
V@* (Xt“ti) + + )Ve— (Xtri+1’ti+1)' (21)

(di +diy1) (di +diya
This formulation linearly blends teacher and EMA student together, enabling faster knowledge
transition to the second term of Ly, As an evident in Figure E], this approach (denoted as
vanilla-mix) yields slightly faster convergence compared to the vanilla SCFM formulation. This
observation suggests that employing a more frequently updated EMA student model may facilitate
better knowledge propagation from the teacher.

To further investigate this idea, we introduce a cyclic restarting strategy for the student EMA model.
In this scheme, the EMA accumulator is periodically reset at fixed iteration intervals, allowing the
student to forget stable or overly smoothed knowledge and adapt more quickly to the evolving teacher
signal. This leads to even faster convergence, as discussed in detail in Appendix

D Ablation on Cyclic Restating

Cyclic restarting is included as an optional component in Algorithm [I] (highlighted in blue),
designed to accelerate training by periodically resetting the EMA student model. In this section, we
present experimental evidence demonstrating the effectiveness of this simple yet practical strategy.
Specifically, we compare the vanilla version of Algorithm |l| against two variants: one with an
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Algorithm 2 Fast-Slow EMA SCFM Training

1: Input: Teacher parameters @*, trainable student parameters 6, fast stopgrad parameters 8 < 6
with 1 = 0.99, slow stopgrad parameters 6~ <« 6 with ;1 = 0.999, discretized timesteps L,
number of teacher-guided samples &, and batchsize N
while not converged do
Sample data x ~ D, and noise x; ~ A (0, I)
Sample shift value s € [2.5,4.5]; Vt € L,, apply shifting ¢ < S;(¢) as in (T7)
for first k£ elements in the batch do
Sample three consecutive ¢1, t2, t3 from L,, with a fixed skip of 1
for remaining N — k elements in the batch do
Sample three consecutive ti,ts,t3 from L, with a skip randomly drawn from
{2,4,...,T/4}
x¢, < (1 —t1)xo + t1x1, then perform a forward pass to obtain Vg (xy,, t1)
10:  Compute the targets Vg« (xy,,t1) and Vg- (Xy,,¢2) using @I) and @2). Remaining
calculations follow the same as Line 10 of Algorithm [T]
11:  Backpropagate 6 using loss (13) with Veg(x¢,,t1), Vo= (x¢,,t1) and Vg- (X4, t1)
12:  Update the EMA models 8~ and " according to (T4), each using its respective decay rate

Nl

aggressive restarting schedule that resets the EMA every 500 iterations (referred to as cyc-500), and
another with a more moderate schedule that resets every 2000 iterations (denoted as cyc-2000).

As shown in Figure 3] both variants significantly improve convergence speed over the vanilla baseline.
The cyc-500 variant exhibits the fastest initial convergence due to its rapid adaptation, while cyc-2000
achieves a more balanced trade-off between stability and speed. These results confirm that periodic
forgetting of stale EMA knowledge can facilitate quicker adaptation and reduce training time.

However, as discussed in Appendix [D]and illustrated in Figure[d] overly frequent resets (e.g., cyc-500)
can lead to performance degradation by hindering late-stage convergence. This highlights the need
for careful tuning of the restart interval, which may vary depending on the specific distillation setup.
To address this issue, and inspired by the findings in Appendix [C} we propose a fully automatic fast
training algorithm, presented in Appendix [E]

E Final Version: Ablation on Dual Fast-slow EMA

We retain the computation of Vg« (xy,, t;) as defined in (21)), but introduce a fast EMA model, denoted
by @, into the second term of the SCEM loss. This modification still preserves the solver consistency
in terms of self-distillation, with the key distinction being that we now mix outputs from both a faster
and a slower EMA model. Specifically, the revised computation of the fast-slow target V,- is given
by

di

Vol ) = @)

d;
Vo (x4,, i) + H )Ve— (Xti41stit1),s (22)

(di + dit

The resulting dual stopgrad EMA training algorithm largely mirrors the structure of Algorithm [T}
hence, we highlight only the modified components in red for clarity and ease of comparison.

As shown in Figure[3] Algorithm2]achieves even faster convergence—outperforming the aggressively
restarted variant of Algorithm |1 that resets every 500 training iterations. Most importantly, an
additional benefit is that this fast training procedure is fully automatic and avoids the late-stage
performance degradation seen with the manual restarting strategy, as demonstrated in Figure [

22



34

©
()

w
S

ClipScore

)
®

Training Method
~@— Vanilla
~@— Vanilla-mix
—m— Cyclic-500
Cyclic-2000
—&— Dual Ema

26

24

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration Steps

Figure 3: CLIP score progression across training methods, evaluated on 20 random image-text pairs
from the COCO-30k validation set. Experiments are conducted on Flux and evaluated on the 8-step
student.

©
&

w
g

w
&

ClipScore

Training Method
~=&— Vanilla
=@ Vanilla-mix
~@- Cyclic-500
29 Cyclic-2000
=4— Dual Ema

©
S

28
30000 32000 34000 36000 38000 40000
Iteration Steps

Figure 4: Same setting to Figure|3] focuses exclusively on the convergence behavior during the later
stages of training.

F Ablation on Few-shot Learning

In this section, we present an interesting ablation study to evaluate the effectiveness of SCFM in a
few-shot learning setting. As shown in Table 2] distilling an 8-step student model using a dataset
of only 10 images results in only minor differences in CLIP score, along with a slight increase in
FID and AFID compared to the baseline trained on the full dataset. However, these quantitative
differences do not fully capture the performance of the model. As illustrated in Figure 3] the few-shot
distilled model demonstrates only modest degradation in preservation ability. In the mean time, the
generated samples maintain high image quality and strong prompt alignment, aligning well with
the metrics in Table[2] It is also worth noting that preservation ability may not always be a critical
goal—especially in cases where the objective is to guide the student model to learn from a specific,
small dataset, or to acquire general generation capability rather than closely imitating the teacher
model.

Overall, this suggests that while the shortcutting ability of SCFM may be moderately constrained
when training data lacks sufficient coverage of the teacher’s knowledge, the overall performance
remains surprisingly robust. Such a setting could be particularly valuable when collecting large-
scale data is impractical, e.g., 3D, video or even robot data. In such cases, even a limited set of
self-generated or synthetic samples might be sufficient to produce a strong distilled model. A more
thorough exploration of these data-efficient regimes is left for future investigation.
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Table 2: Qualitative evaluation of few-shot SCFM trained on Flux. All samples are generated using 8
steps. The experimental setup follows the same configuration as in Table[T]

| AFID| | FIDJ | CLIP}

Flux.1-Dev | 2743 | N/A | 33.60
SCEM | +0.16 (27.59) | 2.58 | 33.76
Few-shot SCFM | -0.3 (27.13) | 2.94 | 33.75

Flux-Dev SCFM Few-shot SCFM
o~ i ‘

Figure 5: Side-by-side comparison on few-shot trained v.s. regularly trained SCFM. Teacher samples
use 32 steps, whereas others use 8.

G Comments on CLIP Score

In this section, we elaborate on our choice to use the CLIP checkpoints provided by
[2024]-named Jina-rather than the official OpenAl versions. Although OpenAI’s CLIP models are
widely adopted, we found that their scoring often fails to align with human perceptual or semantic
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judgments—particularly in the case of low-quality synthetic data. While our validation set contains
numerous examples, a representative case in Figure[6|demonstrates that the Jina checkpoint is the only
variant among those tested that produces a CLIP score ranking consistent with human preference. In
contrast, the OpenAl models fail to capture key elements from the caption, such as “grass”, mistakenly
favoring an image that shows green land but no actual grass. This suggests that the model may be
overly influenced by coarse visual features. Such discrepancies indicate that the Jina checkpoint
provides better calibration for text-image similarity, making it a more appropriate choice for our
evaluations. Nevertheless, all CLIP scores obtained in Tablemuses this model consistently.

Flux-HyperSD-3Steps

Human Preference

Clip-base-patch-16 35.05
Clip-base-patch-32 34.62
Clip-large-patch-14 28.56
Clip-large-patch-14-336 30.09
Jina-clip-v2 33.0

Flux-SCFM-3Steps

32.28
32.16
26.96
27.59

35.0

Figure 6: The caption used to generate the two images above is: “A group of zebras grazing in the

grass.”

H Additional Results for Flux

See the visual comparisons in Figures[7][8] and[9] where we only include the TeaCache-0.8 results in
Figure[7 as it offers inference speed closest to that of 8-step distilled models (see Table |T).
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FLUX-Dev TeaCache-0.8 HyperSD TDD FLUX-Schnell SCFM (Ours)
. y 3 par N 3 \ - N\ao s '

-~ - s
Cybernetic dragon soaring through neon-lit skyscrapers, metallic scales flickering with holographic runes and glitch effects—fusing mythic power with futuristic tech.

| r— .

Ultrarealistic stock photo of a Githyanki knight meditating amidst the ruins of an ancient, ethereal city on the Astral Plane. Their gleaming armor reflects strange,
otherworldly light as they wrestle with inner conflict—duty vs. ambition, discipline vs. power. The scene exudes a mystical, brooding intensity, symbolizing unwavering
loyalty to Queen Vlaakith, despite the personal cost.

bk -

A cute squared planet with a blue colored surface surronded by a soft pink hued space bac}gmund with glowing stars the whole scene has whimsical and adorable
vibe with a bright shny and brilliant surface on the planet featuring singular charming house

> by SR v -
Ultrarealistic stock photo of 'Orangeman,' a whimsical figure made from orange segments, curled peels, and citrus zest, with clove eyes and a leaf cap. He stands
playfully on a polished wooden surface, casting a soft shadow, surrounded by scattered slices and juice droplets. Warm light enhances his juicy textures, evoking
childhood wonder and creativity—perfect for children’s media or playful ads.

An ultrarealistic stock photo captures a massive catalytic cracker unit at twilight, its intricate network of pipes and vessels glowing against the fading sky. Steam billows
from vents, hinting at the intense processes within, while the surrounding landscape underscores the unit's critical role in energy production and modern industry.

N AR e — *
iPhone 15 Pro Max floating in a cyberpunk void, titanium frame glowing with neon circuits. Dynamic Island projects a holographic cityscape. Matte back reveals
hidden Apple logos in reflections. Camera lenses refract prismatic light into a floating logo. Data streams and electric waves warp reality around it. Ultra HD,
cinematic lighting, futuristic vibe.

Figure 7: Additional visual comparisons for Flux under 8 steps.
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FLUX-Dev

HyperSD TDD _ FLUX-Schnell SCFM (Ours) |

A group of street artist spray-painting a vibrant mural that seamlessly incorporates a hole in a weathered brick wall. Bold colors explode
against the crumbling surface, blending decay with imagination.power with futuristic tech.

An aged ferryboat glides through still waters, its weathered hull etched with the passage of time. Rust traces the railings, and sun-bleached
paint peels like pages from a long-forgotten logbook. Overhead, seagulls spiral and cry, animating the quiet with fleeting energy. Light
dances across the surface, catching every dent, rivet, and memory embedded in the vessel’s frame.

[
¥

The Fluorescent Forest, Loves Whispers in the Wind Camera Wideangle lens, eyelevel shot Focal Length 24mm Render Settings Highquality
textures, dynamic lighting, global illumination, ambient occlusion, motion blur Pantone Colors Beetle 194305, Neon Yellow 120642, Shale
Green 165304 Framing The fluorescent forest, loves whispers in the wind, where we listen to the breeze, hearts resonating with the hushed

secrets, forever attuned to the harmony of loves sacred hymn

Face portrait of teenage fairy girl in magical forest, midsummers night dream, fairy magic, fairy ears, polaroid, fairytale poverty fashion,

tangled unwashed hair

A futuristic, sustainable city at golden hour—sunrise casting a warm glow over a skyline of flowing, organic architecture wrapped in
greenery. A river winds through the metropolis as flying cars glide above. Snow-capped mountains with ski lifts rise in the distance, while
drone through the foreground, blending nature and innovation in a visionary cover shot

Figure 8: Additional visual comparisons for Flux under 4 steps.
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FLUX-Dev HyperSD TDD FLUX-Schnell

SCFM (Ours)

Bokeh, Electric Colors, Accent Lighting, Lightning, Inferno, insanely detailed and intricate, hypermaximalist, elegant, ornate, hyper realistic,
super detailed, phoenix with wings of flame,front view,magical atmosphere.

Craft an imt;ge of a person walking on a winding path through a beautiful landscape, with the seasons changing around them from spring

to winter. Behind the person, the path should fade into sepia tones, symbolizing memories and experiences, while the path ahead remains
vibrant and colorful, representing the present and future.

Aerial shot of stunning greek fantasy palace with lots of towers and spires, large windows and airy quality and feel, palace is in the center of
a sprawling city full of libraries, shops, and bustling activity, background is a rolling mountain range, large fluffy clouds in the skyUse
ethereal lighting and light colors to create an idyllic atmosphere, Epic sky, Otherworldly, Hyper realistic, Magic, Decorated, Art by Eddie
Mendoza, Jordan Grimmer, lvan Shishkin, An Jung hwan, HD, Cinematic Lighting, Picturesque, Chiaroscuro, light rays, Hdr, 8k.

3D animated ice queen cat with a crystal crown, glowing blue eyes, and a slee, snow-white coat. She stand;atop a glistening ice cliff
overlooking a vast frozen kingdom—spires of ice castles, glowing glaciers, and snow-laden pine forests stretch into the distance. Northern
lights ripple across the twilight sky, while delicate frost patterns dance in the air. Regal, magical, and cinematic in style.

y - R S i - ' . ¥
- o - . .

Digital art of a young girl reading in an enchanted forest, inspired by Arthur Rackham's whimsical style. Warm sunlight filters through lush

greenery (soft greens, browns, golden yellows). A 35mm medium shot centers her, book in hand, surrounded by fairies, glowing fireflies,

and curious foxes. Delicate glitter accents add magic—perfect for a child’s dreamy escape.

Figure 9: Additional visual comparisons for Flux under 3 steps.

28



I Additional Results for SD3.5L

See the visual comparisons in Figure[T0]

SD3.5-Large SD3.5L-Turbo | SCFM (Ours) SD3.5-Large SD3.5L-Turbo SCFM (Ours)

Olympic National Park, Washington in style of pen and ink illustration. Use the multiprompt Roulette wheel of gleaming wood and polished brass, captured mid-poise before a spin. Sharp
inkph isticdetails with a prompt weighting of details to hasize the level of detail in | detail reveals fine craftsmanship, crisp numbers, and the tense allure of chance—symbolizing
the image. risk, reward, and the thrill of uncertainty, from gambling to finance.

atterns refracts light into
from orange segments, curled peels, and citrus zest, with clove eyes and a leaf cap. He stands | prismatic splinters, casting i ic rainbows. Its if geometry r
playfully on a polished wooden surface, casting a soft shadow, surrounded by scattered slices. | frozen lightning or celestial maps, with every microscopic ridge and valley.

AR

Selfie portrait of a happy old man in front of a huge nuclear explosianrwith mushroom cloud
blowing up las vegas cityscape , sharp focus on face, shot on hasselblad, sharpen details, hyper|
detailed, 8k HD, high resolution, sharp focus.

A crisp watercolor painting of pink roses in a mason jar filled with water and raffia ribbon
around the top.

P

Animated ice queen cat with a crystal crown, glowing blue eyes, and a sleek, snow-white coat. [A hyperrealistic stock photo captures a majestic griffin atop a snow-capped peak at sunrise, its
She stands atop a glistening ice cliff ing a vast frozen kingd. pires of ice castles, | golden feathers aglow in the first light. Below, a mist-filled valley hides ancient forests and
glowing glaciers, and snow-laden pine forests stretch into the distance. secret paths, evoking a world of living legends and untold wonder.

Ultrar-realistic, high quality, high res, detailed, Zhangjiajie National Park, Outerspace sky,

Colourful Cosmic Nebula Cloud Sky, close view. Ultrarealistic, high quality, high res, detailed, a dog melting as colorful paint.

-t -

7. <1
Cute boy, hair looking up to the stars, snow, beautiful lightening, painting style style abe 3d hyper realistic, dark art, 8k lighting, cute cat wearing headphones by dj table, neon lights
Toshiyuki. music, beautiful brunette behind.

Ultra-realistic, high quality, high res, detailed, modern Egypt with flying spaceships, energy
generating pyramids, giants, rivers in the sky, gold houses. Ultrarealistic, high detailed, 8k,
bright colors, high contrast

Bird eye view of a huge bird flying on Alps mountain valley in early spring,. national
geographic magazine style photo.

Figure 10: Additional visual comparisons for SD3.5-Large.
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