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Abstract

Despite the remarkable strides of Large Lan-001
guage Models (LLMs) in various fields, the002
wide applications of LLMs on edge devices003
are limited due to their massive parameters and004
computations. To address this, quantization005
is commonly adopted to generate lightweight006
LLMs with efficient computations and fast007
inference. However, Post-Training Quanti-008
zation (PTQ) methods dramatically degrade009
in quality when quantizing weights, activa-010
tions, and KV cache together to below 8 bits.011
Besides, many Quantization-Aware Training012
(QAT) works quantize model weights, leav-013
ing the activations untouched, which do not014
fully exploit the potential of quantization for015
inference acceleration on the edge. In this pa-016
per, we propose EdgeQAT, the Entropy and017
Distribution Guided QAT for the optimization018
of lightweight LLMs to achieve inference accel-019
eration on Edge devices. We first identify that020
the performance drop of quantization primarily021
stems from the information distortion in quan-022
tized attention maps, demonstrated by the dif-023
ferent distributions in quantized query and key024
of the self-attention mechanism. Then, the en-025
tropy and distribution guided QAT is proposed026
to mitigate the information distortion. More-027
over, we design a token importance-aware adap-028
tive method to dynamically quantize the tokens029
with different bit widths for further optimiza-030
tion and acceleration. Our extensive experi-031
ments verify the substantial improvements with032
our framework across various datasets. Fur-033
thermore, we achieve an on-device speedup of034
up to 2.37× compared with its FP16 counter-035
parts across multiple edge devices, signaling a036
groundbreaking advancement.037

1 Introduction038

Large Language Models (LLMs) (Zhang et al.,039

2022; Radford et al., 2019b; Brown et al.,040

2020a,b; Touvron et al., 2023) based on Trans-041

formers (Vaswani et al., 2017) have emerged as042

the dominant force in the field of Natural Language 043

Processing (NLP). There is a growing trend of inte- 044

grating LLMs for various applications to optimize 045

user experiences and task performance. The de- 046

ployment of LLMs typically demands substantial 047

computations and storage resources. For example, 048

the LLaMA-7B (Touvron et al., 2023) model with 049

7 billion parameters takes up 13.5GB of memory. 050

Moreover, the largest 65B model in the LLaMA 051

family needs hundreds of GB for memory. Indeed, 052

the extra-large LLMs such as GPT-3-175B (Brown 053

et al., 2020b), OPT-175B (Zhang et al., 2022) and 054

BLOOM-176B (Workshop et al., 2022), demand 055

300GB+ memory usage, making the most power- 056

ful GPUs struggling to accommodate such capacity, 057

let alone the resource-limited edge devices. Addi- 058

tionally, the long input sequence lengths of LLMs 059

further augment the computation counts with lower 060

throughputs during inference. 061

Thus, it is necessary to adopt model compres- 062

sion techniques to reduce the resource requirement 063

and facilitate the LLM deployment. Among them, 064

quantization presents a promising avenue to sub- 065

stantially deploy LLMs on edge devices, such as 066

mobile phones, Raspberry Pis, and FPGAs. Be- 067

sides requiring fewer resources, quantization can 068

effectively accelerate the computation with higher 069

throughput and improve energy efficiency, by lever- 070

aging the highly efficient 8-bit fixed-point (INT8) 071

operations on edge platforms. 072

Existing works primarily employ Post-Training 073

Quantization (PTQ), which suffers from signifi- 074

cant accuracy degradation under low-bit settings 075

as they do not incorporate model finetuning or re- 076

training to restore accuracy. Quantization-Aware 077

Training (QAT) presents a promising avenue for 078

better performance in lower-bit configurations, but 079

its data accessibility, training cost, and acceleration 080

issues have not been effectively addressed. For 081

example, nearly all QAT works focus on weight- 082

only quantization, without quantizing the floating- 083
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point activations. Thus, they still need to utilize084

the floating-point operations during the computa-085

tion, which can not benefit from the highly effi-086

cient lower-precision operations on edge devices087

(such as INT8×INT8 integer multipliers) for fur-088

ther speedup. The difficulty of activation quan-089

tization lies in the pronounced outliers in activa-090

tions, leading to the detrimental effect and thus091

significant performance degradation, particularly092

for large model sizes. The work (Dettmers et al.,093

2022) demonstrates that directly setting the outliers094

to zero leads to a 45% performance degradation.095

To deal with the above mentioned challenges, we096

propose EdgeQAT, the Entropy and Distribution097

Guided QAT, to achieve the acceleration for098

lightweight LLMs on the Edge. Specifically, to099

identify the bottleneck of activation quantization,100

we initiate our analysis by examining the perfor-101

mance degradation induced by activation quantiza-102

tion across various parts of the LLaMA model. We103

observe that the quantized query and key within104

the self-attention mechanism lead to the most sig-105

nificant accuracy loss, due to the substantial dis-106

parities between the generated attention map and107

its FP16 counterpart. To address this, we propose108

the entropy and distribution guided optimization109

method to mitigate the accuracy loss. In detail, we110

maximize the entropy of the query and key based111

on their distribution to equivalently minimize their112

quantization error. Meanwhile, we optimize the113

cosine similarity between the quantized and FP16114

attention maps to minimize their difference with115

better performance. After the distribution of the116

quantized attention map is restored, we further in-117

troduce the token importance-aware adaptive quan-118

tization to quantize the activations with fewer bits.119

By employing QAT for both weights and activa-120

tions, we aim to minimize quantization error and121

achieve significant inference acceleration on edge122

devices. As training all parameters for large LLMs123

demands extensive GPU resources and high-quality124

data, we opt for lightweight LLM models in this125

paper for experimentation and deployment on the126

edge. We mainly quantize the weights and acti-127

vations to 4 bits and 8 bits, following the binary128

nature of internal representations in computers and129

the trend toward advancing direct support for 4-bit130

operations with an increasing number of architec-131

tures (such as RISC-V). The proposed EdgeQAT132

can maintain state-of-the-art task performance com-133

parable to FP16 counterparts while achieving a134

practical on-device speedup of up to 2.37×.135

We summarize our contributions as follows: 136

• We design the entropy and distribution guided 137

quantization method to mitigate information 138

distortion in quantized query, key, and atten- 139

tion maps, addressing the bottleneck of QAT. 140

• We design the token importance-aware adap- 141

tive quantization method to quantize the acti- 142

vations (i.e., tokens) with fewer bits, further 143

improving the efficiency on edge devices. 144

• We achieve state-of-the-art accuracy perfor- 145

mance comparable to the FP16 model and bet- 146

ter than other QAT methods. Our deployments 147

across multiple edge devices demonstrate an 148

on-device speedup of up to 2.37×. 149

2 Related Work 150

2.1 Efficient Large Language Models 151

Recent advancements in LLMs like GPT-4 152

(Achiam et al., 2023) have significantly improved 153

NLP capabilities at the cost of massive computa- 154

tions and energy, limiting their accessibility and 155

applications. This has led to the emergence of effi- 156

cient and lightweight LLMs to address these limi- 157

tations without compromising performance. Mod- 158

els such as LLaMA (Touvron et al., 2023), OPT 159

(Zhang et al., 2022), and BLOOM (Workshop et al., 160

2022) offer a wide range of sizes, from as few 161

as 125M to as many as 176B parameters, provid- 162

ing versatile options for various applications. To 163

further enhance the efficiency of LLMs, multiple 164

compression techniques have been developed (Hu 165

et al., 2021; Frantar et al., 2022; Frantar and Al- 166

istarh, 2023; Fu et al., 2023). These methods aim 167

to reduce model size and computational demands, 168

enabling deployment on resource-constrained plat- 169

forms such as edge devices. This shift towards 170

more manageable models facilitates real-time NLP 171

applications like virtual assistants and language 172

translation, broadening the accessibility and utility 173

of advanced NLP technologies. 174

2.2 Quantization for LLMs 175

Quantization reduces DNN bit-precision, leading 176

to smaller models and faster inference. Current 177

methods are divided into PTQ and QAT, each of- 178

fering distinct advantages and facing unique chal- 179

lenges. PTQ generally results in low accuracy, es- 180

pecially in low-bit quantizations. To address this, 181

Smoothquant (Xiao et al., 2023) achieves W8A8 182

precision by smoothing activation outliers, while 183

ZeroQuant (Yao et al., 2022) employs a layer-by- 184
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Figure 1: Accuracy analysis on the Anaphor Agr. sub-
dataset of BLiMP with different quantized modules.

layer knowledge distillation algorithm to enhance185

low-bit quantization performance. Different from186

PTQ, QAT presents a promising avenue for better187

performance, requiring massive data and resources188

for fine-tuning, which is especially hard for LLMs.189

Most PTQ and QAT works focus on weight-only190

quantization, and the weight-activation quantiza-191

tion to quantize both weights and activations is192

less explored. GPTQ (Frantar et al., 2022) and193

AWQ (Lin et al., 2023) focus on reducing the pre-194

cision of weights while maintaining full-precision195

activations. Thus, their speedups may be limited196

due to the computational costs with full-precision197

activations. Only LLM-QAT (Liu et al., 2023)198

employs data-free distillation methods to quantize199

the weights, activations, and KV caches for large200

models like LLaMA-7B, which can hardly be de-201

ployed on edge devices. The exploration of weight-202

activation quantization with QAT for lightweight203

LLMs facilitating deployment on the edge is still204

an open field.205

3 Analysis206

To pinpoint the bottleneck during QAT, we ana-207

lyze the performance deterioration resulting from208

the quantization of each part of the model. Fur-209

thermore, we explore the token importance based210

on the attention map and discern the importance211

associated with the first initial token.212

3.1 Quantized Self-Attention Module213

We begin by quantizing both the weights and activa-214

tions for different parts of the model, including the215

MLP module, the whole self-attention module, or216

part of the self-attention (query and key), using the217

quantization method (Esser et al., 2019) in one-shot.218

When quantizing each part, other parts are not quan-219

tized. This ablation study aims to identify which220

components have the most detrimental impact on221

model performance due to quantization. The accu-222

racy results of the LLaMA-58M model (Timiryasov223

and Tastet, 2023) on the Anaphor Agr. subclass224

of the BLiMP dataset (Warstadt et al., 2020) are225
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Figure 2: Distributions of query and key at the last layer
of FP16 and quantized models.
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Figure 3: FP16 and quantized attention maps at the last
layer of the FP16 and quantized models.

visualized in Figure 1. As observed, the quantiza- 226

tion of the self-attention module leads to significant 227

accuracy loss (from 89.8% to 55.1%). Among all 228

components in self-attention, the quantization of 229

query and key is the main reason for the substantial 230

performance drop with 56.6% accuracy, which is 231

close to that of quantizing the whole self-attention. 232

We further visualize the distributions of query 233

and key at the last layer of quantized and FP16 234

models in Figure 2. As observed, the difference 235

of the variance between the quantized and FP16 236

counterparts is substantial for both the query and 237

key, inevitably leading to the deterioration of the 238

representation capability of the attention module. 239

3.2 Token Importance 240

We visualize the heatmap of the attention map at 241

the last layer inside the FP16 and quantized models 242

in Figure 3. In the FP16 attention map, there is 243

a column pattern at the first initial token, which 244

disappears after quantization. It is evident that a 245

significant amount of attention is allocated to the 246

initial token. We highlight that the initial token is 247

vital for producing text that is both coherent and 248
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contextually meaningful. In LLMs, a distinct ini-249

tial token is placed at the beginning of the input se-250

quence, with a role in initializing the hidden layers251

and defining token positions within the sequence.252

It is visible to almost all subsequent tokens because253

of the nature of autoregressive language modeling.254

Removing certain interactions between the initial255

token and other tokens can fundamentally change256

the model generation results.257

Apart from fixing the disappeared pattern with258

the initial token, it also raises the necessity to assess259

the importance of tokens with the initial token. The260

token importance remains valuable for further opti-261

mizations such as token pruning (Kim et al., 2024;262

Dong et al., 2023; Kong et al., 2022). However, as263

the self-attention mechanism in generative models264

limits each token’s interaction to only those preced-265

ing it, the traditional token importance computation266

methods are unsuitable in LLMs.267

4 Methodology268

We first introduce the quantization preliminary and269

then explain the primary methods utilized for opti-270

mization during the training process.271

4.1 Preliminary272

For QAT, we adopt the symmetric quantization for273

both weights and activations as follows:274

Q(w) = ⌊CLIP(
w
αw

,−2bw−1, 2bw−1−1)⌉; ŵ = Q(w)·αw,

(1)275276

Q(x) = ⌊CLIP(
x
αx

,−2bx−1, 2bx−1 − 1)⌉; x̂ = Q(x) · αx,

(2)277

where x denotes the activations and w means the278

weights. bx and bw denote the bit width for the279

activations and weights, respectively. α denotes280

the trainable scale. ⌊·⌉ represents rounding to the281

nearest integer. Thus, during the training progress,282

the linear projection can be calculated as follows:283

FLinear(x,w) = x̂ × ŵ = αxαw [Q(x)×Q(w)] . (3)284

For the backward propagation, we use the Straight-285

Through Estimator (STE) (Bengio et al., 2013) to286

retain the derivation of the gradients:287

∂J
∂x

=
∂J
∂x̂

∂x̂
∂x

=

{
∂J
∂x̂ , x ∈

[
−2bx−1, 2bx−1 − 1

]
0, otherwise. (4)288

289
∂J
∂w

=
∂J
∂x

∂x
∂ŵ

∂ŵ
∂w

=

{
∂J
∂x

∂x
∂ŵ ,w ∈

[
−2bw−1, 2bw−1 − 1

]
0, otherwise.

(5)290

4.2 Entropy and Distribution Guided 291

Optimization 292

Based on the analysis in Section 3.1, we conclude 293

that the performance loss is primarily attributed to 294

the quantized attention module with deteriorated 295

representation capability. To address this issue, we 296

propose the entropy and distribution guided opti- 297

mization method, which statistically maximizes the 298

entropy of representations and restores the capa- 299

bility of the quantized self-attention module. Ac- 300

cording to the work (Messerschmitt, 1971), for 301

Gaussian distribution, quantizers with maximum 302

output entropy (MOE) and minimum average error 303

(MAE) are approximately equivalent, up to a mul- 304

tiplicative constant. In essence, maximizing the 305

information entropy of quantized values is equiva- 306

lent to minimizing the error caused by quantization. 307

As observed in Figure 2, the distributions of the 308

query q and the key k in the self-attention modules 309

follow the Gaussian distribution as below, 310

q ∼ N (µq, σq), k ∼ N (µk, σk). (6) 311

The entropy can be represented as follows, 312

H(q) = −
∑
i

p(qi) log p(qi) =
1

2
log 2πeσ2

q, (7) 313

314

H(k) = −
∑
i

p(ki) log p(ki) =
1

2
log 2πeσ2

k. (8) 315

To maximize the entropy H(q) ∝ σ2
q and H(k) ∝ 316

σ2
k during the training process, we incorporate the 317

entropy loss LE to optimize the total entropy of 318

query and key for all layers and heads. Specifically, 319

we re-scale the entropy loss as follows: 320

LE = − log

(
L∑

l=1

H∑
h=1

log(1 + σ2
qσ

2
k)

)
, (9) 321

where L and H denote the number of layers and 322

heads, respectively. To prevent the occurrence of 323

NaNs when scaling the loss with the log operation, 324

we increment the deviation product by 1. 325

Next, we focus on fixing the distribution pattern 326

issue in the attention map. As shown in Figure 3, 327

the column distribution pattern with the initial to- 328

kens from the FP16 counterpart disappears after 329

quantization in the quantized attention map. To 330

minimize the difference between the quantized at- 331

tention map and the FP16 counterpart, we intro- 332

duce a distribution loss LD based on the cosine 333

similarity between the FP16 attention map attnf 334

and quantized one attnq in each layer as follows: 335

LD = log

(
L∑

l=1

H∑
h=1

attnq · attnf

∥attnq∥2 · ∥attnf∥2

)
. (10) 336
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Figure 4: Overall distillation pipeline. Token adaptive QAT based on the token importance score (colored in red)
with maximum entropy loss and attention map cosine similarity loss (both colored in green).

We re-scale the loss with the logarithmic operation337

to match the scale of the original loss.338

4.3 Token Importance-Aware Adaptive339

Quantization340

Computer specifications follow binary conventions341

like 8 bits, 32 bits, etc., due to the binary nature342

of internal representation. Recently, an increasing343

number of architectures are advancing direct sup-344

port for 4-bit operations, as exemplified by RISC-345

V and similar platforms. In practice, 8-bit weight346

quantization is widely adopted to keep high accu-347

racy with fast inference. However, using the same348

8 bits for all quantized weights or activations is349

less flexible and can not make use of the innovative350

features with 4-bit operations in edge computing.351

To retain a high quantization accuracy and bene-352

fit from 4-bit operations on edge devices, we pro-353

pose the token importance-aware adaptive quantiza-354

tion method for the quantization of activations with355

mixed bit widths, to dynamically assign more bits356

(8 bits) for important activations and fewer bits (4357

bits) for unimportant ones, equivalently achieving358

non-power-of-two quantization with lower mem-359

ory usage and faster computations compared with360

only using 8 bits during training and generation pro-361

cesses. Our algorithm is strategically aligned with362

the forefront of innovation in mobile computing,363

specifically in response to the trend set by indus-364

try leaders like Snapdragon. Tailored for seamless365

integration with 4-bit quantization and low-bit in-366

ference, our framework ensures compatibility and367

optimization for the dynamic landscape of mobile368

edge computing.369

With the analysis in Section 3.2, we identify the370

token importance based on the attentivity of each371

token to the first initial token. Subsequently, we372

allocate more bits (8 bits) for quantizing impor- 373

tant tokens, while assigning fewer bits (4 bits) for 374

inattentive tokens. Thus, the token adaptive quanti- 375

zation can be represented as follows, 376

β(xi|attnx, ρ) =
{

8,F(xi|attnx, ρ) = 1
4,F(xi|attnx, ρ) = 0

, ∀i ∈ [1, N ],

(11) 377

where xi denotes the ith token of x during train- 378

ing and generation processes. F(xi|attnx, ρ) dis- 379

criminates whether the token xi is an important 380

token based on the most recent attention map attnx. 381

ρ denotes the important token ratio, i.e., ρ to- 382

kens among all tokens are set to important with 383

F(xi|attnx, ρ) = 1 while the rest are considered 384

unimportant. The quantization of activations can 385

be represented as 386

Q(xi) = ⌊CLIP(
xi

α x
,−2β(xi)−1, 2β(xi)−1 − 1)⌉,∀i ∈ [1, N ].

(12) 387

4.4 Adaptive Training Pipeline 388

We visualize our training pipeline in Figure 4. We 389

use the FP16 model (colored in yellow) to distill 390

the quantized model (colored in blue) in QAT. We 391

apply soft distillation, which trains a student model 392

to mimic a teacher model by minimizing the KL 393

divergence between their softmax outputs (Hinton 394

et al., 2015). The distillation loss is defined as: 395

Ldistill = (1− γ)LCE + γτ2LKL, (13) 396

where τ is the temperature for the distillation, and 397

γ is the coefficient balancing the KL divergence 398

loss LKL and the cross-entropy loss LCE . In the 399

quantization modules, the tokens are adaptively 400

quantized with either 8 bits or 4 bits based on their 401

scores (colored in red) generated from the most 402

recent attention map. 403
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D
at

as
et # Bits FP16 W8A8 W4A8 W4A4

Method / NIPQ PACT LSQ Ours NIPQ PACT LSQ Ours NIPQ PACT LSQ Ours

B
L

iM
P

Anaphor Agr. 89.8 85.5 86.4 85.4 88.1 58.1 86.6 85.4 87.6 66.2 85.8 82.4 85.7
Arg. Structure 73.1 70.9 70.7 70.5 72.2 55.5 70.3 70.9 72.3 54.4 69.6 71.0 71.3

Binding 72.7 71.1 71.0 70.8 72.3 61.7 70.6 70.9 72.2 51.5 68.2 71.5 72.4
Control/Raising 67.5 65.5 64.6 66.1 66.7 54.7 64.0 65.8 66.7 53.6 63.6 65.4 66.3
Det.-Noun Agr. 90.8 86.9 86.3 87.5 89.2 54.2 86.6 86.7 89.1 53.4 84.8 87.1 87.5

Ellipsis 73.3 60.4 59.7 63.9 69.4 29.9 59.7 62.1 69.8 33.8 56.8 63.2 65.1
Filler-Gap 71.8 70.2 69.0 70.2 72.1 66.7 69.3 69.5 72.0 61.1 66.8 70.2 70.4

Irregular Forms 93.1 94.6 94.8 92.7 95.0 45.8 95.2 93.3 94.9 52.2 93.7 94.1 94.9
Island Effects 51.2 48.2 49.2 48.2 51.7 43.6 50.0 48.9 52.1 48.5 43.3 48.2 51.3
NPI Licensing 56.5 50.0 52.1 49.5 58.3 26.8 52.2 51.4 57.7 36.6 48.2 50.9 44.5

Quantifiers 73.3 73.7 75.8 82.4 79.0 57.2 78.2 79.4 79.3 42.7 78.0 73.4 80.0
Subj.-Verb Agr. 75.4 68.4 67.8 68.1 73.2 46.3 67.7 67.5 74.0 48.6 64.5 68.0 71.6

B
L

iM
P

Su
pp

l. Hypernym 49.3 48.0 49.0 49.6 48.9 49.5 48.7 48.7 49.6 50.9 50.3 49.3 50.5
QA Congruence easy 51.6 48.4 51.5 46.8 50.1 35.9 50.0 46.8 50.1 37.5 48.4 46.8 50.1

QA Congruence tricky 41.8 40.6 40.0 40.6 41.3 34.5 40.6 40.6 41.3 33.9 39.3 40.6 41.9
Subj.-Aux. Inversion 88.5 89.1 87.9 87.3 88.5 67.8 89.8 83.6 89.2 54.6 87.3 85.8 89.0

Turn Taking 66.1 58.2 57.1 58.9 61.5 43.2 57.5 59.6 61.8 51.4 55.7 59.2 60.1

Total Average 69.7 66.5 66.6 67.0 69.3 48.9 66.9 66.5 69.4 48.9 64.9 66.3 67.8

Table 1: LLaMA-58M quantization results on the BLiMP dataset, including the BLiMP Supplement.

The entropy loss LE and the distribution loss404

LD (both colored in green) are added to the total405

loss for optimization during training as follows,406

Ltotal = Ldistill + rE · LE + rD · LD. (14)407

The ratios rE and rD are used to weight the en-408

tropy and distribution losses, respectively. In our409

experiments, we independently set rE = 0.5 and410

rD = 1 to facilitate the better optimization.411

4.5 Hardware Implementations412

We deploy the quantized model obtained from413

our method on mobile phone, Raspberry Pi, and414

FPGA. We integrate our computational graph into415

llama.cpp (Gerganov, 2023) engine on mobile and416

Raspberry Pi. To handle asymmetric operations,417

such as 4-bit & 8-bit multiplications, we utilize418

uniform 8-bit integer operators. The unused low-419

bit weights are strategically stored in byte-aligned420

memory units, minimizing bit wastage and address-421

ing memory constraints on edge devices. Our hard-422

ware implementation enhances efficiency and uni-423

versality for edge computing scenarios. FPGAs,424

with limited off-chip memory, can also benefit from425

our quantization schemes. We implement our infer-426

ence engine with the quantization scheme based on427

existing LLM FPGA implementations (Chen et al.,428

2023). We built 4-bit and 8-bit systolic array archi-429

tecture for the Multipy-Accumulate Circuit (MAC).430

DSP-packing is further applied to MAC for better431

utilization of DSP resources. For non-linear opera-432

tions, we implement floating-point-based kernels.433

5 Experimental Results 434

5.1 Experiment Setup 435

For the verification of our proposed methods, as 436

the computation resources are limited, we experi- 437

ment with lightweight LLMs, including LLaMA- 438

58M (Touvron et al., 2023; Timiryasov and Tastet, 439

2023) and GPT2-97M (Radford et al., 2019a). We 440

adopt the pretrain datasets from the work (Yang 441

et al., 2023) and then perform regex-based clean- 442

ing on them. The cleaned datasets are tokenized 443

using BytePair Encoding (BPE) with a vocabu- 444

lary size of 16000. The models are then evalu- 445

ated on BLiMP (Warstadt et al., 2020) for the zero- 446

shot test and (Super)GLUE (Wang et al., 2019) for 447

the fine-tuning test. In the absence of prior QAT 448

studies for LLMs, we compare with well-known 449

static quantization methods as baselines, includ- 450

ing NIPQ (Park et al., 2022), PACT (Choi et al., 451

2018), and LSQ (Esser et al., 2019). The same 452

fine-tuning recipe based on the pretrain recipe of 453

the work (Yang et al., 2023) is adopted for our 454

QAT method and the baselines. To make a fair 455

comparison with the same bit width, the adaptive 456

quantization is only adopted in Sec. 5.4 and Fig- 457

ure 5. Each QAT experiment is conducted on one 458

NVIDIA TITAN RTX GPU within one day. 459

5.2 Hardware Deployment 460

We opt for the Oneplus 11 smartphone as our mo- 461

bile platform, and this device is powered by the 462

Snapdragon 8 Gen 2. All available cores have been 463
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Method FP16 NIPQ PACT LSQ Ours

Anaphor Agr. 87.0 38.1 69.8 84.0 84.5
Arg. Structure 71.3 57.4 63.7 70.7 71.7

Binding 70.2 49.8 64.4 69.2 69.8
Control/Raising 66.1 54.2 62.6 65.1 65.3
Det.-Noun Agr. 87.4 51.4 72.3 86.8 86.0

Ellipsis 62.1 39.6 39.2 59.8 59.9
Filler-Gap 70.7 43.3 63.2 69.6 70.4

Irregular Forms 94.1 52.3 90.0 94.3 95.4
Island Effects 47.2 59.7 44.9 46.6 46.8
NPI Licensing 48.5 71.3 44.4 47.3 44.8

Quantifiers 68.0 27.5 46.7 66.1 69.4
Subj.-Verb Agr. 66.2 48.1 55.5 64.8 66.0

Average 69.9 49.4 59.7 68.7 69.2

Table 2: GPT2-97M Results with W4A4 Setting on the
BLiMP Main Dataset.

utilized for multi-thread computation. Similarly,464

for Raspberry Pi 5 equipped with BCM2712 quad-465

core Arm Cortex A76 processor, we allocate the466

computation among 4 cores. The latency has been467

reported via 100 iterations for each test based on468

llama.cpp. Similarly, for the FPGA evaluations, we469

make use of the AMD Alveo U280 FPGA from470

the Open Cloud Testbed (OCT), an open-source471

cloud platform for research (Zink et al., 2021). We472

implement the proposed design using the XDMA473

platform running at 200MHz. For the testing, we474

preload the inputs and parameters to the onboard475

HBM and measure the performance results through476

10000 iterators of the accelerators.477

5.3 Main Results of Model Performance478

We first verify the effectiveness of our proposed479

EdgeQAT framework on the BLiMP (Warstadt480

et al., 2020) dataset with zero-shot (i.e., no fine-481

tuning) evaluations, and the results are shown in482

Table 1. We compare our method with the other483

three QAT works, including NIPQ, PACT, and LSQ,484

under different bit-width settings including W8A8485

(meaning 8-bit weight and 8-bit activation quan-486

tization), W4A8, and W4A4. As observed, our487

proposed EdgeQAT framework achieves better per-488

formance than all other three works on the average489

accuracy of all subdatasets in the BLiMP dataset.490

Our method achieves the best performance on most491

of the subdatasets across three bit-width configura-492

tions. Especially for the W4A8 setting, which is the493

most useful in practical applications, our method494

achieves an average accuracy of 69.4%, which is495

close to the performance of the FP16 model (only496

0.3% drop) and even surpasses the W8A8 setting497

Method FP16 NIPQ PACT LSQ Ours

CoLA 69.5 33.3 69.3 68.6 68.4
SST-2 87.2 49.4 85.4 84.6 84.1
MRPC 63.2 32.2 69.4 69.4 69.5
QQP 84.3 42.4 82.5 83.9 84.1

MNLI 72.9 35.4 67.5 70.8 70.8
MNLI-mm 73.7 35.8 69.1 71.5 71.1

QNLI 81.1 47.2 74.4 78.4 79.4
RTE 61.6 50.5 48.5 57.5 53.5

BoolQ 67.2 58.4 60.3 63.7 62.9
MultiRC 58.9 53.2 46.1 46.6 54.1

WSC 61.4 61.4 53.0 42.1 56.6

Average 71.0 45.4 65.9 67.0 68.6

Table 3: LLaMA-58M results with W4A4 setting on the
(Super)GLUE dataset.

(69.3%). For the W4A4 setting, our method main- 498

tains an average accuracy of 67.8%, showcasing 499

a clear advantage over other methods. Only our 500

method can achieve a competitive average accu- 501

racy close to that of the FP16 model, while the 502

baselines usually suffer from substantial accuracy 503

drops. NIPQ fails to restore the accuracy when the 504

model weights are quantized to 4 bits. For PACT, 505

it is sensitive to the bit width of the activations, 506

as evidenced by the poor results under the W4A4 507

setting. The LSQ method consistently produces 508

models with an average accuracy of about 66% to 509

67%, which is still lower than our method. 510

We also compare with the PTQ work ZeroQuant- 511

FP (Wu et al., 2023) under the W4A8 setting. 512

ZeroQuant-FP can achieve an average accuracy 513

of 66.7% on BLiMP. Although it is better than the 514

QAT works including NIPQ, PACT, and LSQ, our 515

method still performs better than ZeroQuant-FP 516

with non-marginal improvements. 517

Additionally, we deliver the evaluation results 518

of the GPT2-97M model with the W4A4 setting to 519

verify the generalization of our method in Table 2. 520

We conduct the experiments on the BLiMP main 521

dataset. Our method can achieve the highest aver- 522

age accuracy with the best performance on most 523

subdatasets, demonstrating clear advantages over 524

QAT baselines. Among the baselines struggling to 525

restore the average accuracy, the NIPQ and PACT 526

perform much worse with large margins. 527

To demonstrate the effectiveness of the Edge- 528

QAT framework, we further finetune the mod- 529

els from different QAT frameworks on the (Su- 530

per)GLUE dataset and show the evaluation results 531

in Table 3. To make a fair comparison, we use 532

the same finetuning recipe for all methods. As 533
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Figure 5: Adaptive quantization results with 4-bit
weights and adaptive activations (4-bit or 8-bit) on the
BLiMP dataset. The average accuracy is reported.

observed, similarly, our method achieves the best534

performance in average accuracy compared with535

QAT baselines. While NIPQ still does not work536

well with more training efforts, PACT and LSQ fail537

to restore the average accuracy.538

5.4 Adaptive Quantization Results539

Following the binary conventions with binary oper-540

ators (e.g., 4-bit or 8-bit multipliers) on the edge,541

we stick to 4-bit and 8-bit quantization settings to542

ensure compatibility with edge devices. We show543

the results of adaptive activation quantization (4544

bits or 8 bits as in Equation 11) with 4 bits for545

weights colored with orange in Figure 5. We iden-546

tify the token importance based on the first initial547

token of the column distribution pattern as shown548

in Section 3.2. Important tokens are quantized into549

8 bits while 4 bits are assigned to the remaining550

inattentive tokens. We vary the containment ratio551

of 8 bits (i.e., the important token ratio ρ) from 0%552

to 100% to show the variance of accuracy. The ac-553

curacy of the model improves as the proportion of554

8-bit activations increases, validating the effective-555

ness of our token importance identification method.556

Besides, compared with the equivalent (in terms557

of bits) non-power-of-two quantization (colored in558

blue), which uses the same bit-width for all activa-559

tions (e.g., the case with 25% 8 bits and 75% 4 bits560

is equivalent to 5 bits for all), our adaptive method561

performs better, demonstrating the advantages with562

more bits for more important activations.563

5.5 Hardware Efficiency564

We show the latency results of LLaMA-58M and565

GPT2-97M on the Oneplus 11 smartphone, Rasp-566

berry Pi 5, and FPGA in Table 4. We can success-567

fully achieve the acceleration of the token gener-568

Edge Oneplus 11 Raspberry Pi 5 AMD u280

# Bits ms / Token ms / Token ms / Token

LLaMA-58M

FP16 4.54 1× 15.63 1× 1.04 1×
W8A8 4.12 1.10× 9.40 1.66× 0.91 1.14×
W4A4 3.90 1.16× 6.78 2.31× 0.84 1.23×

GPT2-97M

FP16 6.22 1× 23.04 1× 1.97 1×
W8A8 5.44 1.14× 13.75 1.68× 1.24 1.58×
W4A4 5.10 1.22× 9.74 2.37× 1.03 1.91×

Table 4: Latency results of LLaMA-58M and GPT2-
97M on edge devices including the Oneplus 11 smart-
phone, Raspberry Pi 5, and FPGA.

ation for two different models on three different 569

devices. In particular, we can achieve 2.37× on- 570

device speedup with W4A4 and over 1.6× speedup 571

with W8A8 on Raspberry Pi 5, which validates 572

the necessity and effectiveness of our proposed 573

EdgeQAT for LLMs. Also, we achieve the accel- 574

eration on the Oneplus 11 smartphone with both 575

W8A8 and W4A4 quantization settings, which 576

shows the generalization of our method. As the 577

high-end CPUs on smartphones can afford more 578

robust floating-point processing capabilities, the ac- 579

celeration attained through quantization on smart- 580

phones is not as significant as the improvements 581

observed on the Raspberry Pi 5. For the FPGA, we 582

achieve up to 1.9× speedup, which benefits from 583

the flexibility of implementing custom data paths 584

for sub-8bit operations on FPGAs. 585

6 Conclusion and Limitation 586

In this paper, we introduce EdgeQAT, an entropy 587

and distribution guided QAT framework designed 588

to accelerate lightweight LLMs on edge devices. 589

We incorporate the maximum entropy theory to 590

optimize the quantized query and key in the self- 591

attention mechanism, and mitigate the information 592

loss of the quantized attention map with a distribu- 593

tion guided loss. Besides, we adaptively quantize 594

tokens with different bit widths based on their im- 595

portance, which further reduces the average bit 596

width for quantization. We effectively restore the 597

model performance to that of FP16 counterparts 598

and achieve up to 2.37× speedup on edge devices. 599

However, we mainly experiment with lightweight 600

LLMs due to resource constraints. We will ver- 601

ify our method on larger models if more data and 602

computation resources are available. 603
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