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ABSTRACT

Video editing using diffusion models has achieved remarkable results in generat-
ing high-quality edits for videos. However, current methods often rely on large-
scale pretraining, limiting flexibility for specific edits. First-frame-guided edit-
ing provides control over the first frame, but lacks fine-grained control over the
edit’s subsequent temporal evolution. To address this, we propose a mask-based
LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-
Video models for flexible video editing. Our key innovation is using a spatiotem-
poral mask to strategically guide the LoRA fine-tuning process. This teaches the
model two distinct skills: first, to interpret the mask as a command to either pre-
serve content from the source video or generate new content in designated regions.
Second, for these generated regions, LoRA learns to synthesize either temporally
consistent motion inherited from the video or novel appearances guided by user-
provided reference frames. This dual-capability LoRA grants users control over
the edit’s entire temporal evolution, allowing complex transformations like an ob-
ject rotating or a flower blooming. Experimental results show our method achieves
superior video editing performance compared to baseline methods.

1 INTRODUCTION

Recent advances in diffusion models (Rombach et al.|[2022; |Lipman et al.||2023)) have demonstrated
unprecedented improvement in high-quality video generation (Yang et al.,[2025b; Kong et al.,2024;
Wang et al., |2025; |HaCohen et al., | 2024)). Based on foundational video generation models, video
editing has experienced dramatic improvement (Jiang et al.l 2025} [Hu et al., [2025), now finding
wide application in creative, commercial, and scientific fields. Still, these video editing models
often require computationally intensive finetuning, with a large set of training data. This makes
them expensive to extend to a new editing type, and less flexible for new applications. In contrast,
first-frame-guided video editing (Ouyang et al.| 2024; Ku et al.,|2024) offers a promising path toward
flexible video manipulation. In this paradigm, users can edit the first frame arbitrarily, either using
image Al tools or traditional editing software. These edits are then propagated to the entire sequence,
enabling flexible video manipulation without being constrained by dataset-specific training.

While first-frame-guided solutions allow flexible editing, they only provide limited control of re-
maining frames. For instance, given a video of a blooming flower, the user can edit the flower in
the first frame, but cannot control how the flower blooms in the following frames. Similarly, when
an object rotates to a novel viewpoint, the user cannot control the disoccluded region. In addition,
the first frame edits may diffuse into unedited regions, resulting in undesirable background changes.
The inability to control later frames limits editing flexibility and necessitates methods that not only
retain the flexibility of first-frame-guided editing, but support control throughout the video.

A simple solution is per-video finetuning of a pre-trained image-to-video (I12V) model (Kong et al.,
2024} [Wang et al., 2025). By finetuning the model using LoRA (Hu et al., 2022) on a source video,
the model will learn content motion. This allows the edit to propagate in a temporally consistent
way. However, this naive approach lacks finer control—it cannot distinguish between regions that
should change and those that should stay, nor does it ensure the edited region’s appearance remains
controllable as it moves and deforms over time, requiring the synthesis of unseen appearance.

In this work, we build a flexible video editing model by expanding this naive edit propagation ap-
proach with an additional mask, which controls which regions of the video remain unchanged and
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Figure 1: Given a source video (top row), we achieve high-quality video editing guided by the first
frame as a reference image (middle row), while maintaining flexibility for incorporating additional
reference conditions (bottom row).

which are modified. Recent 12V models (Kong et al, 2024}, [Wang et al} [2025) are designed to
generate videos from a single image, but they can also process video sequences, with a built-in

masking mechanism to control which regions are preserved or modified during inference. Typically,
this mask preserves the first frame while generating the subsequent frames. However, we further
observe that the mask has greater potential for more precise control over video content. To leverage
this, we apply LoRA to fine-tune the model on the input video with the edited region masked. This
allows the model to learn how to interpret a flexible spatiotemporal mask as a command to either
preserve content from the source video or generate new content in designated regions. After LoRA
training, the model can effectively apply the mask, ensuring that unedited areas remain unchanged.

More importantly, our mask-guided control empowers LoRA to learn selectively, adapting to the
specific demands of the edit. This flexibility is illustrated by the blooming flower example in Fig.[I]
First, by configuring the mask for motion learning, LoRA learns the flower’s blooming motion from
the source video (second row). Then, to control the flower’s appearance as it blooms, the mask
is reconfigured for appearance learning, directing LoRA to capture the target appearance from an
additional reference, such as the bloomed, vibrant red rose (third row). This dual capability allows
our method to synthesize a controllable transformation, creating a video where the flower not only
moves correctly but evolves into the desired state, a feat unattainable with naive first-frame guidance.

Our approach offers a simple and effective solution for video editing by leveraging LoRA’s capabil-
ities, without modifying the model architecture, and maintaining high flexibility through the combi-
nation of different conditions. Experimental results demonstrate that our method achieves superior
performance over state-of-the-art approaches in both qualitative and quantitative evaluations.

2 RELATED WORKS

Video Editing with Diffusion Models. The success of video diffusion models has spurred extensive
research into video editing. Early works adapt the image diffusion network and training paradigm to



Under review as a conference paper at ICLR 2026

video generation and editing. Tune-A-Video [Wu et al.| (2023)) explores the concept of one-shot
tuning in video editing. Fairy Wu et al.| (2024) edits keyframes utilizing a 3D spatio-temporal
self-attention extended from a T2I diffusion model. VidToMe |L1 et al.| (2024) introduces image
editing approaches (e.g., ControlNet |Zhang et al.| (2023)) to video generation. Animatediff |Guo
et al.| (2023)) decouples the appearance and motion learning during video editing. SAVE Song et al.
(2024) chooses to fine-tune the feature embeddings that directly reflect semantic information. An-
other line of work manipulates the hidden features to edit a video. Video-P2P Liu et al.[(2024) and
Vid2Vid-Zero [Wang et al.[(2023) employ cross-attention map injection and null-text inversion for
video editing. TokenFlow |Geyer et al.|(2023) leverages motion-based feature injection, and FLAT-
TEN |Cong et al. (2023) further introduces optical flow for better injection. Other methods (Chen
et al.| (2023); |Yang et al.[(2023)) explore latent initialization and latent transition in video diffusion
models. Dragvideo Deng et al.| (2024) achieves interactive drag-style video editing by introducing
point conditioning. Recently, VACE [Jiang et al.| (2025) has shown promising video editing ability
by large-scale conditional video diffusion training. Although large video editing diffusion models
achieve impressive results, they often struggle with inaccurate identity preservation and suboptimal
performance on out-of-domain test cases. In contrast, our method effectively leverages powerful
video priors while efficiently learning content from both the reference image and the source video.

First-Frame Guided Video Editing. First-frame guided editing has emerged as a mainstream video
editing approach, with AnyV2V [Ku et al.|(2024) and I2VEdit|Ouyang et al.|(2024) as representative
methods. These approaches decompose video editing into two stages: (i) editing the first frame using
existing image methods, and (ii) propagating edits to remaining frames using motion-conditioned
image-to-video diffusion models. AnyV2V reconstructs motion via DDIM sampling, injecting tem-
poral attention and spatial features from the original video. I2VEdit enhances this by learning coarse
motion through per-clip LoRA and refining appearance using attention difference masks. While this
decoupled framework benefits from advances in both image editing and video generation, the lack
of explicit constraints often leads to diluted edits during propagation, manifesting as foreground
inconsistencies and background leakages.

3 METHOD

In this work, we introduce a controllable first-frame-guided video editing method based on recent
image-to-video diffusion models (Wang et al., 2025; [Kong et al.,2024). In Sec.[3.1] we first tackle
the issue of maintaining coherent motion of the edit by using LoRA to transfer motion patterns
from the input video. In Sec. we explore the generalization capabilities of the mask-based
conditioning mechanism in pretrained 12V models. In Sec. [3.3] we demonstrate how mask-aware
LoRA enables flexible video editing by leveraging the mask to control the generated content.

3.1 LORA’S FIRST STEP: A SIMPLE SOLUTION FOR VIDEO EDITING

In this section, we introduce a naive approach for edit propagation, which serves as a foundation for
the subsequent improvements. Given an input video Viypu = [I1,Io, ..., I7] and an edited version

of the first frame, il, the goal is to generate an edited video Vegiea = [I1, iQ, o ,iT] where the
edits introduced in I, are propagated across all subsequent frames with coherent motion.

To achieve this basic objective, we insert LORA (Hu et al., |2022) modules ¢y into the self-attention
and cross-attention layers of the I2V model(Wang et al.,2025) and optimize them on the input video
Vinput to capture its motion pattern. During training, the model is conditioned on the original first
frame I; and a textual prompt composed of a fixed special token p* concatenated with the caption
¢ generated for I; using Florence-2 (Xiao et al.,[2024) (i.e., [p*] + ¢). The model is supervised to
reconstruct the full input video Vigpue = {I1,I5, ..., Ir}. Following the denoising objective of the
12V diffusion model(Wang et al., 2025)), we optimize the LoRA adapters by minimizing the error
between the network noise prediction and the Gaussian noise injected into the latent video:

£naive = Et,e [H€9(Xt7 t; Ila [p*] + C) - 6“%]7
——
condition

x¢ = Add_Noise(E( Vinpur ), €, 1) M
~——

objective
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where € is the sampled noise, and ey denotes the noise prediction network with LoRA parameters
¢g. € is the VAE encoder that maps the source video Viyp, to the latent space.

At inference time, the original frame I; is replaced with an edited version L, and a new caption ¢ is
generated for I; using Florence-2. The prompt token p* is concatenated with ¢ to form the inference
prompt [p*] + ¢, which guides the generation of the edited sequence V.

3.2 THE MASK’S HIDDEN POWER: EXPLORING I2V MODEL CAPABILITIES

Although naive edit propagation ensures motion coherence, it lacks control over the content of subse-
quent frames. To address this, we leverage the conditioning mechanisms in recent 12V models
et al} 2025}, [Kong et al [2024). To introduce the first frame as the guidance for video generation,
these models incorporate two additional conditions for the denoising network: a pseudo-video V gnq
and a binary spatiotemporal mask M_onq. The pseudo-video Vg € REXT*HXW ig constructed
by concatenating the first frame I € RE*1*H>XW yith zero-placeholder frames. The binary mask
Meona € {0, 1}1XTXhX“’ is designed so that 1 indicates the preserved frame and O represents the
frames to be generated, with the first frame set to 1 and all subsequent frames set to 0.

This paradigm can be extended to video-to-video generation by replacing the pseudo-video condi-
tion V.ong With actual video frames, enabling the model to accept an entire video sequence as input.
In this setting, the binary spatiotemporal mask M_,,q, originally designed to preserve only the first
frame, can now be repurposed as a more flexible mechanism that selectively controls which regions
are retained and which are regenerated across space and time.

To assess the generalization capabilities of the _l B & G
masking mechanism, we evaluate several bi- l:' @ ﬁmm
nary mask configurations, as shown in Fig. 2] . .

In each case, the mask Mqnq is applied to the -II . mﬁs

input video to construct Vo4, Where regions 7 -
marked as zero are regenerated and the rest are @ @ m;&m
preserved. The default I2V configuration pre- / ’ A

serves only the first frame and leads the model P et M YR Bepy——
to synthesize motion across the entire sequence [ﬁ ﬁ ‘mm

(first row). Exploring the extremes, an all-zeros  pask Pseudo Video

mask that preserves none of the original content

forces the model to generate the appearance for Figure 2: Exploring different mask configurations
the entire video (second row). Conversely, an as an input condition to image-to-video model.
all-ones mask aimed at preserving all content

effectively maintains the video’s overall structure but introduces artifacts in areas with discontinu-
ous motion (third row). Finally, using a spatially varying mask to preserve the background while
generating the foreground reveals a key challenge, as the model struggles to synthesize coherent
foreground content (fourth row).

Analysis and Motivation. The preceding cases show the raw 12V model can handle simple, full-
frame instructions but fails at nuanced, selective editing. Our key insight is to repurpose this mech-
anism, enabling the spatiotemporal mask to serve a dual purpose during LoRA tuning. First, we
can use LoRA to reinforce the model’s response to the mask, improving its ability to execute the
preservation and generation commands defined by the mask. More critically, we can use the mask
to direct what LoRA learns. By masking different content during training, we can command LoRA
to focus on either the video’s underlying motion or a reference’s target appearance. This interplay
between LoRA and the mask is the cornerstone of our method, detailed in the following section.

3.3 UNLOCKING EDITING FLEXIBILITY: MASK-GUIDED LORA

Building on this exploration, we modify the spatiotemporal mask to enable more flexible video edits.
Combined with LoRA fine-tuning, the mask serves two complementary roles. First, it improves the
12V model’s alignment with mask constraints, allowing users to limited editing to a specific region,
achieving more flexible control. Second, it also acts as a signal guiding LoRA to learn specific
patterns from the training input, such as motion pattern from video sequences or appearance of an
object from images. Specifically, we modify the training loss in Eq.[I]to introduce the conditioning



Under review as a conference paper at ICLR 2026

Disentangling Edits and Background Appearance Control in Propagated Edits
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Figure 3: Our mask-guided LoRA pipeline. Training (Top): LoRA is fine-tuned to learn motion from
the masked source video (left) and appearance from a reference frame (right). Inference (Bottom):
The trained LoRA applies the learned motion and appearance to an edited first-frame, producing a
temporally consistent video.

video and mask:

L= Et,e [||€0(Xt, t; Veond> Mcond, [p*} + C) - 6”%]7
condition

= Add,NOiSC(E(Vtarget)a € t)
——

2
objective

As shown in Fig. EI, by configuring Vcond, Mcond, and Ve in different ways, we enable flexible
video editing through LoRA, detailed in the following sections.

3.3.1 DISENTANGLING EDITS AND BACKGROUND

Many first-frame edits alter only a part of the frame(Ku et all, 2024} [Ouyang et al [2024), creating
a conflict between two demands: the edited region must evolve, while the background must remain
static. When a single generative pathway handles both, they collide. Preserving the background can
stall the edit, while propagating the edit can cause unintended background changes.

To achieve separate on control on edited regions and non-edit background, we carefully adjust the
spatiotemporal mask M ,,q and the conditioning video Vg during LoRA fine-tuning. The mask
Mondition 1S set to ones for the first frame to preserve it as the reference, and for subsequent frames,
M ong is adjusted to mark unedited regions with ones (to be preserved) and edited regions with zeros
(to be generated). The pseudo-video Vo4 is created by applying the mask to the input video, setting
the regions marked as zero in M qnq to be empty, while leaving the rest unchanged. The objective
Viarget 18 set to the input video during LoRA fine-tuning. This configuration allows the model to
focus on generating the edited content while locking the unedited regions. At inference time, when
editing the first frame (replacing I; with I;), we use the same M_qnq as during LoRA training, while
'V ong has its first frame replaced by the edited version I;.

One interesting observation is that while a pre-trained 12V model struggles with selective editing,
LoRA training on a single video alone learns effective mask-guided inpainting priors. We speculate
this is due to the diffusion transformer processing inputs as discretized tokens, with a spatially
varying mask sharing a similar token-level representation, making the adaptation straightfoward.
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3.3.2 APPEARANCE CONTROL IN PROPAGATED EDITS

An edit in the first frame rarely stays static: the modified region may rotate, deform, or follow its own
motion trajectory (e.g., petals unfolding as a flower blooms). To make the subsequent frames look
natural, the model has to infer how the edited region should appear under these evolving viewpoints
and states. When the only constraint is the first frame itself, this inference is under-specified, and
the edit drifts away from the user’s intent. To address this, we allow users to edit any subsequent
frame, providing direct guidance for how the appearance should look at specific points in time.

During LoRA fine-tuning, we use an edited frame as the target 'V ge. The conditioning input V¢ong
is constructed using the pre-edited frame by masking out the edited regions. The mask M_y,q marks
the preserved background areas with ones and the edited regions with zeros. If multiple frames are
involved, each frame is treated as a separate sample to avoid including motion information. This
configuration allows the model to learn how edited content should appear in context, guided by both
the surrounding background and the user-provided modification.

Unlike methods that directly feed edited frames as inputs during inference (Yang et al., |2025a;
Jamriska, 2018)), we do not require the edited frame to remain the same during inference. Instead,
the edited frame is used only during training to guide how edits should appear. At inference time, the
model generates content based on learned patterns and context, allowing it to adapt edits smoothly
across frames, even when the edits do not adhere to strict temporal alignment.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We conduct our experiments using videos consisting of 49 frames, with a resolution of either
832 x 480 or 480 x 832. All main results are obtained using the Wan2.1-12V 480P model. Ad-
ditional results based on HunyuanVideo-12V are included in App. [El Our framework is built upon
the publicly available diffusion-pipe codebas Details regarding our automated mask acquisition
workflow are provided in App.[A] For each video editing sample, we begin by training on the input
video for 100 steps as described in Sec. If additional edits are applied to later frames, we
continue training for another 100 steps on data that includes additional modifications as described in
Sec.[3.3.2] This helps the model incorporate user-specified appearance changes. We use a learning
rate of 1 x 10~ for all experiments. Training on 49-frame videos typically requires 20 GB of GPU
memory. In App.[C] we describe a strategy that reduces GPU requirements.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Comparison with Reference-Guided Video Editing. We compare our method with two recent
reference-guided video editing approaches: Kling1.6 (KlingAl,2025) and VACE (Jiang et al.,[2025)).
To evaluate the performance on reference-guided video editing, we collect 20 high-quality video
clips from Pexels and YouTube. Each video is paired with a reference image representing the desired
edit. We use ACE++ (Mao et al.,[2025)) to apply the edit to the first frame for our method. Figure E]
shows visual comparison results. Compared to Klingl.6 and VACE, our method better respects
the intended appearance in the edited region while preserving background content and temporal
consistency.

Comparison with First-Frame-Guided Video Editing. We further compare our method with re-
cent first-frame-guided video editing approaches, including I2VEdit (Ouyang et al.,|2024), Go-with-
the-Flow (Burgert et al.l 2025), and AnyV2V (Ku et al.l [2024). All baselines take the edited first
frame as input and attempt to propagate the edits through the entire sequence. To ensure a fair
and consistent evaluation, we adopt the test set from I2VEdit, which contains videos from diverse
sources along with paired first-frame edits. Figure [5] shows qualitative results. In the portrait ex-
ample (left), our method accurately adds the necklace while preserving the facial structure, while
baseline methods often distort the face or produce artifacts. In the street scene (right), our approach
transfers the clothing style cleanly across frames without affecting the background, whereas baseline
methods distort the clothing or introduce changes in unedited areas.

"https://github.com/tdrussell/diffusion-pipe
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Figure 4: Comparisons with state-of-the-art reference-guided video editing methods.

Quantitative Results. For quantitative evaluation on first-frame-guided video editing, we use three
metrics: 1) DeQA Score (2025), a state-of-the-art method for assessing image quality;
2) CLIP Score, which measures the semantic alignment between generated frames and edited first
frame by comparing their CLIP|[Radford et al.| (2021)) embedding similarity; and 3) Input Similarity,
which computes the CLIP embedding similarity between the generated frames and the input frames
on a per-frame basis. As shown in Tab. [I] our method outperforms others across all metrics. For
quantitative evaluation on reference-guided video editing, we conducted a user study with 35 partic-
ipants. Each participant was randomly shown 10 groups of results generated by different methods.
For each group, the participants were asked to rank the results based on motion consistency and
background preservation. Tab. 2] demonstrates the superiority of our method in both aspects.

4.3 ABLATION STUDIES

Disentangling Edits and Background. To validate the effectiveness of mask conditioning in sep-
arating edited regions from preserved content, we conduct an ablation study comparing our method
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Figure 5: Comparisons with state-of-the-art first-frame-guided video editing methods.

Table 1: Quantitative comparison with first-frame- Table 2: Average user ranking results for

guided video editing. comparison with reference-guided video
editing.

CLIP " DEQA 4 Input "

Score Score Similarity Motion I Background !
AnyV2V 0.8995  3.7348 0.7569 : Consistency 7 Preservation
Go-with-the-Flow ~ 0.9047  3.5622 0.7504 5/1;3%1 ~(614B) ;2?? ;igg
I2VEdit 0.9128  3.4480 0.7536 ~ :
Ours 09172  3.8013 0.7608 Ours 1.620 1734

using a foreground-background mask against a baseline version without it. Figure [§] shows the re-
sults. On the left, the goal is to apply a hair color change. Without mask conditioning, the edit
is applied globally, altering the lighting across the frame. In contrast, with mask conditioning, the
model localizes the change to the hair region while leaving the background untouched. Similarly,
in the right example, clothing edits are confined to the target area only with mask conditioning.
Appearance Control in Propagated Edits. We conduct an ablation to evaluate the impact of us-
ing edited frames beyond the first frame for controlling appearance in edits propagation. Figure[7]
compares two settings: using only the first frame as input versus adding an edited frame at a later
timestep. While using only the first frame can still generate reasonable results, incorporating an
additional edited frame offers stronger control over the appearance, leading to more consistent and
accurate propagation of the intended edit.
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Figure 7: Ablation of incorporating additional reference.

5 CONCLUSION

In this work, we present a controllable first-frame-guided video editing framework leveraging mask-
aware LoRA fine-tuning to achieve flexible, high-quality, and region-specific video edits without
modifying the underlying model architecture. Our method enables fine-grained control over both
foreground and background, supports propagation of complex edits across frames, and allows for ad-
ditional appearance guidance through reference images. Experiments demonstrate that our approach
outperforms existing state-of-the-art methods in both qualitative and quantitative evaluations, while
maintaining temporal consistency and background preservation.
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ETHICS STATEMENT

‘We have read and adhered to the ICLR Code of Ethics. Our work, centered on a controllable video
editing framework, aims to advance creative, commercial, and scientific applications. We acknowl-
edge, however, that generative video technologies can be misused for creating misleading or harmful
content, such as deepfakes. Our research is intended to provide artists and creators with more flex-
ible and precise tools, not to facilitate malicious use. We advocate for the responsible development
and deployment of generative models, accompanied by robust detection mechanisms and clear con-
tent provenance standards to mitigate such risks. Furthermore, our method relies on pre-trained
foundation models (Wan2.1-12V, HunyuanVideo-I2V), which may inherit biases from their training
data. While our approach does not introduce new data, we recognize that these biases could be re-
flected in the generated outputs. Addressing and mitigating these inherited biases remains a critical
area for future research. The datasets used for evaluation are composed of publicly available videos
from sources like Pexels, YouTube, and established academic benchmarks, respecting the data usage
policies of these platforms.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All implementation details re-
quired to replicate our results are provided in the main paper and appendix. Our method is built
upon the publicly available diffusion-pipe codebase, as cited in Section 4.1. We will release our spe-
cific source code, including scripts for mask-guided LoRA training and inference, as part of the sup-
plementary materials. The core of our experiments relies on publicly available pre-trained models,
specifically Wan2.1-12V and HunyuanVideo-12V, which are clearly identified in Section 4.1. This
section also details key hyperparameters, such as learning rates (le-4), training steps (100+100), and
hardware requirements (20GB GPU memory). Additional results and implementation strategies, in-
cluding a low-memory approach, are described in the Appendix.
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APPENDIX

A IMPLEMENTATION DETAILS: MASK ACQUISITION GUI

Submit Mask for Tracking

Positive Point Selection Negative Point Selection

Clear Points

Figure 8: Screenshot of the included GUI for mask acquisition. Users initialize the process by
clicking positive (green) and negative (red) points on the first frame. The segmentation is propagated
via SAM2 and automatically converted into bounding box mask for training.

To facilitate easy usage, we provide a Graphical User Interface (GUI) in our codebase (see Fig. [g).
Users initialize the process by providing sparse clicks on the first frame to define the target object.
The mask is then propagated automatically using SAM2.

Crucially, we utilize the bounding box derived from the segmentation for training, rather than the
tight mask itself. As demonstrated in Section [B.2] this loose bounding box strategy is deliberate,
providing a spatial buffer for natural transitions and structural changes. This workflow confirms that
our method is highly automated and does not require manual frame-by-frame annotation.

B ADDITIONAL EXPERIMENTAL ANALYSIS

B.1 INPUT-LEVEL VS. FEATURE-LEVEL MASKING

To verify the gain of our mask-aware fine-tuning strategy compared to feature-level strategies which
utilize masks to constrain the background at the latent feature level, we conducted a comparison.

We established a feature-level baseline where the model is fine-tuned using the default Image-to-
Video mask configuration (conditioning only on the first frame, prompting the model to learn global
frame reconstruction). In this setup, background preservation is enforced as an inference-time in-

tervention. Specifically, at each denoising timestep ¢, we restrict the generation by mechanically

blending the model’s predicted noisy latent szid with the noisy source latent z;"q using the binary

segmentation mask M (where 1 indicates the constrained background regions):
=201 -M) 4274 oM 3)

This strategy forces the background pixels to remain unchanged but ignores the semantic consistency
between the edited region and the strictly constrained background.

The visual comparison in Figure [9] highlights the limitation of the feature-level constraint: fore-
ground objects often appear detached. Quantitative results are reported in Table 3} Our input-
conditional approach yields consistent gains across all key metrics, confirming that providing the
spatiotemporal mask as a training input enables the model to synthesize more coherent and naturally
integrated edits.
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Feature Level
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Feature Level Feature Level
Injection Mask as Input Injection Mask as Input

Mask as Input

Figure 9: Visual comparison between Feature-Level masking (baseline) and our Input-Level mask-
ing strategy. As highlighted by the white circles, the Feature-Level approach often results in discon-
tinuities and “cut-and-paste” artifacts. In contrast, our Input-Level method leverages the video prior,
achieving better results.

Table 3: Quantitative comparison of masking strategies. “Feature-Level” refers to the inference-time
latent blending baseline described in Eq. El

Method CLIP Score T DEQA Score 1 Input Similarity 1
Baseline (Feature-Level) 0.8936 3.5878 0.7402
Ours (Input-Level) 0.9172 3.8013 0.7608

B.2 MASK ROBUSTNESS

To evaluate the sensitivity of our method to mask quality and validate our acquisition workflow, we
conducted an ablation study comparing results under three mask configurations:

» Tight Mask: High-precision segmentation obtained directly from SAM2.

* Noisy Mask: A degraded mask simulated by downsampling the segmentation to a 7 x 7
grid and then upsampling, introducing significant boundary errors.

* Bounding Box (Ours): A loose rectangular region derived from the segmentation.

The comparisons in Figure |10 reveal a key insight: pixel-perfect precision is often unnecessary
and can be restrictive for generative editing. Since the goal is to alter an object’s appearance, the
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Figure 10: Ablation on mask quality. Comparison between Tight Mask, Noisy Mask, and our
Bounding-Box strategy. As observed, pixel-perfect precision (Tight Mask) restricts the generation.
Using a “loose” mask provides a necessary spatial buffer, allowing the model to synthesize natural
transitions that seamlessly integrate with the background.

generated entity requires a spatial buffer to undergo necessary contour variations. A strictly tight
mask would excessively constrain the generation, forcing the new object to adhere rigidly to the
original silhouette and potentially clipping natural details.

In contrast, we observe that loose masks including both the highly perturbed “Noisy Mask™ and our
“Bounding Box” yield better visual results than tight segmentation. By conditioning on a looser
region, we allow the model to utilize its strong priors to heal the boundary between the edit and the
frozen background. This robustness confirms that our framework relies on the mask for semantic
localization rather than strict pixel clipping, validating our design choice of using an automated,
approximate masking workflow (See App. [A).

B.3 EFFECTIVENESS OF MASK SCHEDULING FOR APPEARANCE LEARNING

We further validate the role of the mask during the appearance learning stage. As demonstrated in
Figure[TT] using the standard 12V masking configuration (without our specific region-aware schedul-
ing) fails to effectively update the object’s appearance.

This failure stems from the underlying mechanism of Image-to-Video models: the first frame is
typically provided as a strong input condition. When fine-tuning on a reference image without
masking, the model encounters a task where the input condition (the reference) is identical to the
target output. Consequently, the optimization finds a trivial solution: it learns to simply copy the
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Figure 11: Ablation on mask conditioning during Stage 2 (Appearance Learning). We compare
our strategy with a baseline using the default 12V mask configuration. Without our specific mask
scheduling, the model exploits the first-frame condition as a shortcut, simply copying the reference
image to the output without encoding the appearance into the learnable LoRA weights.

pixel information from the condition to the output. Because the appearance information is “leaked”
through the input condition, the LoRA parameters do not internalize the visual attributes of the new
object. Our proposed mask scheduling resolves this by masking the target region, thereby blocking
this trivial shortcut and acting as a strict command that forces the LoRA to explicitly learn and
generate the target appearance distribution.

B.4 SCALABILITY ANALYSIS

To verify the scalability and temporal stability of our method as requested, we evaluated the editing
performance across video sequences of varying lengths: 5, 13, 21, and 49 frames. We utilize the
CLIP Score as the metric, which measures the semantic alignment between generated frames and
edited first frame by comparing their CLIP|Radford et al.|(2021)) embedding similarity. As illustrated
in Figure[T2] our method demonstrates good stability.

C EFFICIENCY ANALYSIS & LOW-COST STRATEGY DETAILS

C.1 METHODOLOGICAL DESIGN: TEMPORAL WINDOWING
The high VRAM requirement (~20GB) of our standard training setting primarily stems from the

necessity to process the full 49-frame sequence simultaneously during training. To address this, our
“Low-Cost Strategy” introduces a training-time modification that circumvents this bottleneck with-
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Figure 12: Frame-count vs. CLIP Score. The curve illustrates the consistency with the edited first
frame across varying sequence lengths.

out altering the inference pipeline. Specifically, we split the training video into shorter, overlapping
sliding windows and update the LoRA weights based on local 9-frame segments rather than the
entire sequence at once.

This design is theoretically grounded in the insight that motion LoRA primarily learns local dynam-
ics. Since complex motions can be decomposed into continuous short-term patterns, training on
9-frame clips is sufficient to capture the necessary kinematics. Crucially, this fragmentation does
not compromise global consistency because of our mask-aware conditioning. Since the unmasked
background is fed as a visible input context, the model effectively learns “how the foreground moves
relative to the fixed background” within each local window. This strong contextual anchoring en-
sures that the learned motion remains coherent and aligned with the environment when the full
video is reassembled. As shown in Figure [I3] the Low-Cost strategy maintains visual fidelity, mo-
tion smoothness, and temporal consistency comparable to standard full-frame training, validating
the effectiveness of our decomposition approach.

C.2 ENGINEERING OPTIMIZATION: SWAP BLOCKS

To further democratize access, we leveraged the “swap blocks” technique supported by the
diffusion-pipe codebaseﬂ This mechanism dynamically offloads frozen base model parame-
ters to the CPU, keeping only trainable LoRA weights and active transformer blocks on the GPU.
Table [4] quantifies the memory savings achieved by varying the blocks_to_swap parameter. By
maximizing swapping (config 38), we reduce the peak VRAM to ~8 GB, making the training
pipeline accessible on consumer-grade GPUs.

Table 4: Effect of “Swap Blocks” optimization on Peak VRAM (using 9-frame segments).

blocks_to_swap 0 (None) 16 32 (Default) 38 (Max)
Peak VRAM (MB) 25,097 16,305 9,987 7,617

C.3 RUN-TIME VRAM COMPARISON WITH BASELINES

We benchmarked the run-time VRAM usage of our method against state-of-the-art inference-only
baselines on a single NVIDIA RTX 4090 (832 x 480, 49 frames).

As shown in Table 5] our optimized Low-Cost strategy achieves a memory footprint comparable to
inference-only baselines, demonstrating broad hardware accessibility.

“https://github.com/tdrussell/diffusion-pipe
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Figure 13: Visual comparison between Standard (Full) and Low-Cost strategies. Top rows:
Results from standard training on the full 49-frame sequence. Bottom rows: Results from our
optimized training using 9-frame sliding windows. The results indicate that our memory-efficient
strategy preserves motion fidelity and structural details comparable to the full-frame baseline.

Table 5: Peak Run-Time VRAM comparison against inference-based methods. *For Go-with-the-
flow, the first value is Sampling VRAM, second is Peak Decoding VRAM.

Method AnyV2V Go-with-the-flow*  Ours (Standard) Ours (Low-Cost)
Peak VRAM 13,680 MB 4,398 /21,512 MB 21,522 MB 7,617 MB

D DIVERSE EDITING RESULTS

We present visual results of our method on diverse editing tasks in Fig. [I4] and Fig. [T3] including
object replacement, addition, and removal. We also include results for fast-motion and multi-person
scenario in Fig. [T6]and results for long-form video in Fig.[T7]
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Figure 14: Diverse editing results (I).

E RESULTS WITH HUNYUANVIDEO-I2V MODEL
In addition to the main results based on Wan2.1-12V, we also conducted experiments using

HunyuanVideo-12V (See Fig.[T8). It demonstrates the generalization ability of our framework across
different 12V architectures.

F FAILURE CASES

Figure [T9]illustrates representative limitations encountered by our framework. We observe specific
difficulties in text generation and preservation (as seen in the top rows). Even with mask constraints,
the model often degrades high-frequency semantic symbols into blurred texture, likely due to the
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Figure 15: Diverse editing results (II).

compression loss of the underlying VAE. Additionally, limitations arise in complex motion preser-
vation, as demonstrated in the bottom rows where the character’s hair color is modified. In scenarios
featuring rapid and highly stylized abstract motion, accurately decoupling the appearance update
from the original dynamics becomes challenging, potentially resulting in unnatural deformations
and disruptions to the structural integrity of the motion sequence.

G DETAILS OF USER STUDY

To evaluate the performance of our method, we conducted a user study with 50 participants. Each
participant was randomly shown 10 groups of results generated by different methods. For each
group, the participants were asked to select the best result based on two criteria: reference similarity
and visual quality. The user study interface is shown in Figure
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Figure 16: Diverse editing results (III).

Instructions to Participants: Participants were provided with the following instructions:

”You will be shown several video sequences with different edits applied. Each
sequence will contain three options, each generated using a different method. The
methods will be presented in a random order to avoid bias. Your task is to choose
the option that best matches the reference image in terms of visual quality and
how well the edit aligns with the reference image. Pay close attention to the
consistency of the edits across the frames and how naturally they interact with
the environment.”

After viewing each video sequence, participants were asked to answer the following two questions
for each video:

1. Reference Similarity: Which video option best matches the reference image in terms of
appearance and content?

2. Visual Quality: Which video option has the highest overall visual quality, considering
both the foreground edit and the background consistency?

The demographic information of the participants, including their age distribution and professional
background, is shown in Figure 21} This figure demonstrates the diversity of the participant pool,
ensuring a wide range of perspectives in the user study.

H BROADER IMPACTS

The work presented in this paper introduces a flexible and controllable video editing method based
on mask-aware LoRA fine-tuning. As with many advances in generative Al, our method holds both
positive and negative societal implications.

Our video editing framework opens up new possibilities in creative fields, such as film production,
digital art, and content creation, by enabling high-quality, real-time video edits with a high degree of
control. This could streamline workflows for professionals in these industries, reducing the time and
effort traditionally required for manual video editing. Additionally, our approach can be used in non-
commercial domains, such as healthcare, where controllable video editing can assist in visualizing
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Figure 17: Diverse editing results (IV).

complex medical data, simulations, and surgical procedures. In such contexts, our method can aid
in improving communication and understanding of visual information.

While the benefits are substantial, the potential for misuse of generative video models also exists.
High-quality video editing tools can be misused to generate deepfakes, spreading misinformation or
altering videos in malicious ways. Given the high realism of edited videos, there is a risk that such
technologies could be exploited in political or social contexts, leading to challenges in verifying the
authenticity of media. This raises concerns about privacy, security, and trust in video-based content.

To mitigate these risks, we advocate for responsible usage guidelines and the development of safety
measures for content creation tools powered by generative models. For example, platforms using
such technology could implement robust verification processes for user-generated content. Addi-
tionally, we encourage future research into model interpretability and the development of tools to
detect manipulated media, ensuring that generated content is easily distinguishable from original
footage.

I THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a large language model (LLM) to aid in
polishing the writing. Specifically, it was employed to improve grammar, correct spelling, enhance
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Figure 18: Results of our method applied to Wan2.1-12V and Hunyuan Video-12V.

clarity, and ensure the conciseness of the text. It also assisted in refining sentence structures to better
adhere to a formal academic style. All scientific contributions, including the core methodology,
experimental design, results, and their interpretation, were solely conceived and articulated by the
human authors. The authors have thoroughly reviewed and edited the final version of the text and
take full responsibility for all content presented in this paper.
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Figure 19: Failure cases. Top Rows: While the primary edit (suit and tie) is applied successfully, the
model fails to preserve the fine-grained text characters in the watermark, leading to garbled glyphs.
Bottom Rows: When modifying specific attributes (changing hair color to red) in scenarios with
rapid and abstract motion, the method may struggle to align the new appearance with the original
dynamics, resulting in body deformation and motion artifacts.
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Video Editing User Study

Thank you for participating in our user study. You will be shown 10 groups of videos. Each group contains one reference image and three videos edited using different methods. Your task is to select which video
best matches the reference image and which has the highest visual quality.

Welcome to the User Study

Instructions:

1. You will be shown several video sequences with different edits applied.

2. Each sequence will contain three options, each generated using a different method.

3. The methods will be presented in a random order to avoid bias.

4. Your task is to choose the option that best matches the reference image in terms of visual quality and how well the edit aligns with the reference image.

5. Pay close attention to the consistency of the edits across the frames and how naturally they interact with the environment.

Start Study

Video Evaluation
Group 10f 10

n o:or

Please select your answers:

Which ge interms of

0 1 2

Which video option has the highest overall visual quality, considering both the foreground edit and the background consistency?

Submit and Continue
Figure 20: Screenshot of the user study interface.
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Figure 21: Demographic information of the participants in the user study.

25



	Introduction
	Related Works
	Method
	LoRA’s First Step: A Simple Solution for Video Editing
	The Mask’s Hidden Power: Exploring I2V Model Capabilities
	Unlocking Editing Flexibility: Mask-Guided LoRA
	Disentangling Edits and Background
	Appearance Control in Propagated Edits


	Experiments
	Implementation Details
	Comparison with State-of-the-Arts
	Ablation Studies

	Conclusion
	Implementation Details: Mask Acquisition GUI
	Additional Experimental Analysis
	Input-Level vs. Feature-Level Masking
	Mask Robustness
	Effectiveness of Mask Scheduling for Appearance Learning
	Scalability Analysis

	Efficiency Analysis & Low-Cost Strategy Details
	Methodological Design: Temporal Windowing
	Engineering Optimization: Swap Blocks
	Run-Time VRAM Comparison with Baselines

	Diverse Editing Results
	Results with HunyuanVideo-I2V Model
	Failure Cases
	Details of User Study
	Broader Impacts
	The Use of Large Language Models

