

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTROLLABLE FIRST-FRAME-GUIDED VIDEO EDITING VIA MASK-AWARE LORA FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks fine-grained control over the edit’s subsequent temporal evolution. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video models for flexible video editing. Our key innovation is using a spatiotemporal mask to strategically guide the LoRA fine-tuning process. This teaches the model two distinct skills: first, to interpret the mask as a command to either preserve content from the source video or generate new content in designated regions. Second, for these generated regions, LoRA learns to synthesize either temporally consistent motion inherited from the video or novel appearances guided by user-provided reference frames. This dual-capability LoRA grants users control over the edit’s entire temporal evolution, allowing complex transformations like an object rotating or a flower blooming. Experimental results show our method achieves superior video editing performance compared to baseline methods.

1 INTRODUCTION

Recent advances in diffusion models (Rombach et al., 2022; Lipman et al., 2023) have demonstrated unprecedented improvement in high-quality video generation (Yang et al., 2025b; Kong et al., 2024; Wang et al., 2025; HaCohen et al., 2024). Based on foundational video generation models, video editing has experienced dramatic improvement (Jiang et al., 2025; Hu et al., 2025), now finding wide application in creative, commercial, and scientific fields. Still, these video editing models often require computationally intensive finetuning, with a large set of training data. This makes them expensive to extend to a new editing type, and less flexible for new applications. In contrast, first-frame-guided video editing (Ouyang et al., 2024; Ku et al., 2024) offers a promising path toward flexible video manipulation. In this paradigm, users can edit the first frame arbitrarily, either using image AI tools or traditional editing software. These edits are then propagated to the entire sequence, enabling flexible video manipulation without being constrained by dataset-specific training.

While first-frame-guided solutions allow flexible editing, they only provide limited control of remaining frames. For instance, given a video of a blooming flower, the user can edit the flower in the first frame, but cannot control how the flower blooms in the following frames. Similarly, when an object rotates to a novel viewpoint, the user cannot control the disoccluded region. In addition, the first frame edits may diffuse into unedited regions, resulting in undesirable background changes. The inability to control later frames limits editing flexibility and necessitates methods that not only retain the flexibility of first-frame-guided editing, but support control throughout the video.

A simple solution is per-video finetuning of a pre-trained image-to-video (I2V) model (Kong et al., 2024; Wang et al., 2025). By finetuning the model using LoRA (Hu et al., 2022) on a source video, the model will learn content motion. This allows the edit to propagate in a temporally consistent way. However, this naive approach lacks finer control—it cannot distinguish between regions that should change and those that should stay, nor does it ensure the edited region’s appearance remains controllable as it moves and deforms over time, requiring the synthesis of unseen appearance.

In this work, we build a flexible video editing model by expanding this naive edit propagation approach with an additional mask, which controls which regions of the video remain unchanged and



Figure 1: Given a source video (top row), we achieve high-quality video editing guided by the first frame as a reference image (middle row), while maintaining flexibility for incorporating additional reference conditions (bottom row).

which are modified. Recent I2V models (Kong et al., 2024; Wang et al., 2025) are designed to generate videos from a single image, but they can also process video sequences, with a built-in masking mechanism to control which regions are preserved or modified during inference. Typically, this mask preserves the first frame while generating the subsequent frames. However, we further observe that the mask has greater potential for more precise control over video content. To leverage this, we apply LoRA to fine-tune the model on the input video with the edited region masked. This allows the model to learn how to interpret a flexible spatiotemporal mask as a command to either preserve content from the source video or generate new content in designated regions. After LoRA training, the model can effectively apply the mask, ensuring that unedited areas remain unchanged.

More importantly, our mask-guided control empowers LoRA to learn selectively, adapting to the specific demands of the edit. This flexibility is illustrated by the blooming flower example in Fig. 1. First, by configuring the mask for motion learning, LoRA learns the flower’s blooming motion from the source video (second row). Then, to control the flower’s appearance as it blooms, the mask is reconfigured for appearance learning, directing LoRA to capture the target appearance from an additional reference, such as the bloomed, vibrant red rose (third row). This dual capability allows our method to synthesize a controllable transformation, creating a video where the flower not only moves correctly but evolves into the desired state, a feat unattainable with naive first-frame guidance.

Our approach offers a simple and effective solution for video editing by leveraging LoRA’s capabilities, without modifying the model architecture, and maintaining high flexibility through the combination of different conditions. Experimental results demonstrate that our method achieves superior performance over state-of-the-art approaches in both qualitative and quantitative evaluations.

2 RELATED WORKS

Video Editing with Diffusion Models. The success of video diffusion models has spurred extensive research into video editing. Early works adapt the image diffusion network and training paradigm to

video generation and editing. Tune-A-Video Wu et al. (2023) explores the concept of one-shot tuning in video editing. Fairy Wu et al. (2024) edits keyframes utilizing a 3D spatio-temporal self-attention extended from a T2I diffusion model. VidToMe Li et al. (2024) introduces image editing approaches (e.g., ControlNet Zhang et al. (2023)) to video generation. Animatediff Guo et al. (2023) decouples the appearance and motion learning during video editing. SAVE Song et al. (2024) chooses to fine-tune the feature embeddings that directly reflect semantic information. Another line of work manipulates the hidden features to edit a video. Video-P2P Liu et al. (2024) and Vid2Vid-Zero Wang et al. (2023) employ cross-attention map injection and null-text inversion for video editing. TokenFlow Geyer et al. (2023) leverages motion-based feature injection, and FLATTEN Cong et al. (2023) further introduces optical flow for better injection. Other methods Chen et al. (2023); Yang et al. (2023) explore latent initialization and latent transition in video diffusion models. Dragvideo Deng et al. (2024) achieves interactive drag-style video editing by introducing point conditioning. Recently, VACE Jiang et al. (2025) has shown promising video editing ability by large-scale conditional video diffusion training. Although large video editing diffusion models achieve impressive results, they often struggle with inaccurate identity preservation and suboptimal performance on out-of-domain test cases. In contrast, our method effectively leverages powerful video priors while efficiently learning content from both the reference image and the source video.

First-Frame Guided Video Editing. First-frame guided editing has emerged as a mainstream video editing approach, with AnyV2V Ku et al. (2024) and I2VEdit Ouyang et al. (2024) as representative methods. These approaches decompose video editing into two stages: (i) editing the first frame using existing image methods, and (ii) propagating edits to remaining frames using motion-conditioned image-to-video diffusion models. AnyV2V reconstructs motion via DDIM sampling, injecting temporal attention and spatial features from the original video. I2VEdit enhances this by learning coarse motion through per-clip LoRA and refining appearance using attention difference masks. While this decoupled framework benefits from advances in both image editing and video generation, the lack of explicit constraints often leads to diluted edits during propagation, manifesting as foreground inconsistencies and background leakages.

3 METHOD

In this work, we introduce a controllable first-frame-guided video editing method based on recent image-to-video diffusion models (Wang et al., 2025; Kong et al., 2024). In Sec. 3.1, we first tackle the issue of maintaining coherent motion of the edit by using LoRA to transfer motion patterns from the input video. In Sec. 3.2, we explore the generalization capabilities of the mask-based conditioning mechanism in pretrained I2V models. In Sec. 3.3, we demonstrate how mask-aware LoRA enables flexible video editing by leveraging the mask to control the generated content.

3.1 LoRA'S FIRST STEP: A SIMPLE SOLUTION FOR VIDEO EDITING

In this section, we introduce a naive approach for edit propagation, which serves as a foundation for the subsequent improvements. Given an input video $\mathbf{V}_{\text{input}} = [\mathbf{I}_1, \mathbf{I}_2, \dots, \mathbf{I}_T]$ and an edited version of the first frame, $\tilde{\mathbf{I}}_1$, the goal is to generate an edited video $\tilde{\mathbf{V}}_{\text{edited}} = [\tilde{\mathbf{I}}_1, \tilde{\mathbf{I}}_2, \dots, \tilde{\mathbf{I}}_T]$ where the edits introduced in $\tilde{\mathbf{I}}_1$ are propagated across all subsequent frames with coherent motion.

To achieve this basic objective, we insert LoRA (Hu et al., 2022) modules ϕ_θ into the self-attention and cross-attention layers of the I2V model (Wang et al., 2025) and optimize them on the input video $\mathbf{V}_{\text{input}}$ to capture its motion pattern. During training, the model is conditioned on the original first frame \mathbf{I}_1 and a textual prompt composed of a fixed special token p^* concatenated with the caption c generated for \mathbf{I}_1 using Florence-2 (Xiao et al., 2024) (i.e., $[p^*] + c$). The model is supervised to reconstruct the full input video $\mathbf{V}_{\text{input}} = \{\mathbf{I}_1, \mathbf{I}_2, \dots, \mathbf{I}_T\}$. Following the denoising objective of the I2V diffusion model (Wang et al., 2025), we optimize the LoRA adapters by minimizing the error between the network noise prediction and the Gaussian noise injected into the latent video:

$$\begin{aligned} \mathcal{L}_{\text{naive}} &= \mathbb{E}_{t, \epsilon} \left[\left\| \epsilon_\theta(\mathbf{x}_t, t; \underbrace{\mathbf{I}_1, [p^*] + c}_{\text{condition}}) - \epsilon \right\|_2^2 \right], \\ \mathbf{x}_t &= \text{Add_Noise} \left(\underbrace{\mathcal{E}(\mathbf{V}_{\text{input}})}_{\text{objective}}, \epsilon, t \right) \end{aligned} \quad (1)$$

162 where ϵ is the sampled noise, and ϵ_θ denotes the noise prediction network with LoRA parameters
 163 ϕ_θ . \mathcal{E} is the VAE encoder that maps the source video $\mathbf{V}_{\text{input}}$ to the latent space.
 164

165 At inference time, the original frame \mathbf{I}_1 is replaced with an edited version $\tilde{\mathbf{I}}_1$, and a new caption \tilde{c} is
 166 generated for $\tilde{\mathbf{I}}_1$ using Florence-2. The prompt token p^* is concatenated with \tilde{c} to form the inference
 167 prompt $[p^*] + \tilde{c}$, which guides the generation of the edited sequence $\tilde{\mathcal{V}}$.
 168

169 3.2 THE MASK’S HIDDEN POWER: EXPLORING I2V MODEL CAPABILITIES

170
 171 Although naive edit propagation ensures motion coherence, it lacks control over the content of subse-
 172 quent frames. To address this, we leverage the conditioning mechanisms in recent I2V models (Wang
 173 et al., 2025; Kong et al., 2024). To introduce the first frame as the guidance for video generation,
 174 these models incorporate two additional conditions for the denoising network: a pseudo-video \mathbf{V}_{cond}
 175 and a binary spatiotemporal mask \mathbf{M}_{cond} . The pseudo-video $\mathbf{V}_{\text{cond}} \in \mathbb{R}^{C \times T \times H \times W}$ is constructed
 176 by concatenating the first frame $\mathbf{I} \in \mathbb{R}^{C \times 1 \times H \times W}$ with zero-placeholder frames. The binary mask
 177 $\mathbf{M}_{\text{cond}} \in \{0, 1\}^{1 \times T \times h \times w}$ is designed so that 1 indicates the preserved frame and 0 represents the
 178 frames to be generated, with the first frame set to 1 and all subsequent frames set to 0.
 179

180 This paradigm can be extended to video-to-video generation by replacing the pseudo-video condi-
 181 tion \mathbf{V}_{cond} with actual video frames, enabling the model to accept an entire video sequence as input.
 182 In this setting, the binary spatiotemporal mask \mathbf{M}_{cond} , originally designed to preserve only the first
 183 frame, can now be repurposed as a more flexible mechanism that selectively controls which regions
 are retained and which are regenerated across space and time.

184 To assess the generalization capabilities of the
 185 masking mechanism, we evaluate several bi-
 186 nary mask configurations, as shown in Fig. 2.
 187 In each case, the mask \mathbf{M}_{cond} is applied to the
 188 input video to construct \mathbf{V}_{cond} , where regions
 189 marked as zero are regenerated and the rest are
 190 preserved. The default I2V configuration pre-
 191 serves only the first frame and leads the model
 192 to synthesize motion across the entire sequence
 (first row). Exploring the extremes, an all-zeros
 193 mask that preserves none of the original content
 194 forces the model to generate the appearance for
 195 the entire video (second row). Conversely, an
 196 all-ones mask aimed at preserving all content
 197 effectively maintains the video’s overall structure
 198 but introduces artifacts in areas with discontinu-
 199 ous motion (third row). Finally, using a spatially vary-
 200 ing mask to preserve the background while
 generating the foreground reveals a key challenge, as the model struggles to synthesize coherent
 foreground content (fourth row).

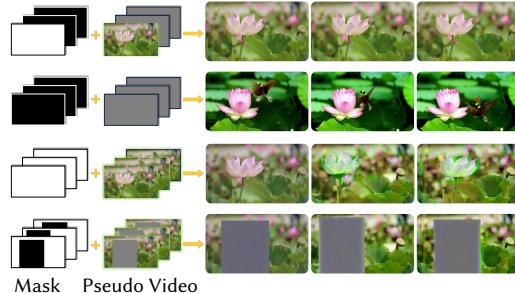


Figure 2: Exploring different mask configurations as an input condition to image-to-video model.

201 **Analysis and Motivation.** The preceding cases show the raw I2V model can handle simple, full-
 202 frame instructions but fails at nuanced, selective editing. Our key insight is to repurpose this mech-
 203 anism, enabling the spatiotemporal mask to serve a dual purpose during LoRA tuning. First, we
 204 can use LoRA to reinforce the model’s response to the mask, improving its ability to execute the
 205 preservation and generation commands defined by the mask. More critically, we can use the mask
 206 to direct what LoRA learns. By masking different content during training, we can command LoRA
 207 to focus on either the video’s underlying motion or a reference’s target appearance. This interplay
 208 between LoRA and the mask is the cornerstone of our method, detailed in the following section.

209 3.3 UNLOCKING EDITING FLEXIBILITY: MASK-GUIDED LORA

210 Building on this exploration, we modify the spatiotemporal mask to enable more flexible video edits.
 211 Combined with LoRA fine-tuning, the mask serves two complementary roles. First, it improves the
 212 I2V model’s alignment with mask constraints, allowing users to limited editing to a specific region,
 213 achieving more flexible control. Second, it also acts as a signal guiding LoRA to learn specific
 214 patterns from the training input, such as motion pattern from video sequences or appearance of an
 215 object from images. Specifically, we modify the training loss in Eq. 1 to introduce the conditioning

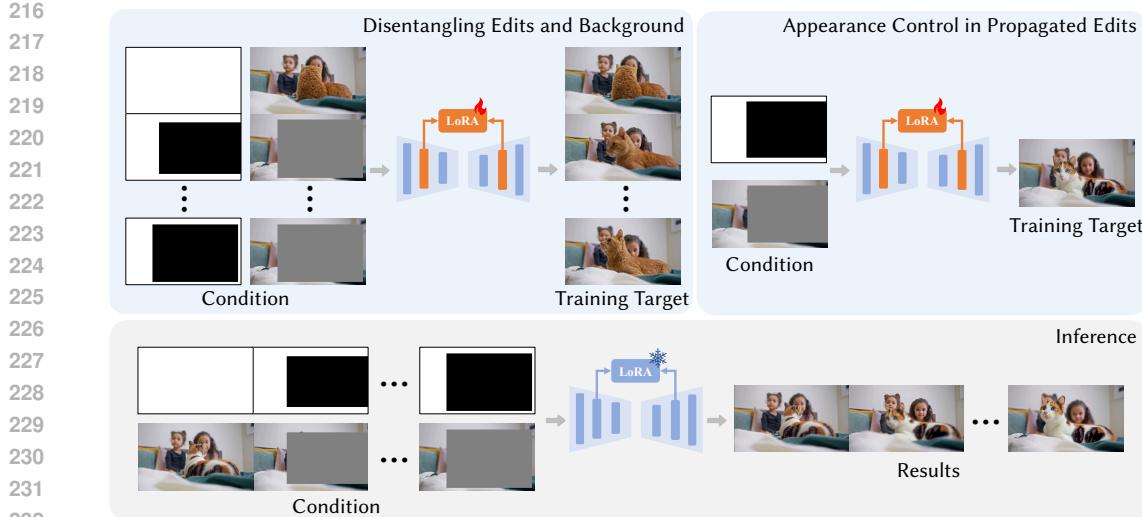


Figure 3: Our mask-guided LoRA pipeline. Training (Top): LoRA is fine-tuned to learn motion from the masked source video (left) and appearance from a reference frame (right). Inference (Bottom): The trained LoRA applies the learned motion and appearance to an edited first-frame, producing a temporally consistent video.

video and mask:

$$\mathcal{L} = \mathbb{E}_{t, \epsilon} \left[\left\| \epsilon_{\theta}(\mathbf{x}_t, t; \underbrace{\mathbf{V}_{\text{cond}}, \mathbf{M}_{\text{cond}}, [p^*] + c}_{\text{condition}}) - \epsilon \right\|_2^2 \right],$$

$$\mathbf{x}_t = \text{Add_Noise}(\mathcal{E}(\underbrace{\mathbf{V}_{\text{target}}}_{\text{objective}}), \epsilon, t) \quad (2)$$

As shown in Fig. 3, by configuring \mathbf{V}_{cond} , \mathbf{M}_{cond} , and $\mathbf{V}_{\text{target}}$ in different ways, we enable flexible video editing through LoRA, detailed in the following sections.

3.3.1 DISENTANGLING EDITS AND BACKGROUND

Many first-frame edits alter only a part of the frame (Ku et al., 2024; Ouyang et al., 2024), creating a conflict between two demands: the edited region must evolve, while the background must remain static. When a single generative pathway handles both, they collide. Preserving the background can stall the edit, while propagating the edit can cause unintended background changes.

To achieve separate control on edited regions and non-edit background, we carefully adjust the spatiotemporal mask \mathbf{M}_{cond} and the conditioning video \mathbf{V}_{cond} during LoRA fine-tuning. The mask $\mathbf{M}_{\text{condition}}$ is set to ones for the first frame to preserve it as the reference, and for subsequent frames, \mathbf{M}_{cond} is adjusted to mark unedited regions with ones (to be preserved) and edited regions with zeros (to be generated). The pseudo-video \mathbf{V}_{cond} is created by applying the mask to the input video, setting the regions marked as zero in \mathbf{M}_{cond} to be empty, while leaving the rest unchanged. The objective $\mathbf{V}_{\text{target}}$ is set to the input video during LoRA fine-tuning. This configuration allows the model to focus on generating the edited content while locking the unedited regions. At inference time, when editing the first frame (replacing \mathbf{I}_1 with $\tilde{\mathbf{I}}_1$), we use the same \mathbf{M}_{cond} as during LoRA training, while \mathbf{V}_{cond} has its first frame replaced by the edited version $\tilde{\mathbf{I}}_1$.

One interesting observation is that while a pre-trained I2V model struggles with selective editing, LoRA training on a single video alone learns effective mask-guided inpainting priors. We speculate this is due to the diffusion transformer processing inputs as discretized tokens, with a spatially varying mask sharing a similar token-level representation, making the adaptation straightforward.

270 3.3.2 APPEARANCE CONTROL IN PROPAGATED EDITS
271

272 An edit in the first frame rarely stays static: the modified region may rotate, deform, or follow its own
273 motion trajectory (e.g., petals unfolding as a flower blooms). To make the subsequent frames look
274 natural, the model has to infer how the edited region should appear under these evolving viewpoints
275 and states. When the only constraint is the first frame itself, this inference is under-specified, and
276 the edit drifts away from the user’s intent. To address this, we allow users to edit any subsequent
277 frame, providing direct guidance for how the appearance should look at specific points in time.
278

279 During LoRA fine-tuning, we use an edited frame as the target $\mathbf{V}_{\text{target}}$. The conditioning input \mathbf{V}_{cond}
280 is constructed using the pre-edited frame by masking out the edited regions. The mask \mathbf{M}_{cond} marks
281 the preserved background areas with ones and the edited regions with zeros. If multiple frames are
282 involved, each frame is treated as a separate sample to avoid including motion information. This
283 configuration allows the model to learn how edited content should appear in context, guided by both
284 the surrounding background and the user-provided modification.
285

286 Unlike methods that directly feed edited frames as inputs during inference (Yang et al., 2025a;
287 Jamriska, 2018), we do not require the edited frame to remain the same during inference. Instead,
288 the edited frame is used only during training to guide how edits should appear. At inference time, the
289 model generates content based on learned patterns and context, allowing it to adapt edits smoothly
290 across frames, even when the edits do not adhere to strict temporal alignment.
291

292 4 EXPERIMENTS
293294 4.1 IMPLEMENTATION DETAILS
295

296 We conduct our experiments using videos consisting of 49 frames, with a resolution of either
297 832×480 or 480×832 . All main results are obtained using the Wan2.1-I2V 480P model. Ad-
298 ditional results based on HunyuanVideo-I2V are included in App. E. Our framework is built upon
299 the publicly available diffusion-pipe codebase¹. Details regarding our automated mask acquisition
300 workflow are provided in App. A. For each video editing sample, we begin by training on the input
301 video for 100 steps as described in Sec. 3.3.1. If additional edits are applied to later frames, we
302 continue training for another 100 steps on data that includes additional modifications as described in
303 Sec. 3.3.2. This helps the model incorporate user-specified appearance changes. We use a learning
304 rate of 1×10^{-4} for all experiments. Training on 49-frame videos typically requires 20 GB of GPU
305 memory. In App. C, we describe a strategy that reduces GPU requirements.
306

307 4.2 COMPARISON WITH STATE-OF-THE-ARTS
308

309 **Comparison with Reference-Guided Video Editing.** We compare our method with two recent
310 reference-guided video editing approaches: Kling1.6 (KlingAI, 2025) and VACE (Jiang et al., 2025).
311 To evaluate the performance on reference-guided video editing, we collect 20 high-quality video
312 clips from Pexels and YouTube. Each video is paired with a reference image representing the desired
313 edit. We use ACE++ (Mao et al., 2025) to apply the edit to the first frame for our method. Figure 4
314 shows visual comparison results. Compared to Kling1.6 and VACE, our method better respects
315 the intended appearance in the edited region while preserving background content and temporal
316 consistency.
317

318 **Comparison with First-Frame-Guided Video Editing.** We further compare our method with re-
319 cent first-frame-guided video editing approaches, including I2VEdit (Ouyang et al., 2024), Go-with-
320 the-Flow (Burgert et al., 2025), and AnyV2V (Ku et al., 2024). All baselines take the edited first
321 frame as input and attempt to propagate the edits through the entire sequence. To ensure a fair
322 and consistent evaluation, we adopt the test set from I2VEdit, which contains videos from diverse
323 sources along with paired first-frame edits. Figure 5 shows qualitative results. In the portrait ex-
324 ample (left), our method accurately adds the necklace while preserving the facial structure, while
325 baseline methods often distort the face or produce artifacts. In the street scene (right), our approach
326 transfers the clothing style cleanly across frames without affecting the background, whereas baseline
327 methods distort the clothing or introduce changes in unedited areas.
328

¹<https://github.com/tdrussell/diffusion-pipe>

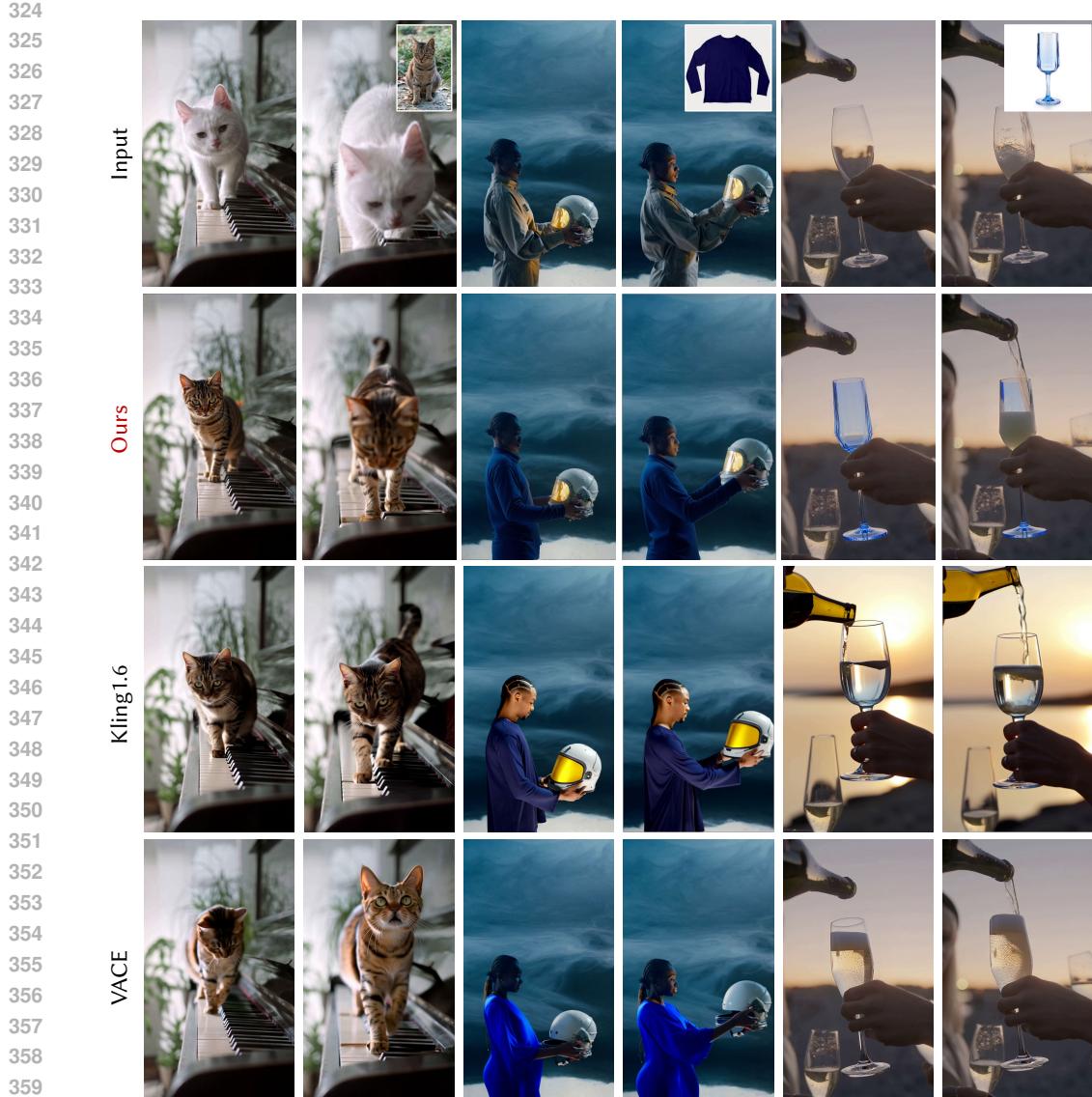


Figure 4: Comparisons with state-of-the-art reference-guided video editing methods.

Quantitative Results. For quantitative evaluation on first-frame-guided video editing, we use three metrics: 1) DeQA Score You et al. (2025), a state-of-the-art method for assessing image quality; 2) CLIP Score, which measures the semantic alignment between generated frames and edited first frame by comparing their CLIP Radford et al. (2021) embedding similarity; and 3) Input Similarity, which computes the CLIP embedding similarity between the generated frames and the input frames on a per-frame basis. As shown in Tab. 1, our method outperforms others across all metrics. For quantitative evaluation on reference-guided video editing, we conducted a user study with 35 participants. Each participant was randomly shown 10 groups of results generated by different methods. For each group, the participants were asked to rank the results based on motion consistency and background preservation. Tab. 2 demonstrates the superiority of our method in both aspects.

4.3 ABLATION STUDIES

Disentangling Edits and Background. To validate the effectiveness of mask conditioning in separating edited regions from preserved content, we conduct an ablation study comparing our method

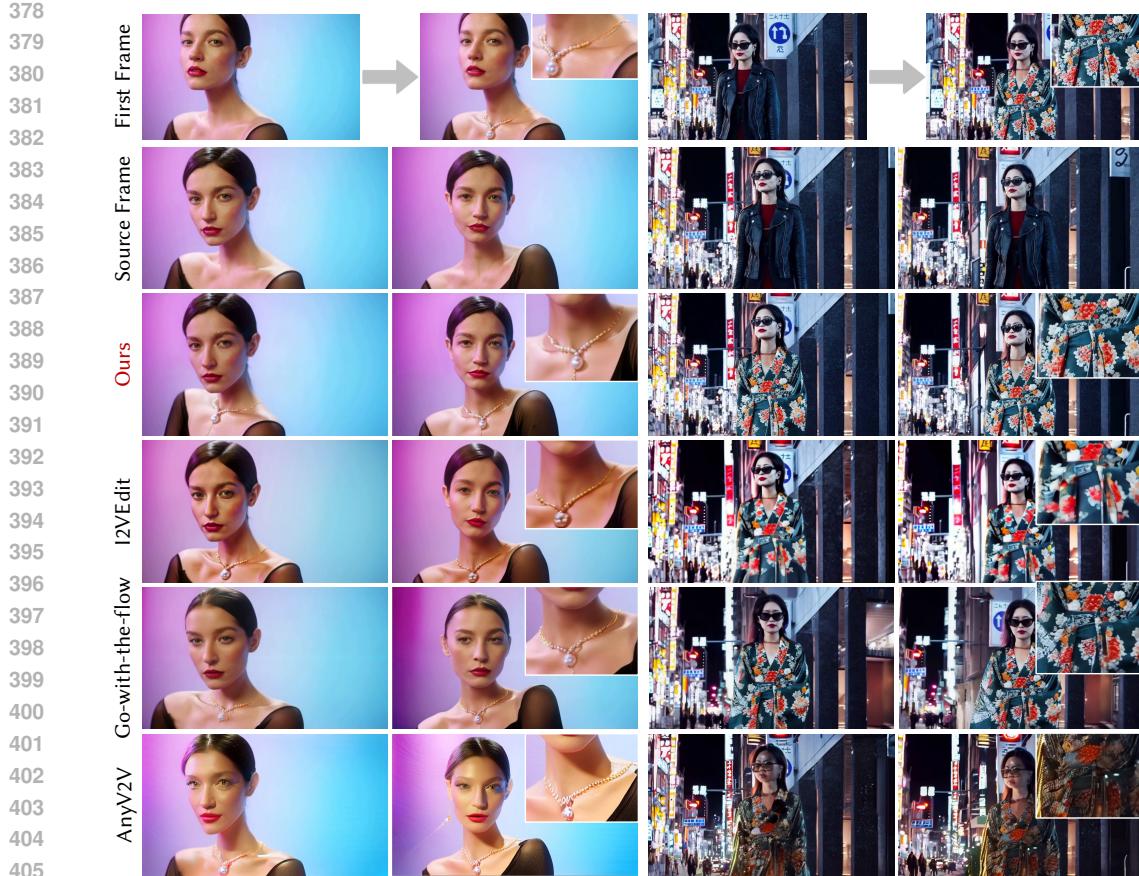


Figure 5: Comparisons with state-of-the-art first-frame-guided video editing methods.

Table 1: Quantitative comparison with first-frame-guided video editing.

	CLIP Score ↑	DEQA Score ↑	Input Similarity ↑
AnyV2V	0.8995	3.7348	0.7569
Go-with-the-Flow	0.9047	3.5622	0.7504
I2VEdit	0.9128	3.4480	0.7536
Ours	0.9172	3.8013	0.7608

Table 2: Average user ranking results for comparison with reference-guided video editing.

	Motion Consistency ↓	Background Preservation ↓
Kling1.6	1.869	1.806
VACE (14B)	2.511	2.460
Ours	1.620	1.734

using a foreground-background mask against a baseline version without it. Figure 6 shows the results. On the left, the goal is to apply a hair color change. Without mask conditioning, the edit is applied globally, altering the lighting across the frame. In contrast, with mask conditioning, the model localizes the change to the hair region while leaving the background untouched. Similarly, in the right example, clothing edits are confined to the target area only with mask conditioning. **Appearance Control in Propagated Edits.** We conduct an ablation to evaluate the impact of using edited frames beyond the first frame for controlling appearance in edits propagation. Figure 7 compares two settings: using only the first frame as input versus adding an edited frame at a later timestep. While using only the first frame can still generate reasonable results, incorporating an additional edited frame offers stronger control over the appearance, leading to more consistent and accurate propagation of the intended edit.

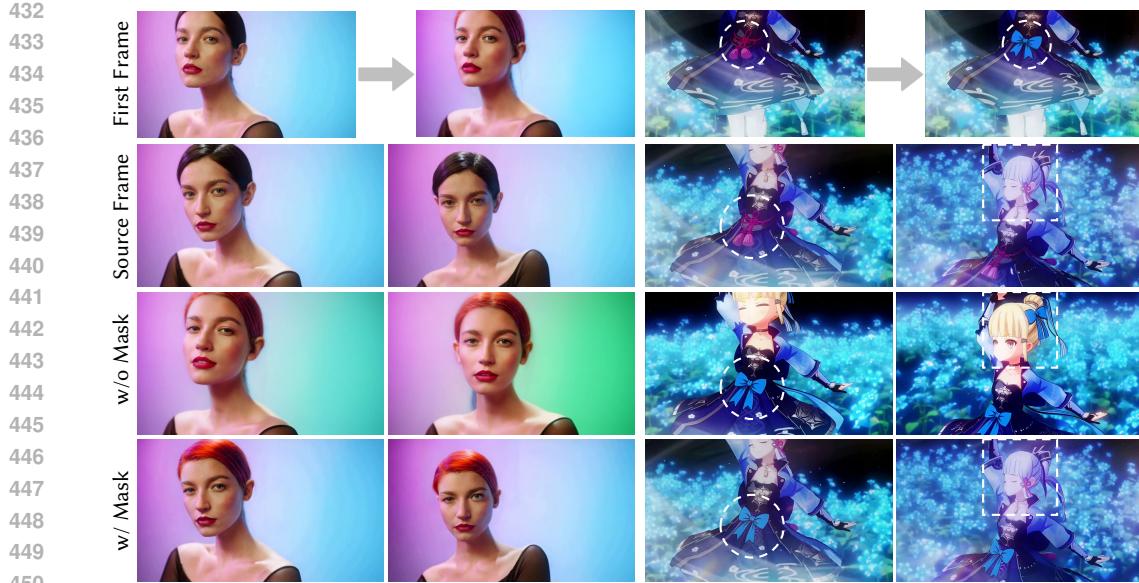


Figure 6: Ablation of disentangling edits and background.

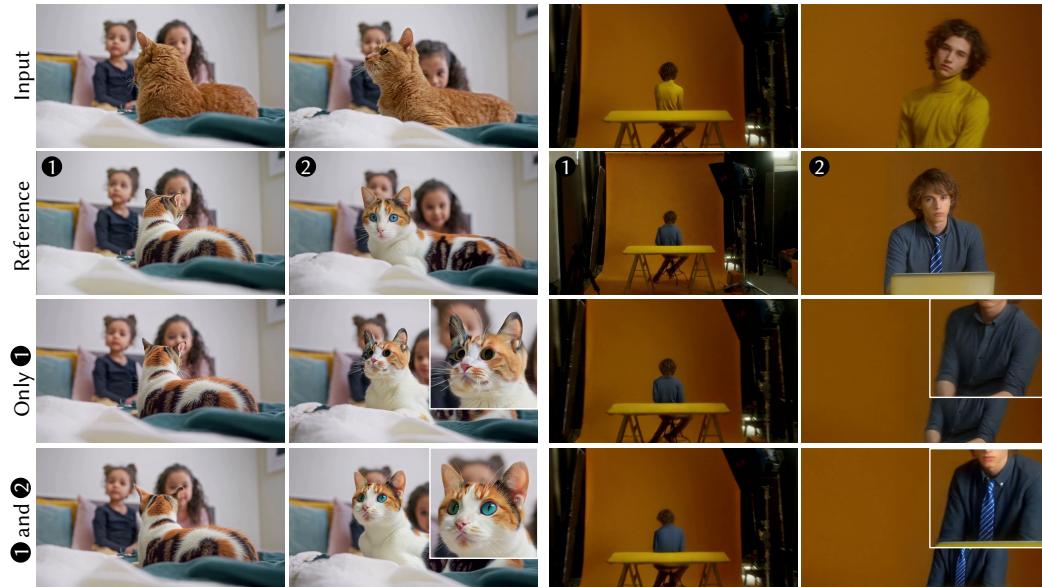


Figure 7: Ablation of incorporating additional reference.

5 CONCLUSION

In this work, we present a controllable first-frame-guided video editing framework leveraging mask-aware LoRA fine-tuning to achieve flexible, high-quality, and region-specific video edits without modifying the underlying model architecture. Our method enables fine-grained control over both foreground and background, supports propagation of complex edits across frames, and allows for additional appearance guidance through reference images. Experiments demonstrate that our approach outperforms existing state-of-the-art methods in both qualitative and quantitative evaluations, while maintaining temporal consistency and background preservation.

486 ETHICS STATEMENT
487488 We have read and adhered to the ICLR Code of Ethics. Our work, centered on a controllable video
489 editing framework, aims to advance creative, commercial, and scientific applications. We acknowl-
490 edge, however, that generative video technologies can be misused for creating misleading or harmful
491 content, such as deepfakes. Our research is intended to provide artists and creators with more flex-
492 ible and precise tools, not to facilitate malicious use. We advocate for the responsible development
493 and deployment of generative models, accompanied by robust detection mechanisms and clear con-
494 tent provenance standards to mitigate such risks. Furthermore, our method relies on pre-trained
495 foundation models (Wan2.1-I2V, HunyuanVideo-I2V), which may inherit biases from their training
496 data. While our approach does not introduce new data, we recognize that these biases could be re-
497 flected in the generated outputs. Addressing and mitigating these inherited biases remains a critical
498 area for future research. The datasets used for evaluation are composed of publicly available videos
499 from sources like Pexels, YouTube, and established academic benchmarks, respecting the data usage
500 policies of these platforms.
501502 REPRODUCIBILITY STATEMENT
503504 We are committed to ensuring the reproducibility of our research. All implementation details re-
505 quired to replicate our results are provided in the main paper and appendix. Our method is built
506 upon the publicly available diffusion-pipe codebase, as cited in Section 4.1. We will release our spe-
507 cific source code, including scripts for mask-guided LoRA training and inference, as part of the sup-
508 plementary materials. The core of our experiments relies on publicly available pre-trained models,
509 specifically Wan2.1-I2V and HunyuanVideo-I2V, which are clearly identified in Section 4.1. This
510 section also details key hyperparameters, such as learning rates (1e-4), training steps (100+100), and
511 hardware requirements (20GB GPU memory). Additional results and implementation strategies, in-
512 cluding a low-memory approach, are described in the Appendix.
513514 REFERENCES
515516 Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma,
517 Yitong Deng, Lingxiao Li, Mohsen Mousavi, et al. Go-with-the-flow: Motion-controllable video
518 diffusion models using real-time warped noise. *arXiv preprint arXiv:2501.08331*, 2025.
519 Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
520 Lin. Control-a-video: Controllable text-to-video generation with diffusion models. *arXiv e-prints*,
521 pp. arXiv–2305, 2023.
522 Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel
523 Perez-Rua, Bodo Rosenhahn, Tao Xiang, and Sen He. Flatten: optical flow-guided attention for
524 consistent text-to-video editing. *arXiv preprint arXiv:2310.05922*, 2023.
525 Yufan Deng, Ruida Wang, Yuhao Zhang, Yu-Wing Tai, and Chi-Keung Tang. Dragvideo: Interactive
526 drag-style video editing. In *European Conference on Computer Vision*, pp. 183–199. Springer,
527 2024.
528 Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features
529 for consistent video editing. *arXiv preprint arXiv:2307.10373*, 2023.
530 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
531 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
532 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.
533 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
534 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov,
535 Yaki Bitterman, Zeev Melumian, and Ofir Bibi. Ltx-video: Realtime video latent diffusion. *arXiv*
536 *preprint arXiv:2501.00103*, 2024.

540 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 542 *ference on Learning Representations*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=nZeVKeFYf9)
 543 [id=nZeVKeFYf9](https://openreview.net/forum?id=nZeVKeFYf9).

544 Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, and Qinglin Lu. Hun-
 545 yuancustom: A multimodal-driven architecture for customized video generation, 2025. URL
 546 <https://arxiv.org/abs/2505.04512>.

547 Ondrej Jamriska. Ebsynth: Fast example-based image synthesis and style transfer. <https://github.com/jamriska/ebsynth>, 2018.

548 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 549 video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

550 KlingAI. Klingai. Website, 2025. <https://klingai.com/>.

551 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 552 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 553 models. *arXiv preprint arXiv:2412.03603*, 2024.

554 Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhui Chen. Anyv2v: A tuning-free frame-
 555 work for any video-to-video editing tasks. *arXiv preprint arXiv:2403.14468*, 2024.

556 Xirui Li, Chao Ma, Xiaokang Yang, and Ming-Hsuan Yang. Vidtome: Video token merging for
 557 zero-shot video editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 558 *Pattern Recognition*, pp. 7486–7495, 2024.

559 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 560 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-*
 561 *sentations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

562 Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
 563 cross-attention control. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 564 *Pattern Recognition*, pp. 8599–8608, 2024.

565 Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou.
 566 Ace++: Instruction-based image creation and editing via context-aware content filling. *arXiv*
 567 *preprint arXiv:2501.02487*, 2025.

568 Wenqi Ouyang, Yi Dong, Lei Yang, Jianlou Si, and Xingang Pan. I2vedit: First-frame-guided video
 569 editing via image-to-video diffusion models. *arXiv preprint arXiv:2405.16537*, 2024.

570 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 571 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 572 models from natural language supervision. In *International conference on machine learning*, pp.
 573 8748–8763. PMLR, 2021.

574 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 575 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 576 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

577 Yeji Song, Wonsik Shin, Junsoo Lee, Jeesoo Kim, and Nojun Kwak. Save: Protagonist diversifica-
 578 tion with structure in gnostic video editing. In *European Conference on Computer Vision*, pp.
 579 41–57. Springer, 2024.

580 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 581 Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative
 582 models. *arXiv preprint arXiv:2503.20314*, 2025.

583 Wen Wang, Yan Jiang, Kangyang Xie, Zide Liu, Hao Chen, Yue Cao, Xinlong Wang, and Chun-
 584 hua Shen. Zero-shot video editing using off-the-shelf image diffusion models. *arXiv preprint*
 585 *arXiv:2303.17599*, 2023.

594 Bichen Wu, Ching-Yao Chuang, Xiaoyan Wang, Yichen Jia, Kapil Krishnakumar, Tong Xiao, Feng
 595 Liang, Licheng Yu, and Peter Vajda. Fairy: Fast parallelized instruction-guided video-to-video
 596 synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 597 *nition*, pp. 8261–8270, 2024.

598 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 599 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 600 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference*
 601 *on Computer Vision*, pp. 7623–7633, 2023.

602 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 603 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In *Pro-*
 604 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4818–
 605 4829, 2024.

606 Shiyuan Yang, Zheng Gu, Liang Hou, Xin Tao, Pengfei Wan, Xiaodong Chen, and Jing Liao. Mtv-
 607 inpaint: Multi-task long video inpainting. *arXiv preprint arXiv:2503.11412*, 2025a.

608 Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender a video: Zero-shot text-guided
 609 video-to-video translation. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–11, 2023.

610 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 611 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 612 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 613 an expert transformer. In *The Thirteenth International Conference on Learning Representations*,
 614 2025b. URL <https://openreview.net/forum?id=LQzN6TRFg9>.

615 Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, and Chao Dong. Teaching large language models to
 616 regress accurate image quality scores using score distribution. In *IEEE Conference on Computer*
 617 *Vision and Pattern Recognition*, 2025.

618 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 619 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 620 pp. 3836–3847, 2023.

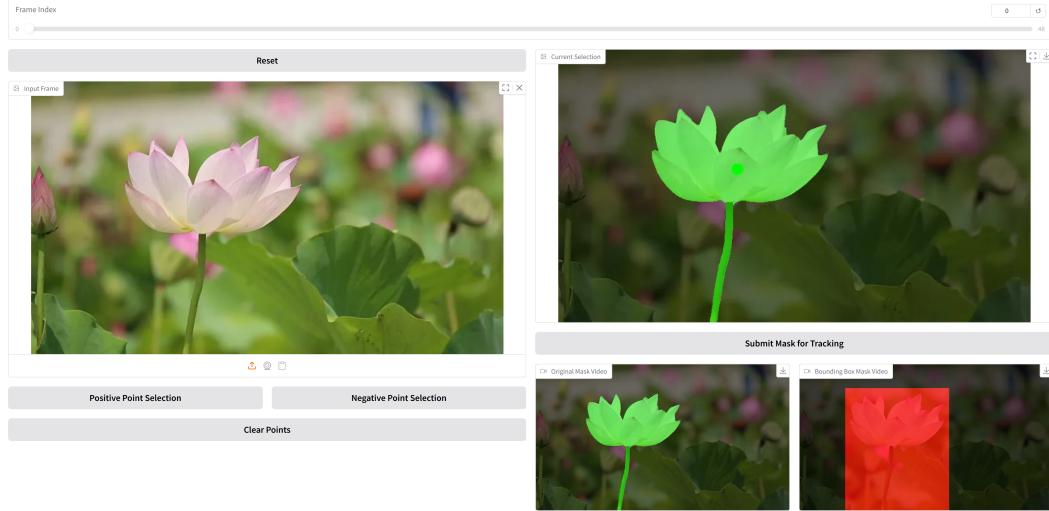
621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
649

APPENDIX

650
651
652

A IMPLEMENTATION DETAILS: MASK ACQUISITION GUI

670
671
672
673
Figure 8: Screenshot of the included GUI for mask acquisition. Users initialize the process by
clicking positive (green) and negative (red) points on the first frame. The segmentation is propagated
via SAM2 and automatically converted into bounding box mask for training.674
675
676

To facilitate easy usage, we provide a Graphical User Interface (GUI) in our codebase (see Fig. 8). Users initialize the process by providing sparse clicks on the first frame to define the target object. The mask is then propagated automatically using SAM2.

677
678
679
680

Crucially, we utilize the bounding box derived from the segmentation for training, rather than the tight mask itself. As demonstrated in Section B.2, this loose bounding box strategy is deliberate, providing a spatial buffer for natural transitions and structural changes. This workflow confirms that our method is highly automated and does not require manual frame-by-frame annotation.

681

B ADDITIONAL EXPERIMENTAL ANALYSIS

682
683
684
685

B.1 INPUT-LEVEL VS. FEATURE-LEVEL MASKING

To verify the gain of our mask-aware fine-tuning strategy compared to feature-level strategies which utilize masks to constrain the background at the latent feature level, we conducted a comparison.

686
687
688
689
690
691
692
693

We established a feature-level baseline where the model is fine-tuned using the default Image-to-Video mask configuration (conditioning only on the first frame, prompting the model to learn global frame reconstruction). In this setup, background preservation is enforced as an inference-time intervention. Specifically, at each denoising timestep t , we restrict the generation by mechanically blending the model’s predicted noisy latent z_{t-1}^{pred} with the noisy source latent z_{t-1}^{src} using the binary segmentation mask \mathbf{M} (where 1 indicates the constrained background regions):

$$z_{t-1} = z_{t-1}^{pred} \odot (1 - \mathbf{M}) + z_{t-1}^{src} \odot \mathbf{M} \quad (3)$$

694
695
696
697

This strategy forces the background pixels to remain unchanged but ignores the semantic consistency between the edited region and the strictly constrained background.

698
699
700
701

The visual comparison in Figure 9 highlights the limitation of the feature-level constraint: foreground objects often appear detached. Quantitative results are reported in Table 3. Our input-conditional approach yields consistent gains across all key metrics, confirming that providing the spatiotemporal mask as a training input enables the model to synthesize more coherent and naturally integrated edits.

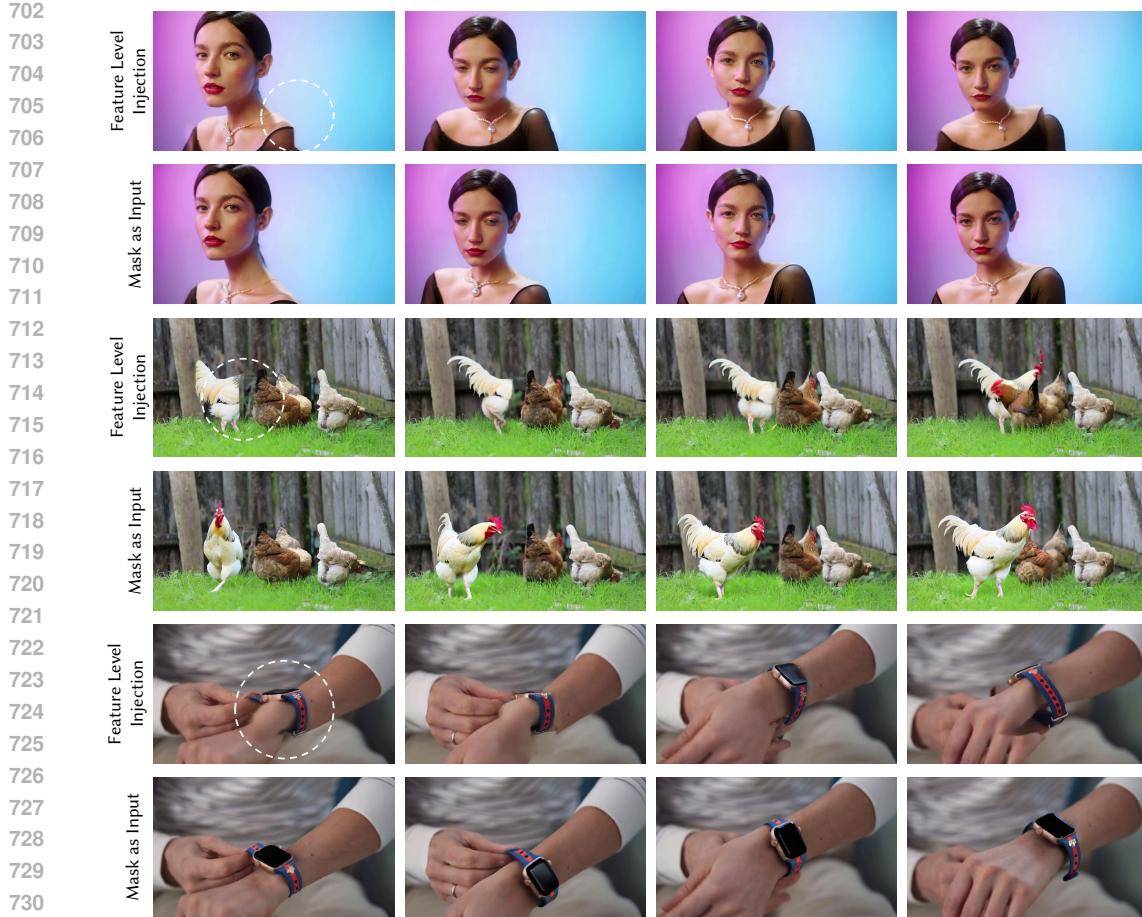


Figure 9: Visual comparison between Feature-Level masking (baseline) and our Input-Level masking strategy. As highlighted by the white circles, the Feature-Level approach often results in discontinuities and “cut-and-paste” artifacts. In contrast, our Input-Level method leverages the video prior, achieving better results.

Table 3: Quantitative comparison of masking strategies. “Feature-Level” refers to the inference-time latent blending baseline described in Eq. 3.

Method	CLIP Score \uparrow	DEQA Score \uparrow	Input Similarity \uparrow
Baseline (Feature-Level)	0.8936	3.5878	0.7402
Ours (Input-Level)	0.9172	3.8013	0.7608

B.2 MASK ROBUSTNESS

To evaluate the sensitivity of our method to mask quality and validate our acquisition workflow, we conducted an ablation study comparing results under three mask configurations:

- **Tight Mask:** High-precision segmentation obtained directly from SAM2.
- **Noisy Mask:** A degraded mask simulated by downsampling the segmentation to a 7×7 grid and then upsampling, introducing significant boundary errors.
- **Bounding Box (Ours):** A loose rectangular region derived from the segmentation.

The comparisons in Figure 10 reveal a key insight: *pixel-perfect precision is often unnecessary and can be restrictive for generative editing*. Since the goal is to alter an object’s appearance, the

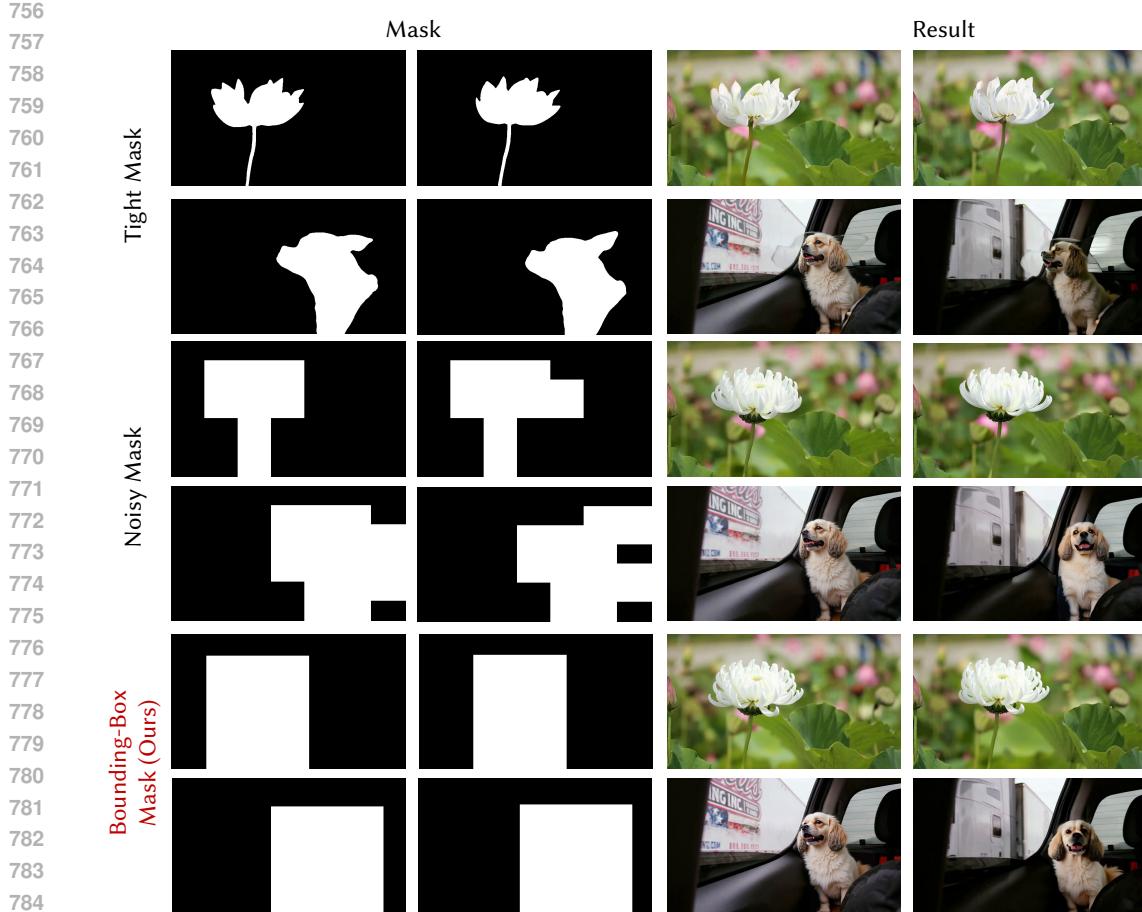


Figure 10: Ablation on mask quality. Comparison between Tight Mask, Noisy Mask, and our Bounding-Box strategy. As observed, pixel-perfect precision (Tight Mask) restricts the generation. Using a “loose” mask provides a necessary spatial buffer, allowing the model to synthesize natural transitions that seamlessly integrate with the background.

generated entity requires a spatial buffer to undergo necessary contour variations. A strictly tight mask would excessively constrain the generation, forcing the new object to adhere rigidly to the original silhouette and potentially clipping natural details.

In contrast, we observe that loose masks including both the highly perturbed “Noisy Mask” and our “Bounding Box” yield better visual results than tight segmentation. By conditioning on a looser region, we allow the model to utilize its strong priors to heal the boundary between the edit and the frozen background. This robustness confirms that our framework relies on the mask for semantic localization rather than strict pixel clipping, validating our design choice of using an automated, approximate masking workflow (See App. A).

B.3 EFFECTIVENESS OF MASK SCHEDULING FOR APPEARANCE LEARNING

We further validate the role of the mask during the appearance learning stage. As demonstrated in Figure 11, using the standard I2V masking configuration (without our specific region-aware scheduling) fails to effectively update the object’s appearance.

This failure stems from the underlying mechanism of Image-to-Video models: the first frame is typically provided as a strong input condition. When fine-tuning on a reference image without masking, the model encounters a task where the input condition (the reference) is identical to the target output. Consequently, the optimization finds a trivial solution: it learns to simply copy the

Figure 11: Ablation on mask conditioning during Stage 2 (Appearance Learning). We compare our strategy with a baseline using the default I2V mask configuration. Without our specific mask scheduling, the model exploits the first-frame condition as a shortcut, simply copying the reference image to the output without encoding the appearance into the learnable LoRA weights.

pixel information from the condition to the output. Because the appearance information is “leaked” through the input condition, the LoRA parameters do not internalize the visual attributes of the new object. Our proposed mask scheduling resolves this by masking the target region, thereby blocking this trivial shortcut and acting as a strict command that forces the LoRA to explicitly learn and generate the target appearance distribution.

B.4 SCALABILITY ANALYSIS

To verify the scalability and temporal stability of our method as requested, we evaluated the editing performance across video sequences of varying lengths: 5, 13, 21, and 49 frames. We utilize the CLIP Score as the metric, which measures the semantic alignment between generated frames and edited first frame by comparing their CLIP Radford et al. (2021) embedding similarity. As illustrated in Figure 12, our method demonstrates good stability.

C EFFICIENCY ANALYSIS & LOW-COST STRATEGY DETAILS

C.1 METHODOLOGICAL DESIGN: TEMPORAL WINDOWING

The high VRAM requirement ($\sim 20\text{GB}$) of our standard training setting primarily stems from the necessity to process the full 49-frame sequence simultaneously during training. To address this, our “Low-Cost Strategy” introduces a training-time modification that circumvents this bottleneck with-

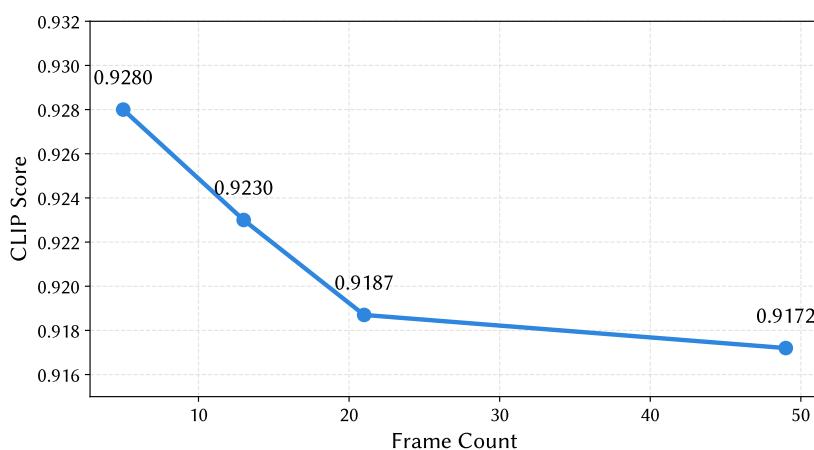


Figure 12: Frame-count vs. CLIP Score. The curve illustrates the consistency with the edited first frame across varying sequence lengths.

out altering the inference pipeline. Specifically, we split the training video into shorter, overlapping sliding windows and update the LoRA weights based on local 9-frame segments rather than the entire sequence at once.

This design is theoretically grounded in the insight that motion LoRA primarily learns local dynamics. Since complex motions can be decomposed into continuous short-term patterns, training on 9-frame clips is sufficient to capture the necessary kinematics. Crucially, this fragmentation does not compromise global consistency because of our mask-aware conditioning. Since the unmasked background is fed as a visible input context, the model effectively learns “how the foreground moves *relative* to the fixed background” within each local window. This strong contextual anchoring ensures that the learned motion remains coherent and aligned with the environment when the full video is reassembled. As shown in Figure 13, the Low-Cost strategy maintains visual fidelity, motion smoothness, and temporal consistency comparable to standard full-frame training, validating the effectiveness of our decomposition approach.

C.2 ENGINEERING OPTIMIZATION: SWAP BLOCKS

To further democratize access, we leveraged the “swap blocks” technique supported by the `diffusion-pipe` codebase². This mechanism dynamically offloads frozen base model parameters to the CPU, keeping only trainable LoRA weights and active transformer blocks on the GPU. Table 4 quantifies the memory savings achieved by varying the `blocks_to_swap` parameter. By maximizing swapping (config 38), we reduce the peak VRAM to \sim 8 GB, making the training pipeline accessible on consumer-grade GPUs.

Table 4: Effect of “Swap Blocks” optimization on Peak VRAM (using 9-frame segments).

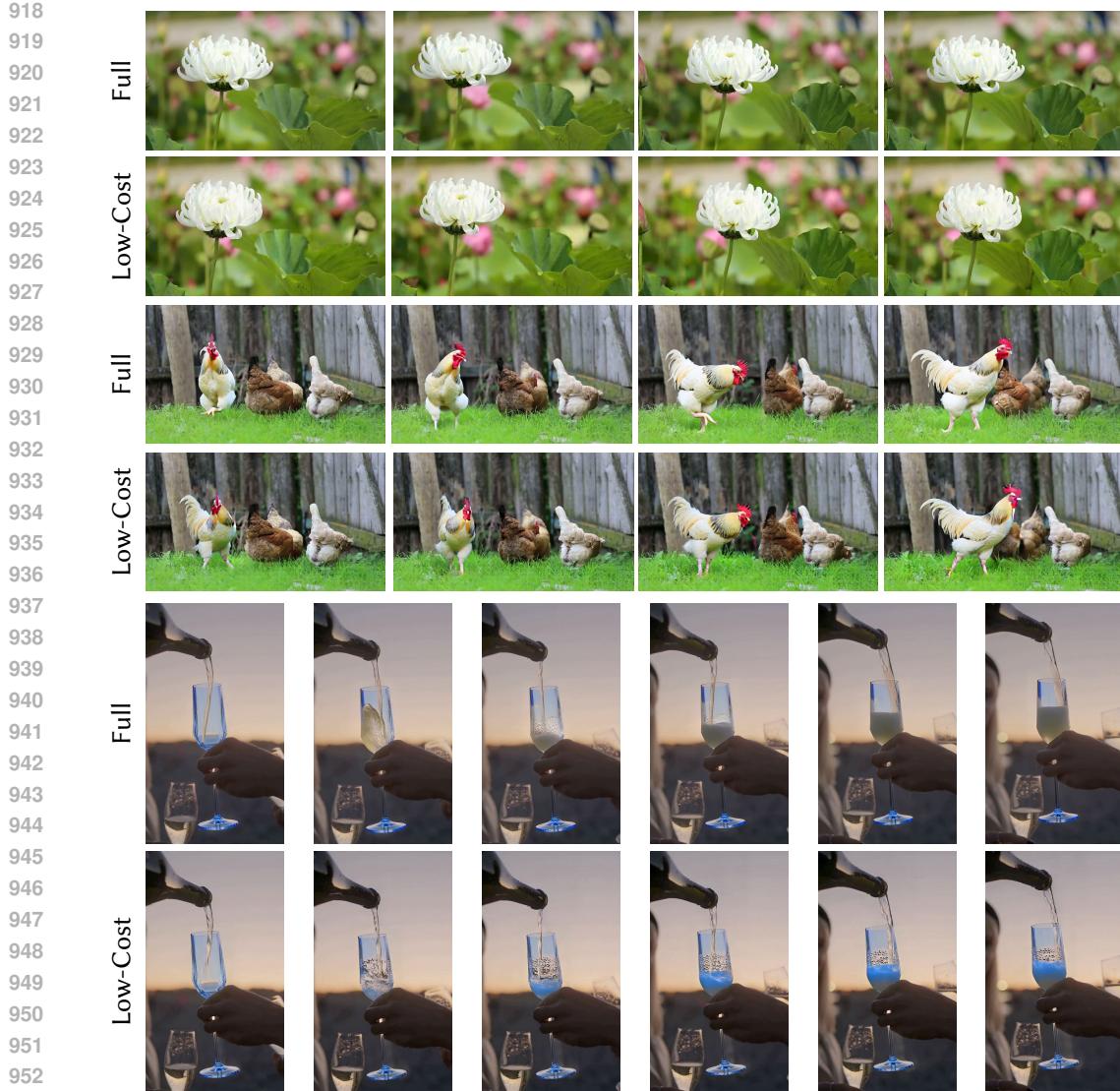
blocks_to_swap	0 (None)	16	32 (Default)	38 (Max)
Peak VRAM (MB)	25,097	16,305	9,987	7,617

C.3 RUN-TIME VRAM COMPARISON WITH BASELINES

We benchmarked the run-time VRAM usage of our method against state-of-the-art inference-only baselines on a single NVIDIA RTX 4090 (832×480 , 49 frames).

As shown in Table 5, our optimized Low-Cost strategy achieves a memory footprint comparable to inference-only baselines, demonstrating broad hardware accessibility.

²<https://github.com/tdrussell/diffusion-pipe>



954 **Figure 13: Visual comparison between Standard (Full) and Low-Cost strategies.** Top rows:
955 Results from standard training on the full 49-frame sequence. Bottom rows: Results from our
956 optimized training using 9-frame sliding windows. The results indicate that our memory-efficient
957 strategy preserves motion fidelity and structural details comparable to the full-frame baseline.

958
959
960 **Table 5:** Peak Run-Time VRAM comparison against inference-based methods. *For Go-with-the-
961 flow, the first value is Sampling VRAM, second is Peak Decoding VRAM.

Method	AnyV2V	Go-with-the-flow*	Ours (Standard)	Ours (Low-Cost)
Peak VRAM	13,680 MB	4,398 / 21,512 MB	21,522 MB	7,617 MB

966 D DIVERSE EDITING RESULTS

967
968 We present visual results of our method on diverse editing tasks in Fig. 14 and Fig. 15, including
969 object replacement, addition, and removal. We also include results for fast-motion and multi-person
970 scenario in Fig. 16 and results for long-form video in Fig. 17.

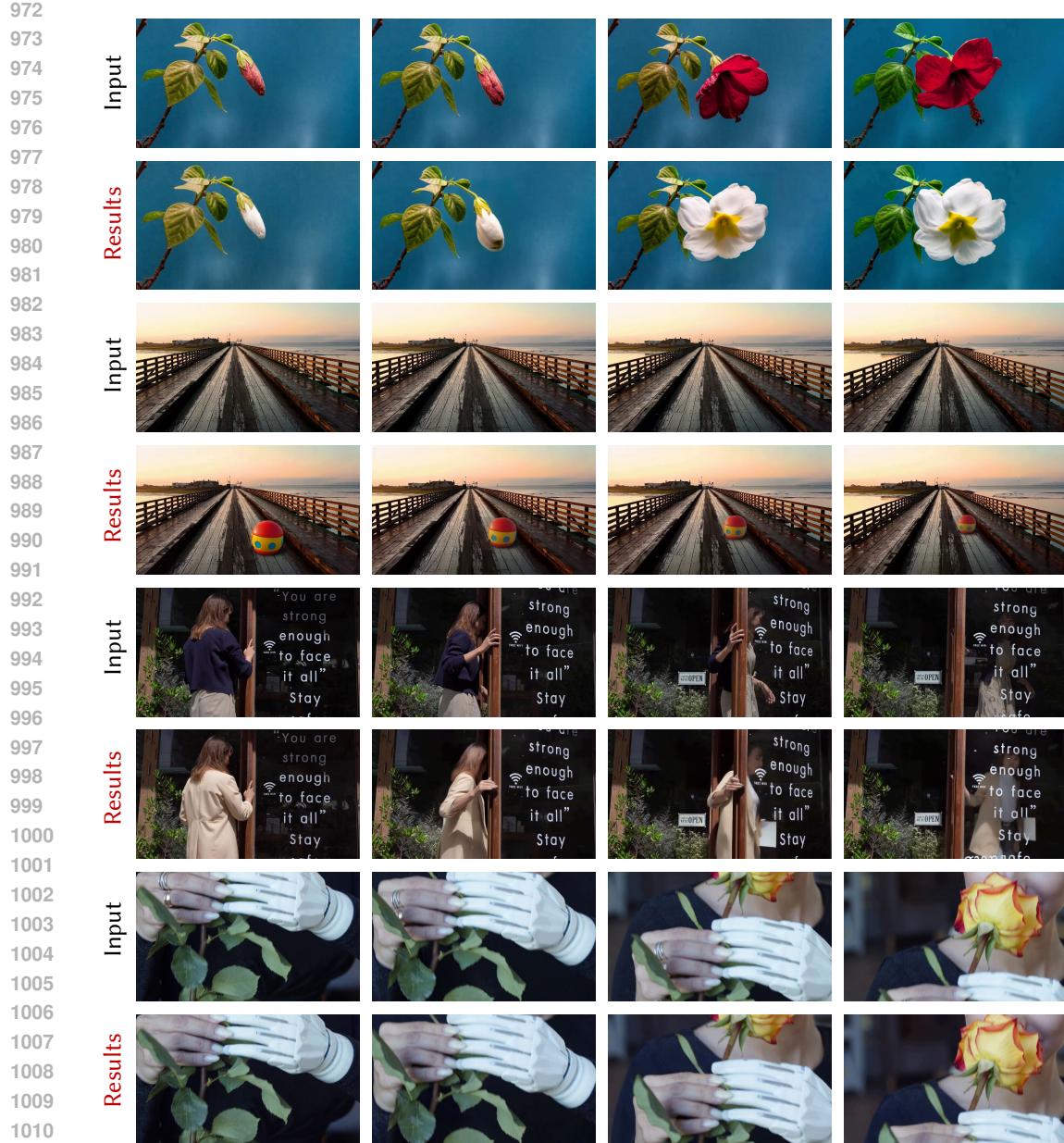


Figure 14: Diverse editing results (I).

E RESULTS WITH HUNYUANVIDEO-I2V MODEL

In addition to the main results based on Wan2.1-I2V, we also conducted experiments using HunyanVideo-I2V (See Fig. 18). It demonstrates the generalization ability of our framework across different I2V architectures.

F FAILURE CASES

Figure 19 illustrates representative limitations encountered by our framework. We observe specific difficulties in text generation and preservation (as seen in the top rows). Even with mask constraints, the model often degrades high-frequency semantic symbols into blurred texture, likely due to the

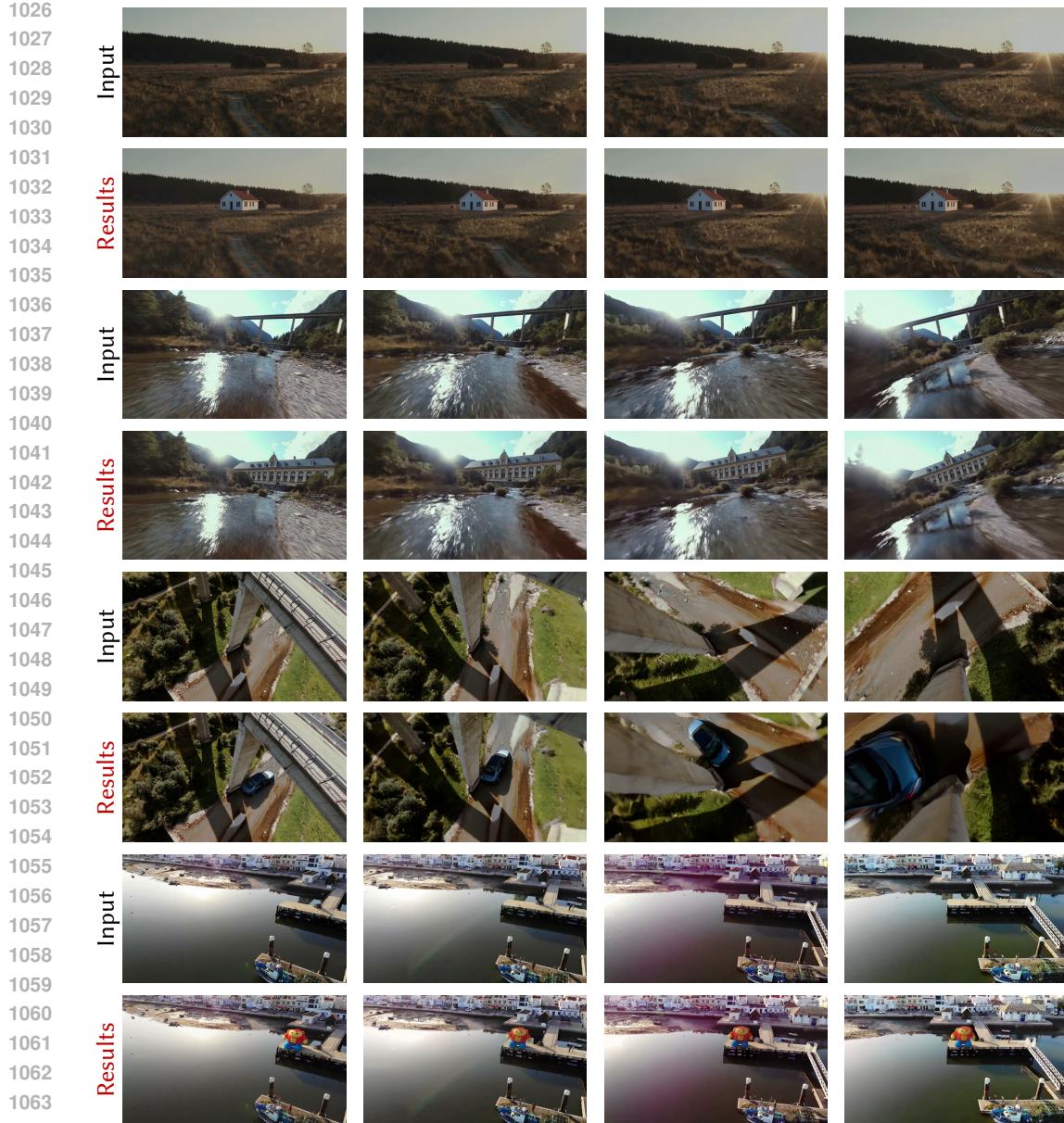


Figure 15: Diverse editing results (II).

compression loss of the underlying VAE. Additionally, limitations arise in complex motion preservation, as demonstrated in the bottom rows where the character's hair color is modified. In scenarios featuring rapid and highly stylized abstract motion, accurately decoupling the appearance update from the original dynamics becomes challenging, potentially resulting in unnatural deformations and disruptions to the structural integrity of the motion sequence.

G DETAILS OF USER STUDY

To evaluate the performance of our method, we conducted a user study with 50 participants. Each participant was randomly shown 10 groups of results generated by different methods. For each group, the participants were asked to select the best result based on two criteria: reference similarity and visual quality. The user study interface is shown in Figure 20.

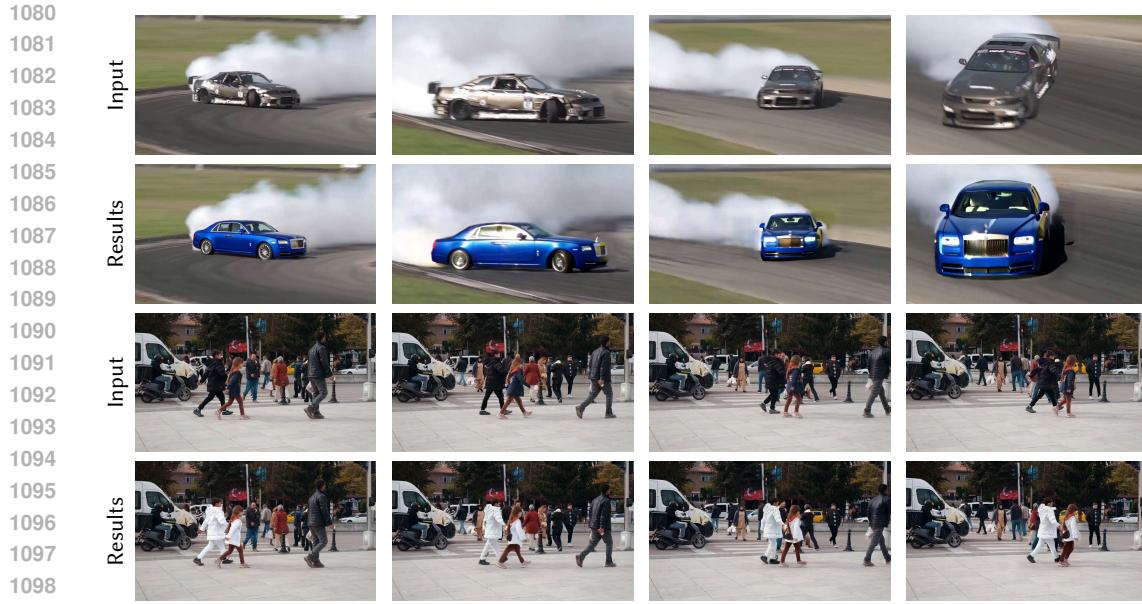


Figure 16: Diverse editing results (III).

Instructions to Participants: Participants were provided with the following instructions:

”You will be shown several video sequences with different edits applied. Each sequence will contain three options, each generated using a different method. The methods will be presented in a random order to avoid bias. Your task is to choose the option that best matches the reference image in terms of visual quality and how well the edit aligns with the reference image. Pay close attention to the consistency of the edits across the frames and how naturally they interact with the environment.”

After viewing each video sequence, participants were asked to answer the following two questions for each video:

1. **Reference Similarity:** Which video option best matches the reference image in terms of appearance and content?
2. **Visual Quality:** Which video option has the highest overall visual quality, considering both the foreground edit and the background consistency?

The demographic information of the participants, including their age distribution and professional background, is shown in Figure 21. This figure demonstrates the diversity of the participant pool, ensuring a wide range of perspectives in the user study.

H BROADER IMPACTS

The work presented in this paper introduces a flexible and controllable video editing method based on mask-aware LoRA fine-tuning. As with many advances in generative AI, our method holds both positive and negative societal implications.

Our video editing framework opens up new possibilities in creative fields, such as film production, digital art, and content creation, by enabling high-quality, real-time video edits with a high degree of control. This could streamline workflows for professionals in these industries, reducing the time and effort traditionally required for manual video editing. Additionally, our approach can be used in non-commercial domains, such as healthcare, where controllable video editing can assist in visualizing

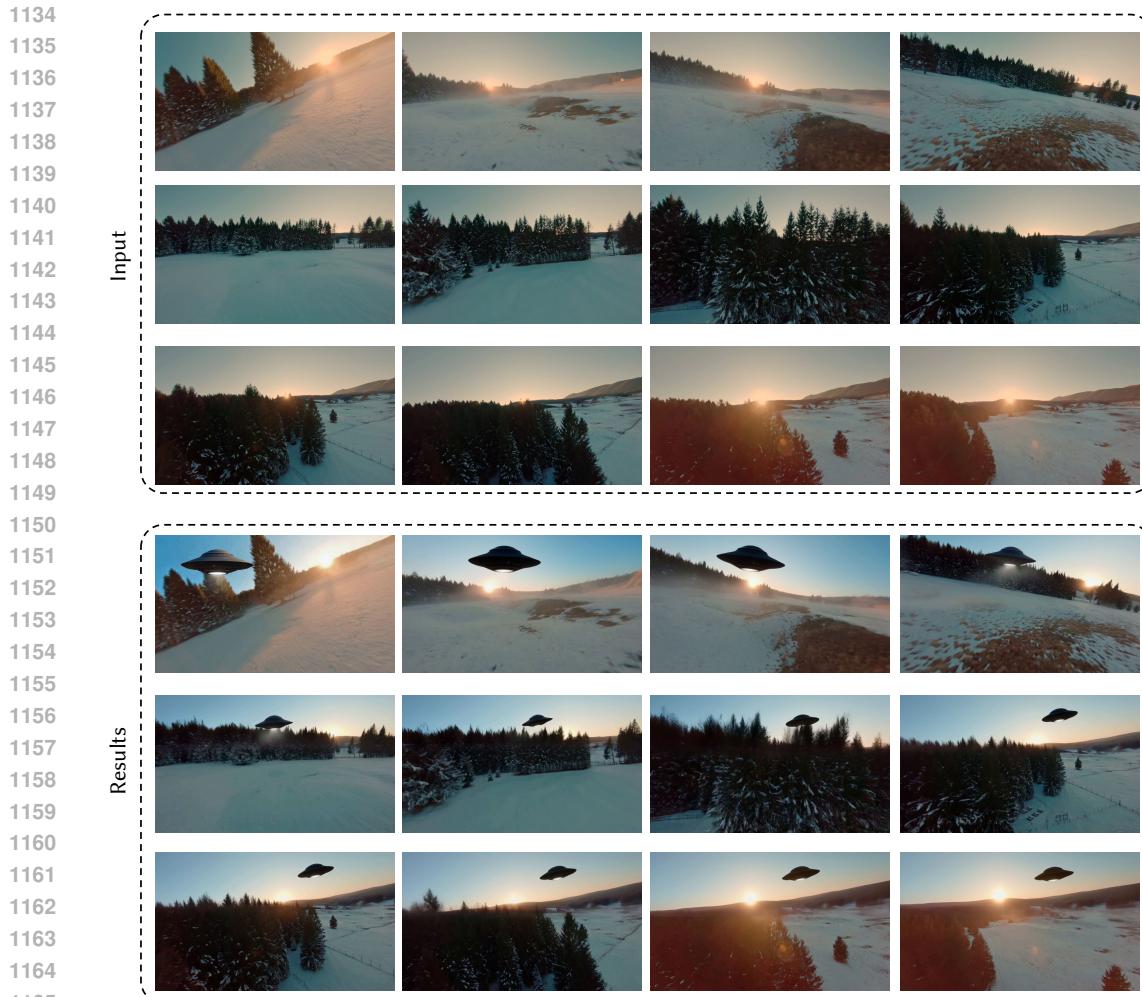


Figure 17: Diverse editing results (IV).

1170 complex medical data, simulations, and surgical procedures. In such contexts, our method can aid
 1171 in improving communication and understanding of visual information.

1172 While the benefits are substantial, the potential for misuse of generative video models also exists.
 1173 High-quality video editing tools can be misused to generate deepfakes, spreading misinformation or
 1174 altering videos in malicious ways. Given the high realism of edited videos, there is a risk that such
 1175 technologies could be exploited in political or social contexts, leading to challenges in verifying the
 1176 authenticity of media. This raises concerns about privacy, security, and trust in video-based content.

1177 To mitigate these risks, we advocate for responsible usage guidelines and the development of safety
 1178 measures for content creation tools powered by generative models. For example, platforms using
 1179 such technology could implement robust verification processes for user-generated content. Addi-
 1180 tionally, we encourage future research into model interpretability and the development of tools to
 1181 detect manipulated media, ensuring that generated content is easily distinguishable from original
 1182 footage.

1183

1184

I THE USE OF LARGE LANGUAGE MODELS

1185

1186

1187 During the preparation of this manuscript, we utilized a large language model (LLM) to aid in
 1188 polishing the writing. Specifically, it was employed to improve grammar, correct spelling, enhance

Figure 18: Results of our method applied to Wan2.1-I2V and Hunyuan Video-I2V.

clarity, and ensure the conciseness of the text. It also assisted in refining sentence structures to better adhere to a formal academic style. All scientific contributions, including the core methodology, experimental design, results, and their interpretation, were solely conceived and articulated by the human authors. The authors have thoroughly reviewed and edited the final version of the text and take full responsibility for all content presented in this paper.

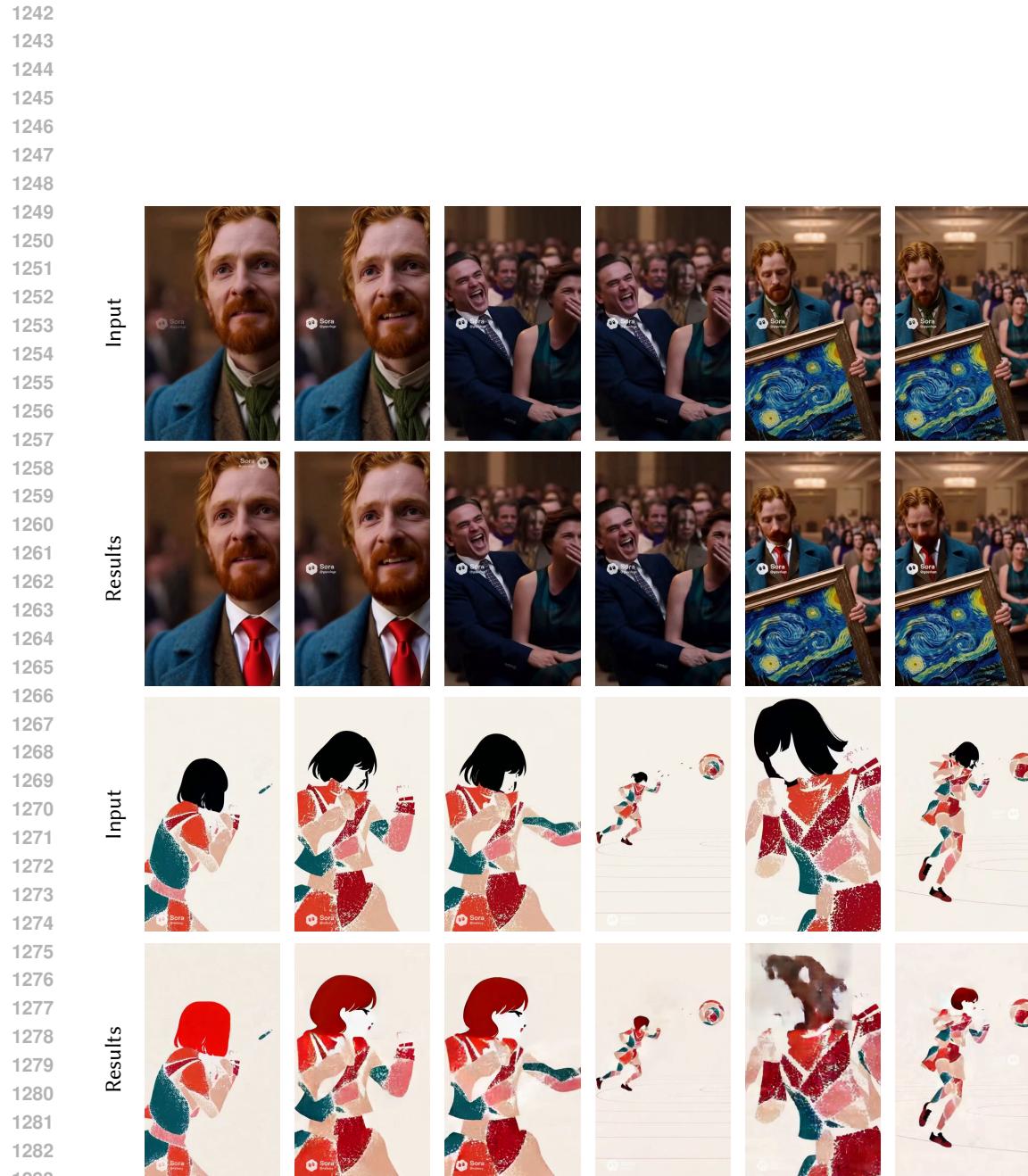


Figure 19: Failure cases. Top Rows: While the primary edit (suit and tie) is applied successfully, the model fails to preserve the fine-grained text characters in the watermark, leading to garbled glyphs. Bottom Rows: When modifying specific attributes (changing hair color to red) in scenarios with rapid and abstract motion, the method may struggle to align the new appearance with the original dynamics, resulting in body deformation and motion artifacts.

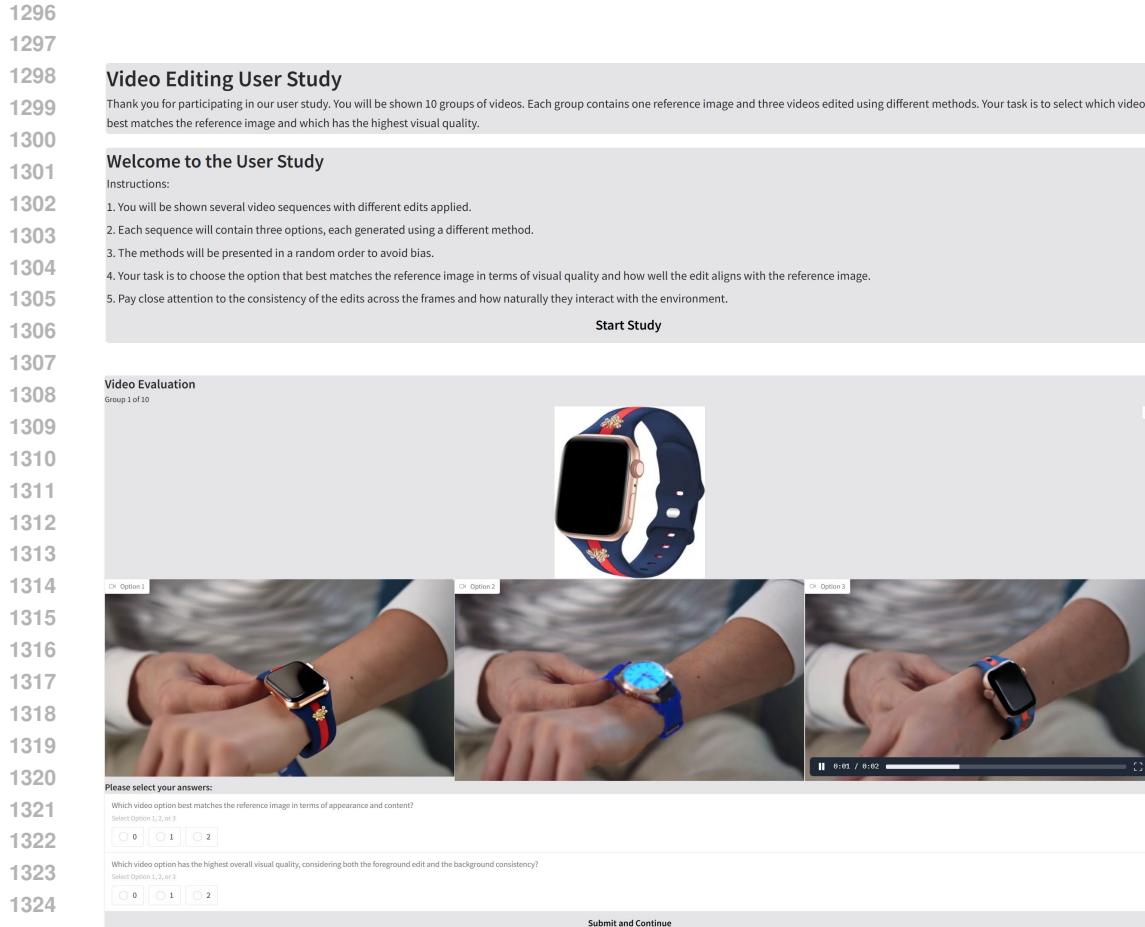


Figure 20: Screenshot of the user study interface.

