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Abstract
We present a nonparametric interpretation for
deep learning compatible modern Hopfield mod-
els and utilize this new perspective to debut effi-
cient variants. Our key contribution stems from
interpreting the memory storage and retrieval pro-
cesses in modern Hopfield models as a nonpara-
metric regression problem subject to a set of
query-memory pairs. Interestingly, our frame-
work not only recovers the known results from
the original dense modern Hopfield model but
also fills the void in the literature regarding ef-
ficient modern Hopfield models, by introducing
sparse-structured modern Hopfield models with
sub-quadratic complexity. We establish that this
sparse model inherits the appealing theoretical
properties of its dense analogue — connection
with transformer attention, fixed point conver-
gence and exponential memory capacity. Addi-
tionally, we showcase the versatility of our frame-
work by constructing a family of modern Hopfield
models as extensions, including linear, random
masked, top-K and positive random feature mod-
ern Hopfield models. Empirically, we validate our
framework in both synthetic and realistic settings
for memory retrieval and learning tasks. Code is
available at GitHub; future updates are on arXiv.

1 Introduction
We tackle the challenges in computational efficiency of
modern Hopfield models (Wu et al., 2024b; Hu et al., 2023;
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Ramsauer et al., 2020) — a class of transformer-compatible
associative memories. In short, we present a nonparametric
framework1, and then debuting efficient modern Hopfield
models with sub-quadratic complexity and appealing the-
oretical properties. Such a construction is of practical im-
portance. As in many Hopfield-centric methods (Hu et al.,
2024a; Wu et al., 2024a; Xu et al., 2024; Wu et al., 2024b;
Schimunek et al., 2023; Fürst et al., 2022; Paischer et al.,
2022; Seidl et al., 2022; Widrich et al., 2020), modern Hop-
field models (and their derived deep learning layers) serve
as powerful alternatives to the attention mechanism with
additional functionalities, but lack efficient implementation
for gigantic deep models (Hu et al., 2023, Section C.2).

This issue becomes more prominent in this era of Large
Foundation Models (Bommasani et al., 2021). Foundation
models are huge transformer-based models pretrained on
massive datasets, and play a central role not only in machine
learning but also in a wide range of scientific domains, such
as ChatGPT (Brown et al., 2020; Floridi & Chiriatti, 2020)
for natural language, BloombergGPT (Wu et al., 2023) for
finance, DNABERT (Zhou et al., 2024a;b; Ji et al., 2021)
for genomics, and many others. To push toward Hopfield-
based large foundation models, this work provides a timely
efficient solution, back-boned by a solid theoretical ground.

Modern Hopfield models (Ramsauer et al., 2020), motivated
by the dense associative memory models (Demircigil et al.,
2017; Krotov & Hopfield, 2016), are (auto-)associative
memory models that (i) have exponential memory capacity,
(ii) retrieve stored patterns based on input queries with only
one retrieval step, and (iii) are compatible with deep learn-
ing architectures. They achieve (i) by adopting highly non-
linear energy functions, (ii) by adopting a memory-retrieval
dynamics ensuring monotonic minimization of the energy
function, and (iii) by the connection between their memory
retrieval dynamics and attention mechanism. Deepening (ii)
and (iii), Hu et al. (2023) and Wu et al. (2024b) propose a
theoretical framework for deriving modern Hopfield models

1After completing the draft, the authors became aware of the
independent study by Nguyen et al. (2024) on a nonparametric
(primal-dual) formulation for Transformer attention. To our knowl-
edge, Nguyen et al. (2024) were the first to cast attention as an
ϵ-SVR solution (Awad et al., 2015; Vapnik, 2013; Kar & Karnick,
2012; Schölkopf & Smola, 2002). Our study presents a similar
framework but focuses on Hopfield-style associative memory.
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using various entropic regularizers. In addition, they intro-
duce a sparse extension of the original modern Hopfield
model to handle its computational burden and vulnerability
to noise. As a result, their proposal not only connects to
sparse attention mechanism (Correia et al., 2019; Martins &
Astudillo, 2016) but also offers both provably computational
advantages and robust empirical performance.

However, there are still some missing pieces:

• (P1) Lack of Efficiency. Computationally, while Hu et al.
(2023) and Wu et al. (2024b) indeed introduce sparsity
into their model, this sparsity does not implies computa-
tional efficiency. In fact, it only increases efficiency at
the level of memory retrieval, (i.e. the sparsity in (Hu
et al., 2023; Wu et al., 2024b) only leads to faster mem-
ory retrieval but not necessarily shorter running time, as
discussed in (Hu et al., 2023, Section C.2)). Namely, the
sparse modern Hopfield model still suffers by the O(n2)
complexity (with the input sequence length n), which
hampers its scalability2.

• (P2) Lack of Rigorous Analysis on Sparsity. Theoreti-
cally, because Hu et al. (2023) choose not to make strong
assumptions (on the memory and query patterns) in order
to maintain their model’s generality, they only offer qual-
itative justifications (Hu et al., 2023, Section 3). They do
not rigorously characterize how sparsity impacts different
aspects of the sparse model, e.g., the retrieval error, the
well-separation condition, and the memory capacity.

• (P3) Incomplete Connection between Attention and
Hopfield Models. Methodologically, while numerous
variants of the attention module exist (Choromanski et al.,
2021; Katharopoulos et al., 2020; Beltagy et al., 2020;
Child et al., 2019), Hu et al. (2023) only bridge a subset
of them to modern Hopfield models. A natural question
arises: How can we integrate the advancements of state-
of-the-art attention into modern Hopfield models? As
noted in (Hu et al., 2024b; 2023; Wu et al., 2024b), this
question is far from trivial. Naively substituting the soft-
max activation function with other alternatives does not
necessarily yield well-defined Hopfield models and might
sabotage their desirable properties and functionalities.

Overview of Our Theoretical Results. To fill these gaps,
this work presents a nonparametric framework for deep
learning compatible modern Hopfield models.

To fill (P1), this framework allows us to not only recover
the standard dense modern Hopfield model (Ramsauer et al.,
2020), but also introduce an efficient modern Hopfield
model, termed sparse-structured model (Theorem 3.2).

To fill (P2), our framework facilitates the derivation of a
2See Remark 3.6 for the connection between time complexity

of attention and of modern Hopfield models.

retrieval error bound of the sparse modern Hopfield with ex-
plicit sparsity dependence (Theorem 4.1). This bound offers
rigorous characterizations of the sparsity-induced advan-
tages of the sparse model compared with its dense counter-
part, including higher precision in memory retrieval (Corol-
lary 4.1.1 and Corollary 4.1.2), enhanced robustness to noise
(Remark 4.2) and exponential-in-d capacity (Lemma 4.1 and
Proposition 4.1, d refers to pattern size). Interestingly, un-
like existing Hopfield models (Hu et al., 2023; Wu et al.,
2023; Ramsauer et al., 2020) requiring an explicit energy
function to guarantee the stability of the model, we show
that the sparse modern Hopfield model guarantees the fixed-
point convergence even without details of the Hopfield en-
ergy function (Corollary 4.1.3).

To fill (P3), beyond introducing the sparse modern Hopfield
model, our framework supports a family of modern Hopfield
models that connect with various attention variants. This
complements the findings in (Hu et al., 2023; Wu et al.,
2024b), pushing us toward a more unified understanding.

Contributions. Our contributions are as follows:

• We propose a nonparametric framework for deep learning
compatible modern Hopfield models. Building upon this,
we introduce the first efficient sparse modern Hopfield
model with sub-quadratic complexity.

• We provide rigorous characterizations of the sparsity-
induced advantages of the proposed efficient model:
tighter retrieval error bound (Corollary 4.1.1 and Corol-
lary 4.1.2), stronger noise robustness (Remark 4.2) and
exponential-d-capacity (Lemma 4.1 and Proposition 4.1).

• Based on the proposed framework, we construct a family
of modern Hopfield models connecting to many existing
attention variants (Choromanski et al., 2021; Zaheer et al.,
2020; Beltagy et al., 2020; Katharopoulos et al., 2020).
We also verify their efficacy through thorough numerical
experiments in both synthetic and realistic settings (mem-
ory retrieval and learning performance in Appendices G.1
to G.4 and efficiency in Appendix G.5.).

Notations. We denote vectors by lower case bold letters,
and matrices by upper case bold letters. We write ⟨a,b⟩ :=
aTb as the inner product for vectors a,b. Let a[i] denotes
the i-th element of vector a. The index set {1, · · · , I} is
denoted by [I], where I ∈ N+. The spectral norm is denoted
by ∥·∥, which is equivalent to the l2-norm when applied to
a vector. We denote the memory patterns by ξ ∈ Rd and
the query pattern by x ∈ Rd, and Ξ := [ξ1, · · · , ξM ] ∈
Rd×M as shorthand for stored memory patterns {ξµ}µ∈[M ].
Moreover, we set m := Maxµ∈[M ] ∥ξµ∥.

Organization. Section 2 reviews modern Hopfield mod-
els. Section 3 presents a nonparametric construction for
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Figure 1. A High-level Visualization. The upper row formalizes the memorization and retrieval of standard modern Hopfield model (Wu
et al., 2024b; Hu et al., 2023; Ramsauer et al., 2020). The lower row conceptualizes our nonparametric interpertation.

modern Hopfield models, and debut the sparse-structured
(efficient) modern Hopfield models. Section 4 provides the
theoretical analysis on the sparse-structured modern Hop-
field models. Appendix E includes a family of modern Hop-
field models as possible extensions. We conduct numerical
experiments to support our framework in Appendix G.

1.1 Related Work

Modern Hopfield Models for Deep Learning. The clas-
sical Hopfield models (Amari, 1972; Hopfield, 1984; 1982;
Krotov & Hopfield, 2016) are canonical models of the hu-
man brain’s associative memory. Their primary function is
the storage and retrieval of specific memory patterns. Re-
cently, a resurgence of interest in Hopfield models within the
machine learning field is attributed to developments in un-
derstanding memory storage capacities (Krotov & Hopfield,
2016; Demircigil et al., 2017; Wu et al., 2024a), innovative
architecture (Hoover et al., 2023; Seidl et al., 2022; Fürst
et al., 2022; Ramsauer et al., 2020), and their biological
plausibility (Kozachkov et al., 2022; Krotov & Hopfield,
2021). Notably, the modern Hopfield models (Wu et al.,
2024b; Hu et al., 2023; Ramsauer et al., 2020; Brandstet-
ter, 2021), demonstrate not only a strong connection to
the transformer attention mechanisms in deep learning, but
also superior performance, and a theoretically guaranteed
exponential memory capacity. In this regard, seeing the
modern Hopfield models as an advanced extension of atten-
tion mechanisms opens up prospects for crafting Hopfield-
centric architectural designs. Therefore, their applicability
spans diverse areas like drug discovery (Schimunek et al.,
2023), immunology (Widrich et al., 2020), tabular learning
(Xu et al., 2024), time series forecasting (Wu et al., 2024b;
Auer et al., 2024), reinforcement learning (Paischer et al.,
2022), and large foundation models (Hu et al., 2024a; Fürst
et al., 2022). This work emphasizes refining this line of
research towards efficient models. We posit that this effort
is crucial in guiding future research towards Hopfield-driven
design paradigms, especially for larger models.

Sparse Modern Hopfield Model. (Ramsauer et al., 2020)

establish a connection between Hopfield models and the
vanilla softmax attention. Motivated by this connection,
(Hu et al., 2023; Wu et al., 2024b) (and later (Martins et al.,
2023)) propose a theoretical framework for modern Hopfield
models based on the relationship between entropic regular-
izers and finite-domain distributions with varying support
sets. Importantly, they not only show that (Ramsauer et al.,
2020) is just special case within their framework but also
propose a sparse extension with superior properties (e.g.,
robust representation learning, fast fixed-point convergence,
and exponential memory capacity) and connection to cer-
tain types of sparse attention. However, this is not end of
the story. As highlighted in (Hu et al., 2023, Section E),
their framework only bridges a subset of existing attention
variants (with dense quadratic attention score matrix) and
hence is not complete. This work fills this theoretical gap
by providing a principle construction for the many modern
Hopfield models with theoretical guarantees. Moreover, our
framework supports a family of modern Hopfield models
mirroring many popular structured efficient attention mech-
anisms, including Attention with Pre-defined Patterns (each
sequence token attends to a predetermined subset of tokens
instead of the entire sequence, e.g, Big Bird (Zaheer et al.,
2020), Longformer (Beltagy et al., 2020), Blockwise (Qiu
et al., 2019), Sparse (Child et al., 2019)), and Kernelized At-
tention (e.g., Performer (Choromanski et al., 2021), Linear
(Clevert et al., 2015) and Multi-head (Vaswani et al., 2017)).

Sparse-Structured Hopfield Models. After completing
this work, the authors attended ICML 2024 and learned
of a study by Santos et al. (2024b) proposing a different
model, also named the sparse-structured Hopfield network.
Both models emphasize sparse retrieval patterns. However,
Santos et al. (2024a;b) differ in (i) introducing sparsity via
optimized Fenchel-Young energies and (ii) enhancing ef-
ficiency using the SparseMAP transformation and active
set algorithm (Niculae et al., 2018) with predefined k-ary
relations among stored patterns or top-k operations.
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2 Background: Modern Hopfield Models
This section presents the ideas we build on.

Let x ∈ Rd be the input query pattern and Ξ =
[ξ1, · · · , ξM ] ∈ Rd×M the M memory patterns.

Hopfield Models. The aim of Hopfield models (Amari,
1972; Hopfield, 1982; 1984) is to store these memory pat-
terns Ξ and retrieve a specific memory ξµ when given a
query x. They achieve these by embedding the memories
in the energy landscape E(x) of a physical system, where
each memory ξµ corresponds to a local minimum. When a
query x is presented, the model initiates energy-minimizing
retrieval dynamics T at the query, which then navigate the
energy landscape to find the nearest local minimum, effec-
tively retrieving the memory most similar to the query.

These models comprise two primary components: an en-
ergy function E(x) that encodes memories into its local
minima, and a retrieval dynamics T (x) that fetches a mem-
ory by iteratively minimizing E(x) starting with a query.
Constructing E(x), is straightforward. As outlined in (Kro-
tov & Hopfield, 2016), memories get encoded into E(x)
using the overlap-construction: E(x) = F (ΞTx), where
F : RM → R is a smooth function. This encourages the
memories {ξµ}µ∈[M ] to reside at the stationary points of
E(x), i.e., ∇xF (Ξ

Tx)|ξµ
= 0 for all µ ∈ [M ]. The choice

of F results in different Hopfield model types, as demon-
strated in (Krotov & Hopfield, 2021; Ramsauer et al., 2020;
Demircigil et al., 2017; Krotov & Hopfield, 2016).

However, determining a suitable retrieval dynamics, T , for
a given energy E(x) is more challenging. For effective
memory retrieval, the iterative retrieval dynamics T must:

(T1) Monotonically reduce E(x) when applied iteratively.

(T2) Ensure its fixed points coincide with the stationary
points of E(x) for precise retrieval.

Modern Hopfield Models. Ramsauer et al. (2020) pro-
pose the modern Hopfield model with a specific set ofE and
T satisfying above requirements, and integrate it into deep
learning architectures via its strong connection with atten-
tion mechanism, offering enhanced performance, and theo-
retically guaranteed exponential memory capacity. Specifi-
cally, they introduce the energy function:

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩, (2.1)

where the retrieval dynamics is given by

xnew = TDense(x) = Ξ · Softmax(βΞTx). (2.2)

The function lse (β, z) := log
(∑M

µ=1 exp{βzµ}
)
/β is the

log-sum-exponential for any given vector z ∈ RM and
β > 0. Their analysis reveals that:

1. TDense dynamics converge well (T2) and can retrieve pat-
terns accurately in just one step (T1).

2. Modern Hopfield model from (2.1) possesses an expo-
nential memory capacity in pattern size d.

3. Notably, the one-step approximation of TDense mirrors the
attention mechanism in transformers, leading to a novel
deep learning architecture design: the Hopfield layers.

Attention ↔ Modern Hopfield Model. To see above 3.,
suppose that X and Ξ are embedded from the raw query R
and Y memory patterns, respectively, via XT = RWQ :=
Q, and ΞT = YWK := K, with some projection matrices
WQ and WK . Then, taking the transpose of T in (2.2) and
multiplying with WV such that V := KWV , we obtain

Z := QnewWV = Softmax
(
βQKT

)
V. (2.3)

This enables modern Hopfield models to serve as alterna-
tives to attention mechanism with extra functionalities.

Given the equivalence (2.3), one might wonder if the quest
for efficient modern Hopfield models is equivalent to seek-
ing efficient attention mechanisms (Tay et al., 2022), specif-
ically in terms of finding efficient implementations of the
Softmax matrix computation. We contend that they are
not the same. To build a modern Hopfield model, we ex-
pect not only its retrieval dynamics to connect to attention
mechanism, but also it to serve as an associative memory
model (Hu et al., 2024a; Wu et al., 2024b; Hu et al., 2023;
Ramsauer et al., 2020) by design. Moreover, we observe
that (T1) and (T2) are essentially about encoding memories
onto the fixed points of T .

These motivate us to view the construction of T as a learn-
ing problem: we aim to learn a function T satisfying (T2)
from a dataset consisting of query-memory pairs. Thus,
rather than using the traditional Hopfield model’s learning
rule — where the model memorizes memories by defining
an energy function, like the overlap-construction (Hu et al.,
2023) — we interpret the memorization process as learning
a function that maps queries to memories. This new perspec-
tive allows us to construct novel modern Hopfield models
that are equivalent to various attention variants.

3 Nonparametric Modern Hopfield Models
High-Level Overview.

• In Section 3.1, we formulate the memory storage and
retrieval of modern Hopfield models as a nonparametric
regression problem. We first align the definition of T (the
retrieval dynamics (2.2)) with a nonparametric regression
problem subject to a set of query-memory pairs. Then,
by solving for optimality, we derive a nonparametric for-
mulation of T .
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• In Section 3.2, we showcase our framework with two
special cases: the standard dense modern Hopfield model
(Ramsauer et al., 2020) (Lemma 3.1), and a new, efficient
sparse-structured modern Hopfield model (Theorem 3.2).

3.1 Retrieval Dynamics

The retrieval dynamics (2.2) TΞ(x) : Rd → Rd maps an in-
put query x to TΞ(x), with the aim of retrieving the memory
pattern ξµ closest to x. To formalize this notion of retrieval,
we need a few definitions and notation.

Definition 3.1 (Generalized Fixed Point (Sriperumbudur &
Lanckriet, 2009)). We say a set S ⊆ Rd a generalized fixed
point with respect to TΞ if TΞ(y) ∈ S for every y ∈ S.

Remark 3.1 (Fixed Point). In contrast, a fixed point of TΞ
is a point y for which TΞ(y) = y.

In particular, if the retrieval dynamics is initiated at x ∈ S
where S is an invariant set3, then subsequent iterates such
as TΞ(x), TΞ ◦ TΞ(x), . . . remain in the invariant set S .

Now we introduce a neighborhood — Sµ, a ball of radius
R — at every memory pattern ξµ:

Sµ = {ξ | ∥ξ − ξµ∥ ≤ R},

where R :=
1

2
min

µ,ν∈[M ];µ̸=ν
∥ξµ − ξν∥.

By definition, neighborhoods associated with distinct mem-
ory patterns do not overlap: Sµ ∩ Sν = ∅ for µ ̸= ν. To
measure the progress of the dynamics in retrieving the mem-
ory pattern, we introduce the notion of memory storage and
ϵ-retrieval.

Definition 3.2 (Storage and ϵ-Retrieval). A memory pattern
ξµ is stored if Sµ is a generalized fixed point of T . A
memory pattern ξµ gets ϵ-retrieved by TΞ with an input
query x if ∥TΞ(x)− ξµ∥ ≤ ϵ.

In below, when the context is clear, we suppress the notation
dependence of TΞ on the memory patterns Ξ for simplicity.

Definition 3.2 states that for an input x around a stored
memory pattern ξ, its corresponding mapping output T (x)
should be located in the same sphere S. This motivates us
to view T as a function aiming to map the query x onto
its nearest memory ξ within an error-tolerance margin R.
More precisely, we construct such a function satisfying Def-
inition 3.2 as a learning problem, using memory patterns
as data. A natural choice for doing this function is through
the soft-margin SVR (Awad et al., 2015; Vapnik, 2013;
Kar & Karnick, 2012; Schölkopf & Smola, 2002) (also see
Appendix C.1 for a concise overview): it fits the best hy-
perplane to the data points within a predefined error margin,

3A generalized fixed point S with respect to TΞ is also an
invariant set with respect to TΞ.

aiming to minimize the error rate while ensuring the model
remains insensitive to errors within a certain threshold.

We first define the regression model. Given a weight matrix
W ∈ Rd×DΦ , and a feature map Φ : Rd → RDΦ , denote
fW,Φ : Rd → Rd to be the mapping

fW,Φ(x) = WΦ(x). (3.1)

Denote K(x1, x2) := ⟨Φ(x1),Φ(x2)⟩. This is a positive
semidefinite kernel, and there is a unique RKHS H associ-
ated with this kernel K (Wainwright, 2019, Theorem 12.11).

To cast T as a SVR problem using (3.1), we now specify the
data points that f(x) should fit. Since the goal of T is to re-
trieve the memory pattern most similar to given query x, we
consider the training dataset D = {(ξµ + δξµ, ξµ)}µ∈[M ].
Namely, the input query x = ξµ + δξµ is the contami-
nated target memory pattern with noise δξµ, and the output
y = ξµ is target memory pattern. For convenience, we
shorthand [ξ1 + δξ1, · · · , ξM + δξM ] = Ξδ ∈ Rd×M as
the contaminated memory patterns.

Next, we frame the memorization in modern Hopfield mod-
els as fitting f to the dataset D, and obtain the following
nonparametric (support vector) regression problem. Given a
dataset D = {(ξµ + δξµ, ξµ)}µ∈[M ], consider the support
vector regression using the feature map Φ

Min
W,η,η̃

1

2
∥W∥2 + C

M∑
µ=1

⟨1, (ηµ + η̃µ)⟩ s.t. (3.2)
−(ϵ′1+ η̃µ) ≤ ξµ − ⟨W,Φ(ξµ + δξµ)⟩ ≤ ϵ′1+ ηµ

ϵ′1+ ηµ ≤ ϵ1/
√
d

ηµ ≥ 0, η̃µ ≥ 0, ∀µ ∈ [M ],

where the constraints are component-wise, ϵ′ > 0 is a
component-wise error margin, C ≥ 0 is a penalty coef-
ficient, and ϵ > 0 is the memory retrieval error. We denote
the unique (given the strong convexity of the optimization
problem (3.2)) minimizer as (W∗

Φ,η
∗
Φ, η̃

∗
Φ), and the solu-

tion to (3.2) as TSVR(x). By solving the optimality via the
Lagrangian duality, we obtain the following.

Theorem 3.1. Let α, α̃ denote the Lagrangian multipliers
of the dual problem of (3.2). Let W⋆ := (w⋆

1, . . .w
⋆
d)

T ∈
Rd×DΦ denote the minimizer of (3.2). Then,

w⋆
i =

M∑
µ=1

(αµ[i]− α̃µ[i])︸ ︷︷ ︸
∈R

Φ(ξµ + δξµ)︸ ︷︷ ︸
∈RDΦ

,

where a[i] denotes the i-th element of a vector a.

Proof. See Appendix D.1 for a detailed proof.

For any featurization map Φ, Theorem 3.1 introduces a
map TSVR,Φ := fW∗

Φ,Φ. By construction, for any Φ, TSVR,Φ
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obeys the ϵ-retrieval property ∥TSVR,Φ(x)− ξµ∥ ≤ ϵ, for
any µ and x ∈ Sµ. Hence, we arrive a nonparametric inter-
pretation for constructing many modern Hopfield models.
Given an input query x, the i-th component of the retrieved
pattern by applying TSVR(x) once is

xnew[i] := TSVR(x)[i] = ⟨w⋆
i ,Φ(x)⟩ . (3.3)

Remark 3.2. Note that ϵ′ is the component-wise SVR error,
not the ϵ in Hopfield retrieval error defined in Definition 3.2.

Remark 3.3. Without any assumption on ϵ, TSVR converges
to generalized fixed points, in contrast to the fixed point
convergence in (Hu et al., 2023; Ramsauer et al., 2020).
Thus, there is no multiple update convergence for TSVR
without specifying Φ (and thereby proving the fixed point
convergence property.) We provide specific Φ with provably
fixed point convergence in Section 3.2 and Remark 4.3.

Remark 3.4. This regression problem is nonparametric.
That is, it does not assume a specific functional form for
TSVR and is flexible in the number of parameters, allowing
the number of support vectors to adjust based on the data.

Intuitively, this optimization problem learns a TSVR,Φ
to replace T from the training dataset D = {(ξµ +
δξµ, ξµ)}µ∈[M ]. Thus, for any given query ξµ+δξµ, TSVR,Φ
retrieves a target memory pattern ξµ with ϵ precision, for all
µ ∈ [M ]. Specifically, this ϵ precision comes from the up-
per bound of the maximum component-wise error ϵ′+ηµ[i]

(and ϵ′ + η̃µ[i]) ≤ ϵ/
√
d, defined in (3.2). This choice of

SVR error margin mimics the ϵ-retrieval of modern Hopfield
models via the flexibility of soft-margin SVR. As a result,
the objective of the SVR problem (3.2) coincides with the
memorization and retrieval processes of modern Hopfield
models. While T retrieves memory patterns {ξµ}µ∈[M ]

based on x with an error tolerance ϵ, the SVR problem (3.2)

• (Memorization:) Fits a function TSVR satisfying Defini-
tion 3.2, which

• (Retrieval:) Maps queries onto memory patterns within
a component-wise error-margin ϵ/

√
d.

Importantly, Theorem 3.1 enables us to derive a family
of nonparametric modern Hopfield models through con-
structing their retrieval dynamics with various kernel func-
tions Φ(·), including Dense (Ramsauer et al., 2020), Linear
(Katharopoulos et al., 2020), Multi-Head (Vaswani et al.,
2017), Sparse-Structured (Zaheer et al., 2020; Beltagy et al.,
2020; Child et al., 2019) and Generalized Kernelizable or
Positive Random Features (Choromanski et al., 2021) mod-
ern Hopfield models. Appendix E includes constructions of
these models as extensions from our framework.

3.2 Nonparametric Dense and Sparse-Structured
Modern Hopfield Models

In this section, we showcase the nonparametric framework
Theorem 3.1 with two special cases. First, we recover the
standard dense modern Hopfield model (Ramsauer et al.,
2020). Then, we introduce the efficient sparse-structured
modern Hopfield models with sub-quadratic complexity.

Dense Modern Hopfield Model (Ramsauer et al., 2020).

Lemma 3.1 (Nonparametric Dense Mod-
ern Hopfield Model). Let Φ(·) =

(ϕ
(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1
, . . . , ϕ

(n)
1 , . . . , ϕ

(n)
Dn
, . . .) with the

formulation, for 1 ≤ D′ ≤ Dn with Dn :=
(
d+n−1

n

)
,

ϕ
(n)
D′ :=

(
√
βx1)

ℓ1 · · · (
√
βxd)

ℓd∑M
µ=1 ⟨Φ(ξµ + δξµ),Φ(x)⟩ ·

√
ℓ1! · · · ℓd!

, (3.4)

where ℓ1 + · · ·+ ℓd = n. By Theorem 3.1, fitting TSVR on
D following (3.2) gives

TDense(x) = ΞSoftmax
(
βΞT

δ x
)
∈ Rd, (3.5)

where Ξδ := [ξ1 + δξ1, · · · , ξM + δξM ] ∈ Rd×M denotes
the contaminated memory patterns.

Proof Sketch. We first select Φ to be the Taylor expansion
of the exp function via the exp kernel’s feature expansion
(Nguyen et al., 2024; Hamid et al., 2014; Kar & Karnick,
2012; Schölkopf & Smola, 2002). By solving the optimiza-
tion problem (3.2), we arrive a retrieval dynamics resem-
bling (2.2). See Appendix D.2 for a detailed proof.

Remark 3.5 (Hetero- v.s. Auto-Associative Memory.).
So far, we derive a nonparametric framework for hetero-
associative modern Hopfield models, differentiating x and
y by incorporating inherent noise δξ into D. If we elimi-
nate noises {δξµ}µ∈[M ] from the training memory patterns,
(3.5) reduces to that of the standard auto-associative dense
modern Hopfield model, as shown in (2.2).

With Remark 3.5, Lemma 3.1 facilitates the replication of
known results from the standard dense modern Hopfield
model (Ramsauer et al., 2020). The recovery of dense
modern Hopfield model provides a sanity check for our
nonparametric framework.

Sparse-Structured Modern Hopfield Models. Next, we
present a set of efficient modern Hopfield models with
sparse-structured patterns via the following mask.

Definition 3.3 (Sparse-Structured Mask). Let M :=
{M(1), . . . ,M(k)} ⊆ {1, . . . ,M} be the reduced sup-
port set for TSVR of size k ≤ M . Then, for µ ∈ [M ], the
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optimization problem in (3.2) reduces to

Min
W,η,η̃

1

2
∥W∥2 + C

∑
µ∈M

⟨1, (ηµ + η̃µ)⟩ s.t. (3.6)


−(ϵ′1+ η̃µ) ≤ ξµ − ⟨W,Φ(ξµ + δξµ)⟩ ≤ ϵ′1+ ηµ

ϵ′1+ ηµ ≤ ϵ1/
√
d

ηµ ≥ 0, η̃µ ≥ 0,∀µ ∈ M.

With Definition 3.3, we obtain the following sparse-
structured retrieval dynamics (and thereby its corresponding
Hopfield model(s)) by fitting TSVR on D masked by M.

Theorem 3.2 (Sparse-Structured Modern Hopfield Models).
Let Φ(·) = (ϕ

(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1
, . . . , ϕ

(n)
1 , . . . , ϕ

(n)
Dn
, . . .)

with, for 1 ≤ D′ ≤ Dn with Dn :=
(
d+n−1

n

)
,

ϕ
(n)
D′ :=

(
√
βx1)

ℓ1 · · · (
√
βxd)

ℓd∑
µ∈M ⟨Φ(ξµ + δξµ),Φ(x)⟩ ·

√
ℓ1! · · · ℓd!

,

where ℓ1 + · · ·+ ℓd = n. By Theorem 3.1, fitting TSVR on
D masked by M following (3.6) gives

TSparse(x) =
∑
µ∈M

[
Softmax(βΞ⊤

Mx)
]
µ︸ ︷︷ ︸

∈R

ξµ, (3.7)

where ΞM := [· · · , ξj + δξj · · · ] ∈ Rd×|M| with j ∈
[|M|].

Proof. See Appendix D.3 for a detailed proof.

We emphasize that (3.7) is in fact generic and is able to de-
scribe many sparse-structured modern Hopfield models with
various support sets. Importantly, it allows us to construct
efficient variants with sub-quadratic complexity, and hence
fills the void in the literature regarding efficient modern
Hopfield models, as discussed in (Hu et al., 2023).

We present three efficient variants based on (3.7) below.
To analyze efficiency for long query sequences4, we first
generalize (3.7) from a single query x to a sequence of L
query denoted by X = [x1, . . . ,xL]. Let the binary matrix
IM be the corresponding sparse-sturctured mask.
Example 1 (Random Masked Modern Hopfield Model
with O(kL) Complexity). By setting M to randomly mask
(M − k) entries, we obtain an efficient modern Hopfield
model with a sub-quadratic O(kL) complexity. This model
connects to the random attention of BigBird (Zaheer et al.,
2020).
Example 2 (Efficient Modern Hopfield Model with
O(L

√
L) Complexity). By setting M for each query in

a way that IM reproduces the sliding window pattern of

4Considering long query sequences is crucial, as they contribute
to inefficiency (see (Hu et al., 2023, Section C.2)).

window size
√
L, we obtain an efficient modern Hopfield

model with a sub-quadratic O(L
√
L) complexity. This

model connects to the Longformer attention (Beltagy et al.,
2020) by design.
Example 3 (Top-K Modern Hopfield Model). Let the
sequence {pµ}µ∈[M ] be the inner products of memories
{ξµ}µ∈[M ] and query x, i.e., pµ := ⟨x, ξµ⟩, and let p⋆ be
the K-th largest element in {pµ}µ∈[M ]. Then we obtain a
sparse-structured mask M such that{

µ ∈ M, if pµ ≥ p⋆

µ ̸∈ M, if pµ < p⋆.
(3.8)

With (3.8), we arrive a top-K modern Hopfield model with
quadratic complexity, i.e., inefficient. This model connects
to the top-K attention (Gupta et al., 2021) by design.
Remark 3.6 (Time Complexity of Modern Hopfield Models
and Attention Mechanism). The time complexity of modern
Hopfield models and Hopfield layers is given by:

• Time complexity of modern Hopfield model: O(Md2).

• When used as cross-attention (Hopfield layer) with length-
L (query) and length-M (memory) input sequences:
O(LMd2).

• When used as self-attention with length-L input sequence
(set M = L): O(n2d2).

Our efficient modern Hopfield models achieve high effi-
ciency through two means: a sparse-structured mask and
various choices of the kernel Φ. The sparse-structured mask,
with a support set size of k ≤ M , reduces the complexity
from O(Md2) to O(kd2). Additionally, different choices of
kernel, such as the linear kernel and positive random kernel
in Appendix E, lead to efficient implementations.

Numerically, we verify their performance in Appendices G.1
to G.4 and efficiency in Appendix G.5 (e.g., duration time
in Figure 6 and Floating point operations in Figure 7.)

4 Theoretical Analysis
In this section, we characterize how sparsity affects the
sparse-structured models defined in (3.7). Our theoretical
analysis on these new sparse models5 consists of the follow-
ing two aspects:

1. Derive the sparsity-dependent retrieval error bound and
prove their fixed point convergence.

2. Characterize the fundamental limit of memory capacity.

5We use plural “models” as M in (3.7) is a generic expression
for many models with different sparse patterns.
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As a reminder, we adopt Definition 3.2 for memory storage
and retrieval. Additionally, we recall the following defini-
tion regarding the separation between memory patterns.

Definition 4.1 (Separation of Patterns). The separation of
a memory pattern ξµ from all other memory patterns Ξ is
defined as its minimal inner product difference to any other
patterns: ∆µ := Minν,ν ̸=µ [⟨ξµ, ξµ⟩ − ⟨ξµ, ξν⟩].

4.1 Memory Retrieval: Error Bounds and Fixed Point
Convergence

Memory Retrieval Error Bounds. To analyze the accu-
racy of memory retrieval, we derive the upper bound on
retrieval error of the sparse-structured models.

Theorem 4.1 (Sparsity-Dependent Retrieval Error). Let
TSparse be the sparse-structured retrieval dynamics (3.7). For
query x ∈ Sµ, it holds

∥TSparse(x)− ξµ∥ (4.1)

≤m(M + k − 2) exp

{
−β
(
⟨ξµ,x⟩ − Max

ν∈[M ],ν ̸=µ
⟨ξµ, ξν⟩

)}
,

for all µ ∈ M, where k := |M| ∈ [M ] denotes the size of
the support set M, and m = Maxµ ∥ξµ∥.

Proof. See Appendix D.4 for a detailed proof.

Interestingly, the retrieval error bound in Theorem 4.1 is
sparsity-dependent, which is governed by the size of the
support set M, i.e. sparsity dimension k := |M|.
Remark 4.1 (Comparing with the Sparse Modern Hopfield
Model (Hu et al., 2023)). Compared to the retrieval error
bound in (Hu et al., 2023), which lacks explicit dependence
on its input (data)-dependent sparsity, the sparsity (size of
M) here is pre-specified. When there are fewer elements
in the sparse-structured mask, i.e., when k is small, the
retrieval error bound is tighter, and vice versa.
Remark 4.2 (Noise Robustness). By Theorem 4.1, in cases
involving contaminated query or memory, i.e. x̃ = x+ δx

(noise in query) or ξ̃ = ξ + δξ (noise in memory), the
impact of noise on the sparse retrieval error (4.1) is less than
that its impact on the dense counterpart due to the smaller
coefficient (M + k − 2).

Corollary 4.1.1. Let TDense and TSparse be the dense (3.7)
and sparse-structured (3.7) retrieval dynamics, respectively.
For any query pattern x ∈ Sµ and µ ∈ M, it holds

∥TSparse(x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥.

Proof. See Appendix D.5 for a detailed proof.

Computationally, Corollary 4.1.1 suggests that TSparse ne-
cessitates fewer iterations to reach fixed points compared to
TDense, given the same error tolerance level. In other words,
TSparse retrieves stored memory patterns faster than TDense.
Remark 4.3 (Multiple-Update). Another important im-
plication of Corollary 4.1.1 is that TSparse exhibits similar
multiple-update functionality to existing models (Hu et al.,
2023; Wu et al., 2024b; Ramsauer et al., 2020).

To bridge to deep learning methodologies, we show that
TSparse retrieves memory patterns with high accuracy after
a single activation in the following corollary, akin to (Hu
et al., 2023; Wu et al., 2024b).

Corollary 4.1.2 (One-Step Retrieval with High Accuracy).
For any query x ∈ Sµ and µ ∈ M, TSparse retrieve the
memory pattern ξµ with retrieval error ϵ exponentially sup-
pressed by ∆µ.

Proof. See Appendix D.5 for a detailed proof.

Corollary 4.1.2 indicates that, with sufficiently large ∆µ,
TSparse retrieves memory patterns in a single iteration, al-
lowing the integration of sparse-structured modern Hopfield
models into deep learning architectures similarly to (Xu
et al., 2024; Hu et al., 2024a; Wu et al., 2024b; Schimunek
et al., 2023; Hoover et al., 2023; Seidl et al., 2022).

Fixed Point Convergence. By design, the retrieval dy-
namics constructed via Lemma 3.1 satisfy (T2). We now
verify this adherence as a sanity check. Interestingly, while
previous studies (Hu et al., 2023; Wu et al., 2024b; Ram-
sauer et al., 2020) rely on the detailed energy functions to
show the convergence properties of modern Hopfield mod-
els, we prove them for sparse-structured modern Hopfield
models even without knowing E in the next corollary. It
affirms that TSparse satisfies (T2).

Corollary 4.1.3 (Fixed Point Convergence). Let TSparse be
the sparse-structured retrieval dynamics (3.7). For all µ ∈
M, the query x ∈ Sµ converges to a fixed point if it is
iteratively applied by TSparse.

Proof. See Appendix D.6 for a detailed proof.

4.2 Memory Capacity

To characterize the fundamental limit of memory capacity,
we ask the following two questions for sparse-structured
modern Hopfield models following (Hu et al., 2023):

(A) What is the necessary condition for a pattern ξµ being
considered well-stored, and correctly retrieved?

(B) What is the expected number of memory patterns such
that the above condition is satisfied?

8
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Well-Separation Condition. To address (A), we identify
the necessary condition for a pattern being well-stored and
retrieved by the sparse-structured modern Hopfield models.

Lemma 4.1 (Well-Separation Condition). Following Def-
inition 3.2, for µ ∈ M, suppose every memory pattern
{ξµ}µ∈M is enclosed by a sphere Sµ :=

{
x | ∥x− ξµ∥ ≤

R
}
, with finite radius R := 1

2 Minµ,ν∈M;µ ̸=ν ∥ξµ − ξν∥.
Then, the retrieved dynamics TSparse maps Sµ to itself if
1. The starting point x is inside Sµ: x ∈ Sµ.

2. The well-separation condition:

∆µ ≥ 1

β
ln

(
(M + k − 2)m

R

)
+ 2mR.

Proof. See Appendix D.7 for a detailed proof.

Intuitively, the well-separation condition establishes a
threshold that ensures any pattern {ξµ}µ∈M is distinguish-
able from all others, enabling patterns to be well-stored at
a fixed point of TSparse and retrieved with R precision by
TSparse. Notably, Lemma 4.1 reveals that the lower bound
on ∆µ diminishes as k decreases. Consequently, as M
becomes sparser, satisfying the well-separation condition
becomes easier, facilitating the storage of patterns and lead-
ing to a larger memory capacity lower bound for sparse-
structured modern Hopfield models.

Memory Capacity. To address (B), we derive the lower
bound for the maximum number of memory patterns that
are well-stored and retrievable according to Lemma 4.1:

Proposition 4.1 (Modified from (Hu et al., 2023)). De-
fine the probability of storing and retrieving a memory pat-
tern as 1 − p. Memory capacity, the maximum number
of patterns randomly sampled from a sphere with radius
m that the sparse modern Hopfield models can store and
retrieve, has an lower bound: MSparse ≥ √

pC
d−1
4 , where

C is the solution for the identity C = b/W0(exp{a+ln b})

with the principal branch of Lambert W function, a :=
(4/d−1) (ln [m(

√
p+k−1)/R] + 1) and b := 4m2β/5(d−1).

Proof. See Appendix D.8 for a detailed proof.

Remark 4.4. Proposition 4.1 gives a memory capacity ex-
ponential in the pattern size d (maximum allowed value k).
Since k ≤ M , the scaling behavior of sparse-structured
modern Hopfield models is similar to that of (Ramsauer
et al., 2020; Hu et al., 2023). This result mirrors findings in
(Wu et al., 2024b; Hu et al., 2023; Ramsauer et al., 2020).

5 Conclusion and Discussion
We introduce a nonparametric framework for modern Hop-
field models. We use two examples to validate our frame-
work: the original dense & the sparse-structured modern
Hopfield models. With Lemma 3.1, we replicate the known
results of the original modern Hopfield model (Ramsauer
et al., 2020). With Theorem 3.2, we introduce the efficient
sparse-structured Hopfield models with robust theoretical
properties: tighter retrieval error bound (Corollary 4.1.1 &
Corollary 4.1.2), stronger noise robustness (Remark 4.2) and
exponential-in-d capacity (Lemma 4.1 & Proposition 4.1).

Comparing with Existing Works. Our framework com-
plements existing works (Hu et al., 2023; Wu et al., 2024b;
Martins et al., 2023) by filling the efficiency gaps and con-
necting to various attentions in the following. Notably, when
the size of the support set k = M , the results of Theo-
rem 4.1, Lemma 4.1 and Proposition 4.1 reduce to those of
the dense modern Hopfield model (Ramsauer et al., 2020).

Extensions. In Appendix E, we present a family of mod-
ern Hopfield models connecting to many other existing at-
tention mechanisms, including Linear (Katharopoulos et al.,
2020), Multi-Head (Vaswani et al., 2017), and Generalized
Kernelizable or PRFs (Positive Random Features) (Choro-
manski et al., 2021) modern Hopfield models.

Hopfield Layers and Numerical Experiments. In line
with (Hu et al., 2023; Wu et al., 2024b; Ramsauer et al.,
2020), we introduce deep learning layers as competitive
attention alternatives with memory-enhanced functionalities
(Remark F.1), corresponding to our nonparametric modern
Hopfield models (sparse-structured and above extensions) in
Appendix F. Numerically, we verify their memory retrieval
(as associative memory models) and supervised learning (as
transformer alternatives) performance in Appendices G.1
to G.4 and efficiency in Appendix G.5.

Accuracy-Efficiency Tradeoff. For learning tasks con-
ducted in Appendix G, we do not expect generally superior
performance from efficient models. Ultimately, there is the
provably accuracy-efficiency tradeoff (Keles et al., 2023;
Deng et al., 2023) based on complexity analysis of matrix
multiplication (hence, this result is transferable to modern
Hopfield models (Hu et al., 2024b)). This work only pro-
vides a theoretical framework supporting the derivation of
efficient variants of modern Hopfield model, with no strictly
superior performance guarantee. However, we do observe
that, in many cases, linear and random features modern
Hopfield models deliver acceptable results.

Limitations and Future Work. We defer the discussion
of limitations and future work to Appendix B.
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L., Holzleitner, M., Brandstetter, J., Sandve, G. K., Greiff,
V., Hochreiter, S., et al. Modern hopfield networks and
attention for immune repertoire classification. Advances
in Neural Information Processing Systems, 33:18832–
18845, 2020.

Wu, D., Hu, J. Y.-C., Hsiao, T.-Y., and Liu, H. Uniform
memory retrieval with larger capacity for modern hop-
field models. In Forty-first International Conference on
Machine Learning, 2024a.

Wu, D., Hu, J. Y.-C., Li, W., Chen, B.-Y., and Liu, H.
STanhop: Sparse tandem hopfield model for memory-
enhanced time series prediction. In The Twelfth Interna-
tional Conference on Learning Representations, 2024b.

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M.,
Gehrmann, S., Kambadur, P., Rosenberg, D., and Mann,
G. Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564, 2023.

Xu, C., Huang, Y.-C., Hu, J. Y.-C., Li, W., Gilani, A., Goan,
H.-S., and Liu, H. Bishop: Bi-directional cellular learning
for tabular data with generalized sparse modern hopfield
model. In Forty-first International Conference on Ma-
chine Learning, 2024.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in neural information processing
systems, 33:17283–17297, 2020.

Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R. V., and
Liu, H. DNABERT-2: Efficient foundation model and
benchmark for multi-species genomes. In The Twelfth
International Conference on Learning Representations,
2024a.

Zhou, Z., Wu, W., Ho, H., Wang, J., Shi, L., Davuluri, R. V.,
Wang, Z., and Liu, H. Dnabert-s: Learning species-aware
dna embedding with genome foundation models. arXiv
preprint arXiv:2402.08777, 2024b.

12



Nonparametric Modern Hopfield Models

Supplementary Material

A Table of Notations 14

B Limitations and Future Work 15

C Supplementary Theoretical Backgrounds 16
C.1 Soft-Margin Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D Proofs of Main Text 17
D.1 Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.2 Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.3 Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
D.4 Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
D.5 Corollary 4.1.1 and Corollary 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
D.6 Corollary 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
D.7 Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
D.8 Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E Nonparametric Modern Hopfield Family 25
E.1 Linear Modern Hopfield Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
E.2 Multi-Head Modern Hopfield Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
E.3 PRFs (Positive Random Features) Kernel Modern Hopfield Model . . . . . . . . . . . . . . . . . . . . . 26

F Nonparametric Modern Hopfield Layers for Deep Learning 27

G Experimental Studies 28
G.1 Memory Retrieval Task (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
G.2 Multiple Instance Learning on MNIST (Figure 3 & Figure 4) . . . . . . . . . . . . . . . . . . . . . . . . 30
G.3 Multiple Instance Learning on Real World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
G.4 Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

G.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
G.5 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

13



Nonparametric Modern Hopfield Models

A Table of Notations

Table 1. Mathematical Notations and Symbols

Symbol Description

a[i] The i-th component of vector a
⟨a,b⟩ Inner product for vectors a,b ∈ Rd

[I] Index set {1, · · · , I}, where I ∈ N+

∥·∥ Spectral norm, equivalent to the l2-norm when applied to a vector

d Dimension of patterns
M Number of stored memory patterns
β Scaling factor of the energy function controlling the learning dynamics. We set β = 1/

√
d in practice

x State/configuration/query pattern in Rd

x⋆ Stationary points of the Hopfield energy function
ξ Memory patterns (keys) in Rd

δξ Noises in memory patterns in Rd

D Training data set {(ξµ + δξµ, ξµ)}µ∈[M ]

Ξ Shorthand for M stored memory (key) patterns {ξµ}µ∈[M ] in Rd×M

Ξδ Shorthand for M contaminated memory (key) patterns {δξµ}µ∈[M ] in Rd×M

ΞTx M -dimensional overlap vector (⟨ξ1,x⟩ , · · · , ⟨ξµ,x⟩ , · · · , ⟨ξM ,x⟩) in RM

Φ(·) Kernelized feature mapping Φ(·) : Rd → Dϕ

ϕ Element in the Φ(·) = (ϕ
(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1
, . . . , ϕ

(n)
1 , . . . , ϕ

(n)
Dn
, . . .)

DΦ Dimension of the kernel space, i.e., dimension of output of Φ(·)
h(·) Normalization mapping in the regression model defined by (3.1)
W Weighted matrix in the regression model defined by (3.1) in Rd×DΦ

wi i-th row of the weighted matrix W in RDΦ

K(·, ·) Kernel function takes the inner product form K(·, ·) = ⟨Φ(·),Φ(·)⟩ in K : RDΦ × RDΦ → R+

ϵ′ Component-wise term error margin in the support vector regression problem
η, η̃ Slack variables in the support vector regression
C Penalized coefficient of the support vector regression
L Lagrangian corresponding to (3.2)

α, α̃,λ, λ̃ Dual variables in the Lagrangian L
M Reduced support set for TSVR M := {M(1), . . . ,M(k)} ⊆ {1, . . . ,M}

1M(µ) Indicator function corresponding to M, where 1M(µ) = 1 for µ ∈ M and 1M(µ) = 0 for µ ̸∈ M
k Size of the support set M, defined as k := |M|
m Largest norm of memory patterns, denoted as m := Maxµ∈[M ] ∥ξµ∥
R Minimal Euclidean distance across all possible pairs of memory patterns, denoted as R := 1

2 Minµ,ν∈[M ] ∥ξµ − ξν∥
Sµ Sphere centered at memory pattern ξµ with finite radius R
x⋆
µ Fixed point of T covered by Sµ, i.e., x⋆

µ ∈ Sµ

∆µ Separation of a memory pattern ξµ from all other memory patterns Ξ, defined in (4.1)
∆̃µ Separation of ξµ at a given x from all memory patterns Ξ, defined in (4.1)
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B Limitations and Future Work
By the theoretical nature of this work, we rely on certain simplifying assumptions. These assumptions limit the generality of
our results.

We require a specific feature mapping Φ to guarantee fixed-point convergence (Section 3.2). This requirement imposes
structure on the retrieval dynamics. Without it, an unconstrained nonparametric Hopfield update can converge to a
“generalized” fixed point, not the intended memory (Remark 3.3). Then, multiple iterations may fail to recover the true
stored pattern. We emphasize that meeting this requirement is easy (Section 3.2); see also the nonparametric modern
Hopfield model family in Appendix E.

Our relative error analysis (Theorem 4.1) assumes that the correct memory item is in the chosen support set. If a random-
masking step removes that item, retrieval fails (Figure 2). We remark that — while this assumption is restrictive, it is
necessary for tractable analysis.

Our exponential capacity result in Proposition 4.1 needs a strong “well-separation” condition. Each pattern must be distinct
enough from the others. Many real datasets have correlated or structured patterns, so this assumption may be hard to satisfy.
Still, it is standard in modern Hopfield model literature (Krotov & Hopfield, 2016; Demircigil et al., 2017; Ramsauer et al.,
2020; Iatropoulos et al., 2022; Hu et al., 2023; Wu et al., 2024b; Santos et al., 2024a;b). To mitigate this in practice, (Wu
et al., 2024a; Hu et al., 2024c) relax this data dependency by optimizing the Hopfield-energy landscape for larger memory
capacity.

Lastly, we do not analyze the extensions introduced in Appendix E. We do not prove their convergence or capacity.

Looking ahead, we plan to address these theoretical gaps and to relax strict assumptions like well-separated patterns.
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C Supplementary Theoretical Backgrounds

C.1 Soft-Margin Support Vector Regression

Soft-margin Support Vector Regression (SVR) (Awad et al., 2015; Jaggi, 2014; Vapnik, 2013; Kar & Karnick, 2012;
Schölkopf & Smola, 2002) generalizes Support Vector Machines (SVM) to regression tasks. It finds a function

f(x) = WΦ(x) + b

that remains within an ϵ′-tube of the target outputs, while allowing limited violations (soft margin) when data points lie
outside this tube.

Notation and Setup.

• {(xµ,yµ)}Mµ=1 is the training set, where xµ ∈ Rd and yµ ∈ Rd.

• Φ : Rd → RDΦ is a feature map into a (possibly high-dimensional) space.

• W ∈ Rd×DΦ and b ∈ Rd are the regression parameters.

Primal Formulation. To tolerate errors beyond ϵ′ while penalizing them, SVR introduces nonnegative slack variables ηµ

and η̃µ for each data point. The soft-margin SVR with ℓ2-loss is formulated as

min
W,η,η̃

1

2
∥W∥2 + C

M∑
µ=1

⟨1, (ηµ + η̃µ)⟩ subject to


yµ − ⟨W,Φ(xµ)⟩ − b ≤ ϵ′1+ η,

⟨W,Φ(xµ)⟩+ b− yµ ≤ ϵ′1+ η̃,

ηµ, η̃µ ≥ 0, µ ∈ [M ],

(C.1)

where C > 0 controls the trade-off between model fidelity and penalty on large deviations (ηµ, η̃µ). Since (C.1) is strongly
convex, it admits a unique global minimizer.

This formulation follows the standard SVR derivation; see (Schölkopf & Smola, 2002) for a comprehensive treatment.

Lagrangian and Dual Problem. To solve (C.1), we form the Lagrangian:

L =
1

2

d∑
i=1

∥wi∥2 + C

M∑
µ=1

d∑
i=1

[
λµ[i]ηµ[i] + λ̃µ[i] η̃µ[i]

]
−

M∑
µ=1

d∑
i=1

[
αµ[i]

(
ϵ′ + ηµ[i]− yµ[i] + ⟨wi,Φ(xµ)⟩+ b[i]

)
+ α̃µ[i]

(
ϵ′ + η̃µ[i]− ⟨wi,Φ(xµ)⟩ − b[i] + yµ[i]

)]
,

where λµ, λ̃µ are multipliers for the slack constraints ηµ, η̃µ ≥ 0, and αµ, α̃µ are multipliers for the ϵ′-tube constraints.
By applying the Karush-Kuhn-Tucker (KKT) conditions to L, one obtains the dual problem. In practical kernelized SVR,
one uses a kernel K(xµ,xν) = ⟨Φ(xµ),Φ(xν)⟩, which may bypass explicit construction of Φ.

Summary. Soft-margin SVR balances a tight ϵ′-tube fit with penalty-based tolerance for outliers. Strong convexity
guarantees a unique solution in the primal, while the dual formulation reveals a sparse, data-driven representation in terms
of support vectors. This dependence on the training data for model complexity classifies SVR as a nonparametric method.
Remark C.1 (Nonparametric Nature of SVR). Although the primal objective in (C.1) involves a fixed matrix W, the dual
solution is data-dependent. In particular, the regressor can be written as

f(x) =

M∑
µ=1

(
αµ − α̃µ

)
⟨Φ(xµ), Φ(x)⟩+ b,

where only the points with nonzero (αµ − α̃µ) (the support vectors) affect f . The number of such points can grow with M ,
making SVR a nonparametric method whose capacity adapts to the size of the training data.
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D Proofs of Main Text

D.1 Theorem 3.1

Proof of Theorem 3.1. The Lagrangian of convex optimization problem defined in (3.2) is

L :=
1

2

d∑
i=1

∥wi∥2 + C

M∑
µ=1

d∑
i=1

(λµ[i]ηµ[i] + λ̃µ[i]η̃µ[i])

−
M∑
µ=1

d∑
i=1

αµ[i] (ϵ
′ + ηµ[i]− ξµ[i] + ⟨wi,Φ(ξµ + δξµ)⟩)

−
M∑
µ=1

d∑
i=1

α̃µ[i] (ϵ
′ + η̃µ[i]− ⟨wi,Φ(ξµ + δξµ)⟩+ ξµ[i]) , (D.1)

where λµ[i], λ̃µ[i], αµ[i] and α̃µ[i] are Lagrange multipliers. Next, we solve stationary condition with respect to wi,ηµ[i]
and η̃µ[i] from above Lagrangian and derive corresponding optimal solution. The Lagrangian in (D.1) admits a stationary
solution, which is given by: 

wi −
∑M

µ=1 (αµ[i]− α̃µ[i]) Φ(ξµ + δξµ) = 0,

C − λµ[i]−αµ[i] = 0,

C − λ̃µ[i]− α̃µ[i] = 0.

(D.2)

Substitute (D.2) into (3.1) to write

xnew[i] = TSVR(x)[i] := ⟨w⋆
i ,Φ(x)⟩ ,

with the learned weight matrix

w⋆
i :=

M∑
µ=1

(αµ[i]− α̃µ[i])︸ ︷︷ ︸
∈R

Φ(ξµ + δξµ)︸ ︷︷ ︸
∈RDΦ

∈ RDΦ .

The complementary slackness condition and dual feasibility of (D.1) are given by
αµ[i] (ϵ

′ + ηµ[i]− ξµ[i] + ⟨wi,Φ(ξµ + δξµ)⟩) = 0

α̃µ[i] (ϵ
′ + η̃µ[i]− ⟨wi,Φ(ξµ + δξµ)⟩+ ξµ[i]) = 0

αµ[i], α̃µ[i],λµ[i], λ̃µ[i] ≥ 0,

(D.3)

for all µ ∈ [M ] and i ∈ [d].

This completes the proof.

D.2 Lemma 3.1

To simplify our proofs, we define

Φ(x) :=
Φ(x)

h(x)
, (D.4)

where h(·) : Rd → R is some normalization function for later convenience.

To prove Lemma 3.1, we introduce the following three auxiliary lemmas.
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Lemma D.1. Let αµ[i] ≥ 0, α̃µ[i] ≥ 0 be a solution to (D.2) with KKT conditions (D.3). Then αµ[i] − α̃µ[i] has the
following bounds

−C ≤ αµ[i]− α̃µ[i] ≤ C, ∀µ ∈ [M ], i ∈ [d].

Proof of Lemma D.1. We prove this lemma by contradiction. Recall that for each fixed values of µ and i

αµ[i] ≥ 0, α̃µ[i] ≥ 0.

Firstly, we assume αµ[i], α̃µ[i] ∈ R+ (non-zero), for all µ ∈ [M ] and i ∈ [d]. Recall complementary slackness conditions
from (D.3) {

ϵ′ + ηµ[i]− ξµ[i] + ⟨wi,Φ(ξµ + δξµ)⟩ = 0

ϵ′ + η̃µ[i]− ⟨wi,Φ(ξµ + δξµ)⟩+ ξµ[i] = 0.

Combine above two equations to write

ηµ[i] + η̃µ[i] = −2ϵ′ ≤ 0.

Since the component-wise error ϵ′ ≥ 0, we have ηµ[i] + η̃µ[i] ≤ 0. This conclusion contradicts the assumption of the
non-negative condition on slack variables ηµ[i], η̃µ[i] ≥ 0. Therefore, together with (D.2), at least one of αµ[i],α̃µ[i] must
be 0, for all µ and all i. Subsequently, we have

0 ≤ αµ[i] ≤ C and 0 ≤ α̃µ[i] ≤ C,

which leads to

−C ≤ αµ[i]− α̃µ[i] ≤ C.

This completes the proof.

Lemma D.2 (Multinomial Expansion). Given x,y ∈ Rd. The identity

(xTy)n

n!
=

∑
ℓ1+···+ℓd=n

(
xℓ11 · · ·xℓdd√
ℓ1! · · · ℓd!

)(
yℓ11 · · · yℓdd√
ℓ1! · · · ℓd!

)
,

holds for all n ∈ N.

Proof.

(xTy)n

n !
=

1

n !
(x1y1 + · · ·+ xdyd)

n

=
1

n !

[
(x1y1)

n + · · ·+ n!

ℓ1! · · · ℓd!

d∏
i=1

(xiyi)
ℓi + · · ·+ (xdyd)

n

] (∑d
i=1 ℓi = n

)

=
∑

ℓ1+···+ℓd=n

1

ℓ1! · · · ℓd!

d∏
i=1

(xi)
ℓi

d∏
i=1

(yi)
ℓi

=
∑

ℓ1+···+ℓd=n

(
xℓ11 · · ·xℓdd

)(
yℓ11 · · · yℓdd

)
ℓ1! · · · ℓd!

=
∑

ℓ1+···+ℓd=n

(
xℓ11 · · ·xℓdd√
ℓ1! · · · ℓd!

)(
yℓ11 · · · yℓdd√
ℓ1! · · · ℓd!

)
.

This completes the proof.
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Our next lemma restates a known result that the exponential dot-product kernel admits an infinite-dimensional feature
expansion via its power series (Nguyen et al., 2024; Hamid et al., 2014; Kar & Karnick, 2012; Schölkopf & Smola, 2002).
We include the derivation here for completeness.

Lemma D.3 (Closed-Form Exponential Dot-Product Kernel). Let K(·, ·) be the exponential dot-product kernel:

K(x,y) := exp{⟨x,y⟩} =
〈
Φ(x),Φ(y)

〉
=

∞∑
n=0

(xTy)n

n!
,

where x,y ∈ Rd and Φ maps the feature vectors x and y into infinite dimensional space. Then,

Φ(·) = (ϕ
(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1
, . . . , ϕ

(n)
1 , . . . , ϕ

(n)
Dn
, . . .),

has a closed form solution

ϕ
(n)
D′ =

xℓ11 · · ·xℓdd√
ℓ1 ! · · · ℓd !

,

where ℓ1 + · · ·+ ℓd = n, 1 ≤ D′ ≤ Dn and Dn :=
(
d+n−1

n

)
.

Proof of Lemma D.3. Applying Lemma D.2 on the exp kernel, we have〈
Φ(x),Φ(y)

〉
=

∞∑
n=0

(xTy)n

n!

=

∞∑
n=0

∑
ℓ1+···+ℓd=n

1

ℓ1! · · · ℓd!

d∏
i=1

(xi)
ℓi

d∏
i=1

(yi)
ℓi

=

∞∑
n=0

∑
ℓ1+···+ℓd=n

(
xℓ11 · · ·xℓdd

)(
yℓ11 · · · yℓdd

)
ℓ1! · · · ℓd!

=

∞∑
n=0

∑
ℓ1+···+ℓd=n

(
xℓ11 · · ·xℓdd√
ℓ1! · · · ℓd!

)(
yℓ11 · · · yℓdd√
ℓ1! · · · ℓd!

)
.

From above, we observe that, for each fixed n, there are
(
d+n−1

n

)
terms in the summation. Consequently, Φ(x) has a solution

Φ(x) = (ϕ
(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1︸ ︷︷ ︸

(d+1−1
1 ) elements

, . . . , ϕ
(n)
1 , . . . , ϕ

(n)
Dn︸ ︷︷ ︸

(d+n−1
n ) elements

, . . .),

where Dn =
(
d+n−1

n

)
and

ϕ
(n)
D′ =

xℓ11 · · ·xℓdd√
ℓ1 ! · · · ℓd !

,

for 1 ≤ D′ ≤ Dn and ℓ1 + · · ·+ ℓd = n. This completes the proof.

Proof of Lemma 3.1. Recall that the learned weight matrix W is composed of

w⋆
i =

M∑
µ=1

(αµ[i]− α̃µ[i])
Φ(ξµ + δξµ)

h(x)
.

Substitute w⋆ into (3.1) to write

TDense(x) =

(
M∑
µ=1

αµ[1]− α̃µ[1]

h(ξµ + δξµ)

〈
Φ(ξµ + δξµ),Φ(x)

〉
h(x)

, · · · ,
M∑
µ=1

αµ[d]− α̃µ[d]

h(ξµ + δξµ)

〈
Φ(ξµ + δξµ),Φ(x)

〉
h(x)

)
.
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Let ξµ :=
(

αµ[1]−α̃µ[1]
h(ξµ+δξµ)

, . . . ,
αµ[d]−α̃µ[d]
h(ξµ+δξµ)

)
and h(x) :=

∑M
µ=1

〈
Φ(ξν + δξν),Φ(x)

〉
. Then TDense reduces to

TDense(x) =

M∑
µ=1

〈
Φ(ξµ + δξµ),Φ(x)

〉∑M
ν=1

〈
Φ(ξν + δξν),Φ(x)

〉ξµ.
Following Lemma D.3, here we define the inner product of Φ as a kernel K : RDϕ × RDϕ → R+〈

Φ(x),Φ(ξµ + δξµ)
〉
:= K(x, ξµ + δξµ).

TDense is now given by

TDense(x) =

M∑
µ=1

K(x, ξµ + δξµ)∑M
ν=1 K(x, ξν + δξν)

ξµ. (D.5)

Observe that (2.2) TDense takes a Boltzmann form: exp{·}/
∑M

ν=1 exp{·}. By Lemma D.3, we take

ϕ
(n)
D′ =

(
√
βx1)

ℓ1 · · · (
√
βxd)

ℓd

√
ℓ1! · · · ℓd!

,

with the kernel

K(x, ξµ + δξµ) =

∞∑
n=0

(
〈√

βx,
√
βξµ +

√
βδξµ

〉
)n

n!
. (D.6)

Substitute (D.6) into (D.5) and write

TDense(x) =

M∑
µ=1

∑∞
n=0

(〈√
βx,

√
βξµ +

√
βδξµ

〉)n
/n!∑M

ν=1

∑∞
t=0

(〈√
βx,

√
βξν +

√
βδξν

〉)t
/t!

ξµ.

By Taylor’s theorem, TDense takes the form

TDense(x) =

M∑
µ=1

exp{β ⟨x, ξµ + δξµ⟩}∑M
ν=1 exp{β ⟨x, ξν + δξν⟩}

ξµ = ΞSoftmax
(
βΞT

δ x
)
, (D.7)

where Ξ = (ξ1, · · · , ξM ) ∈ Rd×M and Ξδ = (ξ1 + δξ1, · · · , ξM + δξM ) ∈ Rd×M denote memories and noises in
memories, respectively. This completes the proof.

D.3 Theorem 3.2

Proof of Theorem 3.2. To take w⋆ for the sparse-structured model, the partial derivatives of L with respect to wi,ηµ[i] and
η̃µ[i] must satisfy the stationarity condition

wi −
∑

µ∈M (αµ[i]− α̃µ[i]) Φ(ξµ + δξµ) = 0,

C − λµ[i]−αµ[i] = 0,

C − λ̃µ[i]− α̃µ[i] = 0.

Then, we arrive

w⋆
i =

∑
µ∈M

(αµ[i]− α̃µ[i])
Φ(ξµ + δξµ)

h(x)
.

Following a similar approach as in Appendix D.2, we derive the retrieval dynamics for the sparse-structured modern Hopfield
model:

TSparse(x) =
∑
µ∈M

[
Softmax(βΞ⊤

Mx)
]
µ
ξµ,

where the softmax is computed over βΞ⊤
Mx with ΞM := [· · · , ξj + δξj · · ·]︸ ︷︷ ︸

j∈[|M|]

. This completes the proof.
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D.4 Theorem 4.1

Proof of Theorem 4.1. To connect TSparse with ∆µ, first we derive the bound on ∥TSparse(x)− ξµ∥ via (Ramsauer et al.,
2020) for µ ∈ M

∥TSparse(x)− ξµ∥ ≤

∥∥∥∥∥ξµ −
∑
ν∈M

[
Softmax

(
βΞT

δ x
)]

ν
ξν

∥∥∥∥∥
≤

∥∥∥∥∥∥(1− [Softmax
(
βΞT

δ x
)
]µ)ξµ +

∑
ν∈M,ν ̸=M

[Softmax
(
βΞT

δ x
)
]νξν

∥∥∥∥∥∥
≤ ϵ̃∥ξµ∥+

ϵ̃

M − 1

∑
ν∈M,ν ̸=µ

∥ξν∥

≤ ϵ̃m+
ϵ̃

M − 1
(k − 1)m

≤m
M + k − 2

M − 1
ϵ̃

=m(M + k − 2) exp

{
−β
(
⟨x, ξµ⟩ − Max

ν∈[M ]
⟨x, ξν⟩

)}
, (D.8)

where k := |M|, m := Maxµ ∥ξµ∥, ϵ̃ := (M − 1) exp
{
−β
(
⟨x, ξµ⟩ −Maxν∈[M ] ⟨x, ξν⟩

)}
and the inequality

[
Softmax(βΞTx)

]
ν
=

exp{β (⟨x, ξν⟩ − ⟨x, ξµ⟩)}
1 +

∑
ν′ ̸=µ exp{β (⟨x, ξν′⟩ − ⟨x, ξµ⟩)}

≤ exp

{
−β
(
⟨x, ξµ⟩ − Max

ν∈[M ]
⟨x, ξν⟩

)}
,

is used in (D.8). This completes the proof.

D.5 Corollary 4.1.1 and Corollary 4.1.2

Proof of Corollary 4.1.1 and Corollary 4.1.2. Since ⟨ξµ,x⟩ ≥ ⟨ξν ,x⟩ for all ν ̸= µ, we have

[Softmax
(
βΞT

δ x
)
]µ ≥ [Softmax

(
βΞT

δ x
)
]ν , for ν ̸= µ.

For the support set M, we have

[Softmax
(
βΞT

Mx
)
]µ =

⟨ξµ,x⟩∑
j∈M ⟨ξj ,x⟩

(D.9)

≥ [Softmax
(
βΞT

δ x
)
]µ.

(
By the smaller denominator in (D.9)

)
This implies

∑
ν∈M

[
Softmax

(
βΞT

Mx
)]

ν
ξν is “pulled more strongly” toward ξµ than

∑M
ν=1

[
Softmax

(
βΞT

δ x
)]

ν
ξν .

To see this, we write

∥TSparse(x)− ξµ∥

= ∥ (
[
Softmax

(
βΞT

Mx
)]

µ
− 1)︸ ︷︷ ︸

:=(I)

ξµ +
∑

ν∈M,ν ̸=µ

[
Softmax

(
βΞT

Mx
)]

ν
ξν∥,

and

∥TDense(x)− ξµ∥

= ∥ (
[
Softmax

(
βΞT

δ x
)]

µ
− 1)︸ ︷︷ ︸

(II)

ξµ +
∑

ν∈[M ],ν ̸=µ

[
Softmax

(
βΞT

δ x
)]

ν
ξν∥.
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By (D.9), (I) ≥ (II). This means the pull toward ξµ is strictly stronger, and hence the softmax-weighted average∑
ν∈M

[
Softmax

(
βΞT

Mx
)]

ν
ξν lies closer to ξµ:

∥TSparse(x)− ξµ∥ − ∥TDense(x)− ξµ∥ ≤ 0 ⇐⇒ ∥TSparse(x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥. (D.10)

This completes the proof of Corollary 4.1.1.

From (Ramsauer et al., 2020, Theorem 4), for any query x, TDense approximately retrieves a memory pattern ξµ with retrieval
error ϵ exponentially suppressed by ∆µ:

∥T (x)− ξµ∥ ≤ 2m(M − 1) exp
{
−β
(
∆µ − 2mMax

[
∥x− ξµ∥,

∥∥x− x⋆
µ

∥∥])}.
By (D.10), TSparse also enjoys above retrieval error bound. Therefore, TSparse(x) retrieves a memory pattern ξµ with high
accuracy after a single activation with a sufficiently large ∆µ. This completes the proof.

D.6 Corollary 4.1.3

Proof of Corollary 4.1.3. Recall (Hu et al., 2023, Lemma 2.2) that for initial query x0 ∈ Sµ

lim
t→∞

∥xt − ξµ∥ = 0, (D.11)

where {xt}∞t=0 is a sequence generated by TDense from x0, i.e. TDense(xt) = xt+1.

Moreover, recall that for any query pattern x ∈ Sµ

0 ≤ ∥TSparse(x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥. (D.12)

By applying squeeze theorem on (D.12) and (D.11), we have

lim
t→∞

∥x̃t − ξµ∥ = 0,

where {x̃t}∞t=0 is a sequence generated by TSparse, i.e. TSparse(x̃t) = x̃t+1.

This completes the proof.

D.7 Lemma 4.1

Proof of 4.1. Following (Wu et al., 2024b; Hu et al., 2023), we define the separation of ξµ at a given x from all memory
patterns Ξ as

∆̃µ := Min
ν,ν ̸=µ

[⟨x, ξµ⟩ − ⟨x, ξν⟩] .

Plug above into (D.8), and get

∥TSparse(x)− ξµ∥ ≤ m(M + k − 2) exp
{
−β∆̃µ

}
.

By Cauchy-Schwartz inequality, for all µ ∈ M,

|⟨ξµ, ξµ⟩ − ⟨x, ξµ⟩| ≤ ∥ξµ − x∥ · ∥ξµ∥ ≤ ∥ξµ − x∥m,

we write ∆̃µ in terms of ∆µ:

∆̃µ = ∆µ − 2∥ξµ − x∥m = ∆µ − 2mR,
(
By x ∈ Sµ

)
where R is radius of the sphere Sµ. Since T is a mapping T : Sµ → Sµ, output of the mapping T falls in Sµ with radius R.
Therefore, R is lower-bounded by

R ≥ (M + k − 2) exp{−β(∆µ − 2mR)}m ≥ ∥T (x)− ξµ∥,

and thus

∆µ ≥ 1

β
ln

(
(M + k − 2)m

R

)
+ 2mR.

This completes the proof.
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D.8 Proposition 4.1

We built our proof on top of (Hu et al., 2023, Lemma 2.1), which consists 3 steps:

• (Step 1.) We establish a more refined well-separation condition, ensuring that patterns {ξµ}µ∈[M ] are well-stored
in H and can be retrieved by T with an error ϵ at most R.

• (Step 2.) This condition is then related to the cosine similarity of memory patterns, from which we deduce an
inequality governing the probability of successful pattern storage and retrieval.

• (Step 3.) We pinpoint the conditions for exponential memory capacity and confirm their satisfaction.

Proof of Proposition 4.1. Our proof is built on top of (Hu et al., 2023, Corollary 3.1.1) with a different well-separation
condition.

Let ∆min := Minµ∈[M ] ∆µ and θµν Here we define ∆min and θµν be the angle between two patterns ξµ and ξν .

In order for a pattern ξµ to be well-stored, by Lemma 4.1, we need

∆min ≥ 1

β
ln

(
(M + k − 2)m

R

)
+ 2mR.

On the other hand, we observe

∆min = Min
1≤µ≤ν≤M

[
m2 (1− cos(θµν))

]
= m2 [1− cos(θmin)] ,

where θmin := Min1≤µ≤ν≤M θµν ∈ [0, π]. Then, we have

m2 [1− cos(θmin)] ≥
1

β
ln

(
(M + k − 2)m

R

)
+ 2mR. (D.13)

As a result, the probability of successful storage and retrieval, i.e., the minimal separation ∆min that satisfies Lemma 4.1, is
given by

P

(
∆µ ≥ 1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

)
= 1− p.

Inserting (D.13) into above, we obtain

P

(
m2 [1− cos(θmin)] ≥

1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

)
= 1− p.

From (Olver et al., 2010, Equation (4.22.2)), for 0 ≤ cos(θmin) ≤ 1, cos(θmin) has an upper bound

cos(θmin) ≤ 1− θ2min

5
.

It holds

P

(
m2θ2min

5
≥ 1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

)
= 1− p,

which leads to

P

(
M

2
d−1 θmin ≥

√
5M

2
d−1

m

[
1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

] 1
2

)
= 1− p.
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For later convenience, here we introduce an extra M 2/d−1 on both sides.

Let ωd := 2π
d+1/2

Γ( d+1
2 )

be the area of a d-dimensional unit sphere manifold, with Γ(·) denoting the gamma function.

Following (Brauchart et al., 2018, Lemma 3.5), we have

P

(
M

2
d−1 θmin ≥

√
5M

2
d−1

m

[
1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

] 1
2

)
= 1− p

≥ 1− 1

2
γd−15

d−1
2 M2m−(d−1)

[
1

β
ln

(
(M + k − 2)m

R

)
+ 2mR

] d−1
2

, (D.14)

where γd is the ratio between the surface areas of the unit spheres in (d− 1) and d dimensions:

γd :=
1

d

ωd−1

ωd
=

1

d
√
π

Γ
(
d+1
2

)
Γ
(
d
2

) .

Recall d,M ∈ N+, p ∈ [0, 1]. Hence, it holds M =
√
pC

d−1
4 for some real values C ∈ R.

Then, by (D.14), we have

5
d−1
2

(√
pC

d−1
4

)2
m−(d−1)

{
1

β
ln


(√

pC
d−1
4 + k − 1

)
m

R

+
1

β

} d−1
2

− p ≤ 0,

and thus

5
d−1
2 C

d−1
2 m−(d−1)

{
1

β
ln


(√

pC
d−1
4 + k − 1

)
m

R

+
1

β

} d−1
2

≤ 1. (D.15)

Further, we rewrite (D.15) as

5C

m2β

{
ln


(√

pC
d−1
4 + k − 1

)
m

R

+ 1

}
− 1 ≤ 0,

and identify

a :=
4

d− 1

{
ln

[
m(

√
p+ k − 1)

R

]
+ 1

}
, b :=

4m2β

5(d− 1)
.

By (Hu et al., 2023, Lemam 3.1), C takes the form

C =
b

W0(exp{a+ ln b})
, (D.16)

where W0(·) is the upper branch of the Lambert W function. Since the domain of the Lambert W function is x > (−1/e,∞)
and the fact exp{a+ ln b} > 0, the solution for (D.16) exists.

When the inequality (D.15) holds, the lower bound on the exponential storage capacity M can be written as:

M ≥ √
pC

d−1
4 .

In particular, the above lower bound takes a form similar to (Ramsauer et al., 2020, Theorem 3).

This completes the proof.
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E Nonparametric Modern Hopfield Family
In this section, we derive a family of modern Hopfield models as possible extensions based on the proposed framework
(Theorem 3.1).6

E.1 Linear Modern Hopfield Model

Proposition E.1 (Linear Modern Hopfield Model). Let Φ(x) = (ϕ1(x), . . . , ϕd(x)) with the component ϕ:

ϕi(x) :=
elu(x[i]) + 1∑M

µ=1 ⟨Φ(x),Φ(ξµ + δξµ)⟩
, ∀i ∈ [d], (E.1)

where elu(·) denotes the exponential linear unit activation function proposed by (Clevert et al., 2015). By Theorem 3.1,
fitting TSVR on D following (3.2) gives

TLinear(x) =

∑M
µ=1 ⟨Φ(x),Φ(ξµ + δξµ)⟩ ξµ∑M
ν=1 ⟨Φ(x),Φ(ξν + δξν)⟩

.

By setting the kernel mapping Φ to linear feature map (E.1), we obtain a linear modern Hopfield model with linear
complexity O(n). Compared with dense modern Hopfield model, our proposed linear modern Hopfield model has time and
memory complexity O(n) instead of O(n2) since we only need to compute

∑M
µ=1 Φ(ξµ + δξµ)ξµ and

∑M
µ=1 Φ(ξµ + δξµ)

once and reuse them for the computation of every query pattern. This model is by design connected to the random attention
of linear attention (Katharopoulos et al., 2020).

E.2 Multi-Head Modern Hopfield Models

To derive the multi-head Hopfield model, we cast TMulti as multiple SVR problems such that the memorization of memory
patterns Ξ corresponds to training a regression model TMulti on datasets {Ξs}s∈[H] with noises {Ξ}. These S training data
sets are given as {(ξ1µ+ δξ

1
µ, ξ

1
µ)}µ∈[M ], · · · , {(ξHµ + δξHµ , ξ

H
µ )}µ∈[M ]. To handle multiple regression problems, we extend

the regression model (3.1) into the following.

Definition E.1 (Multi-Head Regression Model). Given an input vector x ∈ Rd. The output ŷ ∈ Rd of the regression model
Tmulti is defined as:

ŷ = TMulti(x) :=

H∑
s=1

Ws
O (WsΦs(x)) ∈ Rd,

where Ws
O ∈ Rd×d, Ws = [ws

1, · · · ,ws
d]

T ∈ Rd×DΦ for all s ∈ [H], and Φs(x) = (ϕs1(x), · · · , ϕsDΦ
(x)) : Rd → RDΦ

denote a series of output projection matrices, weighted matrix and kernel mapping, respectively.

Adopting this multi-head regression model, we introduce the following multi-head modern Hopfield model.

Proposition E.2 (Multi-Head Modern Hopfield Models). Let Φ(·) = (ϕ
(0)
0 , ϕ

(1)
1 , . . . , ϕ

(1)
D1
, . . . , ϕ

(n)
1 , . . . , ϕ

(n)
Dn
, . . .) with,

for 1 ≤ D′ ≤ Dn,

ϕ
(n)
D′ :=

(
√
βx1)

ℓ1 · · · (
√
βxd)

ℓd∑M
µ=1 ⟨Φ(ξµ + δξµ),Φ(x)⟩ ·

√
ℓ1! · · · ℓd!

,

where ℓ1 + · · · + ℓd = n, and Dn :=
(
d+n−1

n

)
. By Theorem 3.1, fitting TSVR on H training data sets {(ξ1µ +

δξ1µ, ξ
1
µ)}µ∈[M ], · · · , {(ξHµ + δξHµ , ξ

H
µ )}µ∈[M ] following (3.2) gives

TMulti(x) =

H∑
s=1

Ws
O

(
Ξs Softmax(βΞT

δ x)
)
.

6Hu et al. (2024b) provide a theoretical characterization of these possible extensions from the perspective of fine-grained complexity
theory.
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This model is by design connected to the standard multi-head attention.

E.3 PRFs (Positive Random Features) Kernel Modern Hopfield Model

Proposition E.3 (Positive Random Features Modern Hopfield Model). Let Φ(·) = (ϕ1, . . . , ϕDΦ) with

Φ(x) :=
Ψ(x)√
DΦ

(ψ1(⟨p1,x⟩), . . . , ψ1(⟨pm,x⟩), . . . , ψl(⟨p1,x⟩), . . . , ψl(⟨pm,x⟩)),

where DΦ = l ·m, Ψ : Rd → R , ψ1, . . . , ψm are functions that map from R → R, and p1, . . . ,pm
iid∼ P are vectors from

some distribution P ∈ ∆d (∆d := {p ∈ Rd
+ |
∑d

i=1 pi = 1} is the (d− 1)-dimensional unit simplex.). By Theorem 3.1,
fitting TSVR on D following (3.2) gives

TPRF(x) =

M∑
µ=1

ED[D̂
−1 ⟨Φ(x),Φ(ξµ + δξµ)⟩]ξµ,

where we adopt the normalization map D̂−1 := ⟨ξ1,x⟩ given by (Choromanski et al., 2021).

Comparing with regular modern Hopfield model, PRF Hopfield model7 only has the linear space and time complexity,
without any additional treatment such as introducing sparsity or low-rankness. The significance of this representational
capability lies in its ability to facilitate a precise comparison between softmax and alternative kernels in the context of
extensive tasks, surpassing the capabilities of regular modern Hopfield models and enabling a comprehensive exploration of
optimal kernels. This model is by design connected to the Performer-type attention (Choromanski et al., 2021). In practice,
the default option for P is standard Gaussian (Choromanski et al., 2021).

7Along the same line of research, Hoover et al. (2024) also utilizes random feature approximation in a recurrent setting to facilitate
compressed memory storage for associative memory models.
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F Nonparametric Modern Hopfield Layers for Deep Learning
Building on the link between the nonparametric modern Hopfield models and the attention mechanisms, we introduce the
Nonparametric Hopfield (NPH) layers for deep learning.

Following (Hu et al., 2023; Ramsauer et al., 2020), we say X and Ξ are in the associative space (embedded space), as they
are embedded from the raw query R and Y memory patterns, respectively, via XT = RWQ := Q, and ΞT = YWK := K,
with some WQ and WK . Taking the transpose of T in (3.3) (with a given feature map Φ) and multiplying with WV such
that V := KWV , we have

Z := QnewWV = TSVR
(
βQKT

)
V, (F.1)

which leads to an attention mechanisms with various TSVR as activation functions. Plugging back the raw patterns R and Y,
we arrive the Nonparametric Modern Hopfield (NPH) layer(s),

NPH (R,Y) = TSVR
(
βRWQW

T
KYT

)
YWKWV , (F.2)

which can be seamlessly integrated into deep learning architectures. Concretely, the NPH layers take matrices R, Y as inputs,
with the weight matrices WQ, WK , WV . Depending on its configuration, it offers several functionalities:

1. Memory Retrieval: In this learning-free setting, weight matrices WK , WQ, and WV are set as identity matrices.
Here, R represents the query input, and Y denotes the stored memory patterns for retrieval.

2. NPH: This configuration takes R and Y as inputs. Intending to substitute the attention mechanism, the weight matrices
WK , WQ, and WV are rendered learnable. Furthermore, R, Y, and Y serve as the sources for query, key, and value
respectively. Achieving a self-attention-like mechanism requires setting R equal to Y.

3. NPHPooling: With inputs Q and Y, this layer uses Q as a static prototype pattern, while Y contains patterns over
which pooling is desired. Given that the query pattern is replaced by the static prototype pattern Q, the only learnable
weight matrices are WK and WV .

4. NPHLayer: The NPHLayer layer takes the query R as its single input. The layer equips with learnable weight matrices
WK and WV , which function as our stored patterns and their corresponding projections. This design ensures that our
key and value are decoupled from the input. In practice, we set WQ and Y as identity matrices.

Remark F.1. We emphasize that Hopfield memory models and Hopfield networks/layers are conceptually distinct:

• Hopfield memory model: A fixed content-addressable memory model with no training; retrieval is based on similarity
to stored patterns. This is our focus.

• Hopfield networks (e.g., Hopfield Layers (Brandstetter, 2021)): Neural layers integrated into deep learning, trained
with backprop. They builds on the “Dense Associative Memory ↔ Transformer Attention” correspondence (Ramsauer
et al., 2020), later generalized by (Hu et al., 2023; Wu et al., 2024b). These includes architectural innovations such as
additional memory-enhanced functionalities studied in prior works (e.g., (Ramsauer et al., 2020) for prototype learning,
(Schimunek et al., 2023) for template enriching and (Wu et al., 2024b) for fast test-time adaptation.)

Our work extends the prior modern Hopfield memory model by framing it as a nonparametric regression problem. This
allows efficient variants (Sections 3 and 4) and connects it to attention mechanisms (e.g., Performer (Choromanski et al.,
2021)) under a rigorous, unified theory.
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G Experimental Studies
Tasks. We verify the method proposed in the main content with the following experimental sections. These tasks mainly
focus on (1) validating the theoretical results, (2) the real-world application and (3) computational efficiency.

• Appendix G.1: Memory Retrieval Task (Figure 2).

• Appendix G.2: Multiple Instance Learning on MNIST (Figure 4).

• Appendix G.3: Multiple Instance Learning on Real World Datasets.

• Appendix G.4: Time Series Prediction.

• Appendix G.5: Computational Efficiency.

Baselines and Considered Models. We consider the following variations of Modern Hopfield Models in this paper:

• Dense Modern Hopfield (Ramsauer et al., 2020)

• Sparse Modern Hopfield (Hu et al., 2023)

• Sparse-Structured Modern Hopfield:

– Random Masked Modern Hopfield
– Window Modern Hopfield
– Top-K Modern Hopfield

• Linear Modern Hopfield

• Random Feature Modern Hopfield

Experiment Environment. All experiments are conducted on the platform with NVIDIA GEFORCE RTX 2080 Ti and
INTEL XEON SILVER 4214 @ 2.20GHz. We use PyTorch 1.8.0 for all experiments, and use RayTune for hyperparameter
search.
Remark G.1 (One-Step Retrieval). For simplicity and as a proof of concept, all experiments in this work use single-step
(feed-forward) retrieval without iterative updates. This avoids confusion with multi-step or recurrent retrieval.

G.1 Memory Retrieval Task (Figure 2)

In the memory retrieval task, we examine two datasets: MNIST (sparse) and CIFAR10 (dense). We employ the sum-
of-squares distance between the retrieved image and the ground truth image to measure retrieval error. This experiment
encompasses two settings:

1. Half-masked image recovery, and

2. Noisy image recovery.

In the half-masked image recovery scenario, we obscure half of the pixels in the image. The memory set size (M ) is varied
from 10 to 200, and we report the average retrieval error (sum-of-square difference) over 50 runs. In the noisy image
recovery scenario, we fix the memory set size at 100, and introduce varying scales of Gaussian noise to the image, with
variance ranging from 0.1 to 1.4.

Implementation Details. The memory set itself is chosen randomly from the dataset in each iteration. We adhere to the
implementation outlined in (Hu et al., 2023).
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Results. We first see clear differences in retrieval success among different Hopfield models (Figure 2).

• For top-k Hopfield models, retrieval success depends directly on sparsity set by k. Lower k means higher sparsity and
lower retrieval errors. This aligns our theory (Theorem 4.1).

• The top-k model performs similarly to the Sparse Hopfield model (Hu et al., 2023) on sparse data (MNIST) with
smaller k (higer sparsity). This aligns our theoretical result on capacity (Proposition 4.1). Our sparse-structured model
maintains exponential memory capacity when the target memory is within support, ensured by the top-k operation.

• In contrast, random masked Hopfield models perform poorly, especially on MNIST (higher sparsity). This is because
random masking may remove the target memory. This violates a key assumption (µ ∈ M) in Theorem 4.1. Thus, their
poor performance is expected.

These numerical results (corresponding to Theorem 4.1 and Proposition 4.1) confirm that careful sparse strategies is capable
of matching or exceeding dense Hopfield retrieval in sparse settings.

Figure 2. Numerical Justifications for Theoretical Results: Memory Capacity and Noise Robustness. (Upper): Retrieval success
from half-masked queries (Theorem 4.1 and Proposition 4.1). (Lower): Retrieval success with different levels of Gaussian noise
(Remark 4.2). We set β = 0.01 (MNIST) and 0.1 (CIFAR10). Lines show averages over 10 runs. Shaded areas show standard deviations.
Top-k Hopfield models have retrieval rates tied to their sparsity: smaller k gives lower success, aligning our theory (Theorem 4.1). Top-k
models perform similarly to Sparse Hopfield (Hu et al., 2023) on sparse data (MNIST). This aligns our theory on memory capacity
(Proposition 4.1). Random masked models perform poorly, especially on MNIST. This is expected since random masking can remove the
target memory, violating our the µ ∈ M assumption in Theorem 3.2. These results confirm our theory: careful sparsity can match or
surpass dense models in sparse settings.
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G.2 Multiple Instance Learning on MNIST (Figure 3 & Figure 4)

Quoted from (Hu et al., 2023, Section 4.2):

Multiple Instance Learning (MIL) (Ilse et al., 2018; Carbonneau et al., 2018) is a variation of supervised learning
where the training set consists of labeled bags, each containing multiple instances. The goal of MIL is to predict the
bag labels based on the instances they contain, which makes it particularly useful in scenarios where labeling individual
instances is difficult or impractical, but bag-level labels are available. Examples of such scenarios include medical
imaging (where a bag could be an image, instances could be patches of the image, and the label could indicate the
presence or absence of disease) and document classification (where a bag could be a document, instances could be the
words or sentences in the document, and the label could indicate the topic or sentiment of the document).

In this experiment, we evaluate Dense Hopfield, Sparse Hopfield, and Top-K Hopfield models on a Multiple Instance
Learning (MIL) task using MNIST bags. This task is standard in modern Hopfield model literture (Ramsauer et al., 2020;
Hu et al., 2023; Santos et al., 2024b).

Setup. We designate one digit from MNIST as a negative signal, and the remaining digits as positive signals. The objective
is to predict whether a given bag of instances (digits) contains the negative signal. We vary the memory size (number of
instances per bag) to study how task difficulty affects each model’s performance and convergence. We vary the memory set
size (M ) from 5 to 100 and report the mean accuracy over 10 runs. We compare the performance of Dense Hopfield, Sparse
Hopfield, Top-K Hopfield (with 20%, 50%, and 80%), Random Feature Hopfield, Random Masked Hopfield and Linear
Hopfield models. We omit the Window Hopfield model for reasons mentioned earlier.

Implementation Details. We employ an embedding layer to project the flattened MNIST images into the hidden space,
followed by a layer of layer normalization. Subsequently, we utilize the Hopfield Pooling layer to pool over all the instances
in the bag, followed by a second layer normalization layer. Finally, a fully connected layer is used to project the hidden
representation of the bag into the label space. All models are trained using the AdamW optimizer for 150 epochs, with a
cosine annealing learning rate decay applied to all models. Note that we exclude Window Hopfield in this and the subsequent
MIL experiment since Window Hopfield requires both the query and memory pattern numbers to be large to perform the
sliding window operation. However, in our model structure, the number of query patterns in the pooling layer is set to 2.
The details of the hyperparameters can be found in Table 2.

Results. We report the results in Figure 3. Additionally, we also conduct a convergence analysis in Figure 4 with bag
size = 50. We plot the loss and accuracy curve on MNIST MIL training and test set. Below, we summarize the key
findings, connecting them to our theoretical guarantees (e.g. ϵ-sparse convergence from Theorem 3 and the sparse masking
assumption):

• Robust Performance with Increasing Memory Size (Figure 3): We measure accuracy as the bag size grows (x-axis
of Table 2). Top-K Hopfield and Sparse Hopfield keep high accuracy even with large bags. Dense Hopfield struggles:
it attends to all instances, so distractors dilute the target signal. As a result, its performance drops when the bag is
big. In contrast, Sparse and Top-K Hopfield focus on the most relevant entries. They ignore low-similarity memories
and avoid noise. Thus, they hold strong performance as bag size increases. This aligns with our theory (Theorem 4.1
and Corollary 4.1.1), which shows that masking out small similarities enforces a clear margin for correct retrieval.
Random masked models do poorly if the mask removes the target memory, violating the µ ∈ M assumption. Hence,
selective sparsity helps retrieve the correct instance reliably, even with many distractors.

• Convergence and Training Dynamics (Figure 4): We compare the training loss and accuracy curves of various
Hopfield models on the MNIST MIL task. Sparse and Top-K Hopfield models converge quickly and stably: their loss
drops sharply and accuracy climbs rapidly, reaching near-perfect performance within a few epochs. Notable, Random
Feature Hopfield model also exhibits relatively fast convergence and competitive performance. This behavior aligns
with our ϵ-sparse convergence theorem (Theorem 4.1), as restricting updates to the largest memory entries drives the
network to retrieve the correct instance in each bag without interference. In contrast, Dense Hopfield model (Ramsauer
et al., 2020) improves more gradually and can plateau or oscillate before converging, reflecting weaker theoretical
guarantees when many small memory entries compete. Also, Random masked models perform poorly with large
masking (e.g. 80%). This is expected since random masking can remove the target memory, violating our the µ ∈ M
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assumption in Theorem 3.2. Ultimately, all models converge, but the sparse variants reach high accuracy faster and
more reliably.

Figure 3. MIL Accuracy vs. Memory Size on MNIST. The y-axis represents the accuracy on test set. We compare test accuracy for
Dense Hopfield (no sparsity), Sparse Hopfield (Hu et al., 2023), and Top-k Hopfield (exactly k active memory slots) models as the number
of instances per bag increases. Larger memory size (more instances in a bag) makes the task more difficult due to more distractors. Dense
(blue), Linear (orange), and Random Masked Hopfield models lose accuracy significantly with larger bags. In contrast, Sparse Hopfield
(pink) and Top-k models maintain high accuracy. Namely, sparse models filter irrelevant instances effectively. This aligns with our
theoretical prediction that sparse retrieval improves robustness to large bag sizes (Theorem 4.1).

Table 2. Hyperparameter used in the MIL MNIST experiment.

parameter values

batch size 256
learning rate 1e-3
embedding dimension 256
number of heads 4
head dimension 64
test set size 500
train set size 2000
scaling 0.1
num of pattern 2
epochs 150
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Figure 4. Convergence Analysis of Hopfield Models on MNIST MIL. (Upper): Training loss and accuracy curves for various Hopfield
models on the MNIST multiple instance learning task (Theorem 4.1). (Bottom): Validation loss and accuracy curves on the same task
(Theorem 4.1). All models are trained for 150 epochs with cosine annealing learning rate decay. Each line is the mean over 10 runs. Sparse
Hopfield model by (Hu et al., 2023) attains the nearly the highest validation accuracy. Random Feature Hopfield model also converges
quickly with competitive performance. Top-20% Hopfield model converges fast and shows minimal performance drop. Dense Hopfield
model converges more slowly, exhibiting occasional plateaus. Again, Random masked models perform poorly with large masking (e.g.
80%). This is expected since random masking can remove the target memory, violating our the µ ∈ M assumption in Theorem 3.2.
In contrast, sparse updates (e.g. Sparse and Top-K) retrieve relevant entries more reliably, avoid spurious attractors, and ensure stable
convergence. Consequently, these models learn faster and reach higher accuracy on sparse data (Theorem 4.1 and Corollary 4.1.1), while
Dense Hopfield model faces interference from many memory entries. See Appendix G for more details.
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G.3 Multiple Instance Learning on Real World Datasets

For this experiment, we follow (Ramsauer et al., 2020; Hu et al., 2023) to conduct MIL experiments on real world
datasets. However, we employ a simpler model structure and a smaller hyperparameter search space, rendering our results
incomparable. We utilize four datasets: Elephant, Fox, and Tiger for image annotation (Ilse et al., 2018), and UCSB breast
cancer classification (Kandemir et al., 2014). We compare Dense Hopfield, Sparse Hopfield, TopK Hopfield at 20%, 50%,
and 80%, Random Feature Hopfield, and Linear Hopfield. Random Masked Hopfield is excluded due to its non-deterministic
inference, and Window Hopfield is omitted as previously mentioned. The results are presented in Table 5.

Dataset Details. The experiment is conducted on four MIL datasets. Elephant, Fox, and Tiger are designed for image
annotation and consist of preprocessed and segmented colored images. Each image is characterized by descriptors for
color, texture, and shape. These datasets each contain 100 positive images featuring the specified animal and 100 negative
images drawn from a set of images depicting other animals. Additionally, we evaluate our model on the UCSB breast cancer
classification task. In the UCSB dataset, each instance comprises a patch of a histopathological image depicting either
cancerous or normal tissue. The detailed statistics of the datasets are reported in Table 3.

Table 3. Statistics of MIL benchmark datasets

Name Instances Features Bags +bags −bags

Elephant 1391 230 200 100 100
Fox 1302 230 200 100 100
Tiger 1220 230 200 100 100
UCSB 2002 708 58 26 32

Implementation Details. We follow the experimental setting in (Ramsauer et al., 2020) and employ stratified 10-fold
cross-validation to evaluate the performance of each baseline Hopfield model. In each fold, we utilize a stratified sampling
process to partition the data into a training set and a validation set, with a split rate of 0.1. Hyperparameters are optimized
via random search by maximizing the ROC-AUC score on the validation set. All reported ROC-AUC scores represent the
average results over 5 runs with different random seeds. The random search space is delineated in Table 4, with the number
of trials set to 50 for each fold. The embedding layer, a pre-HopfieldPooling linear network, has its layer width determined
by the number of hidden units. A dropout operation, also referred to as bag dropout, is applied post the embedding layer and
the Hopfield Pooling layer. Notably, to better showcase the performance of Top-k Hopfield, dropout is not applied to the
attention weight. All models are trained using the Adam optimizer over 50 epochs. To mitigate overfitting, an early-stopping
mechanism is employed, selecting the best checkpoint based on the validation set.

Results. For real-world MIL datasets, Sparse Hopfield dominates most tasks (except for UCSB). However, other sparse-
structured Hopfield models, especially Top-20% Hopfield, show comparable performance with Sparse Hopfield, indicating
a potential trade-off between computational efficiency and model performance. For random feature and linear Hopfield,
they did not outperform other baselines. However, their retrieval dynamics behave differently than other sparse-structured
Hopfield models. Understanding how to fully utilize their potential and identifying the scenarios where they are most
suitable is worth studying in the future
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Table 4. Hyperparameter random search space on the respective validation sets of the Elephant, Fox, Tiger and UCSB breast cancer
datasets.

parameter values

batch size {4, 8, 16}
learning rates {10−3, 10−4, 10−5}
weight decay {0, 10−3, 10−4,}
layer width {128, 256, 512}
number of heads {4, 8}
scaling factors {0.1, 1}
dropout {0.0, 0.3 0.5}

Table 5. Results for MIL benchmark datasets in terms of AUC score. The results suggest that the proposed model achieves performance
comparable to the existing Dense and Sparse Modern Hopfield models (Hu et al., 2023; Ramsauer et al., 2020). Note that, since our aim
here is to conduct an atomic setting for fair comparison, we employ a simpler network structure (with smaller hyperparameter search
space) compared to the ones used in (Hu et al., 2023; Ramsauer et al., 2020). Consequently, our results do not align with those in (Hu
et al., 2023) for Dense and Sparse Modern Hopfield Models.

Method Tiger Fox Elephant UCSB

Dense Hopfield (Ramsauer et al., 2020) 0.813 0.563 0.877 0.524
Sparse Hopfield (Hu et al., 2023) 0.830 0.573 0.893 0.585

Top-20% Hopfield 0.824 0.562 0.848 0.586
Top-50% Hopfield 0.812 0.566 0.852 0.572
Top-80% Hopfield 0.812 0.560 0.872 0.551
Random Feature Hopfield 0.802 0.508 0.875 0.566
Linear Hopfield 0.797 0.571 0.869 0.561
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G.4 Time Series Prediction

We further showcase the performance (in Table 6) and efficiency (in Figure 5) of the proposed nonparametric modern
Hopfield models with multivariate time series prediction tasks.

Table 6. Time series prediction using different Hopfield layers (Appendix F) across five datasets. We evaluate each dataset with
different prediction horizons (showed in the second column). We report the average Mean Square Error (MSE) and Mean Absolute Error
(MAE) metrics of 5 runs. RF denotes the Random Feature Hopfield layer. One notable observation is that the noise level of the dataset
significantly influences time series prediction. Therefore, employing Hopfield layers with strong noise-robustness offers performance
improvements. Moreover, based on our results, the proposed efficient Hopfield models not only offer significant computational efficiency
but also maintain comparable performance. Especially, the Random Feature Hopfield and Linear Hopfield layers (models) not only
match but even outperform Dense Hopfield model in several settings. As a side note, Window Hopfield exhibits significant performance
degradation in most settings. This degradation arises because it solely focuses on local information. Being the only Hopfield model that
does not span the entire associative range (i.e., sequence length), it overlooks a substantial portion of the autoregressive correlation present
in time series data. We also record the time used for one epoch on ETTh1 dataset with different prediction horizon (input length as well).
The duration time per epoch was showed in Figure 5.

Models Dense Sparse Top20% Top50% Top80% Window RF Linear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.137 0.307 0.144 0.314 0.148 0.319 0.153 0.321 0.147 0.318 1.043 0.881 0.147 0.312 0.149 0.320
192 0.153 0.326 0.152 0.325 0.146 0.318 0.161 0.333 0.150 0.320 1.003 0.870 0.158 0.332 0.141 0.313
336 0.148 0.319 0.146 0.319 0.156 0.327 0.122 0.286 0.160 0.333 0.889 0.767 0.151 0.322 0.138 0.307
720 0.169 0.331 0.148 0.314 0.184 0.345 0.161 0.327 0.123 0.287 0.756 0.761 0.141 0.271 0.171 0.333

E
T

T
m

1 96 0.148 0.301 0.147 0.301 0.144 0.311 0.151 0.310 0.142 0.31o 0.943 0.854 0.151 0.314 0.155 0.319
192 0.189 0.350 0.187 0.340 0.191 0.347 0.185 0.338 0.188 0.341 1.054 0.893 0.190 0.347 0.192 0.348
336 0.163 0.320 0.165 0.322 0.168 0.331 0.161 0.312 0.169 0.330 0.873 0.334 0.175 0.333 0.176 0.337
720 0.159 0.300 0.161 0.303 0.165 0.313 0.167 0.313 0.169 0.320 0.764 0.731 0.162 0.309 0.165 0.310

E
C

L

96 0.378 0.371 0.373 0.370 0.384 0.382 0.386 0.386 0.383 0.376 0.989 0.854 0.390 0.403 0.365 0.378
192 0.486 0.426 0.535 0.507 0.502 0.427 0.501 0.464 0.519 0.481 1.000 0.843 0.543 0.438 0.549 0.464
336 0.748 0.693 0.760 0.688 0.650 0.549 0.674 0.571 0.638 0.545 1.012 0.849 0.767 0.588 0.672 0.578
720 0.961 0.711 0.993 0.758 1.145 0.843 1.166 0.847 1.211 0.872 1.061 0.865 1.362 0.896 1.052 0.770

W
T

H

96 0.347 0.474 0.347 0.477 0.348 0.474 0.348 0.474 0.356 0.479 0.952 0.819 0.345 0.470 0.355 0.476
192 0.399 0.505 0.386 0.497 0.360 0.482 0.370 0.490 0.361 0.482 0.977 0.828 0.368 0.487 0.354 0.478
336 0.407 0.512 0.387 0.501 0.376 0.489 0.397 0.503 0.403 0.505 0.931 0.808 0.392 0.504 0.407 0.514
720 0.669 0.631 0.632 0.623 0.590 0.604 0.569 0.593 0.618 0.618 0.564 0.595 0.564 0.595 0.747 0.676

Tr
af

fic

96 1.466 0.654 1.489 0.638 1.483 0.645 1.517 0.630 1.477 0.638 1.520 0.625 1.515 0.635 1.489 0.644
192 1.551 0.654 1.550 0.657 1.557 0.649 1.548 0.657 1.551 0.652 1.570 0.637 1.551 0.654 1.551 0.653
336 1.595 0.663 1.595 0.662 1.599 0.663 1.592 0.665 1.604 0.657 1.612 0.646 1.613 0.646 1.614 0.646
720 1.660 0.681 1.671 0.671 1.664 0.674 1.676 0.663 1.682 0.661 1.683 0.661 1.682 0.661 1.681 0.660

G.4.1 IMPLEMENTATION DETAILS

For ease of comparison, we employ the simplest possible architecture: an embedding layer to project each signal into a
hidden space, followed by a single Hopfield layer. By doing so, we treat every signal as a query pattern. Next, we employ a
Hopfield Pooling layer to pool over all the signals into a single hidden vector. Finally, we utilize a fully connected layer to
generate the prediction. For all experiments, we maintain the same input and prediction horizon for simplicity. The results
can be found in Table 6 and Figure 5.

Datasets. We conduct the experiments on four multivariate time series real-world datasets: ETTh1 (Electricity Trans-
former Temperature-hourly), ETTm1 (Electricity Transformer Temperature-minutely), WTH (Weather), ECL (Electricity
Consuming Load), Traffic.

Setup. For each dataset, we use their univariate setting for our time series prediction experiment. We choose Dense,
Sparse, Random Feature, Linear, TopK and Window Hopfield as baselines. We select 4 different prediction horizons for
demonstration, which are 96, 196, 336, 720. We report the average error of 5 runs, evaluated using Mean Square Error
(MSE) and Mean Absolute Error (MAE) metrics. For window Hopfield, we set the window size as 8, 12, 14, 16, w.r.t.
96, 196, 336, 720.
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Figure 5. The processing time comparison among different Hopfield models utilized in the time series prediction task described in
Table 6. We evaluate the efficiency of multivariate time series prediction on ETTh1 dataset. The findings are consistent with the efficiency
discussion in Section 3.2, where the Sparse/Dense/Top-K models (all with O(d2) complexity) necessitate more time to complete an epoch.
In conjunction with the results in Figure 4, it is evident that the efficient modern Hopfield models (Window, Linear, Random Feature) not
only converge in fewer or comparable epochs but also require less time per epoch compared to the less efficient (Sparse/Dense/Top-K)
Hopfield models.
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G.5 Computational Efficiency

Here we demonstrate the computational overhead for different efficient modern Hopfield variants. We focus on the
computational time duration and Flops (the number of Floating point operations). The results demonstrate

• For random masked Hopfield, the computational time scales up with respect to probability.

• Random feature Hopfield, Linear Hopfield and Window Hopfield demonstrates fast computational overhead in practice.
In addition, these efficient Hopfield models also enjoy significantly lower floating point operations with only a marginal
sacrifice in performance.

• Under PyTorch (version 1.11.0) framework, random masked Hopfield is not able to obtain computational efficiency
improvement despite from its sparse-structured nature.

Figure 6. (LHS:) Comparison of duration (ms) per batch for different Hopfield Models. (RHS:) The scaling behavior of Random Masked
Hopfield with different masking ratios. The probability denotes the ratio being masked out. We employ various variants of the Hopfield
layers to process a batch of tensors, with a batch size of 4 and a hidden dimension of 16. We vary the input memory size (input length).
Note that we separate the Random Masked Hopfield from other baselines since the sparse matrix operation in PyTorch, still in the beta
stage, may not be as fully optimized as dense tensor operations.

Figure 7. (LHS:) The FLOPs comparison for Random Masked Hopfield with different probabilities is depicted. The lines for Dense and
Sparse Hopfield are overlapped, as are the lines for Random Feature Hopfield and Linear Hopfield. (RHS:) The FLOPs comparison
across different Hopfield Models is shown. We employ the same settings as in the duration figure. Note that the fvcore package may
count sparse matrix operations as normal floating point operations, which is why we might not see a difference.
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Implementation Details. In this section, we exclusively evaluate the computational efficiency of different Hopfield models
with respect to varying input lengths using the Hopfield layer. We report the average duration time per batch, as shown
in Figure 6, and the FLOPs concerning different input lengths (memory sizes), as depicted in Figure 7. It’s notable that
different code implementation methods could potentially affect computational efficiency. We use a randomized batched
tensor as input x, where x ∈ Rmemory size×16, and the batch size is 4 8. For Random Feature Hopfield and Linear Hopfield,
we adhere to the Performer implementation9, while for Window Hopfield, we follow the Longformer implementation10. For
Random Masked Hopfield, we utilize the torch.sparse.sampled addmm11 feature, and for other baselines, we employ
standard PyTorch built-in functions for implementation. We report the average forward pass time over 10 runs, alongside the
FLOPs, with both metrics evaluated on different input lengths. FLOPs are calculated using the fvcore package12. Note that
most publicly available packages for FLOPs profiling are either under development or in beta, hence calculation errors are
anticipated. Additionally, the torch.sparse package is also in beta, implying its performance may not be fully optimized,
especially regarding FLOPs calculation and operation overhead.

Discussion. Note that, by nature, both Dense and Sparse Hopfield exhibit the same FLOPs. Moreover, it is observed that
Random Feature Hopfield and Linear Hopfield also share the same FLOPs, as the only distinction between them lies in the
kernel function. Regarding Window Hopfield, its FLOPs fall in between, demonstrating notable efficiency compared to
both Dense and Sparse Hopfield. In terms of duration time per batch, Sparse Hopfield appears slightly faster than its dense
counterpart, likely due to the additional zeros generated by sparsemax. Window Hopfield, on the other hand, showcases a
significant reduction in duration compared to Sparse Hopfield. Lastly, it is noted that the processing time for both Random
Feature Hopfield and Linear Hopfield converges as the memory size increases.

8approximately (4× 4× 16× memory size) bytes
9https://github.com/lucidrains/performer-pytorch

10https://github.com/allenai/longformer
11https://pytorch.org/docs/stable/generated/torch.sparse.sampled addmm.html#torch.sparse.sampled addmm
12https://github.com/facebookresearch/fvcore
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