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ABSTRACT

Multiple choice benchmarks have long been the workhorse of language model
evaluation because grading multiple choice is objective and easy to automate.
However, we show multiple choice questions from popular benchmarks can often
be answered without even seeing the question. These shortcuts arise from a
fundamental limitation of discriminative evaluation not shared by evaluations of
the model’s free-form, generative answers. Until recently, there appeared to be no
viable, scalable alternative to multiple choice—but, we show that this has changed.
We consider generative evaluation via what we call answer matching: Give the
candidate model the question without the options, have it generate a free-form
response, then use a modern language model with the reference answer to deter-
mine if the response matches the reference. To compare the validity of different
evaluation strategies, we measure agreement with human grading, by annotating
responses to MMLU-Pro and GPQA-Diamond questions. We find answer matching
using recent models–even small ones–achieves near-perfect agreement, in the
range of inter-annotator agreement. In contrast, both multiple choice evaluation
and using LLM-as-a-judge without reference answers aligns poorly with human
grading. Improved evaluations via answer matching are not merely a conceptual
concern—it reduces costs, and significantly changes model rankings. Multiple
choice benchmarks that seem saturated start showing room for improvement when
evaluated with answer matching. In light of these findings, we discuss how to
move the evaluation ecosystem from multiple choice to answer matching.

1 INTRODUCTION

Large language models impress with their capacity to generate fluid, free-form responses. But
exactly how good are they? Evaluating generative language models is challenging, as there is no
straightforward way to grade their unconstrained text output. Evaluations by human experts are too
slow and costly to meet the demands of a sprawling evaluation ecosystem.

Benchmarks try to avoid the hard problem of evaluating free-form responses altogether by moving
to multiple choice questions. Grading the picked choice is fast, objective, and easy to automate. But
multiple choice does not directly evaluate generative capabilities; picking one out of multiple choices
is rather a discriminative problem. A recent scalable alternative to multiple choice is LLM-as-judge,
where a strong judge model directly scores a candidate model’s answer, or, more commonly, compares
the answers provided by two models (Zheng, 2023). Although compelling as a direct means of
generative evaluation, LLM-as-judge runs into numerous biases (Tan et al., 2024a; Wang et al., 2024b).

As a result, both, recent benchmark creation efforts (Wang et al., 2024c; Zhang et al., 2025), and even
frontier model releases(Yang et al., 2025; Liu et al., 2024; Google, 2025; Team Gemma et al., 2024),
continue to fall back to multiple choice evaluations. Recent work even attempts to automatically
generate multiple choice questions using language models, either from scratch (Yu et al., 2024), or by
converting open-ended questions (Zhang et al., 2025). It almost appears as though there is no viable,
scalable alternative to multiple choice, except in a few, specialized domains like code or math. In this
work, we revisit the problem of grading free-form responses. We summarize our contributions below.

Demonstrating Discriminative Shortcuts in Multiple Choice Benchmarks: We start from a
lightweight formal discussion that makes this problem of generative evaluation more precise and
delineates it from discriminative evaluation. Against this backdrop, we show why multiple choice
fails to solve generative evaluation. The reason is that discriminative shortcuts arising from the
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Find the mass of air in a closed chamber measuring
35 ft x 20 ft x 10 ft, when the air pressure is 17 lb/in^2
and the temperature is 75°F Assume air to be an ideal gas.
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Figure 1: We show how multiple choice evaluations measure a discriminative task, rather than the generative
capabilities language models are used for. (Left) On a multiple choice question, DeepSeek v3 picks the correct
answer, perhaps due to choice-only shortcuts like “odd one out”, while giving the wrong response when
prompted with just the question without choices. We propose using Answer Matching, which checks if a free-
form model response matches the reference answer using a language model. (Right) On GPQA-Diamond, we
find that answer matching aligns highly with carefully collected human annotations, significantly outperforming
multiple choice. Even small language models as matchers can outperform frontier, expensive LLMs-as-a-Judge.

multiple choice format can sidestep generative evaluation. We demonstrate this fact with a simple
experiment that reveals the propensity for shortcut learning in multiple choice benchmarks.

Answer Matching Outperforms Multiple Choice Variants and LLM-as-Judge: Our primary
contribution, however, is to motivate a compelling, scalable means of generative evaluation, we call
answer matching: Let the model generate a candidate answer given only the question. Then provide a
second model with the correct answer and let this model decide whether the candidate answer matches
the correct answer. At the outset, answer matching, also referred to as reference-guided grading, is a
lesser known cousin of LLM-as-judge and it would seem to run into similar issues (Zheng, 2023;
Zhu et al., 2024a). On the contrary, we find that answer matching, if done right, strongly outperforms
all variants of multiple choice evaluations, and LLM-as-judge for generative evaluation.

Comparing Evaluations by Annotating Model Responses on Popular Benchmarks: To rigor-
ously compare one evaluation method to another, we examine how well each method aligns with
ground truth evaluations in three benchmarks: MATH (Hendrycks et al., 2021), MMLU-Pro (Wang
et al., 2024c), and GPQA-Diamond (Rein et al., 2024). While answers to questions in MATH are
automatically verifiable, answers to questions in MMLU-Pro and GPQA-Diamond are not. So we
manually grade model responses and release our annotations publicly for further use.

Demonstrating Recent Superiority of Answer Matching: Based on our new annotations, we find
that answer matching achieves alignment with ground truth evaluations that is vastly superior to the
alternatives. Even relatively small judge models—when used for matching and not direct evaluation—
achieve agreement rates close to the agreement between two humans. What’s important here is that
the matching model is recent. If you had evaluated answer matching two years ago, it would have
fared a lot less convincingly. Answer matching has become a viable alternative only recently.

Practical Implications for Benchmarking: In principle, it is possible that even a flawed evaluation
method can provide good model rankings. A method may fail to evaluate latent abilities on an
absolute scale, but might still identify which of two given models is better. However, we demonstrate
that the choice of evaluation method also affects model rankings. Using multiple choice will yield
different rankings from those produced by answer matching. Further, benchmarks which seem close
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to saturation in multiple choice format show more room for improvement in free-form generative
evaluation using answer matching. Although LLM-Judge style evaluations are believed to be costly,
we find that in practice the cost of running a benchmark with answer matching is no more than that of
multiple-choice evaluations. We address potential reliability concerns and conclude with a discussion
of how multiple choice datasets can be reused for generative evaluations with answer matching.

Summary and outlook. Answer matching is not new, but its superiority is. We argue that this
qualitative change should inform future benchmark design. In principle, answer matching can be
applied to any question from multiple-choice benchmarks, provided the question is specific enough
that the correct choice—or a valid paraphrase—can be uniquely inferred. This can be achieved by
filtering, as done in our human evaluation study, or rewriting the question and correct answer choice
appropriately to utilize more samples. It might also be helpful to specifically design benchmarks for
answer matching (Wei et al., 2024; 2025). For example, providing a reference list of multiple correct
solutions for each question would be helpful.

Overall, the success of language models has recently been met with efforts to make harder multiple
choice benchmarks. We show that multiple choice, by allowing discriminative shortcuts, is funda-
mentally easier than generating correct solutions. Rather than making multiple choice harder, the
path forward may be to better align our evaluations with the generative capabilities we care about by
leveraging the newfound capabilities of language models.

2 DISCRIMINATIVE SHORTCUTS TO MULTIPLE CHOICE EVALUATIONS

Figure 2: The correct answer set AQ

may contain paraphrases a1, a2. Gen-
erative evaluations thus involve testing
the membership of response R in AQ.
Multiple choice evaluation, in contrast,
tests whether a model can discriminate
between a candidate answer a1 and in-
correct choices {w1, w2, . . .}

.

Whether answering a question or solving a task, gen-
eration can be formalized as the process of presenting
the model F with a question Q, for which it generates
a response R = F(Q), where R ∈ S, the universe of
all possible finite-length outputs. Let AQ ⊆ S be the
set of correct answers for the question Q. We assume
that the truth value of the response to a question can
be determined, ensuring that the set AQ is well-defined.
Evaluating a generative model can therefore be formalized
as the following decision problem—Is the generated
response R a member of the set of correct outputs AQ?

Unfortunately in natural language responses, a large
number of paraphrases can convey the same point (Bhagat
& Hovy, 2013) leading to |AQ| > 1. In these cases, it is
hard to efficiently enumerate the set of correct answers,
which in turn makes testing R ∈ AQ challenging.
Circumventing this challenge is what popular question answering formats like multiple choice
attempt to solve. Multiple choice evaluations give the model a question Q, and a list of choices
consisting of a correct answer a ∈ A and n incorrect choices {wi}ni=1 ⊂ S \ AQ called distractors.
The model’s response is R̂ = F(Q, {a} ∪ {wi}Q), which is marked correct only if R̂ = a. In this
way, the set of correct answers is now reduced to singleton—only a—enabling automatic grading.
At first, it seems that multiple choice solves the problem of |AQ| > 1 we outlined above. However,
on a closer look, changing the input from just Q to

(
Q, a, {wi}

)
fundamentally shifts the task from

generating a correct response to separating the correct answer from the incorrect choices. The latter
is traditionally considered a discriminative problem (see related work in Section 5).

Experiment: Can multiple choice evaluations be answered without the question? To demonstrate
the extent to which multiple-choice benchmark can be solved discriminately in practice, we perform
a simple experiment. We finetune a language model (Qwen3-4B) to predict the correct answer a
given only the choices {a} ∪ {wi} without the question Q. For finetuning, we use the dedicated
train split of the dataset whenever available; otherwise, we randomly split the test set 50-50, training
on the first half and evaluating on the second half. Any accuracy obtained beyond chance in this
way raises uncertainty about the extent to which accuracy on the dataset reflects generative question
answering, as the model does not even know what question it is answering.

Result 1: Yes, due to choice-only shortcuts. Unfortunately, as shown in Figure 3, strikingly high
accuracies can be achieved across popular datasets using choice-only shortcuts. We are not the
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Figure 3: Answering popular benchmarks without the question. In red, we show the shortcut
accuracy achieved by finetuning a discriminative classifier that sees only the answer choices beyond
the random-guess baseline. The dashed blue line shows the model accuracy when prompted, without
any finetuning. Strikingly, discrimination can provide high accuracies on popular benchmarks,
attaining 83% on TruthfulQA-v2, 93% on GoldenSwag and 51% on MMMU-Pro (without also the
image), showing the statistical separability of correct choices from incorrect ones.

first to point out this problem. For the popular TruthfulQA dataset (Lin et al., 2022), with four
choices per question, Turner & Kurzeja (2025) show that identifying the “odd one out” can lead to
large accuracies without looking at the question. This prompted the release of an updated version,
TruthfulQA v2 (Evans et al., 2025), with only one incorrect choice. Once viewed from the lens of
being a discriminative task, reducing the choices from four to two only makes it easier to exploit
shortcuts! Indeed, we obtain an accuracy of 83% on Truthful QA v2, without even showing the
question to the model. TruthfulQA is not special in being affected by this problem. Even on widely
used hard, cross-domain benchmarks like MMLU, a non-trivial shortcut accuracy of 39% is seen,
which might seem low considering chance accuracy is 25%, but is still interesting as it consists of
questions from human examinations like GRE and USMLE.

Result 2: LLM generated benchmarks are more prone to shortcuts and they are hard to remove.
It seems that the rising trend of using language-model-generated choices (Shashidhar et al., 2025)
exacerbates the presence of choice-only shortcuts. For example, MMLU-Pro uses GPT4-Turbo to
generate additional incorrect choices, increasing the number of choices from 4 to 10. However,
compared to MMLU, this also increases our classifier’s shortcut accuracy significantly, to 41% where
chance is 10%. YourBench (Shashidhar et al., 2025) entirely generates the question and all choices
from a document using an LLM, and on their “replication” of MMLU, we obtain a much higher
shortcut accuracy (61%). Similarly, while GPQA (Rein et al., 2024) was designed with explicit
measures to avoid choice-only shortcuts, on SuperGPQA, an LLM-assisted attempt to expand GPQA,
we obtain much higher shortcut-accuracy relative to chance: 10% → 34%.

On older benchmarks like HellaSwag and ARC, prior work (Balepur et al., 2024; Li et al., 2021) has
shown that choice-only prompting without the question achieves non-trivial accuracies. For example,
Chizhov et al. (2025) show that on HellaSwag (Zellers et al., 2019), up to 70% shortcut accuracy
is achievable by prompting without the question. Such validity issues in HellaSwag lead them to
create a “corrected subset with substantially reduced effect of observed issues”, which they call
GoldenSwag. It has lower accuracy with choice-only prompting. However, there are myriad ways of
exploiting inherent statistical separation between correct and incorrect choices, which are hard to
remove manually. With choice-only finetuning, we find that the shortcut-accuracy on GoldenSwag is
93%, worse than HellaSwag where it is 87% (see Fig. 18 in Appendix). This exemplifies the difficulty
of truly removing choice-only shortcuts from multiple choice datasets.

Result 3: Answering “multimodal” benchmarks without an image or question. Finally, our
findings are not unique to language model benchmarks. On MMMU Pro (Yue et al., 2024), a visual
question-answering benchmark with 10 choices, we obtain 51% shortcut-accuracy without showing
the image or the question. We consider both the standard and vision subsets together. Thus, we find
that discriminative shortcuts can plague multiple-choice benchmarks across domains.
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Discussion. Our observations are not specific to any single language model. In fact, non-trivial
shortcut accuracy can be achieved even by finetuning small embedding models like DeBERTa (see
Appendix F). Viewing MCQs as a discriminative task explains recently raised concerns about how
models can obtain non-trivial accuracy when prompted without the question (Balepur et al., 2024).
For example, our backbone model for this experiment, Qwen3-4B, achieves a lower accuracy on
MMLU-Pro (23%) when prompted with only choices, and not finetuned. However, it is not necessary
that a language model always exploits such shortcuts when prompted with both the question and
choices (Balepur & Rudinger, 2024). In this sense, our obtained shortcut accuracies lower-bound
the fraction of samples which can be solved without the question. Our goal is not to catalog the
extent to which shortcuts affect multiple choice datasets, for which curious readers can refer to prior
works (Balepur et al., 2025). Rather, we demonstrate the discriminative nature of standard multiple
choice evaluations is a fundamental way in which they diverge from the generative capabilities we
set out to measure. We provide a conceptual discussion of the relative hardness of discriminative
and generative tasks in Appendix B.

3 ANSWER MATCHING FOR GENERATIVE EVALUATION

A simple way to prevent discriminative shortcuts is by not providing the model with choices in
the input. In this section, we compare many evaluation methods of this form. What stands out
as a compelling alternative is what we term Answer matching—where the model is simply tasked
with providing a free-form response R, and then, another model checks whether the response R
matches with a provided reference answer a. Empirically we find that answer matching achieves
alignment with ground truth evaluations that is vastly superior to all available alternatives. Even
relatively small (but recent) grading models—when used for answer matching, not directly correctness
assessment—achieve agreement rates comparable to the agreement between two human graders.

Relation to LLM-as-Judge. This kind of reference-guided scoring has occasionally been considered
in the LLM-as-Judge literature (Thakur et al., 2024), but we argue that the distinction is crucial: LLM-
as-Judge tasks a judge model J with verification—given the question Q and response R, it must decide
whether R is correct (R ∈ AQ). Traditionally (Zheng et al., 2023), the judge does not have access to
a reference answer and has to assess the quality or correctness of a response, which leads to a host of
issues documented in prior work (Tan et al., 2024b; Goel et al., 2025). In contrast, using a language
model for answer matching only requires it to check if the model response is semantically or func-
tionally equivalent to the reference answer in the context of the question, R ≡ a given Q. Intuitively,
matching seems easier than verifying the correctness of an arbitrary response (see Appendix B).

How then, do we determine what works best for generative evaluations? We propose collecting
ground-truth evaluations of free-form model responses on popular benchmarks, and measure sample-
level outcome alignment. Evaluations that are both scalable and yield outcomes more aligned with
ground-truth assessments can be considered superior. We measure alignment using Scott’s π, an
inter-annotator agreement metric recommended in recent LLM-as-Judge literature (Thakur et al.,
2024), for reasons elaborated in Appendix C.2.

3.1 ALIGNMENT ON VERIFIABLE RESPONSES: MATH

We begin with the MATH dataset, where, as previously discussed, MATH-Verify library (Kydlicek
et al., 2025) implements rule-based ground-truth evaluations of generative responses. Further, a
parallel multiple-choice version is also available (Zhang et al., 2024). This allows us to compare the
alignment of generative evaluations with multiple choice assessment on the same data distribution
(see Figure 1 for illustration). In Figure 4 (right), we show that answer matching, even with the
1.7 billion parameter Qwen3 model (non-thinking mode), achieves near-perfect alignment with the
ground-truth (π = 0.97). As for LLM-as-judge, even the much larger 671 billion parameter DeepSeek
v3 model achieves only modest agreement π = 0.72, while as a matcher, it achieves π = 0.98.

Could we fix MCQ in any other way? Perhaps what stands out is that standard MCQ obtains only
π = 0.26. This is mostly due to false positives ( 85% of errors) as reflected in the higher accuracy
given by MCQ in Figure 4 (left), which is expected given that the task requires solving an easier
discriminative problem. Next, we explore other variants of multiple choice evaluations that do not
provide all choices in the input, thereby preventing discriminative shortcuts.
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Figure 4: Multiple choice inflates accuracy. Answer matching aligns highly with ground truth
evaluation on MATH. We evaluate the responses of Qwen2.5-7B on MATH Level 5 using different
grading schemes. (Left) Each bar represents the accuracy estimated by a different evaluation.
Classical MCQs inflate accuracy estimates. (Right) Bars rank graders from worst (top) to best
(bottom). Even a small 1.7B matcher reaches Scott’s π = 0.97, virtually indistinguishable from
perfect agreement, whereas the MCQ evaluation aligns at only π = 0.26.

First, we consider multiple choice verification (Götting et al., 2025), where the model is given each
choice for a question separately, and must independently determine whether it is the correct answer to
the question. Formally, a model is considered correct in this setting if it outputs F(Q, a) = True and
F(Q,w) = False for all w ∈ {wi}. Many recently proposed multiple choice variants like including
“None of the Above” (Elhady et al., 2025) or multiple correct choices essentially boil down to this veri-
fication task (Zhu et al., 2024b), as they force the model to evaluate the correctness of each choice inde-
pendently. This grading method estimates similar accuracy (~50%) to the model evaluated as given by
answer matching (~52%, see Fig. 4) suggesting it might lead to similar outcome as ground-truth eval-
uation. However, we find that its alignment is much poor (π = 0.43) than answer matching variants
(π = 0.97) but better than providing all choices at once (MCQ, π = 0.26). In Appendix B, we discuss
how verification is a strictly harder task than discrimination, and also discuss its hardness relation with
the generative task, which has been of much recent interest (Swamy et al., 2025; Sinha et al., 2025).

Finally, Multiple Choice Cloze (Taylor, 1953) is a classical way to evaluate without allowing for
choice discrimination. Although less popular now, it was, for example, the proposed format for the
Abstract Reasoning Corpus (ARC) (Clark et al., 2018). It is implemented by only providing the
model the question in the input, and then measuring completion likelihoods over all choices, picking
the one assigned the highest likelihood. Unfortunately, it has even lower alignment than multiple
choice, with its π value (0.07) indicating its outcomes are almost independent from the ground-truth.
This type of evaluation is entirely a non-generative likelihood evaluation, and so it is unclear how
to fit in modern models which derive part of their prowess from generating a chain-of-thought before
responding, potentially explaining its comparatively poor alignment.

3.2 ALIGNMENT ON NATURAL LANGUAGE RESPONSES: MMLU-PRO, GPQA-DIAMOND

Tasks like MATH (Hendrycks et al., 2021) have constrained numeric or latex expression as answers,
which allow rule-based verification, and thus are not a use-case where one needs LMs to answer
match. Do our observations generalize to benchmarks like MMLU-Pro and GPQA-Diamond which
have natural language answers? To study this, we first create variants of these datasets which allow
generative evaluation. We only provide the question to the model being evaluated, and use the correct
choice as a reference answer for answer matching. Note that questions from these datasets often rely
on the choices to convey the style and specificity of the intended answer. Thus, many of them are
not unambiguously answerable in generative style, given just the question. Further, they often have
multiple possible answers. This is only a ground-truth evaluation where sans semantic or functional
equivalence, only one (set of) concept(s) is the correct answer. To ensure this, we filter to questions
which are 1) specific enough to be answered without choices, and 2) have a unique correct answer.
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Figure 5: Answer matching evaluations outperform multiple choice for MCQ benchmarks. We
compute alignment with human grading on GPQA-Diamond (left) and MMLU-Pro (right). Each
panel plots alignment (Scott’s π) between Human 2 and a range of automatic graders. Green bars
(bottom) show inter-human alignment, with modern LLMs (blue) approaching human-level grading.
Even small LMs like Qwen3-4B (without thinking) have high alignment, better than frontier LLMs-as-
Judge. MCQ (and variants) are as, or more, poorly aligned with human judgement than Llama 2 7B.

Since there is no automated way to collect ground-truth here, we manually evaluate 800 model
responses for correctness on both datasets, across four frontier models from different developers.
Due to the cross-domain, knowledge intensive nature of these questions, a human can only grade by
comparing responses to the reference answer. We then study how well different automatic evaluations
align with human judgement. In our human study, we also prompt humans to rate whether the
provided question and reference answer are specific enough, and can be arrived at uniquely (the
question has a single correct answer). We report results on a subset of 493 questions on MMLU-Pro
and 126 questions on GPQA-Diamond where both annotators think these properties are satisfied. We
release the annotations and model outputs publicly for further use. Human graders extensively use
tools like web search and calculators to make the annotations more accurate, spending more than a
minute per response on average. Full setup details are provided in Appendix C.1.

Modern LLMs are Human-Level Graders. Figure 5 shows alignment with human judgements
of MCQs, different LMs as judges, and LM matchers. Once again, we see a stark difference in
alignment, with LM matchers consistently obtaining a higher value of Scott’s π. We also perform an
error analysis for LLM-as-judge, finding that for the frontier models (Deepseek V3, OpenAI o4-mini),
errors disproportionately (80%+) arise from false positives–the judge finds responses correct which
are marked incorrect in human annotation. We provide a detailed error analysis in Appendix E.
This might be related to recent observations of sycophancy, an issue that also led to a rollback in
ChatGPT1. Once again, it is striking that small Qwen3 models have near-human level alignment,
with the recent larger DeepSeek and Llama models having agreement within the range of
inter-annotator disagreement. In Appendix Appendix D.1, we also study the relationship between
the size of a matcher and its performance for Qwen3 and Gemma3 model families and find that
Qwen3-4B offers the sweet spot for being a strong yet cheap grader. Our findings are consistent
with recent work (Krumdick et al., 2025) which shows that small language models provided with a
reference answer perform better than larger models without a reference answer for grading in the
domain of business and finance. Together, these findings confirm the validity of answer matching,
showing it is now a viable alternative to scale evaluations at the frontier.

4 TOWARDS BENCHMARKING WITH ANSWER MATCHING

We now examine the implications of adopting answer matching within the benchmarking ecosystem,
showing its impact on model rankings, benchmark saturation, and cost benefits. In Appendix A, we

1https://openai.com/index/expanding-on-sycophancy/
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64.5
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Mistral Small 24B 74.4

62.1

GPT 4o Mini 73.0

60.7

Claude 3.5 Haiku 69.7 56.9

WizardLM 2 8x22B 67.3 48.8

MMLU Pro Ranking

Figure 6: Leaderboards change when moving from MCQ to answer-matching. We evaluate gen-
erative responses to the filtered subset of GPQA-Diamond (Left) and MMLU-Pro (Right). Thick lines
represent statistically significant changes based on the Compact Letter Display algorithm (Piepho,
2004). Proprietary models (GPT 4.1 Nano, 4o Mini, Claude 3.5 Haiku) climb on generative rankings,
whereas some open-weight models (R1 Distill Llama 70B, WizardLM 2) drop markedly.

include both limitations of our study, such as the annotation process and not testing answer matching
under optimization pressure, as well as limitations of answer matching, such as how it cannot be used
on tasks with many semantically or functionally distinct correct answers.

Rankings Change. For public benchmarks, cardinal accuracy measurements and sample-wise
alignment is perhaps of lesser importance than how models are ranked, as argued in Hardt (2025).
After all, ultimately they serve as leaderboards that guide practitioners on what models to use. Does
multiple choice—despite its issues—perhaps give the same model rankings as answer matching?
Figure 6 shows that model rankings change quite a bit when directly measuring the more realistic
generative use-case. For example, recent open-weights models trained via distillation like R1-Distill
Llama 70B and Gemma-3 27B fall considerably on MMLU-Pro while Microsoft’s WizardLM and
Meta’s Llama-4 Scout show large drops on GPQA Diamond. In contrast, we see proprietary models
like GPT variants improve ranking in generative evaluation which seems plausible given that these
models are typically optimized for chat-based applications. This might be a symptom of open-weight
models being judged by the community on their performance in multiple choice benchmarks. If so, it
highlights the criticality of the evaluation method in setting incentives for model selection.

Answer Matching is cheaper than multiple choice. A key concern in maintaining such public
leaderboards is the potential cost of grading newly released models (Li et al., 2024). In Figure 7, we
compare the total cost of evaluating 17 models, all that were shown in Figure 6, across both datasets"
GPQA-Diamond and MMLU-Pro (see Appendix G for details). We find that answer matching, even
using a frontier model (like DeepSeek v3), is no more expensive than multiple choice evaluations.
Further, if using the much smaller Llama-4-Scout, which we found to have the best alignment with
human grading, we observe a striking phenomenon: the cost of answer matching can in fact be lower
than that of multiple choice evaluations. While this may seem counterintuitive, it is important to note
that evaluation costs are primarily driven by the length of model responses. Using a language model
matcher only incurs a small additional cost relative to the generation overhead.

We find that models generate longer responses for multiple choice than when they are asked to answer
just the question (without choices). In the case of MCQs, models typically attempt to solve the
question in a free-form manner first; if the answer they arrived at does not align with any of the
given choices, they then try to reattempt the question or proceed to evaluate each choice individually,
leading to longer response. We observe this phenomenon across all the models we evaluated, and
provide detailed breakdown in Appendix G. Naturally, the evaluation cost can vary based on the model
used for matching. Nonetheless, at the frontier, as inference-time compute is scaled, we expect that
matching a response to a reference answer will require less compute than solving the task from scratch,
as the former is easier. Thus, we believe the additional cost of answer matching will be marginal.
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Figure 7: Answer matching is cheaper than MCQ evaluation. We provide a breakdown of
evaluation cost averaged across 17 models. The cost of generating a response from a model, including
its input and output tokens (blue bars), turns out to be significantly higher for multiple choice
questions than free-form questions. Answer Matching (green) adds only a small overhead on top,
even with frontier matchers (Llama-4-Scout, DeepSeek-v3) that have inter-human level alignment
with human grading. Thus, answer matching not only improves evaluations, it also reduces costs.

Reliability. Another common concern with different methodologies for language model evaluations
is their reliability. This concern has two primary aspects: reproducibility and robustness. First,
for a long time, evaluations that rely on a language model as the grader were considered to have a
reproducibility problem (Zhang et al., 2025), as only proprietary models, subject to depreciation,
were sufficiently capable. However, this concern is now mitigated by both, progress in capabilities
of open-weight models like DeepSeek-v3, and recent small models like Qwen3-4B being good at
answer matching. To minimize variance, evaluations can be made deterministic (He & Lab, 2025).

As for robustness, we find that rankings remain highly stable even when using different models for
answer matching. We show this with DeepSeek-v3, Llama-4-Scout, and Qwen3-4B in Appendix
Figure 17. We also did not see any evidence of self-preference bias across these models, which is a
significant issue in traditional LLM Judge setups (Wataoka et al., 2025). However, we do not test
adversarial setups, where language models can be coerced to give favorable evaluations (Zheng et al.,
2025; Geiping et al., 2024). Preliminary evidence suggests that such jailbreaks are getting harder to
perform as models get more capable (Hughes et al., 2024; Panfilov et al., 2025). Until then, it might
be useful to also report more adversarially robust evaluations like multiple choice alongside, so that
high performance exclusively on LM-based answer matching evaluations can raise suspicion.

Intrinsic Validity of Answer Matching is Recent. One might also wonder, given that Llama 2 7B
Chat (Touvron et al., 2023), released in July 2023, seems to match or beat the alignment of MCQ in
our analysis, should we have moved on to LM answer matching much earlier? We argue that this is
not the case.MCQ, while having poor construct validity as a measure of generative capabilities, is
more reliable for what it claims to measure, namely, a model’s multiple choice test performance. In
contrast, older models lacked the intrinsic validity required for answer matching, as they performed
poorly on this task. This has changed only recently, as newer models now achieve near-human
agreement levels. We therefore believe that it is only with the recent generation of models that answer
matching has clearly emerged as the superior mode of evaluation.

5 RELATED WORK

Limitations of Multiple-Choice Evaluation. Multiple-choice questions (MCQs) were introduced
by Frederick J. Kelly in 1916 as a quick, objective, and scalable alternative to essay grading (Kelly,
1916). However, Kelly later warned that standardized tests built on MCQs reduce learning to mere
finding shortcut solutions, leaving large gaps in testing answering ability. Over the past century,
research in educational psychology has documented shortcomings of MCQ evaluations (Sampson
& Boyer, 2001; Simkin & Kuechler, 2005; Farr et al., 1990; Roediger III & Marsh, 2005). Despite
these drawbacks, MCQs still dominate large-scale testing — and, by extension, the evaluation of
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language models. A long running critique of multiple-choice questions (MCQs) is that they primarily
test the ability to rank (Haladyna et al., 2002; Ben-Simon et al., 1997) candidate choices or validate
the correctness of a given choices (Haladyna & Downing, 1989) rather than to generate an answer
from scratch (Ouyang et al., 2023; Bowman & Dahl, 2021; Balepur et al., 2025). Because the task
is restricted to choosing among distractors, significant MCQ accuracy can be achieved just through
shortcuts — e.g. relying on choice-only heuristics Turner & Kurzeja (2025); Balepur & Rudinger
(2024) or inferring the intended question from the answer set (Balepur et al., 2024). This limitation
is intrinsic to discriminative evaluation: the model is not tested on its ability to produce content
beyond the provided choices. In contrast, answer-matching evaluations directly measure generative
performance, on which models show lower accuracy (Myrzakhan et al., 2024).

Generative Evaluation. Answer-matching resembles classical Constructed Response Questions
(CRQs) in educational testing: the model is tested on its ability to generate an answer. CRQs also
span all levels of Bloom’s taxonomy (Krathwohl, 2002), from recall to creation (Balepur et al., 2025).
The main question to be tackled for automatic short-answer grading is scoring the generated response
(Chen et al., 2019). Exact-string matching is too brittle; traditional n-gram metrics (BLEU, ROUGE,
CIDEr) correlate only weakly with human judgments leading to other rule-based evaluations (Li
et al., 2024). Subsequently, prior work has used alternatives like embedding-based similarity metrics
(Bulian et al., 2022), including trained cross-encoders for grading (Risch et al., 2021). Recent work
has proposed LLM-as-a-judge (Mañas et al., 2024; Zheng, 2023), which prompts LLMs to grade or
critique model outputs, sometimes with access to grading rubrics or the answerer’s chain of thought
rationales (Ho et al., 2025). LLM-as-a-Judge evaluation without reference answers however has been
often found to be brittle (Wang et al., 2024b; Goel et al., 2025), leading to uncertainty about the
validity of LLM-based evaluation in general. In contrast, consistent with parallel work (Krumdick
et al., 2025), we show that once LLMs are provided the reference answer, answer matching with
recent LLMs can be a cheap way to score generative responses, that is better aligned with ground-truth
evaluations. Note that prior work has already shown LLM-based answer matching works (Kamalloo
et al., 2023; Wang et al., 2023), in that it has good correlation with human judgment for open-domain
question answering. In fact, recently the community has already started using language models for
evaluation via answer matching in frontier benchmarks like Humanity’s Last Exam (Phan et al., 2025)
and BrowserComp (Wei et al., 2025). Benchmarks like NovelQA (Wang et al., 2024a) use both
multiple choice and answer matching evaluations for a specific task, but does not directly compare
their validity. We show that not only is answer matching superior to multiple-choice but it is now
also feasible to run reliably locally as small open-weight models achieve high alignment with human
grading. Moreover, in the emerging regime of using test-time compute for harder tasks, we observe
answer matching surprisingly incurs lower cost than multiple-choice evaluations.

6 CONCLUSION

In this work, we show that modern LLMs excel at matching free-form responses to reference answers.
By carefully measuring alignment of different evaluation methods to ground-truth verification where
available, and human grading, we find that such LLM-based answer matching is significantly more
accurate at measuring generative capabilities than currently used alternatives, including many variants
of multiple choice evaluation, and LLM-as-a-Judge without a reference answer. We demonstrate that
this increase in validity also impacts the rankings of frontier models and also show that benchmarks
which seem saturated show open up more room for improvement as models drop considerably in
performance when required to generate free-form answers. Ultimately, what matters are the generative
responses produced by language models, as these are what users interact with in practice. Scores on
multiple choice benchmarks have long been questioned, but the lack of a scalable alternative has kept
them popular in the community. The recent emergence of highly reliable LLM-based answer matching
may represent a watershed moment—one that should inform the design of future benchmarks.
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Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland,
Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn
Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand,
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A LIMITATIONS AND CONSIDERATIONS

Annotation Process. Some questions in MMLU-Pro and GPQA-Diamond require subject expertise
to both check whether they are specific enough to be answered without choices, and also whether
they have a unique answer. Further, there were disagreements when matching answers for even the
filtered, shown in our alignment plots. While we are confident in the aggregate trends, individual
annotations may be noisy. We release our annotations publicly and welcome community feedback to
improve them.

Gaming the Matcher. In this work, we did not study how robust are language models as answer
matchers to gaming (for example, candidate outputting vague or multiple answers in the hope that
it passes through the matcher) or optimization pressure. In the real-world, any evaluation scheme
used will be optimized for, and given the ubiquity of LLM jailbreaks (Geiping et al., 2024), it is quite
possible stronger models are needed for matching to rule out cheating models (Zheng et al., 2025;
Hughes et al., 2024).

On the hardness of matching. Relatedly, for some tasks, answer matching might be harder than
simple verification. For example, in tasks with graph outputs, answer matching can require solving
the graph isomorphism problem, whereas directly verifying the requisite graph properties can be
much simpler.

Answer matching can not always be used. For our alignment analysis, we filtered to questions
with a unique correct answer (not counting paraphrases). This means our results do not apply to
questions with multiple correct answers. In this case, either the dataset would have to provide as
many semantically distinct valid answers as possible, or answer matching is no more guaranteed to
provide correct evaluations. Moreover, the evaluation of many generative tasks can not be simply
formulated with answer matching, e.g. translation, summarization, theorem proving, and coding.
LLM judges with rubrics (Hashemi et al., 2024; Arora et al., 2025) or verification via execution (Chen
et al., 2021) might be more suitable here.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B CONCEPTUAL FRAMEWORK

We now discuss the conceptual hardness relation between discrimination, verification, generation,
and answer matching, followed by empirical results.

B.1 ORACLE DEFINITIONS

For identifying hardness relations, akin to ones in complexity theory, we find it useful to consider
oracles for each of these tasks, and then see when one oracle can be subsumed by another.

Discrimination: We define the discrimination oracle as a function that for a given question and set of
choices, always picks the correct answer among the set of choices. Formally, D∗ = Q×a×{wi}Q →
a, where a is the correct answer and wi are not, i.e. a ∈ AQ, wi /∈ AQ ∀wi ∈ {wi}Q.

Verification: We define the verification oracle as a function that for a given question and response r,
checks if the response is a correct answer to the question. Formally, V ∗ : Q× r → {0, 1}, such that
V ∗(Q, r) = 1 if r ∈ AQ, 0 otherwise.

Generation: We define the generation oracle as a function that for a given question, outputs a correct
answer. Formally, G∗ : Q → a, such that a ∈ AQ.

Answer Matching: We define the answer matching oracle as a function that for a given question,
checks if a given response is semantically or functionally equivalent to a given reference answer,
in the context of the question. Formally, M∗ : Q × r × a → {0, 1}, such that M∗(Q, r, a) = 1 if
r ≡ a|Q, 0 otherwise.

B.2 HARDNESS RELATIONS

If an oracle for a task X can also be used as an oracle for task Y in a setting, we can say that the
hardness of task X is at least that of task Y for that setting, which we denote by H(X) ≥ H(Y ).

Verification can solve Discrimination but not vice-versa. First, we show that discrimination
is strictly easier than verification. We can create a discrimination oracle D∗ using a verification
oracle V ∗, by applying the V ∗ on each choice and outputting the one where the oracle returns 1. On
the other hand, discrimination as defined requires the guarantee that one of the provided choices is
correct, and thus cannot be used for verification, which might only be given a wrong response.

There has been recent interest (Song et al., 2025) on the hardness relation between verification and
generating a correct solution, with debate on how this varies across tasks (Swamy et al., 2025; Sinha
et al., 2025).

When there is a unique correct answer |AQ| = 1, Generation is computationally harder than
Verification if P ̸= NP . For |AQ| = 1, we can obtain a verification oracle by calling the generation
oracle once with the question Q. We can simply check if the produced answer a matches the response
r to be verified, as we assumed the correct answer is unique. However, to use a verification oracle
as a generation oracle, we would have to enumerate strings in S and verify one by one until the
verification oracle returns 1. This can require exponential calls to the verification oracle in input
length.

Note that even if a single answer had many semantically or functionally equivalent forms, one could
obtain a verification oracle by also using a matching oracle to check if the output of the generation
oracle is equivalent to the response to be verified.

As the number of correct answers |AQ| increases, Generation gets easier. Generation can
sometimes be easier than verification as we only need to generate one correct answer, which can
be easier than verification which requires distinguishing boundary correct and incorrect responses.
Intuitively, think of it as throwing a dart inside the board gets easier as the board gets bigger, while
precisely defining the board’s boundary can be tough. More formally, generation gets easier as the
fraction of correct answers among the universe of all possible strings increases, i.e. |AQ|

|S| gets larger.
Consider the following randomized protcol which uses a verifier oracle to solve generation: Sample a
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Figure 8: Discrimination, Verification and Generation Performance on MMLU-Pro (L) and
MATH (R): Discrimination accuracies are significantly higher. Verification and Generation accuracies
are close together, with smaller models being worse at verification. While it can seem that models
saturate both benchmarks when evaluated as MCQ, generative evals show there is still scope for
much improvement.

string r uniform randomly from the set of all strings S. Apply the verifier oracle V ∗(Q, r). Repeat
until the verifier returns 1. This protocol has expected number of calls |S|

|A| which could even be a
constant if the set of correct answers is a constant (in input length) fraction of the total solution set.
For example, consider the graph non-isomorphism problem, that is generating two graphs G1, G2 that
are non-isomorphic. Here, generation can be simple, just output two graphs with a different number
of edges. But verifying an arbitrary pair of graphs being non-isomorphic accurately is NP-Hard.
However, note that verification does not always get harder as |A| gets larger, for example for the task
“Generate an odd number”, while |A| is large, verification can be done with a simple rule (mod 2) as
we have a “clean decision boundary”. Thus, whether generation is actually easier than verification
depends on the complexity of verifying a solution for that particular task.

B.3 EMPIRICAL OBSERVATIONS

We show how discrimination, verification and generation performance on MMLU Pro and MATH
scales with model size.

Setup. On MMLU-Pro we plot Qwen3 thinking. On MATH (Level 5), we plot Qwen2.5 model
series as Qwen3 saturates MATH even at 8B scale. For discrimination, we report the standard
multiple choice accuracy with all choices given in the prompt to the model. For verification, we
independently provide the model each option with the question and ask it to rate whether this being
the answer is true or false. Only if the model marks just the correct option as true, and all the incorrect
options as false, do we give mark it as correct for the question. We then measure accuracy as the mean
verification correctness over all questions. For generation accuracy, we pose the question without
any options, and use answer matching with DeepSeek v3 to check the correctness of the final model
response (or ground truth in the case of MATH).

Results. Figure 8 shows empirical confirmation that discrimination (MCQ) is significantly easier
than both verification and generation for models on popular benchmarks. From the MCQ results it
can seem like even 7-8B saturated these two benchmarks. However, from the generative results, its
clear that even the biggest 32B models achieve around 60% accuracy and the task itself is far from
fully “solved” by these models.

Why LLMs find judging without a reference answer harder than answer matching. We see
above that accurate verification can almost be as hard as generation on popular benchmarks. Note
that verification is exactly the capability needed for obtaining an accurate LLM-as-a-judge without
any reference answer. On the other hand, in answer matching, the model has access to the correct
answer for grading. It can thus grade without knowing how to solve a question. In many tasks, answer
matching can be as simple as checking if after unit conversions two values are equivalent. In natural
language responses, models only need to be capable at detecting paraphrases. Note that there can
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be tasks where answer matching requires great domain expertise and is quite hard. For example,
it might be hard to verify if two proofs are equivalent. Checking if two graphs are structurally the
same boils down to checking graph-isomorphism, which is NP-Hard. For example, consider the
task of producing a graph with a pre-defined shortest path length between two nodes. There can be
many such graphs, and answer matching can be hard to implement here for many reasons. First,
one would have to provide all distinct graphs that satisfy this property as reference answers, and
the answer matcher would have to check for a match against each of these for assigning correct
outcomes. Second, finding the shortest path length between two nodes can be done with polynomial
time algorithms, whereas checking if an output graph matches a reference graph is NP-Hard (graph
isomorphism). In many more such cases, it is possible that verification is actually easier than answer
matching, and thus LLM-as-a-judge without a reference answer works better.
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Figure 9: Screenshot of the annotation interface used by the authors to grade model responses with
respect to the ground truth answer. The annotator has three primary tasks: 1) Match model response
the answer; 2) Check whether the (question, reference answer) pair is specific enough to be answered
without choices; 3) Check whether the question has multiple correct (semantically different) answers.
For each task, the annotator is asked to a give a rating on a scale from 1 to 5 from No to Yes. This
screenshot shows the interface for MMLU-Pro where human annotators had to grade only 1 response
per question. For GPQA Diamond, additionally 3 more model responses were shown and for each of
them, it was asked whether they match the answer semantically or not.

C EXPERIMENTAL DETAILS

We now provide additional experimental details skipped in the main paper for brevity.

C.1 HUMAN EVALUATION DESCRIPTION

Domains like math and code allow ground-truth verification using rule-base systems or unit tests but
the same is not possible for benchmarks like MMLU-Pro and GPQA-Diamond which have natural
language answers. As there is no automated way to collect ground-truth here, we did a human
evaluation of models’ responses by checking their free form response to the ground truth answer in
the multiple choice variant. For each dataset, two of the authors independently did the annotation.

Filtering MMLU-Pro for Human Study: MMLU-Pro has 12,000 samples, and we could only carry
out human grading on a smaller subset. We first use DeepSeek-V3-0324 to filter questions which
cannot be answered without knowing the options, such as “Which of the following options is correct?”.
We provide a rubric-based scoring prompt following Myrzakhan et al. (2024, Table 1). The model
provides ratings between 1 to 10 and then we use a high threshold of rating ≥ 8 as this is enough to
retain 5500 questions of MMLU-Pro. This filtering step skews the subject distribution of questions, as
domains where questions have numeric answers (such as engineering, math, physics and chemistry)
are more likely to be answerable without options in MMLU-Pro. So to obtain 800 questions for
human annotation, we do a stratified sampling across subjects to obtain a balanced distribution across
subjects. We then assign 200 questions each to four models: GPT-4o, DeepSeek-v3-0324, Llama 4
Maverick, and Qwen3-32B (with thinking).
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For GQPA, we limit to the Diamond set of 198 questions which is reported as having high quality
ground-truth labels. Since there are only 198 questions, we do not filter before the human evaluation,
and evaluate the responses of the four models on every question, for a total of 792 human evaluations.

While evaluating responses on subset of both these datasets, we also mark whether each question is
specific enough to be answerable in free form and whether the question has a unique answer. Ratings
of these two aspects are later used to filter to the subset used for computing alignment between
different grading schemes.

Annotation guidelines for to human evaluators

• For questions where what exactly to output (format / specificity etc.) seems unclear,
use the "can question be answered in free-form" to mark it ’leaning no’ or ’unsure’.
Be strict with matching when the format/specificity is not same, only marking
correct if model response is super-set of reference.

• For numerical answer questions, compute relative error by putting the numbers in
the provided widget. (Relative error should not be more than 1%).

• When in doubt about whether an answer matches or not, or whether a different
response is correct or not, use the options.

Annotation Interface. We use the annotation interface shown in Figure 9 for human ratings on the
scale of 1 to 5 on multiple facets. Before starting annotation, we looked at some raw data from the
datasets to understand how to classify questions suitable for answer matching. In this process, we
developed a fixed set of rules for both annotators to follow (shown above).

For each question, we annotate whether it is specific enough to be answered without options (5), and
whether it has a unique answer (5). For each model response, we annotate whether it is semantically
equivalent to the provided reference answer or not. For our results, we use only questions that are
rated specific (≥ 4) and unique (≥ 4), as here responses that match the reference answer (≥ 4) can
be considered correct, and those that do not (≤ 2) can be considered wrong.

On MMLU Pro, each annotator spent around one minute on average per question (and response).
We extensively use tools like web search and calculators to make the annotations more accurate. On
GPQA Diamond, each annotator spent around five minutes per question as the questions are much
more difficult, and the annotator was also required to grade four model responses simultaneously.

For GPQA-Diamond, as we annotated the whole dataset (due to its small size), we performed another
quality check given it is the diamond (high-quality) subset of GPQA and that fact that our annotated
version can be used in downstream evaluations. After individual annotation, annotators went through
the questions where they disagreed upon (in terms of its specificity and answer uniqueness) to discuss
the ambiguity and updated the annotation if they reached a common ground.

Post filtering, we were left with 493 questions of MMLU-Pro and 126 questions of GPQA-Diamond.
Given that filtering questions for free-form answerable eliminates subjective questions, we plot the
change in distribution of the question subjects in Figure 10 (MMLU Pro) and Figure 11 (GPQA-
Diamond). For example, in MMLU Pro, we observe that the number of questions in law, psychology
and history decrease significantly.

Evaluating Thinking Models Chain of thought prompting, and training models to use inference-
time compute via thinking tokens is rising in popularity as it enables gains in performance on many
reasoning tasks. To evaluate such models, we let them reason however they want but only ask them to
give final answer inside XML tags, and subsequently evaluate only the final answer provided inside
answer tags (see Fig 1 for an example).

For each model, we used maximum token limit of 16, 384. We used temperature of 0.6 for thinking
models and 0.3 for non-thinking models.
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Figure 10: Change in subject distribution of MMLU Pro before (left) and after filtering (right) to
questions which are suitable for answer matching evaluation.

Organic Chemistry

36.4%

Condensed Matter Physics

0.5%

Quantum Mechanics

12.6%

Optics and Acoustics

0.5%

Chemistry (general)

10.1%

Inorganic Chemistry

0.5% Physics (general)

9.6%

Genetics
2.0%

Molecular Biology7.6%

Electromagnetism and Photonics

3.0%

High-energy particle physics

7.1%

Relativistic Mechanics

3.5%

Astrophysics

6.6%

Organic Chemistry

34.1%

Condensed Matter Physics

0.0%

Quantum Mechanics

15.1%

Optics and Acoustics

0.8%

Chemistry (general)

10.3%

Inorganic Chemistry

0.8%

Physics (general)

11.9%

Genetics
0.0% Molecular Biology1.6%

Electromagnetism and Photonics4.0%

High-energy particle physics

8.7%

Relativistic Mechanics

4.8%

Astrophysics

7.9%

Figure 11: Change in subject distribution of GPQA Diamond before (left) and after (right) filtering to
questions which are suitable for answer matching evaluation.

C.2 ALIGNMENT WITH HUMAN EVALUATIONS ON MMLU-PRO, GPQA-DIAMOND

Naively computing the percentage of samples where the outcomes of the MCQ or matcher are the
same as the human evaluator has two major issues. 1) The underlying distribution can be imbalanced
if the accuracy of the models being evaluated is not 50%. This can allow no-information evaluators
to score highly. For example, if the underlying model accuracy is 70%, always evaluating the
model response as “correct” will give 70% agreement. 2) The agreement can be inflated by random
guessing. Suppose the evaluator only knows how to evaluate 60% of the responses correctly. Since
the underlying “correct” or “wrong” grading task is binary, by random guessing on the remaining
40% responses, agreement can be inflated to 80%.

We thus use Scott’s π to measure alignment of the evaluation with ground-truth, consistent
with (Thakur et al., 2024). It measures observed agreement (Po) in excess of what is expected
by chance (Pe) assuming both raters arise from the same marginal distribution.

π =
Po − Pe

1− Pe
, Pe = (

p+ q

2
)2 + (

1− p+ 1− q

2
)2

where say p, q are probability assigned to “correct” by the two evaluations (one of which is ground-
truth). Note that in our setting, Scott’s π offers a crucial benefit over the alternative annotator
agreement metric, Cohen’s κ. For a fixed observed agreement, Cohen’s κ becomes higher as the
marginal assigned to “correct” and “incorrect” across all responses gets further away the marginals
of the ground-truth evaluation. This is highly undesirable, and something π avoids (Krippendorff,
2004).
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(b) Alignment on GPQA-Diamond

Figure 12: Alignment of matchers across varying scales. We plot the alignment of matchers with
humans (calculated via Scott’s π) for models of varying parameters in the Qwen3 and Gemma3 family.

D ADDITIONAL RESULTS

D.1 IMPACT OF MATCHER

To study the optimal trade-off between matcher model size and cost, we evaluate the alignment of
models at different scales with humans. Specifically, we choose the Qwen3 and Gemma3 family as
they are not only open-weight but also offer models of varying sizes (1B-32B) and measure their
performance across MMLU-Pro and GPQA-Diamond benchmarks. Gemma3 models were release in
March 2025 whereas Qwen3 models were released in April 2025. We evaluated the Qwen3 models
in non-thinking mode.

We plot the performance and model size in Figure 12 and also report its their cost in Table 1. For the
Qwen3 family, we find that on both MMLU Pro and GPQA Diamond, there is a rapid improvement
from 1B to 4B , and after that the alignment plateaus, suggesting Qwen3 4B might be a sweet spot
for cost-accuracy tradeoff. For the Gemma3 family, on GPQA Diamond we see alignment improve
till 12B but not much after that, whereas for MMLU Pro 27B clearly is a better grader than 12B,
perhaps because the latter is a more subjective dataset. This shows that the optimal choice of matcher
size can be task dependent, and also depends on the cost-accuracy preferences of the user. That
said, Qwen3 4B stands out as a cheap yet strong grader for both MMLU Pro and GPQA Diamond.
Our analysis demonstrates that effective answer matching, depending on the task, may not require
expensive frontier models—adequately-sized open-weight models (4B–8B) provide strong alignment
at minimal cost.

D.2 CHANGE IN RANKINGS

In Section 3.1, we showed the accuracy and alignment of different graders on MATH Level 5. Here,
we also plot the same for GPQA-Diamond in Figure 15(a) and for MMLU-Pro in Figure 15(b). We
find that MCQ estimates the highest accuracy followed by LLM-judges. These judges overestimate
the performance as they often quickly conclude responses to be correct at surface level without
engaging deeper. Meanwhile, language models as matcher give accuracy similar to humans. Even
between humans, the accuracies are not same and we found this difference to be higher in MMLU
Pro (compared to GPQA-Diamond) as the questions are more subjective.

Ranking Changes. In Section 4, we showed the change in rankings when shifting from MCQ to
generative evaluations. There, we showed this on the subset which humans found suitable for answer
matching. While filtering is essential to assess the true performance of a model (cardinal value) on
the free-form version of the benchmark, it may not be important for comparing model rankings as
questions which cannot be answered free-form can be considered label noise (from the perspective
of answer-matching evaluation). Thus, we also plot the change in model rankings on the whole
dataset for GPQA-Diamond and MMLU-Pro in Figure 16. We observe more significant changes in
MMLU Pro with both Llama-4-Maverick and Qwen3-32B dropping considerably which was not the
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Table 1: Alignment of models of varying scale from the Qwen3 and Gemma3 family on the task
of answer matching. The Qwen3 models are evaluated in the non-thinking mode. Pricing is taken
from OpenRouter.ai; models marked N/A are not served by its API but can be self-hosted. Scott’s π
measures alignment with human graders.

Parameters Cost MMLU-Pro GPQA Diamond
Qwen3 Models Scott’s Pi

0.6B N/A ∼0.07 ∼0.1
1.7B N/A ∼0.74 ∼0.79
4B N/A ∼0.80 ∼0.87
8B 0.14 ∼0.78 ∼0.87
14B 0.22 ∼0.81 ∼0.87
32B 0.2 ∼0.82 ∼0.88

Gemma3 Models Scott’s Pi
1B N/A ∼-0.01 ∼0.15
4B 0.07 ∼0.62 ∼0.69
9B 0.10 ∼0.69 ∼0.89
27B 0.16 ∼0.78 ∼0.88

Inter-human alignment 0.89 0.95

case earlier. In GPQA-Diamond, we obtain similar conclusions as in our earlier observations from
Figure 6 in Section 4 of the main paper.

As models are used for answer matching, it is also important to study their robustness. Thus, we
investigate the change in rankings when different language models are used as matchers. In Figure 17,
we plot the ranking changes across DeepSeek-v3, Llama-4-Scout and Qwen3-4B as matchers. We
see that none of the changes are significant but the rankings are also not perfectly same. There
are very few changes between Llama-4-Scout and DeepSeek-v3 while it is slightly higher between
Qwen3-4B and DeepSeek-v3. In terms of benchmarking, it will be useful to fix a language model
(say Llama-4-Scout, which is both cheap and has high alignment with human evaluation) as matcher
for consistent reproduction in the community.
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Figure 13: GPQA Diamond.
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Figure 15: Accuracy estimated by different graders and their alignment with human evaluation on
two popular datasets we use in our study.
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Figure 16: Leaderboard rankings change on the whole unfiltered dataset when moving from MCQ
to answer-matching on generative responses in GPQA-Diamond (L) and MMLU-Pro (R): Thick lines
represent statistically significant changers based on the Compact Letter Display algorithm (Piepho,
2004). We see chat-optimised proprietary models (GPT 4.1 Nano, 4o Mini, Claude 3.5 Haiku) climb
on generative rankings, whereas open-weight models judged by their multiple-choice benchmark
performance can (WizardLM 2, Llama 4 Maverick, Qwen 3 32B) drop markedly. The figure highlights
that benchmark conclusions — and hence model selection — depend critically on the choice of
evaluation protocol.
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Figure 17: Ranking changes across matchers on GPQA-Diamond (left) and MMLU Pro (right) when
the language model used as a matcher is varied. We find that there are only few ranking changes
between matchers and none of the changes are significant.
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E ERROR ANALYSIS OF ANSWER MATCHING MODELS

In addition to reporting aggregate accuracy, we perform a detailed error analysis of our answer
matcher models. We focus on two representative systems: Qwen3-4B (a smaller matcher) and
Llama-4-Scout (the strongest model in our evaluations, see Fig. 5). We analyze their disagreement
cases on both MMLU PRO and GPQA DIAMOND, with the goal of identifying systematic failure
modes.

Error Categories. We find that matcher errors can be grouped into a set of recurring categories.
Table 2 summarizes these categories, with representative examples drawn from Qwen3-4B and
Llama-4-Scout outputs. A substantial fraction of errors are due to rigid adherence to format, units, or
precision thresholds, even when the substantive content of the answer is correct. Other cases involve
failure to recognize equivalent units, inconsistency in the required level of completeness, or genuine
conceptual mistakes.

The examples illustrate that matchers often emphasize surface-level correctness (e.g., units, precision,
formatting) over semantic correctness. Qwen3-4B, in particular, tends to reject valid answers that are
phrased differently or use alternative units, while sometimes accepting semantically incorrect answers
when they match in form. Llama-4-Scout, by contrast, shows more tolerance to format variation but
can be overly permissive, occasionally accepting incorrect completions.

Human Alignment Ceiling. Even with careful model design, it is important to note that inter-
human agreement itself is not perfect. We observe Scott’s κ for human-human alignment at 0.87 on
MMLU PRO and 0.96 on GPQA DIAMOND (see Fig. 5). Since human annotators can disagree or
make mistakes, we do not expect current models to surpass these levels of agreement.

Model-Level Disagreement Patterns. To quantify how strictness or leniency manifests in practice,
we summarize the disagreement statistics for Qwen3-4B and Llama-4-Scout in Table 3. Qwen3-4B
exhibits a bias towards false negatives, being overly strict in rejecting plausible answers. Conversely,
Llama-4-Scout is biased towards false positives, reflecting its more lenient matching criterion.

Summary. This analysis highlights that the main challenge for matcher models is balancing
strictness and leniency: small models like Qwen3-4B tend to be too rigid, while stronger models like
Llama-4-Scout lean towards permissiveness. Future work may focus on adaptive thresholds, semantic
equivalence detection (e.g., unit conversions), and incorporating domain knowledge to reduce both
false positives and false negatives.
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Root Cause % of Disagreements Qwen3-4B
Example

Llama-
4-Scout
Example

Matcher
(Qwen3-4B)
Reasoning

Unit/Format Rigidity 38% Q: “What is
the percentage
of angular
magnifica-
tion”
Target: 0.5%
Response:
0.5
Issue: Missing
% symbol
(FN)

Q: “What are
the rabbinical
commentaries
produced after
the Mishnah
called?”
Target:
Gemarah
Response:
Gemara
Issue: spelling
variant re-
jected

“Response
must have at
least as much
information as
ground-truth;
unit is essen-
tial”

Precision Over-Strictness 23% Q: “Time for
stone to strike
water”
Target: 4 s
Response:
4.04 s
Issue: 1%
error rejected
(FN)

Q: “Find
thermal con-
ductivity”
Target:
2.47×10−4

Response:
6.27e-4
Issue: 87%
error accepted
(FP)

“Relative error
greater than
1% threshold”

Unit Conversion Blindness 15% Q: “Calculate
enthalpy”
Target:
-2.72 kcal
Response:
-11.42 kJ
Issue: Equiv-
alent units
rejected (FN)

Q: “tRNA
anticodon
sequence”
Target:
5′-C-A-U-3′

Response:
3′-G-U-A-5′

Issue: Wrong
sequence
accepted (FP)

“Different
units of en-
ergy; values
not equiva-
lent”

Completeness Inconsistency 13% Q: “Geometri-
cal position in
qubit space”
Target:
r=(0,0,0)
Response:
Origin
Issue: Correct
but less spe-
cific (FN)

Q: “IUPAC
nomencla-
ture”
Target:
3-bromo-4’-methoxy-1,1’-biphenyl
Response:
1-bromo-3-(4-methoxyphenyl)benzene
Issue: Differ-
ent structure
accepted (FP)

“Response
lacks suffi-
cient informa-
tion detail”

Conceptual Errors 11% Q: “Color
of light ab-
sorbed”
Target: Red
Response:
Green
Issue: Com-
plementary
color confu-
sion (FP)

Q: “Stars
detectable by
both observa-
tories”
Target:
Star3,
Star5
Response:
Star1,
Star3,
Star5
Issue: Extra
incorrect star
(FP)

Domain
knowledge
gaps in evalua-
tion

Table 2: Error categories and representative examples for Qwen3-4B and Llama-4-Scout. FN = False
Negative, FP = False Positive.
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Model Total Disagreements False Negatives False Positives Primary Bias
Qwen3-4B 51 37 (73%) 14 (27%) Overly Strict
Llama-4-Scout 33 14 (42%) 19 (58%) Overly Lenient

Table 3: Error distribution of matcher models compared to human consensus across MMLU PRO
and GPQA DIAMOND.
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Figure 18: Shortcut accuracy achieved by finetuning DeBerta that sees only the answer choices,
without any access to the question. We show the improvement over the random-guess baseline in
red. In some datasets like TruthfulQA-v2, HellaSwag and MMLU, this small and old BERT-style
model also achieves similar accuracy to the ones reported in Fig 3. However, we found that the model
is unable to fit on benchmarks with > 4 options leading to baseline (constant choice) accuracy in
MMLU-Pro and SuperGPQA.

F FURTHER DEMONSTRATING DISCRIMINATIVE SHORTCUTS IN MCQS

In Section 2, we showed that on popular multiple-choice benchmarks, fine-tuning Qwen3-4B model
on choices-only prompt can lead to significant accuracy on the held-out test set. Here, we show
that non-trivial shortcut accuracy can be achieved even by finetuning small embedding models like
DeBERTa. More specifically, we finetune embeddings of the DeBERTa-v3-large model2 (with
roughly 500M parameters) and find that it achieves similar accuracy on TruthfulQA v2, MMLU and
HellaSwag (Fig. 18). However, on benchmarks with 10 choices like MMLU Pro and SuperGPQA, the
training loss doesn’t fall showing DeBERTa is unable to bind prompts with high number of choices
to their labels. It is nonetheless interesting that even a small, old BERT-style classifier can achieve
non-trivial accuracy on some of the datasets.

Using the classifier, we find questions which it gets right (without choices) and we provide below
examples of some questions from MMLU Pro where clearly choices-only shortcut exist3. These
examples are only meant to show some ways in which a model may exploit shortcuts from just the
choices to arrive at the correct answer. These examples are not exhaustive though.

2https://huggingface.co/microsoft/deberta-v3-large
3For MMLU Pro, we used Qwen3-4B as the classifier as it got signifcant accuracy.
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Biology MCQ Example — Question ID: 2842

Question: What cell components typically found in eukaryotic cells are missing from a
bacterial (prokaryotic) cell?

• A. Vacuoles, cytoskeleton, fimbriae
• B. Cellulose in the cell wall, thylakoids, glyoxysomes
• C. Flagella, pili, plasmids
• D. Centrioles, lysosomes, microtubules
• E. Nuclear membrane, histones, mitotic spindle apparatus, Golgi apparati, mitochon-

dria, and endoplasmic reticulum
• F. Cell wall, ribosomes, plasma membrane
• G. Chlorophyll, intra-cellular structures, respiratory enzymes
• H. Nuclear pore complex, peroxisomes, chloroplasts
• I. Peptidoglycan layer, nucleoid region, capsule
• J. Cytoplasm, bacterial DNA, mesosomes

Answer: E

Choices-only Shortcut: Choice E is considerably longer than other choices and has many
more components listed out in comparison.

Chemistry MCQ Example — Question ID: 4525

Question: Assume that all gases are perfect and that data refer to 298.15 K unless
otherwise stated. Calculate the total change in entropy, when a sample of nitrogen
gas of mass 14 g at 298K and 1.00 bar doubles its volume in an isothermal reversible
expansion.

• A. -4.8 J/K
• B. 2.3 J/K
• C. -1.0 J/K
• D. 1.5 J/K
• E. 3.2 J/K
• F. -2.3 J/K
• G. 0
• H. 5.0 J/K
• I. 4.1 J/K
• J. -3.5 J/K

Answer: G

Choices-only Shortcut: Choice G is the only choice with no unit listed whereas all other
choices have ‘J/K’ listed.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G MODELS’ RESPONSES IN MCQ VS FREE FORM

In Section 4, we discussed the cost of running a leaderboard using LM-based matcher for different
models and compared it with the cost of multiple choice evaluations. Then, we briefly mentioned
how the output tokens of a model can be much less in free-form generation (when the question is
asked without choices) compared to multiple choice evaluations (Fig. 7). Here, in Fig. 21 we show
that this trend is not specific to any one model but is true for all the models we evaluated, on both our
datasets. We show below an example of this in practice on a mechanical engineering question from
MMLU-Pro.

Mechanical Engineering Free-Form Example — Question ID: 11475

Question: Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. Calculate the total change
in entropy, when a sample of nitrogen gas of mass 14 g at 298K and 1.00 bar doubles its volume in an isothermal reversible
expansion.

Answer: 0 J/K

Model (Gemma3-27B-Instruct)’s Response: Here’s how to calculate the total change in entropy for the isothermal reversible
expansion of nitrogen gas:

1. Understand the Process

• Isothermal: Temperature remains constant at 298.15 K.

• Reversible: Expansion is infinitesimally slow, maintaining equilibrium.

• Nitrogen Gas: Treated as an ideal gas.

• Doubling Volume: Final volume V2 = 2V1.

2. Formula for Isothermal Reversible Expansion
The entropy change is given by:

∆S = nR ln

(
V2

V1

)
Where:

• n = number of moles of gas

• R = ideal gas constant = 8.314 J/mol·K

• V2, V1 = final and initial volumes, respectively

3. Calculate the Number of Moles (n)

• Molar mass of N2 = 28.0134 g/mol

• Mass = 14 g

•

n =
14 g

28.0134 g/mol
≈ 0.5 mol

4. Apply the Formula
Since V2/V1 = 2:

∆S = (0.5 mol) · (8.314 J/mol·K) · ln(2)

∆S = 0.5 · 8.314 · 0.6931 ≈ 2.887 J/K

Answer: The total change in entropy is approximately:

2.89 J/K
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Mechanical Engineering MCQ Example — Question ID: 11475

Question: Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. Calculate the total change
in entropy, when a sample of nitrogen gas of mass 14 g at 298K and 1.00 bar doubles its volume in an isothermal reversible
expansion.

• A. -4.8 J/K

• B. 2.3 J/K

• C. -1.0 J/K

• D. 1.5 J/K

• E. 3.2 J/K

• F. -2.3 J/K

• G. 0

• H. 5.0 J/K

• I. 4.1 J/K

• J. -3.5 J/K

Answer: G

Model (Gemma3-27B-Instruct)’s Response: Here’s how to calculate the change in entropy for the isothermal reversible expansion
of nitrogen gas:

1. Understand the Process

• Isothermal: Temperature remains constant at 298.15 K.

• Reversible: Expansion occurs slowly enough to maintain equilibrium.

• Expansion: Gas volume increases during the process.

2. Formula for Isothermal Reversible Expansion

∆S = nR ln

(
V2

V1

)
Where:

• n = number of moles of gas

• R = ideal gas constant = 8.314 J/(mol · K)

• V2 = final volume

• V1 = initial volume

3. Calculate the Number of Moles (n)

• Molar mass of N2 = 28 g/mol

• Mass of gas = 14 g

•

n =
14 g

28 g/mol
= 0.5 mol

4. Determine the Volume Ratio
The volume doubles, so:

V2

V1

= 2

5. Calculate the Entropy Change

∆S = nR ln

(
V2

V1

)
= (0.5)(8.314) ln(2)

∆S = 0.5 · 8.314 · 0.693 ≈ 2.88 J/K

6. Choose the Closest Answer
The closest multiple-choice option to 2.88 J/K is:

E. 3.2 J/K

Therefore, the answer is E.
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Figure 19: Mean output tokens on GPQA Diamond.
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Figure 20: Mean output tokens on MMLU Pro.

Figure 21: Comparison of the number of output tokens in MCQ vs Free Form evaluation on
GPQA-Diamond and MMLU-Pro. Each panel shows a bar plot on the mean output tokens produced
by the models evaluated. We consistently find that the number of output tokens in free form (blue)
is lower than multiple choice (red) across all the models evaluated.
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H PROMPT TEMPLATES

H.1 PROMPT FOR GROUND TRUTH MATCHING

Prompt for matching responses with ground truth (in Python)

d e f g e t _ j u d g e _ p r o m p t _ w i t h _ g t ( q u e s t i o n , t a r g e t , r e s p o n s e ,
i n c o r r e c t _ o p t i o n s =None ,

↪→ c o t =True ) :
" " "
G e n e r a t e a prompt f o r t h e j u d g e wi th ground t r u t h .

Args :
q u e s t i o n : The q u e s t i o n b e i n g asked
t a r g e t : The ground t r u t h answer
r e s p o n s e : The r e s p o n s e t o j u d g e
i n c o r r e c t _ o p t i o n s : O p t i o n a l s t r i n g c o n t a i n i n g

↪→ i n c o r r e c t o p t i o n s
c o t : Whether t o use a COT prompt

R e t u r n s :
A f o r m a t t e d prompt s t r i n g f o r t h e j u d g e

" " "
# The r e s p o n s e can have more i n f o r m a t i o n t h a n t h e

↪→ ground − t r u t h .
# I t can be more s p e c i f i c ( f o r example , " L a b r a d o r " i s

↪→ more
# s p e c i f i c t h a n " dog " ) , o r have a d d i t i o n a l p o s s i b l e

↪→ answer s .
# But i t must c o v e r e v e r y t h i n g ment ioned i n t h e

↪→ ground − t r u t h .
# I t i s okay i f i t c o v e r s i t i n d i f f e r e n t words , i . e .

↪→ p a r a p h r a s e d .

prompt = f " " " Your t a s k i s t o j u d g e whe the r t h e g i v e n
↪→ r e s p o n s e t o a q u e s t i o n matches a g i v e n ground
↪→ t r u t h answer o r n o t . You a r e p r o v i d e d wi th a
↪→ q u e s t i o n , a ground t r u t h r e s p o n s e , and t h e
↪→ r e s p o n s e you need t o j u d g e .

For a r e s p o n s e t o " match " , i t must have a t l e a s t a s much
↪→ i n f o r m a t i o n as t h e ground − t r u t h .

The r e s p o n s e can have more i n f o r m a t i o n t h a n t h e
↪→ ground − t r u t h . I t can be more s p e c i f i c ( f o r example ,
↪→ " L a b r a d o r " i s more s p e c i f i c t h a n " dog " ) , o r have
↪→ a d d i t i o n a l p o s s i b l e c o r r e c t answer s . But i t must
↪→ c o v e r e v e r y t h i n g ment ioned i n t h e ground − t r u t h . I t i s
↪→ okay i f i t c o v e r s i t i n d i f f e r e n t words , i . e .
↪→ p a r a p h r a s e d .

For numer ic answers , t h e r e l a t i v e e r r o r , d e f i n e d as
↪→ | r e s p o n s e − ground t r u t h | / mean ( r e s p o n s e , ground
↪→ t r u t h ) , must be l e s s t h a n 1% f o r t h e r e s p o n s e t o be
↪→ j u dg ed as a c o r r e c t match . Here , i f t h e ground t r u t h
↪→ i s a s p e c i f i c numer ic q u a n t i t y b u t t h e r e s p o n s e i s a
↪→ range , t h e n t h e y don ’ t match ( even i f t h e r a n g e
↪→ c o n t a i n s t h e ground t r u t h ) .

P o s s i b l e judgmen t s :
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" 0 " : The r e s p o n s e does n o t match t h e ground − t r u t h answer .
" 1 " : The r e s p o n s e matches t h e ground − t r u t h .

Q u e s t i o n : "{ q u e s t i o n }"
Ground t r u t h : "{ t a r g e t }"
" " "

i f i n c o r r e c t _ o p t i o n s :
prompt += f " \ n{ i n c o r r e c t _ o p t i o n s }"

prompt += f " " " Response : "{ r e s p o n s e }"

Your j o b i s t o ONLY check whe the r t h e g i v e n r e s p o n s e matches
↪→ t h e ground t r u t h answer o r n o t i n t h e c o n t e x t o f t h e
↪→ q u e s t i o n . You DO NOT NEED t o a s s e s s t h e c o r r e c t n e s s
↪→ of t h e r e s p o n s e . Th i s i s p a r t o f an au toma ted
↪→ e v a l u a t i o n p r o c e s s , t h e r e f o r e you MUST OUTPUT your
↪→ f i n a l answer as "0" o r "1" i n <answer > </ answer >
↪→ t a g s . " " "

i f c o t :
prompt += " \ nThink s t e p by s t e p and end your

↪→ r e s p o n s e wi th " + \
"< answer >0 </ answer > OR <answer >1 </ answer >

↪→ TAGS . "
e l s e :

prompt += " \nYOU SHOULD ALWAYS END YOUR RESPONSE
↪→ WITH " + \

"< answer >0 </ answer > OR <answer >1 </ answer >
↪→ TAGS . "

# Think s t e p by s t e p and end your r e s p o n s e wi th
# <answer >0 </ answer > OR <answer >1 </ answer > TAGS .
# YOU SHOULD ALWAYS END YOUR RESPONSE WITH
# <answer >0 </ answer > OR <answer >1 </ answer > TAGS .

r e t u r n prompt

H.2 PROMPT FOR LLM-AS-A-JUDGE WITHOUT GROUND TRUTH

Prompt for LLM Judges checking correctness (without access to ground truth) in Python

d e f g e t _ f r e e _ j u d g e _ p r o m p t ( q u e s t i o n , r e s p o n s e , c o t =True ) :
prompt = f " " " Your t a s k i s t o j u d g e whe the r t h e g i v e n

↪→ r e s p o n s e t o a q u e s t i o n i s c o r r e c t o r n o t . You a r e
↪→ g i v e n a q u e s t i o n and t h e r e s p o n s e you a r e j u d g i n g .

P o s s i b l e judgmen t s :
" 0 " : The r e s p o n s e i s i n c o r r e c t .
" 1 " : The r e s p o n s e i s c o r r e c t .

Q u e s t i o n : "{ q u e s t i o n }"
Response : "{ r e s p o n s e }"
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The r e s p o n s e s h o u l d f u l l y answer t h e q u e s t i o n and must n o t
↪→ be vague .

For numer ic answers , t h e r e l a t i v e e r r o r , d e f i n e d as
↪→ | r e s p o n s e − ground t r u t h | / mean ( r e s p o n s e , ground
↪→ t r u t h ) , must be l e s s t h a n 1% f o r t h e r e s p o n s e t o be
↪→ j u dg ed as a c o r r e c t match . Here , i f t h e ground t r u t h
↪→ i s a s p e c i f i c numer ic q u a n t i t y b u t t h e r e s p o n s e i s a
↪→ range , t h e n t h e y don ’ t match ( even i f t h e r a n g e
↪→ c o n t a i n s t h e ground t r u t h ) .

To t h e b e s t o f your knowledge : Does t h e p r o v i d e d r e s p o n s e
↪→ answer t h e q u e s t i o n c o r r e c t l y ? Th i s i s p a r t o f an
↪→ au toma ted e v a l u a t i o n p r o c e s s , t h e r e f o r e you MUST
↪→ OUTPUT your f i n a l answer as "0" o r "1" i n <answer >
↪→ </ answer > t a g s . " " "

i f c o t :
prompt += " \ nThink s t e p by s t e p and end your

↪→ r e s p o n s e wi th " + \
"< answer >0 </ answer > OR <answer >1 </ answer >

↪→ TAGS . "
e l s e :

prompt += " \nYOU SHOULD ALWAYS END YOUR RESPONSE
↪→ WITH " + \

"< answer >0 </ answer > OR <answer >1 </ answer >
↪→ TAGS . "

r e t u r n prompt
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