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Abstract

Current evaluations of LLMs in the govern-001
ment domain primarily focus on safety con-002
siderations in specific scenarios, while the as-003
sessment of the models’ own core capabilities,004
particularly domain relevance, remains insuffi-005
cient. To address this gap, we propose Gov-006
RelBench, a benchmark specifically designed007
for evaluating the core capabilities of LLMs008
in the government domain. GovRelBench009
consists of government domain prompts and010
a dedicated evaluation tool, GovRelBERT.011
During the training process of GovRelBERT,012
we introduce the SoftGovScore method: this013
method trains a model based on the Modern-014
BERT architecture by converting hard labels015
to soft scores, enabling it to accurately com-016
pute the text’s government domain relevance017
score. This work aims to enhance the capa-018
bility evaluation framework for large models019
in the government domain, providing an ef-020
fective tool for relevant research and practice.021
Our code and dataset are available at https:022
//github.com/pan-xi/GovRelBench.023

1 Introduction024

Since the advent of ChatGPT (Ouyang et al., 2022)025

in 2022, the field of Natural Language Process-026

ing (NLP) has entered the era of Large Language027

Models (LLMs). In recent years, research has028

yielded not only prominent closed-source models029

like ChatGPT and Claude (Bai et al., 2022) but030

also a growing number of powerful open-source al-031

ternatives such as LLaMA, Qwen, and DeepSeek.032

The capabilities of these open-source models are033

rapidly advancing, often approaching the perfor-034

mance levels of their closed-source counterparts,035

signifying increasingly sophisticated intelligence036

across the NLP landscape. Concurrently, tech-037

niques like instruction tuning (Zhang et al., 2023)038

and parameter-efficient fine-tuning methods such039

as LoRA (Hu et al., 2022) have significantly low-040

ered the cost of customizing models. This has suc-041

cessfully facilitated the development of domain- 042

specific models across various sectors, including 043

finance (Lee et al., 2025), healthcare (Liu et al., 044

2024), and law (Lai et al., 2024). 045

When developing models specialized for the 046

government domain, their evaluation is crucial. In 047

addition to general capabilities, evaluating model 048

performance within governmental contexts is par- 049

ticularly critical. However, research on bench- 050

marks for the government domain is currently 051

relatively limited, and existing work (Liu et al., 052

2025) often prioritizes safety assessments in spe- 053

cific operational scenarios. Furthermore, knowl- 054

edge in the government domain often lacks uni- 055

versal applicability, as government standards in 056

different countries and regions can vary signifi- 057

cantly. Therefore, we propose using the relevance 058

of model output to the government domain as a 059

key metric for evaluating its performance. 060

We propose GovRelBench, a benchmark to 061

evaluate the capabilities of LLMs in the govern- 062

ment domain. This benchmark comprises the test 063

prompts and a dedicated evaluation tool. To evalu- 064

ate an LLM, prompts from GovRelBench are input 065

to it, and our evaluation tool is then used to assess 066

the relevance of the generated output to the govern- 067

ment domain. This relevance assessment serves to 068

measure the LLM’s performance in this domain. 069

Initially, our evaluation tool employed tradi- 070

tional machine learning to perform binary clas- 071

sification on output text (determining if it per- 072

tained to the government domain). However, due 073

to the overlap between texts from the govern- 074

ment and news domains, this task requires more 075

than simple classification or regression. It ne- 076

cessitates a specialized label processing approach, 077

enabling the model to learn finer-grained rele- 078

vance measures, ideally yielding soft labels (Gal- 079

styan and Cohen, 2007) or continuous scores. 080

Encoder-based language models, exemplified by 081

BERT (Devlin et al., 2019), are well-suited for 082
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Figure 1: Overall pipeline of GovRelBench and GovRelBERT scoring workflow

such understanding-intensive tasks. We selected083

ModernBERT (Warner et al., 2024) as the foun-084

dational architecture for our evaluation tool, pri-085

marily due to its sufficient context window capac-086

ity.For further details on the model architecture,087

please refer to the Appendix A.1.088

Our contributions are summarized as follows:089

• GovRelBench: A benchmark for evaluating090

the capabilities of LLMs in the government091

domain, comprising the prompts and an eval-092

uation tool.093

• GovRelBERT: A ModernBERT-based094

model for computing the government do-095

main relevance score of given text, serving096

as the evaluation tool for GovRelBench.097

• SoftGovScore: A method for representing098

text relevance that effectively converts "hard099

labels" to "soft scores," enabling more pre-100

cise quantification of a text’s relevance to the101

government domain, and is used for training102

GovRelBERT.103

2 Related Work104

2.1 Soft Labels105

Soft labels represent a classification method in ma-106

chine learning that offers finer granularity com-107

pared to hard labels (Galstyan and Cohen, 2007).108

They allow the assignment of probabilities or109

membership degrees to each category for a given110

data point. Hard labels, typically represented in111

a one-hot encoded format, explicitly assign a data112

point to a single category (represented by 1, with113

all others as 0). In contrast, soft labels can rep- 114

resent the likelihood that a data point belongs to 115

multiple categories simultaneously, for instance, 116

assigning a probability of 0.7 to category A and 117

0.3 to category B. 118

This approach proves particularly valuable 119

when dealing with uncertainty, noisy data, and in 120

semi-supervised learning scenarios. Studies indi- 121

cate that soft labels can serve as a form of regular- 122

ization, preventing the model from becoming over- 123

confident and thereby enhancing its generaliza- 124

tion capability on unseen data. Common applica- 125

tion scenarios for soft labels include environments 126

characterized by annotation uncertainty, high pro- 127

portions of noisy data, challenges with model gen- 128

eralization, and knowledge distillation. For exam- 129

ple, soft labels have been proposed to improve bi- 130

nary classification models in medical applications, 131

particularly in situations where expert confidence 132

is low (Nguyen et al., 2014). They also facilitate 133

knowledge distillation, where the soft outputs (pre- 134

dictions) from a teacher model are used as soft la- 135

bels to train a student model (Hinton et al., 2015). 136

Furthermore, various methods exist for obtain- 137

ing soft labels, such as dynamically learning them 138

via meta-learning (Vyas et al., 2020) and collect- 139

ing them through crowdsourcing (Collins et al., 140

2022). 141

2.2 Open Source Datasets 142

The thriving research ecosystem surrounding 143

LLMs has led to the emergence of numerous open- 144

source datasets. This study primarily focuses on 145

datasets relevant to LLMs pre-training. 146

MNBVC,contributed by the Liwu commu- 147
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nity (MOP-LIWU Community and MNBVC148

Team, 2023), is a comprehensive dataset that in-149

cludes not only pre-training text data but also150

question-answering pairs and multi-turn dialogue151

data. It provides bilingual (Chinese-English) par-152

allel corpora and features fine-grained categoriza-153

tion of data by domain.154

WuDaoCorpora,developed by the Beijing155

Academy of Artificial Intelligence (BAAI) (Xue156

et al., 2022), is a large-scale multimodal dataset. It157

encompasses text, dialogue, image-text pairs, and158

video-text pairs. The final dataset was curated by159

applying over 20 sophisticated cleaning rules to an160

initial corpus of 100TB of raw web data.161

IndustryCorpus2,also developed by162

BAAI (Shi et al., 2024), is primarily designed for163

fine-tuning industry-specific models. It stands164

out by offering not only detailed categorization165

based on data sources but also annotations re-166

garding data quality. Furthermore, it provides167

comprehensive statistical information about the168

text data, enabling researchers to gain a clearer169

understanding of its characteristics.170

In addition to these examples, numerous other171

valuable pre-training datasets have been developed172

and made available to the research community.173

2.3 ModernBERT174

BERT, introduced by Google in 2018 (Devlin175

et al., 2019), is a pre-trained language model based176

on the Transformer architecture and trained on177

large-scale text corpora. It achieves pre-training178

through two core tasks: Masked Language Model-179

ing (MLM) and Next Sentence Prediction (NSP).180

While the original BERT revolutionized NLP de-181

velopment in 2018, its sequence length limit of182

512 tokens constrained its ability to process long183

texts, and its computational efficiency suffered184

on longer sequences. Subsequent models like185

RoBERTa (Liu et al., 2019), DeBERTa (He et al.,186

2020), and ALBERT (Lan et al., 2019) attempted187

to improve performance through training on more188

data, employing decoupled attention mechanisms,189

or enhancing parameter efficiency, yet they still190

faced challenges regarding long sequence process-191

ing and computational demands.192

ModernBERT, proposed in 2024 (Warner et al.,193

2024), addresses this gap, specifically designed for194

long context handling and efficient inference. Key195

features and advantages include:196

• Extended Sequence Length: ModernBERT197

supports a sequence length of 8192 tokens, a 198

significant increase compared to BERT’s 512 199

tokens, enabling better processing of longer 200

documents. 201

• Enhanced Activation Function: It utilizes 202

the GeGLU (Shazeer, 2020) activation func- 203

tion, replacing traditional ReLU or GELU, to 204

enhance the performance of its feed-forward 205

layers. 206

• Improved Efficiency with Unpadding: It 207

employs ’unpadding’ to avoid computational 208

waste on padding tokens, thereby boosting ef- 209

ficiency, especially in mixed-length batches. 210

• Optimized Inference: Its inference is opti- 211

mized for common GPUs, making it suitable 212

for real-world deployment scenarios, particu- 213

larly those with limited resources. 214

ModernBERT demonstrates strong perfor- 215

mance across various evaluations, including 216

classification tasks and single/multi-vector 217

retrieval, covering diverse domains such as code. 218

3 Methology 219

3.1 SoftGovScore 220

Hard Labels to Hard Scores: Quantifying Rel- 221

evance Our initial efforts focused on binary clas- 222

sification to categorize text as either ’govern- 223

mental’ or ’non-governmental’. However, stan- 224

dard techniques like TF-IDF with Random For- 225

est and embedding-based methods proved ineffec- 226

tive. The primary challenge stems from the fuzzy 227

boundaries of the governmental domain, as its data 228

frequently overlaps with other areas, making dis- 229

tinct separation difficult. 230

For instance, government activities reported on- 231

line often fall into the news category (showing 232

strong relevance), while documents from specific 233

departments (e.g., education, finance) relate to 234

both governance and their respective fields (show- 235

ing weaker relevance). Recognizing that relevance 236

is more of a spectrum than a strict binary choice, 237

we abandoned direct domain classification. In- 238

stead, we adopted an approach focused on quan- 239

tifying the degree of relevance using a numerical 240

score, such as Government = 1, News = 0.7 241

and Other = 0, to better capture these nuances. 242

Let L be the initial domain label and H be the 243

hard score. The conversion function fmap maps 244

3



the domain label to a hard score(the mapping is245

detailed in Appendix A.2):246

HL = fmap(L) (1)247

where H ∈ [0, 1] for example, H ∈248

{0, 0.7, 1, . . . }.249

Hard Scores to Soft Scores: Diffusion Score250

Building on the need for numerical relevance251

scores (Section 3.1, we convert initial domain252

labels into "hard scores" within the [0, 1] range253

based on assessed relevance to the governmental254

domain. However, relying solely on these discrete255

hard scores (e.g., assigning exactly 1, 0.7, or 0) can256

force model predictions into these rigid points and257

inadequately represent the spectrum of relevance.258

Therefore, we diffuse these hard scores into prob-259

abilistic "soft scores".260

Selecting Distribution Function Our initial ex-261

ploration involved using Gaussian distributions262

centered on each hard score. While this method263

can disperse scores and mitigate clustering effects,264

it introduces significant limitations. The applica-265

tion of Gaussian distributions necessitates the se-266

lection of a variance. However, assuming the same267

variance (i.e., level of uncertainty) for diffusing268

a high relevance score (e.g., 0.9) and a medium269

relevance score (e.g., 0.5) is problematic. Conse-270

quently, we opted for the Beta distribution. The271

Beta distribution allows for consistent prior con-272

fidence across different diffusion functions while273

maintaining manageable variance. Further analy-274

sis is detailed in Appendix A.5.275

Ssoft ∼ β(α, β) (2)276

P (Ssoft | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
Sα−1

soft (1− Ssoft)
β−1

(3)277

Eq. (2) indicates that our soft scores follow a Beta278

distribution, while Eq. (3) defines the probability279

density function (PDF) governing our score diffu-280

sion.281

By utilizing the formula for the expectation of282

the Beta distribution, we determine the alpha and283

beta parameters for each class such that the follow-284

ing equation is satisfied:285

E[betaL(α, β)] =
α

α+ β
= HL (4)286

3.2 GovRelBERT 287

We constructed the training dataset for our evalua- 288

tion model using self-crawled data combined with 289

specific domain data filtered from open-source 290

datasets, to which the SoftGovScore method was 291

applied. Then we trained GovRelBERT, employ- 292

ing a pre-trained multilingual ModernBERT as the 293

base model and using this dataset. Mean Squared 294

Error (MSE 5) was utilized as the loss function for 295

the model’s text relevance computation. 296

LMSE =
1

N

N∑
i=1

(Spred,i − Ssoft,i)
2 (5) 297

3.3 GovRelBench 298

We constructed GovRelBench, a benchmark for 299

evaluating the performance of LLMs in the gov- 300

ernment domain. This benchmark comprises 50 301

prompts and an evaluation tool (GovRelBERT). 302

Among the 50 prompts, 45 are instructions or ques- 303

tions authored by us, designed to cover various 304

aspects of the contemporary government domain. 305

The remaining 5 prompts are derived from jour- 306

nalistic inquiries regarding government affairs, se- 307

lected for their ability to be answered without re- 308

quiring additional background information, thus 309

ensuring broader applicability. The objective is 310

to ensure coverage of typical scenarios within the 311

government domain. 312

Although LLMs operate somewhat like "black 313

boxes," their outputs, generated through inference 314

and decoding processes, can indirectly reflect un- 315

derlying tendencies, knowledge distribution, or 316

lexical preferences concerning a specific domain, 317

such as the government sector. GovRelBench 318

leverages this: after an LLM generates text based 319

on an input prompt, the GovRelBERT model is 320

employed as an automated scoring tool to assess 321

the relevance of the LLM-generated text to the 322

government domain. This procedure provides a 323

quantitative metric for evaluating an LLM’s per- 324

formance in the government domain. 325

4 Experiment 326

4.1 Experimental Setup 327

The base model used for training GovRelBERT 328

was ’modern_bert_multilingual’ from ’neavo’, a 329

specific implementation of the ModernBERT 330

architecture. Model training was conducted 331

on an NVIDIA RTX 3090 GPU. The open- 332

source datasets utilized for preparing our train- 333
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Table 1: Comparison of Evaluation Metrics for Different Models

Model Name Accuracy F1 Score

TF-IDF + Random Forest 34.44% 0.2750
M3e + LDA 50.56% 0.3054
M3e + Logistic Regression 49.4% 0.2980
Baseline (ModernBERT) 24.36% 0.2625
Qwen2.5-7B-Instruct 35.15% 0.3147
GLM-4-9b-chat 30.92% 0.2753
InternLM2.5-7b-chat 35.92% 0.3378
Hunyuan-A13B-Instruct 40.41% 0.3617
Qwen2.5-14B-Instruct 40.95% 0.4036
Qwen2.5-32B-Instruct 41.83% 0.3739

GovRelBERTA (Error Tolerance 0.1) 71.47% 0.7394
GovRelBERTA (Error Tolerance 0.2) 93.58% 0.9380
GovRelBERTB (Error Tolerance 0.1) 66.93% 0.6929
GovRelBERTB (Error Tolerance 0.2) 92.19% 0.9250

ing data were sourced from the following Hug-334

ging Face repositories: ’BAAI/IndustryCorpus2’,335

’p208p2002/wudao’, and ’liwu/MNBVC’. To en-336

sure reproducibility, the random seed for all con-337

ducted experiments was set to 3407.338

4.2 Data Processing Implementation339

This section outlines the practical execution of our340

data processing methodology.341

Data Collection and Initial Sampling To ac-342

count for potential overlaps between other do-343

main data and the government domain, we col-344

lected data across 18 categories. Two cate-345

gories, namely ’Government’ and ’LawA’, were346

self-collected. Unclassified data from ’wudao’347

was designated as the ’Other’ category. The348

remaining 15 domain categories were sampled349

from the large-scale open-source corpora refer-350

enced in Section 4.1: ’BAAI/IndustryCorpus2’, 351

’p208p2002/wudao’, and ’liwu/MNBVC’. 352

Hard Score Assignment and Stratified Sam- 353

pling Following the quantified relevance proposed 354

in Section 3.1, each category label was mapped 355

to an initial "hard score" between 0 and 1 to re- 356

flect its estimated relevance to the government do- 357

main. This involved setting anchor points for clear 358

cases(e.g., Government ≈ 1, News ≈ 0.7, 359

unrelated ≈ 0) and subjectively assigning scores 360

to intermediate categories, aiming to construct a 361

smooth relevance spectrum. Subsequently, strati- 362

fied sampling was performed based on these hard 363

scores using score intervals of width 0.1 (e.g., 364

[0, 0.1), [0.1, 0.2), etc.) to mitigate data imbal- 365

ance issues. During an optimization step, bound- 366

ary scores were slightly adjusted (’Government’ to 367

approximately 0.95 and ’Other’ to approximately 368
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Figure 3: Variance Profile of the Beta Distribution α +
β = 20

Figure 4: Reference Score Distribution

0.15) to refine subsequent diffusion steps HL →369

H ′
L.370

Soft Score Generation via Beta Diffusion: Fi-371

nally, we implemented the core "hard score to soft372

score" transformation using Beta distribution dif-373

fusion (Section 3.1). A consistency constraint of374

α + β = 20 was applied to all categories. This375

ensured uniform prior confidence while allowing376

the score variance to adjust appropriately based on377

the hard scoreresulting in lower variance near the378

boundaries (0/1) and higher variance in the mid-379

range (the variance distribution is shown in Fig. 3.380

The α and β parameters are varied in increments381

of 0.5 for computational convenience. Therefore,382

in our practical implementation, we used α
α+β =383

H ′
L. This process generated the final soft score384

targets for model training, and their overall distri-385

bution is depicted in Fig. 4.386

4.3 GovRelBERT387

This section describes the training process and388

evaluation for our GovRelBERT model.389

4.3.1 Training Details390

The processed dataset comprises a total of 78,200391

samples. Each sample in the dataset includes the392

following features: ’text’ (the original source text),393

’label’ (the original domain category label from394

the source data), and ’score’ (the target govern- 395

ment domain relevance score generated via Beta 396

diffusion, as described in Section 4.2). This 397

dataset was partitioned into training, evaluation, 398

and test sets at a ratio of 8.5 : 1 : 0.5, respec- 399

tively. Key hyperparameters for training can be 400

found in the code we provide. An early stopping 401

strategy was employed based on Mean Squared 402

Error (MSE) on the dataset. The optimal model, 403

which we called GovRelBERTA, was achieved 404

at approximately 0.7 epochs, which may indicate 405

data redundancy or high learning efficiency. 406

Furthermore, to validate the effectiveness of 407

our proposed SoftGovScore method in directly 408

regressing to soft scores, we conducted an ab- 409

lation study. This involved training an alterna- 410

tive model,we called GovRelBERTB , which em- 411

ployed an approach similar to traditional soft label- 412

ing: it first predicted probabilities for each original 413

domain category and then converted these proba- 414

bilities into relevance scores. Further details on 415

this ablation study are provided in Appendix A.3 . 416

4.3.2 GovRelBERT Evaluation 417

We assessed GovRelBERT (GovRelBERTA) 418

through three comparisons. 419

Comparison with Baseline Models and Tradi- 420

tional Methods. We benchmarked GovRelBERT 421

against prior methods (TF-IDF+Random Forest, 422

m3e+classifier (Chen et al., 2024)) and a stan- 423

dard ModernBERT binary classifier (details in Ap- 424

pendix A.4 ). All these models were evaluated on 425

a "government/non-government" binary classifica- 426

tion task using the test set (approximately 3,500 427

samples) derived from the partitioning in Section 428

4.3. For GovRelBERT, which outputs continuous 429

scores, its outputs were converted into categorical 430

predictions by considering whether the absolute er- 431

ror from the target score was within thresholds of 432

0.1 and 0.2, respectively, to compute F1 score and 433

accuracy metrics. As shown in Table 1 , Gov- 434

RelBERT significantly outperformed the baseline 435

models and traditional machine learning methods, 436

demonstrating its capability in identifying govern- 437

ment domain relevance. 438

Comparison with pre-train LLMs. We also 439

conducted a comparative analysis using several 440

decoder-only Large Language Models (LLMs) for 441

text classification. For this purpose, we selected a 442

range of open-source models, including Qwen2.5, 443

GLM-4, InternLM2.5, and Hunyuan, encompass- 444

ing both dense and Mixture-of-Experts (MoE) ar- 445

6



chitectures. Regarding model scale, we initially446

experimented with models of a comparable pa-447

rameter count to ModernBERT, but found their448

instruction-following capabilities to be poor, ren-449

dering them almost incapable of producing coher-450

ent outputs. Consequently, we selected models451

ranging from 7B to 32B parameters for our eval-452

uation. As shown in Table 1 , our model demon-453

strates superior performance compared to a 32B454

LLM, which has approximately 200 times more455

parameters. It is also noteworthy that the LLMs456

were tasked with classification, whereas our model457

performed a more nuanced regression-based scor-458

ing task.459

4.3.3 Comparison with Ablation Model460

Judgment of the panel of human. We com-461

pared GovRelBERTA (direct score regression)462

with GovRelBERTB (an ablation model em-463

ploying a classify-then-score approach). Quanti-464

tatively, GovRelBERTA demonstrated superior465

performance within a tolerance of 0.1, whereas466

both models performed comparably within a tol-467

erance of 0.2. In the qualitative assessment, a468

panel comprising one expert1 and four graduate469

students reviewed samples exhibiting high and low470

errors. The panel indicated a 3:2 preference for471

GovRelBERTA.472

These findings suggest that: a)473

GovRelBERTA’s direct regression approach474

more effectively captures fine-grained relevance,475

accounting for its superior performance within476

the 0.1 error tolerance; b) the comparable perfor-477

mance of both models at the 0.2 error tolerance478

reflects inherent noise or ambiguity in the data, a479

point substantiated by the analysis of high-error480

samples. This conclusion further underscores the481

effectiveness of our SoftGovScore method.482

Judgment of the panel of LLMs. To address483

the limitation of relying on only five human484

annotators for the qualitative comparison, we485

adopted the recent LLM as a Judge paradigm486

and enlisted five stateoftheart opensource large487

language models (LLMs) to act as additional in-488

dependent evaluators. Each LLM received the489

same paired outputs from ModernBERTA and490

ModernBERTB and produced a singlesentence491

preference judgement. Table 2 summarises the ag-492

gregated results.493

1A Senior Engineer with 11 years of experience in the
governmental affairs.

Table 2: Pairwise preferences of five LLM judges (✓=
preferred, – = tie).

LLM Judge ModernBERTA ModernBERTB

Gemini-2.5-Pro – –
Claude-Sonnet-4 ✓
GPT-4o ✓
Grok-4 ✓
DeepSeek-V3 ✓
Majority Vote 2 2
Voting ratio 11 9

Findings. Two of the five LLM judges 494

preferred ModernBERTA, two preferred 495

ModernBERTB , and one returned a tie, result- 496

ing in an even 22 split by majority vote. However, 497

when counting individual preferences across all 498

instances, ModernBERTA received 11 votes 499

versus 9 for ModernBERTB , indicating a slight 500

overall lean towards the regression model. 501

These automated judgements reinforce our hu- 502

man evaluation: although neither model domi- 503

nates by a large margin, the marginal preference 504

and moderate agreement both support the finer- 505

grained regression scoring of ModernBERTA,. 506

4.4 The Details Of Benchmark 507

Our benchmark comprises 50 test prompts, which 508

are divided into two subsets. The primary subset 509

consists of 45 prompts authored internally. These 510

are designed to encompass a diverse range of sce- 511

narios, including adversarial instructions intended 512

to elicit toxic or biased responses, alongside in- 513

quiries concerning policies and governance prin- 514

ciples pertinent to daily governmental affairs. The 515

remaining five prompts are derived from journal- 516

ists’ questions posed at recent press conferences, 517

as documented on the official website of the Min- 518

istry of Foreign Affairs. These external prompts 519

were selected based on two criteria: firstly, each 520

question must be self-contained, answerable with- 521

out supplementary news or background context. 522

Secondly, we selected the most recent questions 523

available to minimize the likelihood that these 524

question-answer pairs are present in the training 525

corpora of the evaluated LLMs. 526

4.5 Benchmark Application and Evaluation 527

To demonstrate the practical application of our 528

GovRelBench benchmark and the GovRelBERT 529

scoring model, we evaluated the performance of 530

several prominent LLMs on governmental rele- 531
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Table 3: Benchmark Scores for Different Models

Model Name Mean Variance

deepseek-chat 0.7959 0.0154
Qwen/Qwen2.5-72B-Instruct 0.7967 0.0065
internlm/internlm2_5-20b-chat 0.77645 0.0099
TeleAI/TeleChat2-52B 0.7459 0.0127
claude-3-7-sonnet-20250219 0.45328 0.0541
gpt-4o-2024-11-20 0.7359 0.0226

vance. The models tested included DeepSeek-532

Chat, Qwen1.5-72B-Instruct, TeleChat-52B and533

so on.534

The evaluation procedure was straightforward:535

• Each question/prompt from the GovRel-536

Bench dataset was directly inputted into the537

selected LLMs.538

• The generated responses from each model539

were collected.540

• Our trained GovRelBERT model541

(GovRelBERTA) was then used to assess542

each response, assigning it a governmental543

relevance score based on the methodology544

described earlier.545

This process allows for a quantitative comparison546

of how well different LLMs generate content rele-547

vant to the governmental domain when prompted548

with domain-specific questions.549

As shown in Table 3, the benchmark results550

provide several insights into the performance of551

current general-purpose LLMs on Chinese gov-552

ernmental domain tasks. Among the models pri-553

marily developed in China, Qwen/Qwen1.5-72B-554

Instruct demonstrated the strongest performance,555

achieving the highest GovRelBench score in this556

group. When comparing prominent international557

models, GPT-4o exhibited a notably better under-558

standing of Chinese governmental context, scoring559

significantly higher than Claude-3 Opus.560

Furthermore, the score obtained by561

TeleAI/TeleChat-52B2 might reflect the im-562

pact of its parameter size. It is plausible that a563

larger version of this model, such as a hypothetical564

115B parameter variant, could potentially achieve565

a higher relevance score on GovRelBench.566

2TeleChat models are developed by China Telecom and
are often referred to as public sector models, as they are pre-
trained on the open-source TeleChat-PTD dataset, which is
rich in governmental affairs data.

5 Limitations 567

The data preparation process, encompassing the 568

collection of relevant texts and the initial mapping 569

of domain labels to numerical relevance scores, in- 570

volves procedures that lack universal applicabil- 571

ity and thus relies heavily on subjective judgment 572

and considerable domain expertise. Additionally, 573

the inherent noise within the large-scale source 574

datasets used for training poses an unavoidable 575

challenge that may affect model performance. Our 576

SoftGovScore method has currently only been val- 577

idated in the government domain and has not been 578

extended to more domains. In the future, we plan 579

to apply our method to additional domains to ver- 580

ify its generalizability and will also attempt to de- 581

velop more objective mechanisms for quantifying 582

relevance to mitigate subjectivity. 583

6 Conclusion 584

In this paper, we introduced GovRelBench, a 585

novel benchmark explicitly designed for evalu- 586

ating the capabilities of large language models 587

(LLMs) in the government domain. GovRelBench 588

consists of carefully curated test prompts and an 589

accompanying evaluation model, GovRelBERT, 590

which quantifies the relevance of generated text to 591

the government domain. 592

Our GovRelBERT model builds upon the Mod- 593

ernBERT architecture and leverages the proposed 594

SoftGovScore method, a two-step label transfor- 595

mation technique that effectively converts cate- 596

gorical domain labels into nuanced soft relevance 597

scores. Through comprehensive experiments, 598

GovRelBERT demonstrated superior performance 599

compared to other architecture and methods. 600

Future research will aim to expand the general- 601

izability of SoftGovScore to other specialized do- 602

mains and address the inherent subjectivity and 603

data quality challenges present in constructing 604

domain-specific relevance measures. 605
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A Appendix709

A.1 Explanation of chosen ModernBERT710

For a benchmark’s evaluation tool, the primary711

considerations are accuracy, reliability, speed, and712

deployment cost. We initially considered training713

a traditional machine learning classifier and ex-714

plored various methods, including dimensionality715

reduction like embedding models. However, these716

approaches yielded low accuracy. Furthermore,717

our requirement is for a governmental affairs rel-718

evance score rather than a hard classification.719

This led us to focus on models with strong720

natural language understanding capabilities. The721

mainstream paradigms are encoder-based models,722

represented by BERT, and decoder-based models,723

represented by GPT. Since decoder models typi-724

cally have a larger parameter count and are better725

suited for natural language generation tasks, they726

are more appropriate for ranking the relative gov-727

ernmental relevance of several texts rather than as-728

signing specific scores. Consequently, we selected729

an encoder-based model. The training task for an730

encoder model allows it to see the full context of731

the text and makes it more suitable for regression-732

style tasks.733

Considering that texts in our scenario are often734

quite long, we ultimately chose ModernBERT as735

our backbone. We selected ModernBERT-base as736

our foundation model, which, with a parameter737

count of only 149M, effectively meets our require-738

ments for inference speed and deployment cost.739

A.2 Dataset Details740

Our dataset encompasses a total of 18 distinct cate-741

gories. The table below (Table 4 ) provides details742

on the data distribution across these categories and743

outlines the initial mapping from each category744

label to its assigned reference governmental rele-745

vance score (the "hard score").746

It is important to reiterate that these tabulated747

scores represent the initial reference points. The748

final soft scores used for training GovRelBERT749

were generated by applying Beta distribution dif-750

fusion centered around these reference scores, sub-751

sequent to minor smoothing adjustments described752

in Section 4.2.753

A.3 GovRelBERTB Details754

Following the training ofGovRelBERTA, we755

trained GovRelBERTB as an ablation study756

to compare our direct score regression method757

Table 4: Distribution and Scores of Different Cate-
gories in the Dataset

Name Count Score

Government Affairs 10000 1.00
Law_A 3000 0.90
News 4000 0.70
Corporate Annual Reports 700 0.60
Diplomacy 1000 0.85
Soy Milk 3000 0.10
Government Work Reports 1500 0.85
Agriculture 4000 0.60
Politics 5000 0.80
Electric Power 2000 0.55
Entertainment 9000 0.10
Economy 3000 0.65
Law_B 2000 0.80
Real Estate 4000 0.55
Education 6000 0.60
Science 2000 0.35
Study Strong Country 5000 0.65
Others 12000 0.00

(SoftGovScore) against an alternative approach. 758

Leveraging the fact that our training data retains 759

the original domain category labels (18 distinct 760

classes), GovRelBERTB was designed with a 761

dual-objective training process. 762

Specifically, GovRelBERTB was trained to 763

perform two tasks simultaneously using the final 764

hidden state representation (dimension 768 from 765

the ModernBERT encoder): 766

• Domain Classification: Predict the original 767

category label (out of 18) for the input text. 768

• Relevance Score Regression: Predict the tar- 769

get governmental relevance score (the soft 770

score). 771

This contrasts with GovRelBERTA, which 772

had a single regression head mapping the hid- 773

den state directly to the score (768 -> 1). 774

GovRelBERTB effectively employed two heads 775

branching from the same encoder output: a clas- 776

sification head (outputting 18 logits) and a regres- 777

sion head (outputting 1 score). The underlying hy- 778

pothesis was that forcing the model to also learn 779

the discrete domain categories might potentially 780

aid or influence the learning of the nuanced rele- 781

vance score. 782

To train GovRelBERTB , we used a combined 783

loss function that equally weighted the losses from 784

both tasks: 785

• The classification task used CrossEntropy- 786

Loss. 787
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• The score regression task continued to use788

MSELoss.789

The final loss formula was:790

loss =
1

2

(
CrossEntropy(hidden_states, label)791

+ MSELoss(predict_score, score)
)

792

All other training hyperparameters (learning793

rate, number of epochs, weight decay, evaluation794

steps, etc.) were kept identical to those used for795

training GovRelBERTA to ensure a fair compar-796

ison between the two approaches.797

A.4 modernbert baseline798

The calculation for the ModernBERT baseline ref-799

erenced in the main text originated from an ini-800

tial experimental design focused on binary classifi-801

cation (’Governmental’ vs. ’Non-Governmental’).802

The approach involved:803

• Obtaining the text embedding from the Mod-804

ernBERT model’s encoder output.805

• Defining or obtaining representative embed-806

dings for the two target classes: ’Governmen-807

tal’ and ’Non-Governmental’.808

• Calculating the cosine similarity between the809

input text’s embedding and each of the two810

class embeddings.811

• Applying a softmax function to these two sim-812

ilarity scores to convert them into probabili-813

ties. Assigning the text to the class with the814

higher probability.815

This procedure essentially mimics the manual con-816

struction of a classification ’head’ based on seman-817

tic similarity in the embedding space, rather than818

using a standard, end-to-end trained classification819

layer. Our results indicated that this baseline ap-820

proach did not yield effective performance for the821

binary classification task.822

A.5 Advantages of the Beta Distribution823

Function824

To address these issues, we adopted the Beta dis-825

tribution. Its properties align well with our needs:826

• Bounded Support: The Beta distribution is827

naturally confined to the [0, 1] range, match-828

ing our score requirements without needing829

adjustments.830

• Principled Confidence and Variance Con- 831

trol: By fixing the sum of its parameters 832

α+β, we maintain a consistent level of prior 833

confidence across all initial hard scores used 834

as the mean. Crucially, with α + β fixed, the 835

distribution’s variance automatically adapts 836

based on the mean (the hard score). 837

• Intuitive Variance Behavior: The variance 838

is lowest near the boundaries (0 and 1) and 839

highest near the middle (0.5). This means 840

higher certainty for strongly relevant or irrel- 841

evant categories, and lower certainty for inter- 842

mediately relevant ones a desirable trait for 843

modeling domain relevance. 844

• Flexibility: This approach is adaptable 845

for more complex scenarios involving finer- 846

grained labels or cross-domain topics. 847

Thus, using Beta distribution diffusion allows 848

us to transform discrete hard scores into nuanced 849

soft scores that better capture the uncertainty inher- 850

ent in assessing governmental domain relevance. 851

A.6 Comparison of ModernBERT with 852

LLMs 853

The parameter size of ModernBERT itself is only 854

149M. We also selected an LLM of a comparable 855

parameter scale, Qwen2.5-0.5B-Instruct (which 856

also has an 8K context window), for comparison. 857

The most significant difference lies in computa- 858

tional resource utilization: ModernBERT’s train- 859

ing efficiency is approximately three times that 860

of Qwen (0.5B), and its inference speed also sur- 861

passes Qwen’s. Therefore, ModernBERT is bet- 862

ter suited than this LLM for the task of relevance 863

score computation. 864
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