
Published as a conference paper at ICLR 2023

EXPRESSIVE: A SPATIO-FUNCTIONAL EMBEDDING
FOR KNOWLEDGE GRAPH COMPLETION

Aleksandar Pavlović & Emanuel Sallinger
Research Unit of Databases and Artificial Intelligence
TU Wien
Vienna, Austria
{aleksandar.pavlovic,emanuel.sallinger}@tuwien.ac.at

ABSTRACT

Knowledge graphs are inherently incomplete. Therefore substantial research has
been directed toward knowledge graph completion (KGC), i.e., predicting missing
triples from the information represented in the knowledge graph (KG). KG em-
bedding models (KGEs) have yielded promising results for KGC, yet any current
KGE is incapable of: (1) fully capturing vital inference patterns (e.g., composi-
tion), (2) capturing prominent patterns jointly (e.g., hierarchy and composition),
and (3) providing an intuitive interpretation of captured patterns. In this work,
we propose ExpressivE, a fully expressive spatio-functional KGE that solves all
these challenges simultaneously. ExpressivE embeds pairs of entities as points
and relations as hyper-parallelograms in the virtual triple space R2d. This model
design allows ExpressivE not only to capture a rich set of inference patterns jointly
but additionally to display any supported inference pattern through the spatial
relation of hyper-parallelograms, offering an intuitive and consistent geometric
interpretation of ExpressivE embeddings and their captured patterns. Experimental
results on standard KGC benchmarks reveal that ExpressivE is competitive with
state-of-the-art KGEs and even significantly outperforms them on WN18RR.

1 INTRODUCTION

Knowledge graphs (KGs) are large collections of triples ri(eh, et) over relations ri ∈ R and entities
eh, et ∈ E used for representing, storing, and processing information. Real-world KGs such as
Freebase (Bollacker et al., 2007) and WordNet (Miller, 1995) lie at the heart of numerous applications
such as recommendation (Cao et al., 2019), question answering (Zhang et al., 2018), information
retrieval (Dietz et al., 2018), and natural language processing (Chen & Zaniolo, 2017).

KG Completion. Yet, KGs are inherently incomplete, hindering the immediate utilization of their
stored knowledge. For example, 75% of the people represented in Freebase lack a nationality (West
et al., 2014). Therefore, much research has been directed toward the problem of automatically
inferring missing triples, called knowledge graph completion (KGC). KG embedding models (KGEs)
that embed entities and relations of a KG into latent spaces and quantify the plausibility of unknown
triples by computing scores based on these learned embeddings have yielded promising results for
KGC (Wang et al., 2017). Moreover, they have shown excellent knowledge representation capabilities,
concisely capturing complex graph structures, e.g., entity hierarchies (Nickel & Kiela, 2017).

Inference Patterns. Substantial research has been invested in understanding which KGEs can capture
which inference patterns, as summarized in Table 1. For instance, KGEs such as TransE (Bordes
et al., 2013) and RotatE (Sun et al., 2019) can capture fundamental patterns such as composition.
Recently, however, it was discovered that these two models can only capture a fairly limited notion
of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020), cf. also
Appendix K.1. Thus, multiple extensions have been proposed to tackle some of these limitations,
focusing, e.g., on modeling non-commutative composition (Lu & Hu, 2020; Gao et al., 2020). Yet,
while these extensions solved some limitations, the purely functional nature of TransE, RotatE,
and any of their extensions still limits them to capture solely compositional definition, not general
composition (see Table 1 for the defining formulas, and cf. also Appendix K.1 for details).

1

Published as a conference paper at ICLR 2023

Therefore, capturing general composition is still an open problem. Even more, composition patterns
describe paths, which are fundamental for navigation within a graph. Hence, the ability to capture
general composition is vital for KGEs. In contrast, approaches such as SimplE (Kazemi & Poole,
2018), ComplEx (Trouillon et al., 2016), and BoxE (Abboud et al., 2020) have managed to capture
other vital patterns, such as hierarchy, yet are unable to capture any notion of composition.

Table 1: This table lists patterns that several KGEs can capture. Specifically, ✓ represents that
the pattern is supported and ✗ that it is not supported. Furthermore, “Comp. def.” stands for
compositional definition and “Gen. comp.” for general composition.

Inference Pattern ExpressivE BoxE RotatE TransE DistMult ComplEx

Symmetry: r1(X,Y) ⇒ r1(Y,X) ✓ ✓ ✓ ✗ ✓ ✓
Anti-symmetry: r1(X,Y) ⇒ ¬r1(Y,X) ✓ ✓ ✓ ✓ ✗ ✓
Inversion: r1(X,Y) ⇔ r2(Y,X) ✓ ✓ ✓ ✓ ✗ ✓
Comp. def.: r1(X,Y) ∧ r2(Y,Z) ⇔ r3(X,Z) ✓ ✗ ✓ ✓ ✗ ✗
Gen. comp.: r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) ✓ ✗ ✗ ✗ ✗ ✗
Hierarchy: r1(X,Y) ⇒ r2(X,Y) ✓ ✓ ✗ ✗ ✓ ✓
Intersection: r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) ✓ ✓ ✓ ✓ ✗ ✗
Mutual exclusion: r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ ✓ ✓ ✓ ✓ ✓ ✓

Challenge. While the extensive research on composition (Bordes et al., 2013; Sun et al., 2019; Zhang
et al., 2019; Lu & Hu, 2020) and hierarchy (Yang et al., 2015a; Trouillon et al., 2016; Kazemi &
Poole, 2018; Abboud et al., 2020) highlights their importance, any KGE so far is incapable of: (1)
capturing general composition, (2) capturing composition and hierarchy jointly, and (3) providing an
intuitive geometric interpretation of captured inference patterns.

Contribution. This paper focuses on solving all the stated limitations simultaneously. In particular:

• We introduce the spatio-functional embedding model ExpressivE. It embeds pairs of entities
as points and relations as hyper-parallelograms in the space R2d, which we call the virtual
triple space. The virtual triple space allows ExpressivE to represent patterns through the
spatial relationship of hyper-parallelograms, offering an intuitive and consistent geometric
interpretation of ExpressivE embeddings and their captured patterns.

• We prove that ExpressivE can capture any pattern listed in Table 1. This makes ExpressivE
the first model capable of capturing both general composition and hierarchy jointly.

• We prove that our model is fully expressive, making ExpressivE the first KGE that both
supports composition and is fully expressive.

• We evaluate ExpressivE on the two standard KGC benchmarks WN18RR (Dettmers et al.,
2018) and FB15k-237 (Toutanova & Chen, 2015), revealing that ExpressivE is competitive
with state-of-the-art (SotA) KGEs and even significantly outperforms them on WN18RR.

Organization. Section 2 introduces the KGC problem and methods for evaluating KGEs. Section 3
embeds ExpressivE in the context of related work. Section 4 introduces ExpressivE, the virtual triple
space, and interprets our model’s parameters within it. Section 5 analyzes our model’s expressive
power and inference capabilities. Section 6 discusses experimental results together with our model’s
space complexity and Section 7 summarizes our work. The appendix contains all proofs of theorems.

2 KNOWLEDGE GRAPH COMPLETION

This section introduces the KGC problem and evaluation methods (Abboud et al., 2020). Let us first
introduce the triple vocabulary T , consisting of a finite set of entities E and relations R. We call
an expression of the form ri(eh, et) a triple, where ri ∈ R and eh, et ∈ E. Furthermore, we call
eh the head and et the tail of the triple. Now, a KG G is a finite set of triples over T and KGC is
the problem of predicting missing triples. KGEs can be evaluated by means of an: (1) experimental
evaluation on benchmark datasets, (2) analysis of the model’s expressiveness, and (3) analysis of the
inference patterns that the model can capture. We will discuss each of these points in what follows.

Experimental Evaluation. The experimental evaluation of KGEs requires a set of true and corrupted
triples. True triples ri(eh, et) ∈ G are corrupted by replacing either eh or et with any ec ∈ E such

2

Published as a conference paper at ICLR 2023

that the corrupted triple does not occur in G. KGEs define scores over triples and are optimized to
score true triples higher than false ones, thereby estimating a given triple’s truth. A KGE’s KGC
performance is measured with the mean reciprocal rank (MRR), the average of inverse ranks (1/rank)
and Hits@k, the proportion of true triples within the predicted triples whose rank is at maximum k.

Expressiveness. A KGE is fully expressive if for any finite set of disjoint true and false triples, a
parameter set can be found such that the model classifies the triples of the set correctly. Intuitively, a
fully expressive model can represent any given graph. However, this is not necessarily correlated
with its inference capabilities (Abboud et al., 2020). For instance, while a fully expressive model
may express the entire training set, it may have poor generalization capabilities (Abboud et al., 2020).
Conversely, a model that is not fully expressive may underfit the training data severely (Abboud et al.,
2020). Hence, KGEs should be both fully expressive and support important inference patterns.

Inference Patterns. The generalization capabilities of KGEs are commonly analyzed using inference
patterns (short: patterns). They represent logical properties that allow to infer new triples from the
ones in G. Patterns are of the form ψ ⇒ ϕ, where we call ψ the body and ϕ the head of the pattern.
For instance, composition r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) is a prominent pattern. Intuitively, it
states that if the body of the pattern is satisfied, then the head needs to be satisfied, i.e., if for some
entities ex, ey, ez ∈ E the triples r1(ex, ey) and r2(ey, ez) are contained in G, then also r3(ex, ez)
needs to be in G. Further patterns are listed in Table 1 and discussed in Section 5. Analyzing the
patterns that a KGE supports helps estimate its inference capabilities (Abboud et al., 2020).

3 RELATED WORK

As our work focuses on KGEs that can intuitively represent inference patterns, we have excluded
neural models that are less interpretable (Dettmers et al., 2018; Socher et al., 2013; Nathani et al.,
2019). We investigate relevant literature to embed ExpressivE in its scientific context below:

Functional Models. So far, solely a subset of translational models supports composition. We call this
subset functional models, as they embed relations as functions fri : Kd → Kd and entities as vectors
ej ∈ Kd over some field K. These models represent true triples ri(eh, et) as et = fri(eh). Thereby,
they can capture composition patterns via functional composition. TransE (Bordes et al., 2013) is the
pioneering functional model, embedding relations ri as fri(eh) = eh+eri with eri ∈ Kd. However,
it is neither fully expressive nor can it capture 1-N, N-1, N-N, nor symmetric relations. RotatE (Sun
et al., 2019) embeds relations as rotations in complex space, allowing it to capture symmetry patterns
but leaving it otherwise with TransE’s limitations. Recently, it was discovered that TransE and RotatE
may only capture a fairly limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu
& Hu, 2020; Gao et al., 2020), cf. also Appendix K.1. Therefore, extensions have been proposed to
tackle some limitations, focusing, e.g., on modeling non-commutative composition (Lu & Hu, 2020;
Gao et al., 2020). While these extensions solved some limitations, the purely functional nature of
TransE, RotatE, and any of their extensions limits them to capture solely compositional definition and
not general composition (see Table 1 for the defining formulas and cf. also Appendix K.1 for details).
Therefore, capturing general composition is still an open problem. Even more, functional models are
incapable of capturing vital patterns, such as hierarchies, completely (Abboud et al., 2020).

Bilinear Models. Bilinear models factorize the adjacency matrix of a graph with a bilinear product
of entity and relation embeddings. The pioneering bilinear model is RESCAL (Nickel et al., 2011). It
embeds relations with full-rank d× d matrices M and entities with d-dimensional vectors. DistMult
(Yang et al., 2015a) constrains RESCAL’s relation matrix M to a diagonal matrix for efficiency
reasons, limiting DistMult to capture symmetric relations only. HolE (Nickel et al., 2016) solves this
limitation by combining entity embeddings via circular correlation, whereas ComplEx (Trouillon
et al., 2016) solves this limitation by embedding relations with a complex-valued diagonal matrix.
HolE and ComplEx have subsequently been shown to be equivalent (Hayashi & Shimbo, 2017).
SimplE (Kazemi & Poole, 2018) is based on canonical polyadic decomposition (Hitchcock, 1927).
TuckER (Balazevic et al., 2019) is based on Tucker decomposition (Tucker, 1966) and extends the
capabilities of RESCAL and SimplE (Balazevic et al., 2019). While all bilinear models, excluding
DistMult, are fully expressive, they cannot capture any notion of composition.

Spatial Models. Spatial models define semantic regions within the embedding space that allow the
intuitive representation of certain patterns. In entity classification, for example, bounded axis-aligned

3

Published as a conference paper at ICLR 2023

hyper-rectangles (boxes) represent entity classes, capturing class hierarchies naturally through the
spatial subsumption of these boxes (Vilnis et al., 2018; Subramanian & Chakrabarti, 2018; Li et al.,
2019). Also, query answering systems — such as Query2Box (Ren et al., 2020) — have used boxes
to represent answer sets due to their intuitive interpretation as sets of entities. Although Query2Box
can be used for KGC, entity classification approaches cannot scalably be employed in the general
KGC setting, as this would require an embedding for each entity tuple (Abboud et al., 2020). BoxE
(Abboud et al., 2020) is the first spatial KGE dedicated to KGC. It embeds relations as a pair of boxes
and entities as a set of points and bumps in the embedding space. The usage of boxes enables BoxE
to capture any inference pattern that can be described by the intersection of boxes in the embedding
space, such as hierarchy. Moreover, boxes enable BoxE to capture 1-N, N-1, and N-N relations
naturally. Yet, BoxE cannot capture any notion of composition (Abboud et al., 2020).

Our Work. These research gaps, namely that any KGE cannot capture general composition and
hierarchy jointly, have motivated our work. In contrast to prior work, our model defines for each
relation a hyper-parallelogram, allowing us to combine the benefits of both spatial and functional
models. Even more, prior work primarily analyzes the embedding space itself, while we propose
the novel virtual triple space that allows us to display any captured inference pattern — including
general composition — through the spatial relation of hyper-parallelograms.

4 EXPRESSIVE AND THE VIRTUAL TRIPLE SPACE

This section introduces ExpressivE, a KGE targeted toward KGC with the capabilities of captur-
ing a rich set of inference patterns. ExpressivE embeds entities as points and relations as hyper-
parallelograms in the virtual triple space R2d. More concretely, instead of analyzing our model in the
d-dimensional embedding space Rd, we construct the novel virtual triple space that grants Expres-
sivE’s parameters a geometric meaning. Above all, the virtual triple space allows us to intuitively
interpret ExpressivE embeddings and their captured patterns, as discussed in Section 5.

Representation. Entities ej ∈ E are embedded in ExpressivE via a vector ej ∈ Rd, representing
points in the latent embedding space Rd. Relations ri ∈ R are embedded as hyper-parallelograms
in the virtual triple space R2d. More specifically, ExpressivE assigns to a relation ri for each of its
arity positions p ∈ {h, t} the following vectors: (1) a slope vector rpi ∈ Rd, (2) a center vector
cpi ∈ Rd, and (3) a width vector dp

i ∈ (R≥0)
d. Intuitively, these vectors define the slopes rpi of the

hyper-parallelogram’s boundaries, its center cpi and width dp
i . A triple ri(eh, et) is captured to be

true in an ExpressivE model if its relation and entity embeddings satisfy the following inequalities:

(eh − chi − rti ⊙ et)
|.| ⪯ dh

i (1)

(et − cti − rhi ⊙ eh)
|.| ⪯ dt

i (2)

Where x|.| represents the element-wise absolute value of a vector x, ⊙ represents the Hadamard (i.e.,
element-wise) product and ⪯ represents the element-wise less or equal operator. It is very complex
to interpret this model in the embedding space Rd. Hence, we construct followingly a virtual triple
space in R2d that will ease reasoning about the parameters and inference capabilities of ExpressivE.

Virtual Triple Space. We construct this virtual space by concatenating the head and tail entity
embeddings. In detail, this means that any pair of entities (eh, et) ∈ E ×E defines a point in the
virtual triple space by concatenating their entity embeddings eh, et ∈ Rd, i.e., (eh||et) ∈ R2d,
where || is the concatenation operator. A set of important sub-spaces of the virtual triple space are
the 2-dimensional spaces, created from the j-th embedding dimension of head entities and the j-th
dimension of tail entities — i.e., the j-th and (d + j)-th virtual triple space dimensions. We call
them correlation subspaces, as they visualize the captured relation-specific dependencies of head and
tail entity embeddings as will be discussed followingly. Moreover, we call the correlation subspace
spanned by the j-th and (d+ j)-th virtual triple space dimension the j-th correlation subspace.

Parameter Interpretation. Inequalities 1 and 2 construct each an intersection of two parallel half-
spaces in any correlation subspace of the virtual triple space. We call the intersection of two parallel
half-spaces a band, as they are limited by two parallel boundaries. Henceforth, we will denote with
v(j) the j-th dimension of a vector v. For example, (eh(j) − chi (j) − rti(j) ⊙ et(j))

|.| ⪯ dh
i (j)

defines a band in the j-th correlation subspace. The intersection of two bands results either in a band (if
one band subsumes the other) or a parallelogram. Since we are interested in constructing ExpressivE

4

Published as a conference paper at ICLR 2023

embeddings that capture certain inference patterns, it is sufficient to consider parallelograms for these
constructions. Figure 1a visualizes a relation parallelogram (green solid) and its parameters (orange
dashed) in the j-th correlation subspace. In essence, the parallelogram is the result of the intersection
of two bands (thick blue and magenta lines), where its boundaries’ slopes are defined by rpi , the
center of the parallelogram is defined by cpi , and finally, the widths of each band are defined by dp

i .

(a) (b)

Figure 1: (a) Interpretation of relation parameters (orange dashed) as a parallelogram (green solid)
in the j-th correlation subspace; (b) Multiple relation embeddings with the following properties:
Symmetry (rB), Anti-Symmetry (rA, rD, rE , rF), Inversion (rD = r−1

A), Hierarchy rA(X,Y) ⇒
rC(X,Y), Intersection rD(X,Y) ∧ rE(X,Y) ⇒ rF (X,Y), Mutual Exclusion (e.g., rA ∩ rB = ∅).

Since Inequalities 1 and 2 solely capture dependencies within the same dimension, any two different
dimensions j ̸= k of head and tail entity embeddings are independent. Thus, relations are embedded
as hyper-parallelograms in the virtual triple space, whose edges are solely crooked in any j-th
correlation subspace. Intuitively, the crooked edges represent relation-specific dependencies between
head and tail entities and are thus vital for the expressive power of ExpressivE. Note that each
correlation subspace represents one dimension of the element-wise Inequalities 1 and 2. Since the
sum of all correlation subspaces represents all dimensions of Inequalities 1 and 2, it is sufficient to
analyze all correlation subspaces to identify the captured inference patterns of an ExpressivE model.

Scoring Function. Let τri(h,t) denote the embedding of a triple ri(h, t), i.e., τri(h,t) = (eht −
cht
i −rthi ⊙eth)

|.|, with exy = (ex||ey) and axy
i = (ax

i ||a
y
i) for a ∈ {c, r,d} and x,y ∈ {h, t}.

D(h, ri, t) =

{
τri(h,t) ⊘wi, if τri(h,t) ⪯ dht

i

τri(h,t) ⊙wi − k, otherwise
(3)

Equation 3 states the typical distance function of spatial KGEs (Abboud et al., 2020), where
wi = 2⊙dht

i +1 is a width-dependent factor and k = 0.5⊙ (wi −1)⊙ (wi −1⊘wi). If a triple
ri(h, t) is captured to be true by an ExpressivE embedding, i.e., if τri(h,t) ⪯ dht

i , then the distance
correlates inversely with the hyper-parallelogram’s width, keeping low distances/gradients within the
parallelogram. Otherwise, the distance correlates linearly with the width to penalize points outside
larger parallelograms. Appendix J provides further details on the distance function. The scoring
function is defined as s(h, ri, t) =−||D(h, ri, t)||2. Following Abboud et al. (2020), we optimize
the self-adversarial negative sampling loss (Sun et al., 2019) using the Adam optimizer (Kingma &
Ba, 2015). We have provided more details on the training setup in Appendix M.

5 KNOWLEDGE CAPTURING CAPABILITIES

This section analyzes ExpressivE’s expressive power and supported patterns. In what follows, we
assume the standard definition of capturing patterns (Sun et al., 2019; Abboud et al., 2020). This
means intuitively that a KGE captures a pattern if a set of parameters exists such that the pattern is
captured exactly and exclusively. Appendix C formalizes this notion for our model.

5

Published as a conference paper at ICLR 2023

5.1 EXPRESSIVENESS

This section analyzes whether ExpressivE is fully expressive (Abboud et al., 2020), i.e., can capture
any graph G over R and E. Theorem 5.1 proves that this is the case by constructing for any graph G
an ExpressivE embedding that captures any triple within G to be true and any other triple to be false.
Specifically, the proof uses induction, starting with an embedding that captures the complete graph,
i.e., any triple over E and R is true. Next, each induction step shows that we can alter the embedding
to make an arbitrarily picked triple of the form ri(ej , ek) with ri ∈ R, ej , ek ∈ E and ej ̸= ek false.
Finally, we add |E| ∗ |R| dimensions to make any self-loop — i.e., any triple of the form ri(ej , ej)
with ri ∈ R and ej ∈ E — false. The full, quite technical proof can be found in Appendix D.

Theorem 5.1 (Expressive Power) ExpressivE can capture any arbitrary graph G over R and E if
the embedding dimensionality d is at least in O(|E| ∗ |R|).

5.2 INFERENCE PATTERNS

This section proves that ExpressivE can capture any pattern from Table 1. First, we discuss how
ExpressivE represents inference patterns with at most two variables. Next, we introduce the notion of
compositional definition and continue by identifying how this pattern is described in the virtual triple
space. Then, we define general composition, building on both the notion of compositional definition
and hierarchy. Finally, we conclude this section by discussing the key properties of ExpressivE.

Two-Variable Patterns. Figure 1b displays several one-dimensional relation embeddings and
their captured patterns in a correlation subspace. Intuitively, ExpressivE represents: (1) symmetry
patterns r1(X,Y) ⇒ r1(Y,X) via symmetric hyper-parallelograms, (2) anti-symmetry patterns
r1(X,Y) ⇒ ¬r1(Y,X) via hyper-parallelograms that do not overlap with their mirror image, (3)
inversion patterns r1(X,Y) ⇔ r2(Y,X) via r2’s hyper-parallelogram being the mirror image of
r1’s, (4) hierarchy patterns r1(X,Y) ⇒ r2(X,Y) via r2’s hyper-parallelogram subsuming r1’s, (5)
intersection patterns r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) via r3’s hyper-parallelogram subsuming
the intersection of r1’s and r2’s, and (6) mutual exclusion patterns r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ via
mutually exclusive hyper-parallelograms of r1 and r2. We have formally proven that ExpressivE can
capture any of these two-variable inference patterns in Theorem 5.2 (see Appendices F and G).

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e)
intersection, and (f) mutual exclusion.

Compositional Definition. A compositional definition pattern is of the form r1(X,Y)∧ r2(Y,Z) ⇔
rd(X,Z), where we call r1 and r2 the composing and rd the compositionally defined relation.
In essence, this pattern defines a relation rd that describes the start and end entities of a path
X

r1−→ Y
r2−→ Z. Since any two relations r1 and r2 can instantiate the body of a compositional

definition pattern, any such pair may produce a new compositionally defined relation rd. Interestingly,
compositional definition translates analogously into the virtual triple space: Intuitively, this means
that the embeddings of any two relations r1 and r2 define for rd a convex region — which we call
the compositionally defined region — that captures r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z), leading to
Theorem 5.3 (proven in Appendix E). Based on this insight, ExpressivE captures compositional
definition patterns by embedding the compositionally defined relation rd with the compositionally
defined region, defined by the relation embeddings of r1 and r2. We have formally proven that
ExpressivE can capture compositional definition in Theorem 5.4 (see Appendices F and G).

Theorem 5.3 Let r1, r2, rd ∈ R be relations, s1, s2 be their ExpressivE embeddings, and assume
r1(X,Y)∧ r2(Y,Z) ⇔ rd(X,Z) holds. Then there exists a region sd in the virtual triple space R2d

such that (i) s1, s2, and sd capture r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z) and (ii) sd is convex.

General Composition. In contrast to compositional definition, general composition r1(X,Y) ∧
r2(Y,Z) ⇒ r3(X,Z) does not specify the composed relation r3 completely. Specifically, general
composition allows the relation r3 to include additional entity pairs not described by the start and end
entities of the path X r1−→ Y

r2−→ Z. Therefore, to capture general composition, we need to combine
hierarchy and compositional definition. Formally this means that we express general composition as:
{r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z), rd(X,Y) ⇒ r3(X,Y)}. We have proven that ExpressivE can
capture general composition in Theorem 5.4 (see Appendices F and G for the full proofs).

6

Published as a conference paper at ICLR 2023

Theorem 5.4 ExpressivE captures compositional definition and general composition.

We argue that hierarchy and general composition are very tightly connected as hierarchies are hidden
within general composition. If, for instance, r1 were to represent the relation that solely captures self-
loops, then the general composition r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) would reduce to a hierarchy
r2(X,Y) ⇒ r3(X,Y). This hints at why our model is the first to support general composition, as
ExpressivE can capture both hierarchy and composition jointly in a single embedding space.

Key Properties. ExpressivE’s way of capturing inference patterns has several interesting implications:

1. We observe that ExpressivE embeddings offer an intuitive geometric interpretation: there
is a natural correspondence between (a) relations in the KG – and – regions (representing
mathematical relations) in the virtual triple space, (b) relation containment, intersection,
and disjointness in the KG – and – region containment, intersection, and disjointness in the
virtual triple space, (c) symmetry, anti-symmetry, and inversion in the KG – and – symmetry,
anti-symmetry, and reflection in the virtual triple space, (d) compositional definition in the
KG – and – the composition of mathematical relations in the virtual triple space.

2. Next, we observe that ExpressivE captures a general composition pattern if the hyper-
parallelogram of the pattern’s head relation subsumes the compositionally defined region
defined by its body relations. Thereby, ExpressivE assigns a novel spatial interpretation to
general composition patterns, generalizing the spatial interpretation that is directly provided
by set-theoretic patterns such as hierarchy, intersection, and mutual exclusion.

3. Finally, capturing general composition patterns through the subsumption of spatial regions
allows ExpressivE to provably capture composition patterns for 1-N, N-1, and N-N relations.
We provide further empirical evidence to this in Appendix I.1.

6 EXPERIMENTAL EVALUATION AND SPACE COMPLEXITY

In this section, we evaluate ExpressivE on the standard KGC benchmarks WN18RR (Dettmers et al.,
2018) and FB15k-237 (Toutanova & Chen, 2015) and report SotA results, providing strong empirical
evidence for the theoretical strengths of ExpressivE. Furthermore, we perform an ablation study
on ExpressivE’s parameters to quantify the importance of each parameter and finally perform a
relation-wise performance comparison on WN18RR to provide an in-depth analysis of our results.

6.1 KNOWLEDGE GRAPH COMPLETION

Experimental Setup. As in Abboud et al. (2020), we compare ExpressivE to the functional models
TransE (Bordes et al., 2013) and RotatE (Sun et al., 2019), spatial model BoxE (Abboud et al., 2020),
and bilinear models DistMult (Yang et al., 2015a), ComplEx (Trouillon et al., 2016), and TuckER
(Balazevic et al., 2019). ExpressivE is trained with gradient descent for up to 1000 epochs, stopping
the training if after 100 epochs the Hits@10 score did not increase by at least 0.5% for WN18RR and
1% for FB15k-237. We use the model of the final epoch for testing. Each experiment was repeated
3 times to account for small performance fluctuations. In particular, the MRR values fluctuate by
less than 0.003 between runs for any dataset. We maintain the fairness of our result comparison by
considering KGEs with a dimensionality d ≤ 1000 (Balazevic et al., 2019; Abboud et al., 2020).
To allow a direct comparison of ExpressivE’s performance and parameter efficiency to its closest
functional relative RotatE and spatial relative BoxE, we employ the same embedding dimensionality
for the benchmarks as RotatE and BoxE. Appendix M lists further setup details, hyperparameters,
libraries (Ali et al., 2021), hardware details, definitions of metrics, and properties of datasets.

Table 2: Model sizes of ExpressivE, BoxE, and RotatE models of equal dimensionality.

Benchmark Dimensionality ExpressivE BoxE RotatE

WN18RR 500 467MB 930MB 930MB
FB15k-237 1000 366MB 687MB 687MB

Space Complexity. For a d-dimensional embedding, RotatE and BoxE have (2|E|+2|R|)d, whereas
ExpressivE has (|E|+ 6|R|)d parameters, where |E| is the number of entities and |R| the number

7

Published as a conference paper at ICLR 2023

of relations. Since |R| << |E| in most graphs, (e.g., FB15k-237: |R|/|E| = 0.016) ExpressivE
almost halves the number of parameters for a d-dimensional embedding compared to BoxE and
RotatE. Table 2 lists the model sizes of trained ExpressivE, BoxE, and RotatE models of the same
dimensionality, empirically confirming that ExpressivE almost halves BoxE’s and RotatE’s sizes.

Table 3: KGC performance of ExpressivE and SotA KGEs on FB15k-237 and WN18RR. The table
shows the best-published results of the competing models per family, specifically: TransE and RotatE
(Sun et al., 2019), BoxE (Abboud et al., 2020), DistMult and ComplEx (Ruffinelli et al., 2020; Yang
et al., 2015b), and TuckER (Balazevic et al., 2019).

Family Model WN18RR FB15k-237

Fu
nc

.&
Sp

at
ia

l H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR
Base ExpressivE .464 .522 .597 .508 .243 .366 .512 .333
Func. ExpressivE .407 .519 .619 .482 .256 .387 .535 .350
BoxE .400 .472 .541 .451 .238 .374 .538 .337
RotatE .428 .492 .571 .476 .241 .375 .533 .338
TransE .013 .401 .529 .223 .233 .372 .531 .332

B
ili

ne
ar DistMult - - .531 .452 - - .531 .343

ComplEx - - .547 .475 - - .536 .348
TuckER .443 .482 .526 .470 .266 .394 .544 .358

Benchmark Results. We use two versions of ExpressivE in the benchmarks, one where the width
parameter dht

i is learned and one where dht
i = 0, called Base ExpressivE and Functional ExpressivE.

Tables 2 and 3 reveal that Functional ExpressivE, with only half the number of parameters of BoxE
and RotatE, performs best among spatial and functional models on FB15k-237 and is competitive
with TuckER, especially in MRR. Even more, Base ExpressivE outperforms all competing models
significantly on WN18RR. The significant performance increase of Base ExpressivE on WN18RR is
likely due to WN18RR containing both hierarchy and composition patterns in contrast to FB15k-237
(similar to the discussion of Abboud et al. (2020)). We will empirically investigate the reasons for
ExpressivE’s performances on FB15k-237 and WN18RR in Section 6.2 and Section 6.3.

Discussion. Tables 2 and 3 reveal that ExpressivE is highly parameter efficient compared to related
spatial and functional models while reaching competitive performance on FB15k-237 and even new
SotA performance on WN18RR, supporting the extensive theoretical results of our paper.

6.2 ABLATION STUDY

This section analyses how constraints on ExpressivE’s parameters impact its benchmark performances.
Specifically, we analyze the following constrained ExpressivE versions: (1) Base ExpressivE, which
represents ExpressivE without any parameter constraints, (2) Functional ExpressivE, where the
width parameter dht

i of each relation ri is zero, (3) EqSlopes ExpressivE, where all slope vectors
are constrained to be equal — i.e., rht

i = rht
k for any relations ri and rk, (4) NoCenter ExpressivE,

where the center vector cht
i of any relation ri is zero, and (5) OneBand ExpressivE, where each

relation is embedded by solely one band instead of two — i.e., OneBand ExpressivE captures a triple
ri(eh, et) to be true if its relation and entity embeddings only satisfy Inequality 1.

Table 4: Ablation study on ExpressivE’s parameters.

Model WN18RR FB15k-237
H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Base ExpressivE .464 .522 .597 .508 .243 .366 .512 .333
Func. ExpressivE .407 .519 .619 .482 .256 .387 .535 .350
EqSlopes ExpressivE .254 .415 .528 .353 .237 .361 .510 .328
NoCenter ExpressivE .457 .514 .591 .501 .224 .349 .494 .314
OneBand ExpressivE .435 .480 .538 .470 .230 .352 .491 .318

8

Published as a conference paper at ICLR 2023

Ablation Results. Table 4 provides the results of the ablation study on WN18RR and FB15k-
237. It reveals that each component of ExpressivE is vital as setting all slopes rht

i to be equal
(EqSlopes ExpressivE) or removing the center cht

i (NoCenter ExpressivE), width dht
i (Functional

ExpressivE), or a band (OneBand ExpressivE) results in performance losses on at least one benchmark.
Interestingly, Functional outperforms Base ExpressivE on FB15k-237. Since Functional ExpressivE
sets dht

i = 0, the relation embeddings reduce from a hyper-parallelogram to a function. Intuitively,
this means that Functional ExpressivE loses the spatial capabilities of Base ExpressivE such as the
ability to capture hierarchy, while it maintains functional capabilities, such as the ability to capture
compositional definition. Table 4 reveals that the performance of ExpressivE increases when we
remove its spatial capabilities, depicted by the performance gain of Functional over Base ExpressivE.
This result hints at FB15k-237 not containing many hierarchy patterns. Thus, FB15k-237 cannot
exploit the added capabilities of Base ExpressivE, namely the ability to capture general composition
and hierarchy. In contrast, the significant performance gain of Base ExpressivE over Functional
ExpressivE on WN18RR is likely due to WN18RR containing many composition and hierarchy
patterns ((Abboud et al., 2020), cf. Appendix I.2), exploiting Base ExpressivE’s added capabilities.

6.3 WN18RR PERFORMANCE ANALYSIS

This section analyses the performance of ExpressivE and its closest spatial relative BoxE (Abboud
et al., 2020) and functional relative RotatE (Sun et al., 2019) on WN18RR. Table 5 lists the MRR of
ExpressivE, RotatE, and BoxE for each of the 11 relations of WN18RR. Bold values represent the
best and underlined values represent the second-best results across the compared models.

Table 5: Relation-wise MRR comparison of ExpressivE, RotatE, and BoxE on WN18RR.

Relation Name ExpressivE RotatE BoxE

member_meronym 0.233 0.199 0.226
hypernym 0.189 0.162 0.159
has_part 0.198 0.187 0.168
instance_hypernym 0.352 0.326 0.425
synset_domain_topic_of 0.363 0.384 0.323
member_of_domain_usage 0.288 0.333 0.360
member_of_domain_region 0.123 0.188 0.189
also_see 0.649 0.631 0.517
derivationally_related_from 0.956 0.943 0.902
similar_to 1.000 1.000 1.000
verb_group 0.972 0.843 0.876

Results. ExpressivE performs very well on many relations, where either only BoxE or only RotatE
produces good rankings, empirically confirming that ExpressivE combines the inference capabilities
of BoxE (hierarchy) and RotatE (compositional definition). Additionally, ExpressivE does not only
reach similar performances as RotatE and BoxE if only one of them produces good rankings but
even surpasses both of them significantly on relations such as verb_group, also_see, and hypernym.
This gives strong experimental evidence that ExpressivE combines the inference capabilities of func-
tional and spatial models, even extending them by novel capabilities (such as general composition),
empirically supporting our extensive theoretical results of Section 5.

7 CONCLUSION

In this paper, we have introduced ExpressivE, a KGE that (i) represents inference patterns through
spatial relations of hyper-parallelograms, offering an intuitive and consistent geometric interpretation
of ExpressivE embeddings and their captured patterns, (ii) can capture a wide variety of important
inference patterns, including hierarchy and general composition jointly, resulting in strong benchmark
performances (iii) is fully expressive, and (iv) reaches competitive performance on FB15k-237, even
outperforming any competing model significantly on WN18RR. In the future, we plan to analyze
the performance of ExpressivE on further datasets, particularly focusing on the relation between
constrained ExpressivE versions and dataset properties.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We have made our code publicly available in a GitHub repository1. It contains, in addition to the code
of ExpressivE, a setup file to install the necessary libraries and a ReadMe.md file containing library
versions and running instructions to facilitate the reproducibility of our results. Furthermore, we have
provided all information for reproducing our results — including the concrete hyperparameters, further
details of our experiment setup, the used libraries (Ali et al., 2021), hardware details, definitions of
metrics, properties of datasets, and more — in Appendix M. We have provided the complete proofs
for our extensive theoretical results in the appendix and stated the complete set of assumptions we
made. Specifically, each theorem states any necessary assumption, and each proof starts by listing
any property we assume without loss of generality. We have proven Theorem 5.1 in Appendix D,
Theorem 5.3 in Appendix E, and Theorems 5.2 and 5.4 in Appendices F and G.

ACKNOWLEDGMENTS

We are grateful to Maximilian Beck for helpful discussions and feedback. This work has been funded
by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG18013].

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li. Re-
alistic re-evaluation of knowledge graph completion methods: An experimental study. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’20, pp. 1995–2010, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450367356. doi: 10.1145/3318464.3380599. URL https://doi.org/10.1145/
3318464.3380599.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge
Graph Embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowledge
graph completion. CoRR, abs/1901.09590, 2019.

Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts. Freebase: A shared database of structured
general human knowledge. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pp. 1962–1963. AAAI Press,
2007.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Christopher J. C. Burges, Léon
Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp.
2787–2795, 2013.

Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. Unifying knowledge graph
learning and recommendation: Towards a better understanding of user preferences. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, WWW ’19, pp.
151–161, New York, NY, USA, 2019. Association for Computing Machinery.

Muhao Chen and Carlo Zaniolo. Learning multi-faceted knowledge graph embeddings for natural
language processing. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 5169–5170, 2017.

1https://github.com/AleksVap/ExpressivE

10

https://doi.org/10.1145/3318464.3380599
https://doi.org/10.1145/3318464.3380599

Published as a conference paper at ICLR 2023

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 1811–1818. AAAI Press, 2018.

Laura Dietz, Alexander Kotov, and Edgar Meij. Utilizing knowledge graphs for text-centric infor-
mation retrieval. In Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and
Emine Yilmaz (eds.), The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pp. 1387–1390.
ACM, 2018.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining
in ontological knowledge bases with amie+. The VLDB Journal, 24(6):707–730, dec 2015.
ISSN 1066-8888. doi: 10.1007/s00778-015-0394-1. URL https://doi.org/10.1007/
s00778-015-0394-1.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: Association
rule mining under incomplete evidence in ontological knowledge bases. In Proceedings of the 22nd
International Conference on World Wide Web, WWW ’13, pp. 413–422, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450320351. doi: 10.1145/2488388.2488425.
URL https://doi.org/10.1145/2488388.2488425.

Chang Gao, Chengjie Sun, Lili Shan, Lei Lin, and Mingjiang Wang. Rotate3d: Representing relations
as rotations in three-dimensional space for knowledge graph embedding. In Mathieu d’Aquin,
Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux (eds.), CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, pp. 385–394. ACM, 2020.

Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic and complex embeddings
for link prediction. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 554–559, Vancouver, Canada, July 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-2088. URL https://aclanthology.
org/P17-2088.

Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 4289–4300, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. Smoothing
the geometry of probabilistic box embeddings. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Haonan Lu and Hailin Hu. Dense: An enhanced non-abelian group representation for knowledge
graph embedding. CoRR, abs/2008.04548, 2020.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, nov 1995.

11

https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1145/2488388.2488425
https://aclanthology.org/P17-2088
https://aclanthology.org/P17-2088

Published as a conference paper at ICLR 2023

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based
embeddings for relation prediction in knowledge graphs. In Anna Korhonen, David R. Traum, and
Lluís Màrquez (eds.), Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
4710–4723. Association for Computational Linguistics, 2019.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 6338–6347, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Lise Getoor and Tobias Scheffer (eds.), Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pp. 809–816. Omnipress, 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of knowledge
graphs. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp. 1955–
1961. AAAI Press, 2016.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You CAN teach an old dog new tricks! on
training knowledge graph embeddings. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with neural
tensor networks for knowledge base completion. In Christopher J. C. Burges, Léon Bottou, Zoubin
Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp. 926–934, 2013.

Sandeep Subramanian and Soumen Chakrabarti. New embedded representations and evaluation
protocols for inferring transitive relations. In Kevyn Collins-Thompson, Qiaozhu Mei, Brian D.
Davison, Yiqun Liu, and Emine Yilmaz (eds.), The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12,
2018, pp. 1037–1040. ACM, 2018.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.),
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2071–2080. JMLR.org, 2016.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

12

https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html

Published as a conference paper at ICLR 2023

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. Probabilistic embedding of knowledge
graphs with box lattice measures. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 263–272. Association for Computational
Linguistics, 2018.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):
2724–2743, 2017.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang Lin.
Knowledge base completion via search-based question answering. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, pp. 515–526, New York, NY, USA,
2014. Association for Computing Machinery.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Yoshua Bengio and Yann LeCun (eds.),
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015a.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Proceedings of the Third International
Conference on Learning Representations, ICLR, 2015b.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 2731–2741, 2019.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, and Le Song. Variational reasoning
for question answering with knowledge graph. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 6069–6076. AAAI Press, 2018.

13

Published as a conference paper at ICLR 2023

A OVERVIEW OF THE APPENDIX

This appendix contains detailed proofs, analyses, and descriptions of our experimental setup. Sec-
tion B gives an overview of the used notations. Section C specifies the complete formal definitions
for all used terms. Section D contains a detailed proof of Theorem 5.1, i.e., showing that ExpressivE
is fully expressive. Section E proves Theorem 5.3, developing technical machinery to support further
proofs in this appendix. Sections F and G provide additional propositions and proofs for Theorems 5.2
and 5.4, proving ExpressivE’s inference capabilities. Section H proves that ExpressivE can capture
more than one step of composition. Section I provides additional empirical evidence for ExpressivE’s
theoretical capabilities, specifically investigating ExpressivE’s performance stratified by cardinalities,
captured composition patterns, and reasoning steps. Section J explores the main goals and properties
of ExpressivE’s distance function introduced in Section 4. Section K further discusses ExpressivE’s
functional and spatial nature, comparing ExpressivE’s inference capabilities with those of spatial and
functional models. Section L further analyses the trade-off discovered in Section 6 between high
expressive power and low degrees of freedom. Finally, Section M provides further details on the
experimental setup, benchmark datasets, and evaluation metrics.

B NOTATION

In this section, we give a brief overview of the most important notations we use:

v . . . non-bold symbols represent scalars

v . . . bold symbols represent vectors, sets or tuples

0 . . . represents a vector of solely zeros (the same semantics apply to 0.5, 1, and 2)

⊘ . . . represents the elementwise division operator

⊙ . . . represents the elementwise (Hadamard) product operator

⪰ . . . represents the elementwise greater or equal operator

≻ . . . represents the elementwise greater operator

⪯ . . . represents the elementwise less or equal operator

≺ . . . represents the elementwise less operator

x|.| . . . represents the elementwise absolute value

|| . . . represents the concatenation operator

v(j) . . . represents the j-th dimension of a vector v

C FORMAL DEFINITIONS

In this section, we formally introduce the notions of capturing a pattern in an ExpressivE model that
we informally discussed in Section 5. Furthermore, we will introduce some additional notations,
which will help us simplify the upcoming proofs and present them intuitively.

Knowledge Graph. A tuple (G,E,R) is called a knowledge graph, where R is a finite set of
relations, E is a finite set of entities, and G ⊆ E × R × E is a finite set of triples. W.l.o.g., we
assume that any relation is non-empty since assigning an empty hyper-parallelogram to an empty
relation would be trivial, just adding unnecessary complexity to the proofs.

ExpressivE model. A tuple M = (ϵ,σ, δ,ρ) is called an ExpressivE model, where ϵ ⊂ 2R
d

is a
finite set of entity embeddings, σ ⊂ 2R

d

is a finite set of center embeddings, δ ⊂ 2R
d

is a finite set of
width embeddings, and ρ ⊂ 2R

d

is a finite set of slope vectors.

Linking Embeddings to KGs. An ExpressivE model and a KG are linked via the following
assignment functions: The entity assignment function fe : E → ϵ assigns an entity embedding eh ∈
ϵ to each entity eh ∈ E. Based on fe, the virtual assignment function fv : E ×E → R2d defines

14

Published as a conference paper at ICLR 2023

for any pair of entities (eh, et) ∈ E a virtual entity pair embedding fv(eh, et) = (fe(eh)||fe(et)),
where || represents the concatenation operator. Furthermore, the relation assignment function
fh(ri) : R → R2d×R2d×R2d assigns a hyper-parallelogram to each relation ri. In more detail, this
means that fh(ri) = (cht

i ,dht
i , rthi), where cht

i = (chi ||cti) are two concatenated center embeddings
with chi , c

t
i ∈ σ, where dht

i = (dh
i ||dt

i) are two concatenated width embeddings with dh
i ,d

t
i ∈ δ,

and where rthi = (rti ||rhi) are two concatenated slope vectors with rti , r
h
i ∈ ρ. Intuitively, fh(ri)

defines a hyper-parallelogram in the virtual triple space R2d as described in Section 4.

Model Configuration. We call an ExpressivE model M together with a concrete relation assignment
function fh a relation configuration mh = (M ,fh) and if it additionally has a concrete virtual
assignment function fv , we call it a complete model configuration m = (M ,fh,fv).

Definition of Truth. A triple ri(eh, et) holds in some m, with ri ∈ R and eh, et ∈ E iff In-
equalities 1 and 2 hold for the assigned embeddings of h, t, and r. This means more specifi-
cally that Inequalities 1 and 2 need to hold for fv(eh, et) = (fe(eh)||fe(et)) = (eh||et) and
fh(ri) = (cht

i ,dht
i , rthi), with cht

i = (chi ||cti), dht
i = (dh

i ||dt
i), and rthi = (rti ||rhi). At an intu-

itive level, this means that a triple ri(eh, et) is true in some complete model configuration m iff the
virtual pair embedding fv(eh, et) of entities eh and et lies within the hyper-parallelogram of relation
ri defined by fh(ri).

Simplifying Notations. Therefore, to simplify the upcoming proofs, we denote with fv(eh, et) ∈
fh(ri) that the virtual pair embedding fv(eh, et) ∈ R2d of an entity pair (eh, et) ∈ E × E lies
within the hyper-parallelogram fh(ri) ⊆ R2d × R2d × R2d of some relation ri ∈ R in the virtual
triple space. Accordingly, for sets of virtual pair embeddings P := {fv(eh1 , et1), . . . ,fv(ehn , etn)},
we denote with P ⊆ fh(ri) that all virtual pair embeddings of P lie within the hyper-parallelogram
of the relation ri. Furthermore, we denote with fv(eh, et) ̸∈ fh(ri) that a virtual pair embedding
fv(eh, et) does not lie within the hyper-parallelogram of a relation ri and with P ̸⊆ fh(ri) we
denote that an entire set of virtual pair embeddings P does not lie within the hyper-parallelogram of
a relation ri.

Capturing Inference Patterns. Based on the previous definitions, we define capturing patterns
formally: A relation configuration mh captures a pattern ψ exactly if for any ground pattern
ϕB1 ∧ · · · ∧ ϕBm ⇒ ϕH within the deductive closure of ψ and for any instantiation of fe and
fv the following conditions are satisfied:

• if ϕH is a triple and if mh captures the body triples to be true — i.e., fv(args(ϕB1)) ∈
fh(rel(ϕB1)), . . . ,fv(args(ϕBm)) ∈ fh(rel(ϕBm)) — then mh also captures the head
triple to be true — i.e., fv(args(ϕH)) ∈ fh(rel(ϕH)).

• if ϕH = ⊥, then mh captures at least one of the body triples to be false — i.e., there is
some j ∈ {1, . . . ,m} such that fv(args(ϕBj

)) ̸∈ fh(rel(ϕBj
)).

where args() is the function that returns the arguments of a triple and rel() is the function that returns
the relation of the triple. Furthermore, a relation configuration mh captures a pattern ψ exactly and
exclusively if (1) mh exactly captures ψ and (2) mh does not capture any positive pattern ϕ (i.e.,
ϕ ∈ {symmetry , inversion, hierarchy , intersection, composition}) such that ψ ̸|= ϕ except
where the body of ϕ is not satisfied over mh.

Discussion. In the following, some intuition of the above definition of capturing a pattern is provided.
Capturing a pattern exactly is defined straightforwardly by adhering to the semantics of logical
implication ϕ := ϕB ⇒ ϕH , i.e., a relation configuration mh needs to be found such that for any
complete model configuration m over mh if the body ϕB of the pattern is satisfied, then its head ϕH
can be inferred.

Capturing a pattern exactly and exclusively imposes additional constraints. Here, we do not solely
aim at capturing a pattern but at additionally showcasing that a pattern can be captured independently
from any other pattern. Therefore, some notion of minimality/exclusiveness of a pattern is needed.
As in Abboud et al. (2020), we define minimality by means of solely capturing those positive patterns
ϕ that directly follow from the deductive closure of the pattern ψ, except for those ϕ that are captured
trivially, i.e., except for those ϕ where their body is not satisfied over the constructed mh.

As presented in Section 5, we can express any supported pattern by means of spatial relations of
the corresponding relation hyper-parallelograms in the virtual triple space. Therefore, we formulate

15

Published as a conference paper at ICLR 2023

exclusiveness intuitively as the ability to limit the intersection of hyper-parallelograms to only those
intersections that directly follow from the captured pattern ψ for any known relation ri ∈ R, which
is in accordance with BoxE’s notion of exclusiveness (Abboud et al., 2020).

Note that our definition of capturing patterns solely depends on relation configurations. This is
vital for ExpressivE to be able to capture patterns in a lifted manner, i.e., ExpressivE shall be able
to capture patterns without the need of grounding them first. Furthermore, being able to capture
patterns in a lifted way is not only efficient but also natural as we aim at capturing patterns between
relations. Thus it would be unnatural if constraints on entity embeddings were necessary to capture
such relation-specific patterns.

As outlined in the previous paragraphs, our definition is in accordance with the literature, focuses on
efficiently capturing patterns, and gives us a formal foundation for the upcoming proofs, which will
show that ExpressivE can capture various logical patterns.

D PROOF OF FULLY EXPRESSIVENESS

In this section, we prove Theorem 5.1. We will show by induction that ExpressivE is fully expressive.
We will first only consider self-loop-free triples, i.e., triples of the form ri(ej , ek) with ej , ek ∈ E,
ri ∈ R and j ̸= k and later remove unwanted self-loops from the constructed model configuration.

Since our proof is highly technical, we will first give some general intuition and then formally state
our proof. In the base case, we consider an ExpressivE model that captures the complete graph G
over the entity vocabulary E and the relationship vocabulary R, i.e., the graph that contains all triples
from the universe. In the induction step, we prove that we can adjust our ExpressivE model to make
any arbitrary self-loop-free triple of G false while maintaining the truth value of any other triple in
the universe.

In the induction step, we make triples ri(ej , ek) false by translating the entity embeddings of ej and
ek such that a hyper-parallelogram can separate pairs of entity embeddings that shall be true from
those that shall be false. Afterward, we translate and shear ri’s hyper-parallelogram to match such a
separating shape.

Finally, after the induction step, we add a separate dimension for any possible self-loop, i.e., triple of
the form ri(ej , ej) such that we can make any self-loop false. Thereby, we show that ExpressivE can
make any triple false and thus that ExpressivE can capture any graph G over R and E.

Our proof shares some common ideas with the fully expressiveness proof of BoxE (Abboud et al.,
2020), yet differs dramatically in many aspects. BoxE embeds relations with two axis-aligned boxes
and entities with two separate embedding vectors, which greatly simplifies the fully expressiveness
proof of BoxE, as the two entity embeddings are independent of each other. This grants BoxE some
flexibility for adapting model configuration yet imposes substantial restrictions, such as that BoxE
cannot capture any notion of composition patterns. Our model does not have these restrictions and
uses only one embedding vector per entity instead, pushing the complexity of our model to the
relation embeddings by representing relations as hyper-parallelogram in the virtual triple space. This,
however, has the consequence that we cannot easily change entity embeddings without moving and
sheering relation embeddings as well when we want to make solely one triple false and preserve the
truth value of any other triple. In the following proof, we will explain the complex adjustment of
relation embeddings and many more novel aspects of our proof in more detail.

We start our proof by making the following assumptions without loss of generality:

1. Any relation ri ∈ R and entity ej ∈ E is indexed with 0 ≤ i ≤ |R|−1 and 0 ≤ j ≤ |E|−1.

2. The dimensionality of each relation and entity embedding vectors is equal to |E| ∗ |R|.
Furthermore, v(i, j) represents the dimension i ∗ |E|+ j of the vector v. Intuitively, the
dimensions of v(i, 0), . . . ,v(i, |E| − 1) corresponds to the dimensions reserved for relation
ri.

3. The slope vectors of relation ri ∈ R are positive, i.e., rhi , r
t
i > 0.

4. Any entity embedding is positive, i.e., for any entity ek ∈ E holds that ek > 0.

5. For any pair of entities ek1 , ek2 ∈ E holds that ek1(i, k1) ≥ ek2(i, k1) +m, with m > 0.

16

Published as a conference paper at ICLR 2023

Building on these assumptions, we prove fully expressiveness by induction as follows:

Base Case. We initialize a graph G as the whole universe over E and R and construct a complete
model configuration m = (M ,fh,fv) with dimensionality |E| ∗ |R| such that G is captured and all
assumptions are satisfied. Concretely, we specify for any dimension (i, k1) with 0 ≤ i ≤ |R| − 1 and
0 ≤ k1 ≤ |E| − 1 the embedding values of entity embeddings with index k1 to set ek1(i, k1) = 2
and with index k2 ̸= k1 to ek2(i, k1) = 1. Furthermore, we specify for any dimension (i, k) with
0 ≤ i ≤ |R| − 1 and 0 ≤ k ≤ |E| − 1 the embedding of relation ri to chi (i, k) = cti(i, k) = 0,
rhi (i, k) = 1, rti(i, k) = 2 and dh

i (i, k) = dt
i(i, k) = 4. As can be shown easily the constructed

complete model configuration satisfies all assumptions and makes any triple over R and E true.
Note that in particular, any self-loop is also captured to be true in the constructed complete model
configuration.

Induction step. In the induction step, we adjust the entity and relation embeddings of the complete
model configuration such that a single triple ri(ej , ek) is made false without affecting the truth value
of any other triple within the graph G. We denote any adjusted embedding with an asterisk v∗ and
the old value of the embedding with v and perform the following adjustments:

1. Increase any slope vector rt∗i (i, k) := rti(i, k) + ∆rti with ∆rti > 0 such that:

ej(i, k)− rti(i, k)ek(i, k)− chi (i, k)−∆rtim ≤ −dh
i (i, k)

2. Since ek(i, k) is by assumption the largest value in dimension (i, k), we can specify the
following two values:

∆rmax
i := ∆rtiek(i, k)

∆rubi := ∆rti(ek(i, k)−m)

with ∆rubi < ∆rmax
i .

3. Using this definition, we increase all entity embeddings ej′ with j′ ̸= j in dimension (i, k)
by:

e∗j′(i, k) := ej′(i, k) + ∆rmax
i

4. Furthermore, we increase all entity embeddings ej′ with j′ ̸= j in dimension (i, k) by:

e∗j′(i, k) := ej′(i, k) + ∆rmax
i

5. For any relation with index i ̸= i′, we adjust any head band in dimension (i, k) by moving
its center downwards and growing the band upwards. This means formally that we update
the following embeddings:

s := rti′(i, k)∆r
t
im+∆rmax

i

dh∗
i′ (i, k) := dh

i′(i, k) +
s

2

ch∗
i′ (i, k) := chi′(i, k)− rti′(i, k)∆r

max
i +

s

2

6. We adjust any tail band in dimension (i, k) by moving its center downwards and growing
the band upwards. This means formally that we update the following embeddings:

s := rhi′(i, k)∆r
t
im+∆rmax

i

dt∗
i′ (i, k) := dt

i′(i, k) +
s

2

ct∗i′ (i, k) := cti′(i, k)− rhi′(i, k)∆r
max
i +

s

2

17

Published as a conference paper at ICLR 2023

7. For any relation with index i, we adjust any head band in dimension (i, k) by moving its
center downwards and growing the band upwards. This means formally that we update the
following embeddings:

s := (∆rti + rti(i, k))∆r
t
im+∆rmax

i

dh∗
i (i, k) := dh

i (i, k) +
s

2

ch∗
i (i, k) := chi (i, k)−∆rti∆r

max
i − rti(i, k)∆r

max
i +

s

2

In the induction step, we adjust the slope vectors (Step 1), the entity embeddings (Step 2-4), and the
width and center embeddings (Step 5-7). Intuitively, by changing the slope vector of relation hyper-
parallelograms, we sheer the hyper-parallelograms. Furthermore, we translate any desired entity
embeddings more than the undesired entity embedding of ej . This allows us to draw a separating
hyper-parallelogram between the point defined by (ej , ek) and any other pair of entities that shall
remain within relation ri. Finally, we must move the sheered hyper-parallelograms into the correct
position and stretch it to make all desired triples true.

Our next goal is to show this behavior formally. We will first show that the initially true triple
ri(ej , ek) is false, then continue by showing that the truth value of any other triple is preserved.

Since the induction steps perform only adjustments in dimension (i, k), we only have to consider
the dimension (i, k) for any embedding vector in the following inequalities. Please note that to state
the inequalities concisely, we have omitted the notation (i, k) from any embedding vector v in the
following inequalities. For instance, we will denote rti(i, k) with rti henceforth.

Let s := (∆rti + rti)∆r
t
im + ∆rmax

i , then we can show that our induction step makes ri(ej , ek)
false as follows:

ej − rtiek − chi −∆rtim ≤ −dh
i (4)

ej − rtiek − chi +∆rubi −∆rmax
i −∆rti∆r

max
i +∆rti∆r

max
i

−rti∆r
max
i + rti∆r

max
i +

s

2
− s

2
≤ −dh

i

(5)

ej +∆rubi − (rti +∆rti)(ek +∆rmax
i)− (chi −∆rti∆r

max
i

−rti∆r
max
i +

s

2
) ≤ −(dh

i +
s

2
)

(6)

e∗j − rt∗i e∗k − ch∗
i ≤ −dh∗

i (7)

Inequality 4 follows directly from Induction Step 1. Next, in Inequality 5 we add many terms that
eliminate each other and apply ∆rubi −∆rmax

i = ∆rti(ek −m) −∆rtiek = −m∆rti . Finally, in
Inequality 6 we restructure the terms such that we can substitute the terms for the adjusted embedding
vectors defined in Steps 1-7. Through this substitution, we obtain Inequality 7, which reveals that
the adjusted embeddings e∗j , e

∗
k do not lie within the adjusted hyper-parallelogram of relation ri.

Therefore, we have shown that the adjustments of the complete model configuration listed in Steps 1-7
have made the triple ri(ej , ek) false, as required.

Next, we need to show that the truth value of any other self-loop-free triple ri′(ej′ , ek′) with j′ ̸= k′

is not altered after the induction step. We start by showing that any triple ri′(ej′ , ek′) that is true in
m remains true after the induction step. Since what follows is a highly technical proof, we give some
intuition now. We make a case distinction of any possible true triple in G and perform the following
steps. First, we assume that the triple is true and therefore instantiate Inequalities 1 and 2 with the
embeddings prior to the induction step. Note that it is solely necessary to consider Inequality 1
as the proofs work vice versa for Inequality 2. Thus, we solely consider Inequality 1 henceforth.
Next, we add terms that eliminate each other and adjustment terms a such that we can substitute our
inequality with the adjusted embedding values v∗. Finally, we show that Inequality 1 is satisfied
for the adjusted embedding values. Note that Inequality 1 defines two inequalities, specifically
eh − chi − rti ⊙ et ⪯ dh

i and eh − chi − rti ⊙ et ⪰ −dh
i . Therefore, we denote with (<) the proof

for the first inequality and with (>) the proof for the second inequality. Thereby, we will show that if

18

Published as a conference paper at ICLR 2023

we assume the triple ri′(ej′ , ek′) to be true in the complete model configuration prior to the induction
step, we can follow that ri′(ej′ , ek′) stays true after the adjustments of the induction step. To provide
the complete formal side of our proof, we consider the following 12 cases:

1. Case i′ = i, j′ = j, k′ = j, k′ ̸= k:

(<) Let s := (∆rti + rti)∆r
t
im+∆rmax

i and let a := (∆rmax
i −∆rubi)(1−∆rti − rti∆r

ub).
Note that a is positive since a = ∆rtim+∆rmax

i holds. Therefore, we can perform the following
transformations:

ej − rtiej − chi ≤ dh
i (8)

ej − rtiej − chi − a+ s− s ≤ dh
i (9)

ej +∆rubi − (rti +∆rti)(ej +∆rubi)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≤ dh

i +
s

2

(10)

e∗j − rt∗i e∗j − ch∗
i ≤ dh∗

i (11)

(>) Let a := (∆rmax
i −∆rubi)(∆rti + rti) +∆rubi −∆rmax

i and let s := (∆rti + rti)∆r
t
im+

∆rmax
i . Note that a is positive since (1) a = m∆rti(∆r

t
i + rti − 1), (2) we initialize rti in the

base case to 2 in any dimension and (3) any induction step may only increase rti . Therefore, we
can perform the following transformations:

ej − rtiej − chi ≥ −dh
i (12)

ej − rtiej − chi + a+
s

2
− s

2
≥ −dh

i (13)

ej +∆rubi − (rti +∆rti)(ej +∆rubi)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≥ −(dh

i +
s

2
)

(14)

e∗j − rt∗i e∗j − ch∗
i ≥ −dh∗

i (15)

2. Case i′ = i, j′ = j, k′ ̸= j, k′ = k:

As can be seen easily this case describes the triple ri(ej , ek), which shall be made false in the
induction step. We have shown that the induction step changes the triples truth value to false in
Inequalities 4-7 and therefore omitted the case here.

3. Case i′ = i, j′ = j, k′ ̸= j, k′ ̸= k:

(<) Let s := (∆rti + rti)∆r
t
im + ∆rmax

i and let a := ∆rtiek′ + s − ∆rubi . Note that a is
positive since a = ∆rti(ek′ +m(1 +∆rti + rti)) holds. Therefore, we can perform the following
transformations:

ej − rtiek′ − chi ≤ dh
i (16)

ej − rtiek′ − chi − a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i − rti∆r

max
i ≤ dh

i (17)

ej +∆rubi − (rti +∆rti)(ek′ +∆rmax
i)− (chi −∆rti∆r

max
i

−rti∆r
max
i +

s

2
) ≤ dh

i +
s

2

(18)

e∗j − rt∗i e∗k′ − ch∗
i ≤ dh∗

i (19)

19

Published as a conference paper at ICLR 2023

(>) Let a := ∆rubi −∆rtiek′ and let s := (∆rti + rti)∆r
t
im+∆rmax

i . Note that a is positive
since ∆rubi ≥ ∆rtiek′ holds. Therefore, we can perform the following transformations:

ej − rtiek′ − chi ≥ −dh
i (20)

ej − rtiek′ − chi + a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i +

s

2
− s

2
≥ −dh

i

(21)

ej +∆rubi − (rti +∆rti)(ek′ +∆rmax
i)− (chi −∆rti∆r

max
i

−rti∆r
max
i +

s

2
) ≥ −(dh

i +
s

2
)

(22)

e∗j − rt∗i e∗k′ − ch∗
i ≥ −dh∗

i (23)

4. Case i′ = i, j′ ̸= j, k′ = j, k′ ̸= k:

(<) Let a := ∆rtiej and let s := (∆rti + rti)∆r
t
im+∆rmax

i . Note that a is trivially positive
since we initially assumed ej > 0 and since we assumed in Step 1 ∆rti > 0. Therefore, we can
perform the following transformations:

ej′ − rtiej − chi ≤ dh
i (24)

ej′ − rtiej − chi − a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i + s− s ≤ dh

i

(25)

ej′ +∆rmax
i − (rti +∆rti)(ej +∆rubi)− (chi −∆rti∆r

max
i

−rti∆r
max
i +

s

2
) ≤ dh

i +
s

2

(26)

e∗j′ − rt∗i e∗j − ch∗
i ≤ dh∗

i (27)

(>) Let a := ∆rmax
i −∆rtiej +∆rtim(∆rti + rti) and let s := (∆rti + rti)∆r

t
im+∆rmax

i .
Note that a is positive since ∆rmax

i − ∆rtiej > 0. Therefore, we can perform the following
transformations:

ej′ − rtiej − chi ≥ −dh
i (28)

ej′ − rtiej − chi + a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i +

s

2
− s

2
≥ −dh

i

(29)

ej′ +∆rmax
i − (rti +∆rti)(ej +∆rubi)− (chi −∆rti∆r

max
i

−rti∆r
max
i +

s

2
) ≥ −(dh

i +
s

2
)

(30)

e∗j′ − rt∗i e∗j − ch∗
i ≥ −dh∗

i (31)

5. Case i′ = i, j′ ̸= j, k′ ̸= j, k′ = k:

(<) Let s := (∆rti + rti)∆r
t
im + ∆rmax

i and let a := s + ∆rtiek −∆rmax
i . Note that a is

positive since a = ∆rti(ek +m(∆rti + rti)) holds. Therefore, we can perform the following
transformations:

ej′ − rtiek − chi ≤ dh
i (32)

ej′ − rtiek − chi − a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i ≤ dh

i

(33)

ej′ +∆rmax
i − (rti +∆rti)(ek +∆rmax

i)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≤ dh

i +
s

2

(34)

e∗j′ − rt∗i e∗k − ch∗
i ≤ dh∗

i (35)

20

Published as a conference paper at ICLR 2023

(>) Let s := (∆rti + rti)∆r
t
im+∆rmax

i . Using this definition, we can perform the following
transformations:

ej′ − rtiek − chi ≥ −dh
i (36)

ej′ − rtiek − chi +∆rmax
i −∆rmax

i +∆rti∆r
max
i −∆rti∆r

max
i

+rti∆r
max
i − rti∆r

max
i − s

2
≥ −dh

i − s

2

(37)

ej′ +∆rmax
i − (rti +∆rti)(ek +∆rmax

i)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≥ −dh

i − s

2

(38)

e∗j′ − rt∗i e∗k − ch∗
i ≥ −dh∗

i (39)

6. Case i′ = i, j′ ̸= j, k′ ̸= j, k′ ̸= k:

(<) Let s := (∆rti + rti)∆r
t
im+∆rmax

i and let a := s−∆rmax
i +∆rtiek′ . Note that a is

positive since a = ∆rti(ek′ +m(∆rti + rti)) holds. Therefore, we can perform the following
transformations:

ej′ − rtiek′ − chi ≤ dh
i (40)

ej′ − rtiek′ − chi − a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i ≤ dh

i

(41)

ej′ +∆rmax
i − (rti +∆rti)(ek′ +∆rmax

i)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≤ dh

i +
s

2

(42)

e∗j′ − rt∗i e∗k′ − ch∗
i ≤ dh∗

i (43)

(>) Let a := ∆rmax
i −∆rtiek′ and let s := (∆rti + rti)∆r

t
im+∆rmax

i . Therefore, we can
perform the following transformations:

ej′ − rtiek′ − chi ≥ −dh
i (44)

ej′ − rtiek′ − chi + a+∆rti∆r
max
i −∆rti∆r

max
i + rti∆r

max
i

−rti∆r
max
i +

s

2
− s

2
≥ −dh

i

(45)

ej′ +∆rmax
i − (rti +∆rti)(ek′ +∆rmax

i)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≥ −(dh

i +
s

2
)

(46)

e∗j′ − rt∗i e∗k′ − ch∗
i ≥ −dh∗

i (47)

7. Case i′ ̸= i, j′ = j, k′ ̸= j, k′ = k:

(<) Let s := rt
i′
∆rtim + ∆rmax

i and let a := s − ∆rubi . Note that a is positive since
a = ∆rtim(1 + rt

i′
)) holds. Therefore, we can perform the following transformations:

ej − rti′ek − chi′ ≤ dh
i′ (48)

ej − rti′ek − chi′ − a+ rti′∆r
max
i − rti′∆r

max
i ≤ dh

i′ (49)

ej +∆rubi − rti′(ek +∆rmax
i)− (chi′ − rti′∆r

max
i +

s

2
) ≤ dh

i′ +
s

2
(50)

e∗j − rt∗i′ e
∗
k − ch∗

i′ ≤ dh∗
i′ (51)

(>) Let a := ∆rubi and let s := rt
i′
∆rtim + ∆rmax

i . Note that a is trivially positive since
∆rubi is positive. Therefore, we can perform the following transformations:

21

Published as a conference paper at ICLR 2023

ej − rti′ek − chi′ ≥ −dh
i′ (52)

ej − rti′ek − chi′ + a+ rti′∆r
max
i − rti′∆r

max
i +

s

2
− s

2
≥ −dh

i′ (53)

ej +∆rubi − rti′(ek +∆rmax
i)− (chi′ − rti′∆r

max
i +

s

2
) ≥ −(dh

i′ +
s

2
) (54)

e∗j − rt∗i′ e
∗
k − ch∗

i′ ≥ −dh∗
i′ (55)

8. Case i′ ̸= i, j′ = j, k′ ̸= j, k′ ̸= k:
As can be seen easily this case generates the same inequalities as the previous case, except that
k′ = k. Therefore, no relevant difference has to be considered, which is why we omit this case.

9. Case (i′ ̸= i, j′ ̸= j, k′ = j, k′ ̸= k):

(<) Let s := rti∆r
t
im+∆rmax

i . Using this definition we can make the following transforma-
tions:

ej′ − rti′ej − chi′ ≤ dh
i′ (56)

ej′ − rti′ej − chi′ + s− s ≤ dh
i′ (57)

ej′ +∆rmax
i − rti′(ej +∆rubi)− (chi′ − rti′∆r

max
i +

s

2
) ≤ dh

i′ +
s

2
(58)

e∗j′ − rt∗i′ e
∗
j − ch∗

i′ ≤ dh∗
i′ (59)

(>) Let a := ∆rmax
i + rti(∆r

max
i −∆rubi) and let s := rti∆r

t
im + ∆rmax

i . Note that a is
positive since ∆rmax

i > ∆rubi . Therefore, we can perform the following transformations:

ej′ − rti′ej − chi′ ≥ −dh
i′ (60)

ej′ − rti′ej − chi′ + a+
s

2
− s

2
≥ −dh

i′ (61)

ej′ +∆rmax
i − rti′(ej +∆rubi)− (chi′ − rti′∆r

max
i +

s

2
) ≥ −(dh

i′ +
s

2
) (62)

e∗j′ − rt∗i′ e
∗
j − ch∗

i′ ≥ −dh∗
i′ (63)

10. Case i′ ̸= i, j′ ̸= j, k′ ̸= j, k′ = k:

(<) Let s := rt
i′
∆rtim + ∆rmax

i and let a := s − ∆rmax
i . Note that a is positive since

a = rti∆r
t
im holds. Therefore, we can perform the following transformations:

ej′ − rti′ek − chi′ ≤ dh
i′ (64)

ej′ − rti′ek − chi′ − a−∆rmax
i +∆rmax

i − rti′∆r
max
i + rti′∆r

max
i ≤ dh

i′ (65)

ej′ +∆rmax
i − rti′(ek +∆rmax

i)− (chi′ − rti′∆r
max
i +

s

2
) ≤ dh

i′ +
s

2
(66)

e∗j′ − rt∗i′ e
∗
k − ch∗

i′ ≤ dh∗
i′ (67)

(>) Let s := rt
i′
∆rtim + ∆rmax

i and a := ∆rmax
i . Note that a is trivially positive since

∆rmax
i is positive. Therefore, we can perform the following transformations:

ej′ − rti′ek − chi′ ≥ −dh
i′ (68)

ej′ − rti′ek − chi′ + a+ rti′∆r
max
i − rti′∆r

max
i +

s

2
− s

2
≥ −dh

i′ (69)

ej′ +∆rmax
i − rti′(ek +∆rmax

i)− (chi′ − rti′∆r
max
i +

s

2
) ≥ −(dh

i′ +
s

2
) (70)

e∗j′ − rt∗i′ e
∗
k − ch∗

i′ ≥ −dh∗
i′ (71)

22

Published as a conference paper at ICLR 2023

11. Case i′ ̸= i, j′ ̸= j, k′ ̸= j, k′ ̸= k:
As can be seen easily this case generates the same inequalities as the previous case, except that
k′ = k. Therefore, no relevant difference has to be considered, which is why we omit this case.

12. Case i′ ̸= i, j′ = j, k′ = j, k′ ̸= k:

(<) Let s := rt
i′
∆rtim +∆rmax

i and let a := ∆rmax
i −∆rubi . Note that a is positive since

a = ∆rtim. Therefore, we can perform the following transformations:

ej − rti′ej − chi′ ≤ dh
i′ (72)

ej − rti′ej − chi′ − a− s+ s ≤ dh
i′ (73)

ej +∆rubi − rti′(ej +∆rubi)− (chi′ − rti′∆r
max
i +

s

2
) ≤ dh

i′ +
s

2
(74)

e∗j − rt∗i′ e
∗
j − ch∗

i′ ≤ dh∗
i′ (75)

(>) Let s := rt
i′
∆rtim + ∆rmax

i and a := ∆rubi + ∆rtimrt
i′

. Note that a is trivially posi-
tive since we assumed any parameter to be positive. Therefore, we can perform the following
transformations:

ej − rti′ej − chi′ ≥ −dh
i′ (76)

ej − rti′ej − chi′ + a+
s

2
− s

2
≥ −dh

i′ (77)

ej +∆rubi − rti′(ej +∆rubi)− (chi′ − rti′∆r
max
i +

s

2
) ≥ −(dh

i′ +
s

2
) (78)

e∗j − rt∗i′ e
∗
j − ch∗

i′ ≥ −dh∗
i′ (79)

We have shown in any of the twelve discussed cases that if a triple ri′(ej′ , ek′) with i′ ̸= i or j′ ̸= j
or k′ ̸= k was true in the model configuration prior to the induction step, then it is still true in the
adjusted model configuration after the induction step. Hence, to show that ExpressivE can capture
any self-loop-free graph, it remains to show that any triple that was false remains false after the
induction step.

To verify that an initially false tripe ri′(ej′ , ek′) remains false we solely need to show that the
embeddings of ri′ , ej′ and ek′ do not satisfy at least one of the Inequalities 1 or 2. We have to
consider the following cases:

1. Case k′ ̸= k: Any changes to the dimension v(i, k) do not affect the dimension v(i′, k′).
Therefore, if ri′(ej′ , ek′) for k′ ̸= k was false before the induction step, it remains false after the
induction step, as we solely alter dimension (i, k).

2. Case k′ = k, i′ = i: In this case j′ ̸= j needs to hold as the triple ri(ej , ek) was initially assumed
to be true. We can easily show that in this case any triple remains false as follows:
Let s := (∆rti + rti)∆r

t
im+∆rmax

i , then we can show that our induction step makes ri(ej′ , ek)
false as follows:

ej′ − rtiek − chi ≤ −dh
i (80)

ej′ − rtiek − chi +∆rmax
i (1− 1 + ∆rti −∆rti + rti

−rti)−
s

2
≤ −dh

i − s

2

(81)

ej′ +∆rmax
i − (rti +∆rti)(ek +∆rmax

i)− (chi −∆rti∆r
max
i

−rti∆r
max
i +

s

2
) ≤ −dh

i − s

2

(82)

e∗j′ − rt∗i e∗k − ch∗
i ≤ −dh∗

i (83)

Since we started with the complete graph, any triple that is false was made false by an induction
step. We have seen that if we apply our algorithm to make ri(ej , ek) false, then Inequality 7 holds.

23

Published as a conference paper at ICLR 2023

Since we assume that ri(ej′ , ek) was false prior to the current induction step and Inequality 7
describes how induction steps make triples false, we can follow that Inequality 80 needs to hold
prior to this induction step. Next, we add in Inequality 81 terms that eliminate each other. Finally, in
Inequality 82 we restructure the terms such that we can substitute them for the adjusted embedding
vectors defined in 1-7. Through this substitution, we obtain Inequality 83, which reveals that the
adjusted embeddings of e∗

j′ and e∗k do not lie within the adjusted hyper-parallelogram of relation
ri. Therefore, we have shown that the adjustments of the complete model configuration stated in
Steps 1-7 preserve the false triples of this case to remain false.

3. Case i′ ̸= i: Any changes to the dimension v(i, k) do not affect the dimension v(i′, k′). Therefore,
if ri′(ej′ , ek′) for i′ ̸= i was false before the induction step, it remains false after the induction
step, as we solely alter dimension (i′, k).

Hence, we have shown that we can make any self-loop-free triple false in the induction step while
preserving the truth value of the remaining triples in G. To show fully expressiveness, it remains to
show that we can capture any graph G even with self-loops. We started our proof in the base case
with a complete graph, which means that any self-loop was initially true. Furthermore, we have
shown in Inequalities 8-15 and 72-79 that any true self-loop remains true after the induction step and
that therefore any constructed complete model configuration captures any self-loop to be true. Since
there are only |R| ∗ |E| possibilities to generate triples of the form ri(ej , ej) for any ri ∈ R and
ej ∈ E and since we require just a single dimension where the embedding of the entity pair ej , ej is
outside of ri’s hyper-parallelogram to make the triple ri(ej , ej) false, we can simply add a dimension
per self-loop to our embeddings, whose sole purpose is to exclude one undesired self-loop ri(ej , ej).
Therefore, ExpressivE can represent any possible graph G in a complete model configuration of
O(|R| ∗ |E|) dimensions, and our model is thus fully expressive in O(|R| ∗ |E|) dimensions.

E PROOF OF COMPOSITIONALLY DEFINED REGION

In this section, we prove Theorem 5.3, which will serve as further machinery for successive appendices.
Since we are going to prove Theorem 5.3 by proving a more specific Theorem, we need to extend the
notion of when a compositional definition pattern holds in the virtual triple space first such that we
can employ it later in our proof. Definition E.1 describes when a compositional definition pattern
holds in dependence of the spatial regions of its relations in the virtual triple space. The definition
employs the notion of logical implication, i.e., if the body of a pattern is satisfied, then its head can
be inferred.

Definition E.1 (Truth of Compositional Definition in the Virtual Triple Space) Let r1(X,Y) ∧
r2(Y,Z) ⇔ rd(X,Z) be a compositional definition pattern over some relations r1, r2, rd ∈ R
and over arbitrary entities X,Y, Z ∈ E. Furthermore, let fh be a relation assignment function
defined over r1 and r2. Moreover, let sd be the spatial region of rd in the virtual triple space. The
compositional definition pattern holds for the regions of the relations in the virtual triple space, i.e.,
for fh(r1), fh(r2) and sd, if: (⇒) for any entity assignment function fe and virtual assignment
function fv over fe if fv(X,Y) ∈ fh(r1) and fv(Y,Z) ∈ fh(r2), then fv(X,Z) must be within
the region sd of rd. (⇐) For any entity assignment function fe and virtual assignment function fv

over fe if fv(X,Z) is within the region sd of rd, then there exists an entity assignment fe(Y) such
that fv(X,Y) ∈ fh(r1) and fv(Y,Z) ∈ fh(r2).

Recall that Theorem 5.3 (reformulated in the definitions of Appendix C and Definition E.1) states that
if ϕ := r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) is a compositional definition pattern defined over relations
r1, r2, rd ∈ R and if fh is a relation assignment function that is defined over r1 and r2, then there
exists a convex region sd for rd in the virtual triple space R2d such that ϕ holds for fh(r1), fh(r2)
and sd. In particular, we are not only interested in proving the existence of the compositionally
defined region sd, but we will even identify a system of inequalities that describes the shape of sd.
Specifically, Theorem E.2 concretely characterizes the shape of sd, which we prove subsequently.

Theorem E.2 Let r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) be a compositional definition pattern over
some relations r1, r2, rd ∈ R and over arbitrary entities X,Y, Z ∈ E. Furthermore, let fh

be a relation assignment function that is defined over r1 and r2 such that for any i ∈ {1, 2},
fh(ri) = (cht

i ,dht
i , rthi) with cht

i = (chi ||cti), dht
i = (dh

i ||dt
i), and rthi = (rti ||rhi). Moreover, let

24

Published as a conference paper at ICLR 2023

the slope vectors be positive, i.e., rthi ⪰ 0 for i ∈ {1, 2}. If Inequalities 84-89 define the region sd of
rd in the virtual triple space, then r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z) holds for fh(r1), fh(r2) and
sd in the virtual triple space.

(x− zrt1r
t
2 − ch2r

t
1 − ch1)

|.| ⪯ dh
2r

t
1 + dh

1 (84)

(zrt2 + ch2 − xrh1 − ct1)
|.| ⪯ dt

1 + dh
2 (85)

(z − xrh1 r
h
2 − ct1r

h
2 − ct2)

|.| ⪯ dt
1r

h
2 + dt

2 (86)

(z + (ch1 − x)rh2 ⊘ rt1 − ct2)
|.| ⪯ dh

1r
h
2 ⊘ rt1 + dt

2 (87)

(x(1− rh1 r
t
1)− ct1r

t
1 − ch1)

|.| ⪯ dt
1r

t
1 + dh

1 (88)

(z(1− rh2 r
t
2)− ch2r

h
2 − ct2)

|.| ⪯ dh
2r

h
2 + dt

2 (89)

Proof Let r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) be a compositional definition pattern over some
relations r1, r2, rd ∈ R and over arbitrary entities X,Y, Z ∈ E. Furthermore, let fh be a relation as-
signment function that is defined over r1 and r2 such that for any i ∈ {1, 2}, fh(ri) = (cht

i ,dht
i , rthi)

with cht
i = (chi ||cti), dht

i = (dh
i ||dt

i), and rthi = (rti ||rhi). Moreover, let the slope vectors be posi-
tive, i.e., rthi ⪰ 0 for i ∈ {1, 2}.

What we want to show is that if Inequalities 84-89 define the region of rd in the virtual triple
space, then r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) holds in the virtual triple space, i.e., for any entity
assignment function fe and virtual assignment function fv over fe if fv(X,Y) ∈ fh(r1) and
fv(Y,Z) ∈ fh(r2), then fv(X,Z) must be within the region of rd. To prove this, we will construct
a system of inequalities first that describes rd and satisfies the compositional definition pattern.
Afterward, we will show that the constructed system of inequalities has the same behavior as
Inequalities 84-89, proving Theorem E.2.

(⇒) First, we choose an arbitrary entity assignment function fe and virtual assignment function fv

over fe. We will henceforth denote the assigned entity embeddings with fe(X) = x, fe(Y) = y, and
fe(Z) = z to state our proofs concisely. Next, we assume that the left part of r1(X,Y)∧r2(Y,Z) ⇔
rd(X,Z) is true, i.e., that fv(X,Y) ∈ fh(r1) and fv(Y, Z) ∈ fh(r2) hold. This means concretely
that we can instantiate the following inequalities from Inequalities 1-2:

x− ch1 − rt1 ⊙ y − dh
1 ⪯ 0 (90)

x− ch1 − rt1 ⊙ y + dh
1 ⪰ 0 (91)

y − ct1 − rh1 ⊙ x− dt
1 ⪯ 0 (92)

y − ct1 − rh1 ⊙ x+ dt
1 ⪰ 0 (93)

y − ch2 − rt2 ⊙ z − dh
2 ⪯ 0 (94)

y − ch2 − rt2 ⊙ z + dh
2 ⪰ 0 (95)

z − ct2 − rh2 ⊙ y − dt
2 ⪯ 0 (96)

z − ct2 − rh2 ⊙ y + dt
2 ⪰ 0 (97)

Our next goal is to construct a system of inequalities that makes rd(X,Z) — the right part of the
pattern — true, i.e., that defines the region of rd such that fv(X,Z) lies within it. To reach this goal,
we substitute Inequalities 90-97 into each other to receive a system of inequalities that (1) has the
same behavior as the initial set and (2) does not contain the entity embedding y. Since we have in the
beginning assumed that the slope vectors are positive, we can substitute Inequalities 90-97 into each
other as follows:

1. 95 in 91 and 94 in 90 leading to 98
2. 95 in 92 and 94 in 93 leading to 99
3. 93 in 97 and 92 in 96 leading to 100
4. 91 in 96 and 90 in 97 leading to 101.

25

Published as a conference paper at ICLR 2023

5. 90 in 92 and 93 in 91 leading to 102.
6. 94 in 96 and 97 in 95 leading to 103.
7. 90 in 91 leading to 104.
8. 93 in 92 leading to 105.
9. 94 in 95 leading to 106.

10. 97 in 96 leading to 107.

These substitutions result in a system of inequalities with the same behavior as the initial system of
inequalities. We have listed the result of these substitutions in Inequalities 98-107.

(x− zrt1r
t
2 − ch2r

t
1 − ch1)

|.| ⪯ dh
2r

t
1 + dh

1 (98)

(zrt2 + ch2 − xrh1 − ct1)
|.| ⪯ dt

1 + dh
2 (99)

(z − xrh1 r
h
2 − ct1r

h
2 − ct2)

|.| ⪯ dt
1r

h
2 + dt

2 (100)

(z + (ch1 − x)rh2 ⊘ rt1 − ct2)
|.| ⪯ dh

1r
h
2 ⊘ rt1 + dt

2 (101)

(x(1− rh1 r
t
1)− ct1r

t
1 − ch1)

|.| ⪯ dt
1r

t
1 + dh

1 (102)

(z(1− rh2 r
t
2)− ch2r

h
2 − ct2)

|.| ⪯ dh
2r

h
2 + dt

2 (103)

dh
1 ⪯ −dh

1 (104)

dt
1 ⪯ −dt

1 (105)

dh
2 ⪯ −dh

2 (106)

dt
2 ⪯ −dt

2 (107)

Note that Inequalities 98-103 are equivalent to Inequalities 84-89 and that Inequalities 104-107 are
tautologies since any width embedding dp

i is positive by the definition of the ExpressivE model.
Therefore, Inequalities 98-107 and Inequalities 84-89 have the same behavior, as required. It
remains to show that Inequalities 98-107 define a region sd containing fv(X,Z) if fv(X,Y) ∈
fh(r1) and fv(Y,Z) ∈ fh(r2). This is trivially true since Inequalities 98-107 directly follow from
Inequalities 90-97, which are instantiations of Inequalities 1-2 representing fv(X,Y) ∈ fh(r1) and
fv(Y,Z) ∈ fh(r2).

Reading the proof bottom-up proves the other direction (⇐), i.e., if fv(X,Z) is in sd, then there
exists an entity assignment fe(Y) = y such that fv(X,Y) ∈ fh(r1) and fv(Y,Z) ∈ fh(r2).
Thereby, we have successfully shown that if Inequalities 84-89 describe the region sd of relation rd
in the virtual triple space, then r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z) holds for fh(r1), fh(r2), and sd
in the virtual triple space. □

We have proven Theorem E.2 in this section, i.e., that Inequalities 84-89 define the compositionally
defined region for positive slope vectors. The proof works vice versa for any other sign of slope
vectors, except that the substitutions of Inequalities 90-97 may vary due to the different signs of
slope vectors. Note that by proving Theorem E.2, we have also proven Theorem 5.3 — i.e., that
there exists a convex region that describes the compositionally defined region sd — since (1) we
have characterized the compositionally defined region and thereby implicitly proven its existence and
since (2) Inequalities 84-89 trivially form a convex region.

F DETAILS ON CAPTURING PATTERNS EXACTLY

Before we prove the inference capabilities of ExpressivE in this section, we formally define the
considered patterns in Definition F.1.

Definition F.1 In accordance with Sun et al. (2019); Abboud et al. (2020), we define the following
inference patterns:

• Patterns of the form r1(X,Y) ⇒ r1(Y,X) with r1 ∈ R are called symmetry patterns.

26

Published as a conference paper at ICLR 2023

• Patterns of the form r1(X,Y) ⇒ ¬r1(Y,X) with r1 ∈ R are called anti-symmetry patterns.

• Patterns of the form r1(X,Y) ⇔ r2(Y,X) with r1, r2 ∈ R and r1 ̸= r2 are called inversion
patterns.

• Patterns of the form r1(X,Y)∧r2(Y,Z) ⇒ r3(X,Z) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3
are called general composition patterns.

• Patterns of the form r1(X,Y)∧r2(Y, Z) ⇔ rd(X,Z) with r1, r2, rd ∈ R and r1 ̸= r2 ̸= rd
are called compositional definition patterns.

• Patterns of the form r1(X,Y) ⇒ r2(X,Y) with r1, r2 ∈ R and r1 ̸= r2 are called
hierarchy patterns.

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸=
r3 are called intersection patterns.

• Patterns of the form r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ with r1, r2 ∈ R and r1 ̸= r2 are called
mutual exclusion patterns.

With all definitions in place, we prove the exactness part of Theorems 5.2 and 5.4, i.e., that ExpressivE
captures all patterns from Table 1 exactly. Specifically, we do not solely prove that ExpressivE
captures the patterns of Table 1 exactly, but that ExpressivE captures these patterns exactly iff
its relation hyper-parallelograms meet the properties intuitively described in Section 5. Next, in
Section G, we prove that ExpressivE captures patterns exactly and exclusively. For the upcoming
proofs, we employ the definitions and formal specifications of Sections C and E:

Proposition F.1 (Symmetry (Exactly)) Let mh = (M ,fh) be a relation configuration and r1 ∈
R be a symmetric relation, i.e., r1(X,Y) ⇒ r1(Y,X) holds for any entities X,Y ∈ E. Then mh

captures r1(X,Y) ⇒ r1(Y,X) exactly iff r1’s relation hyper-parallelogram fh(r1) is symmetric
across the identity line of any correlation subspace.

Proof ⇒ For the first direction, what is to be shown is that if r1’s relation hyper-parallelogram
fh(r1) is symmetric across the identity line of any correlation subspace, then mh captures
r1(X,Y) ⇒ r1(Y,X) exactly. We show this by contradiction. Thus, we first assume that r1’s corre-
sponding relation hyper-parallelogram fh(r1) of mh is symmetric across the identity line for any cor-
relation subspace si. Now to the contrary, we assume that mh does not capture r1(X,Y) ⇒ r1(Y,X)
exactly. Then, due to the symmetry of the hyper-parallelogram across the identity line in any correla-
tion subspace si, for any virtual assignment function fv it holds that if fv(ex, ey) ∈ fh(r1) for
arbitrary entities ex, ey ∈ E, then fv(ey, ex) ∈ fh(r1). Yet, by the definition of capturing patterns
exactly, this means that mh captures r1(X,Y) ⇒ r1(Y,X) exactly. This is a contradiction to the
initial assumption that mh does not capture r1(X,Y) ⇒ r1(Y,X) exactly, proving the ⇒ part of
the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ⇒ r1(Y,X)
exactly, then r1’s relation hyper-parallelogram fh(r1) is symmetric across the identity line of any
correlation subspace. We show this by contradiction. Thus, we first assume that mh captures
r1(X,Y) ⇒ r1(Y,X) exactly, i.e., for any instantiation of fe and fv over fe if fv(ex, ey) ∈
fh(r1), then fv(ey, ex) ∈ fh(r1). Now to the contrary, we assume that r1’s corresponding
relation hyper-parallelogram fh(r1) of mh is not symmetric across the identity line in at least one
correlation subspace si. Then, since fh(r1) is not symmetric across the identity line in si, there is
an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1) and fv(ey, ex) ̸∈ fh(r1) for some
entities ex, ey ∈ E. Yet, by the definition of capturing patterns exactly, this means that mh does
not capture r1(X,Y) ⇒ r1(Y,X) exactly. This is a contradiction to the initial assumption that mh

captures r1(X,Y) ⇒ r1(Y,X) exactly, proving the ⇐ part of the proposition. □

Proposition F.2 (Anti-Symmetry (Exactly)) Let mh = (M ,fh) be a relation configuration and
r1 ∈ R be an anti-symmetric relation, i.e., r1(X,Y) ⇒ ¬r1(Y,X) holds for any entities X,Y ∈ E.
Then mh captures r1(X,Y) ⇒ ¬r1(Y,X) exactly iff r1’s relation hyper-parallelogram fh(r1) is
not symmetric across the identity line in at least one correlation subspace.

27

Published as a conference paper at ICLR 2023

Proposition F.2 can be proven analogously to Proposition F.1. Therefore, its proof has been omitted.

Proposition F.3 (Inversion (Exactly)) Let mh = (M ,fh) be a relation configuration and r1, r2 ∈
R be relations where r1(X,Y) ⇔ r2(Y,X) holds for any entities X,Y ∈ E. Then mh captures
r1(X,Y) ⇔ r2(Y,X) exactly iff fh(r1) is the mirror image across the identity line of fh(r2) for
any correlation subspace.

Proof ⇒ For the first direction, what is to be shown is that if the relation hyper-parallelogram
fh(r1) is the mirror image across the identity line of fh(r2) for any correlation subspace, then mh

captures r1(X,Y) ⇔ r2(Y,X) exactly. We show this by contradiction. Thus, we first assume that
r1’s corresponding relation hyper-parallelogram fh(r1) of mh is the mirror image across the identity
line of fh(r2) for any correlation subspace si. Now to the contrary, we assume that mh does not
capture r1(X,Y) ⇔ r2(Y,X) exactly. Then, due to fh(r1) being the mirror image of fh(r2) in any
correlation subspace si, for any virtual assignment function fv it holds that if fv(ex, ey) ∈ fh(r1)
for arbitrary entities ex, ey ∈ E, then fv(ey, ex) ∈ fh(r2). Yet, by the definition of capturing
patterns exactly, this means that mh captures r1(X,Y) ⇔ r2(Y,X) exactly. This is a contradiction
to the initial assumption that mh does not capture r1(X,Y) ⇔ r2(Y,X) exactly, proving the ⇒
part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ⇔ r2(Y,X)
exactly, then the relation hyper-parallelogram fh(r1) is the mirror image across the identity line
of fh(r2) for any correlation subspace. We show this by contradiction. Thus, we first assume
that mh captures r1(X,Y) ⇔ r2(Y,X) exactly, i.e., for any instantiation of fe and fv over
fe if fv(ex, ey) ∈ fh(r1), then fv(ey, ex) ∈ fh(r2). Now to the contrary, we assume that
r1’s corresponding relation hyper-parallelogram fh(r1) of mh is not the mirror image across the
identity line of fh(r2) for at least one correlation subspace si. Then, since fh(r1) is not the
mirror image across the identity line of fh(r2) in si, there is an instantiation of fv and fe such
that fv(ex, ey) ∈ fh(r1) and fv(ey, ex) ̸∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the
definition of capturing patterns exactly, this means that mh does not capture r1(X,Y) ⇔ r2(Y,X)
exactly. This is a contradiction to the initial assumption that mh captures r1(X,Y) ⇔ r2(Y,X)
exactly, proving the ⇐ part of the proposition. □

Proposition F.4 (Hierarchy (Exactly)) Let mh = (M ,fh) be a relation configuration and
r1, r2 ∈ R be relations where r1(X,Y) ⇒ r2(X,Y) holds for any entities X,Y ∈ E. Then
mh captures r1(X,Y) ⇒ r2(X,Y) exactly iff fh(r1) is subsumed by fh(r2) for any correlation
subspace.

Proof ⇒ For the first direction, what is to be shown is that if the relation hyper-parallelogram
fh(r1) is subsumed by fh(r2) for any correlation subspace, then mh captures r1(X,Y) ⇒
r2(X,Y) exactly. We show this by contradiction. Thus, we first assume that r1’s corresponding
relation hyper-parallelogram fh(r1) of mh is subsumed by fh(r2) for any correlation subspace
si. Now to the contrary, we assume that mh does not capture r1(X,Y) ⇒ r2(X,Y) exactly.
Then, due to fh(r1) being a subset of fh(r2) in any correlation subspace si, for any virtual
assignment function fv it holds that if fv(ex, ey) ∈ fh(r1) for arbitrary entities ex, ey ∈ E, then
fv(ex, ey) ∈ fh(r2). Yet, by the definition of capturing patterns exactly, this means that mh

captures r1(X,Y) ⇒ r2(X,Y) exactly. This is a contradiction to the initial assumption that mh

does not capture r1(X,Y) ⇒ r2(X,Y) exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ⇒ r2(X,Y) exactly,
then the relation hyper-parallelogram fh(r1) is subsumed by fh(r2) for any correlation subspace.
We show this by contradiction. Thus, we first assume that mh captures r1(X,Y) ⇒ r2(X,Y)
exactly, i.e., for any instantiation of fe and fv over fe if fv(ex, ey) ∈ fh(r1), then fv(ex, ey) ∈
fh(r2). Now to the contrary, we assume that r1’s corresponding relation hyper-parallelogram fh(r1)
of mh is not subsumed by fh(r2) for at least one correlation subspace si. Then, since fh(r1) is
subsumed by fh(r2) in si, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1)
and fv(ex, ey) ̸∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the definition of capturing patterns
exactly, this means that mh does not capture r1(X,Y) ⇒ r2(X,Y) exactly. This is a contradiction
to the initial assumption that mh captures r1(X,Y) ⇒ r2(X,Y) exactly, proving the ⇐ part of the
proposition. □

28

Published as a conference paper at ICLR 2023

Proposition F.5 (Intersection (Exactly)) Let mh = (M ,fh) be a relation configuration and
r1, r2, r3 ∈ R be relations where r1(X,Y)∧r2(X,Y) ⇒ r3(X,Y) holds for any entitiesX,Y ∈ E.
Then mh captures r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly iff the intersection of fh(r1) and
fh(r2) is subsumed by fh(r3) for any correlation subspace.

Proof ⇒ For the first direction, what is to be shown is that if the intersection of fh(r1) and fh(r2)
is subsumed by fh(r3) for any correlation subspace, then mh captures r1(X,Y) ∧ r2(X,Y) ⇒
r3(X,Y) exactly. We show this by contradiction. Thus, we first assume that the intersection of
fh(r1) and fh(r2) of mh is subsumed by fh(r3) for any correlation subspace si. Now to the
contrary, we assume that mh does not capture r1(X,Y)∧ r2(X,Y) ⇒ r3(X,Y) exactly. Then, due
to the intersection of fh(r1) and fh(r2) being a subset of fh(r3) in any correlation subspace si, for
any virtual assignment function fv it holds that if fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈ fh(r2)
for arbitrary entities ex, ey ∈ E, then fv(ex, ey) ∈ fh(r3). Yet, by the definition of capturing
patterns exactly, this means that mh captures r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly. This is a
contradiction to the initial assumption that mh does not capture r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y)
exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ∧ r2(X,Y) ⇒
r3(X,Y) exactly, then the intersection of fh(r1) and fh(r2) is subsumed by fh(r3) for any
correlation subspace. We show this by contradiction. Thus, we first assume that mh captures
r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly, i.e., for any instantiation of fe and fv over fe if
fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈ fh(r2), then fv(ex, ey) ∈ fh(r3). Now to the contrary,
we assume that the intersection of fh(r1) and fh(r2) is not subsumed by fh(r3) for at least one cor-
relation subspace si. Then, since the intersection of fh(r1) and fh(r2) is not subsumed by fh(r3)
in si, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈
fh(r2) but fv(ex, ey) ̸∈ fh(r3) for some entities ex, ey ∈ E. Yet, by the definition of capturing
patterns exactly, this means that mh does not capture r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly.
This is a contradiction to the initial assumption that mh captures r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y)
exactly, proving the ⇐ part of the proposition. □

Proposition F.6 (Mutual Exclusion (Exactly)) Let mh = (M ,fh) be a relation configuration
and r1, r2 ∈ R be relations where r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ holds for any entities X,Y ∈ E.
Then mh captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly iff fh(r1) and fh(r2) do not intersect in at
least one correlation subspace.

Proof ⇒ For the first direction, what is to be shown is that if the relation hyper-parallelograms
fh(r1) and fh(r2) do not intersect in at least one correlation subspace, then mh captures r1(X,Y)∧
r2(X,Y) ⇒ ⊥ exactly. We show this by contradiction. Thus, we first assume that fh(r1) and
fh(r2) of mh do not intersect in at least one correlation subspace si. Now to the contrary, we assume
that mh does not capture r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly. Then, since fh(r1) and fh(r2) do
not intersect in at least one correlation subspace si, for any virtual assignment function fv it holds
that if fv(ex, ey) ∈ fh(r1) for arbitrary entities ex, ey ∈ E, then fv(ex, ey) ̸∈ fh(r2). Yet, by
the definition of capturing patterns exactly, this means that mh captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥
exactly. This is a contradiction to the initial assumption that mh does not capture r1(X,Y) ∧
r2(X,Y) ⇒ ⊥ exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥
exactly, then the relation hyper-parallelograms fh(r1) and fh(r2) do not intersect in at least one
correlation subspace. We show this by contradiction. Thus, we first assume that mh captures
r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly, i.e., for any instantiation of fe and fv over fe if fv(ex, ey) ∈
fh(r1), then fv(ex, ey) ̸∈ fh(r2) and if fv(ex, ey) ∈ fh(r2), then fv(ex, ey) ̸∈ fh(r1).
Now to the contrary, we assume that r1’s corresponding relation hyper-parallelogram fh(r1) of
mh intersects with fh(r2) in any correlation subspace. Then, since fh(r1) intersects with fh(r2)
in any correlation subspace, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1)
and fv(ex, ey) ∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the definition of capturing
patterns exactly, this means that mh does not capture r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly. This is a
contradiction to the initial assumption that mh captures r1(X,Y) ∧ r2(X,Y) ⇒ ⊥ exactly, proving
the ⇐ part of the proposition. □

29

Published as a conference paper at ICLR 2023

Proposition F.7 (General Composition (Exactly)) Let r1, r2, r3 ∈ R be relations and let mh =
(M ,fh) be a relation configuration, where fh is defined over r1, r2, and r3. Furthermore let
r3 be the composite relation of r1 and r2, i.e., r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) holds for any
entities X,Y, Z ∈ E. Then mh captures r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) iff the relation hyper-
parallelogram fh(r3) subsumes the compositionally defined region sd defined by fh(r1) and
fh(r2) for any correlation subspace.

Proof ⇒ For the first direction, assume that the compositionally defined region defined by fh(r1)
and fh(r2) is subsumed by fh(r3) for any correlation subspace. What is to be shown is that mh

captures r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) exactly. Our proof for this direction is based on the
following three results:

1. For an auxiliary relation rd ∈ R, there exists a convex region sd in the virtual triple space
such that r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) holds for fh(r1), fh(r2), and sd in any
correlation subspace (Theorem E.2).

2. fh(r1) subsumes sd iff mh captures rd(X,Y) ⇒ r3(X,Y) exactly (Proposition F.4).
3. r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) logically follows from {r1(X,Y) ∧ r2(Y, Z) ⇔
rd(X,Z), rd(X,Y) ⇒ r3(X,Y)}.

For (1), observe that based on Theorem E.2, we know that we can define an auxiliary relation rd ∈ R
with area sd such that r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z) holds for fh(r1), fh(r2), and sd, i.e.,
such that sd is the compositionally defined region of fh(r1) and fh(r2). For (2), as shown in
Proposition F.4, mh captures rd(X,Y) ⇒ r3(X,Y) exactly iff fh(r3) subsumes rd’s area sd.
Therefore, we have shown that if fh(r3) subsumes sd, and if sd is the compositionally defined
region of fh(r1) and fh(r2), then rd(X,Y) ⇒ r3(X,Y) and r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z)
holds for fh(r1), fh(r2), fh(r3) and sd. Together with the fact that fh is only defined over r1,
r2, and r3, we can infer that mh exactly captures any pattern — solely consisting of r1, r2, and r3
— that follows from ψ = {r1(X,Y) ∧ r2(Y, Z) ⇔ rd(X,Z), rd(X,Y) ⇒ r3(X,Y)}. For (3), by
logical deduction, the following statement holds: ψ |= r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Y). Since
r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) (i) solely consists of r1, r2, and r3 and (ii) follows from ψ, we
have proven that mh captures r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) exactly if fh(r3) subsumes sd,
proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X,Y) ∧ r2(Y, Z) ⇒
r3(X,Z) exactly, then the compositionally defined region defined by fh(r1) and fh(r2) is sub-
sumed by fh(r3) for any correlation subspace. We prove this by contradiction. Thus assume that
mh captures r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) exactly, i.e., for any instantiation of fe and fv over
fe if fv(ex, ey) ∈ fh(r1) and fv(ey, ez) ∈ fh(r2), then fv(ex, ez) ∈ fh(r3). Now to the
contrary, we assume that r3’s corresponding relation hyper-parallelogram fh(r3) of mh does not
subsume the compositionally defined region sd in at least one correlation subspace. The follow-
ing three points will be used to construct a counter-example: (1) we have shown in Theorem E.2
that we can define an auxiliary relation rd ∈ R with area sd such that r1(X,Y) ∧ r2(Y,Z) ⇔
rd(X,Z) holds for fh(r1), fh(r2), and sd, (2) r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) logically fol-
lows from {r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z), rd(X,Y) ⇒ r3(X,Y)}, stating together with
Point (1) and Proposition F.4 that r3 needs to subsume rd’s area sd such that mh can capture
r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) exactly, and (3) we have initially assumed that fh(r3) does
not subsume sd. From (1)-(3) we can infer that there exists an instantiation of fv and fe such
that fv(ex, ey) ∈ fh(r1) and fv(ey, ez) ∈ fh(r2) but fv(ex, ez) ̸∈ fh(r3) for some entities
ex, ey, ez ∈ E. Yet, by the definition of capturing patterns exactly, this means that mh does not
capture r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) exactly. This is a contradiction to the initial assumption
that mh captures r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) exactly, proving the ⇐ part of the proposition.
□

Proposition F.8 (Compositional Definition (Exactly)) Let r1, r2, rd ∈ R be relations and let
mh = (M ,fh) be a relation configuration, where fh is defined over r1, r2, and rd. Furthermore let
rd be the compositionally defined relation of r1 and r2, i.e., r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) holds
for any entities X,Y, Z ∈ E. Then mh captures r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) iff the relation
hyper-parallelogram fh(rd) is equal to the compositionally defined region sd defined by fh(r1)
and fh(r2) for any correlation subspace.

30

Published as a conference paper at ICLR 2023

The proof for Proposition F.8 is straightforward, as Proposition F.8 can be proven analogously to
Proposition F.7 with the sole difference that instead of defining a relation embedding fh(r3) that
subsumes the compositionally defined region sd, we define the compositionally defined relation rd
whose embedding fh(rd) is equal to the compositionally defined region sd.

Propositions F.1, F.2, F.3, F.5, F.4, and F.6 together prove the exactness part of Theorem 5.2, i.e.,
that ExpressivE can capture symmetry, anti-symmetry, inversion, intersection, hierarchy, and mutual
exclusion exactly. Propositions F.7 and F.8 prove the exactness part of Theorem 5.4, i.e., that
ExpressivE can capture general composition exactly. Now it remains to show that ExpressivE can
capture all these patterns exactly and exclusively, which is shown in Section G.

G DETAILS ON CAPTURING PATTERNS EXCLUSIVELY

This section proves that ExpressivE can capture all inference patterns of Theorems 5.2 and 5.4 exactly
and exclusively. By the definition of capturing a pattern ψ exactly and exclusively, this means that
we need to construct a relation configuration mh such that (1) mh captures ψ and (2) mh does not
capture any positive pattern ϕ such that ψ ̸|= ϕ. Note that we have shown in Propositions F.1-F.7 that
we can construct a relation configuration mh that captures the following patterns by constraining the
following geometric properties of mh’s relation hyper-parallelograms:

1. For symmetry and inversion patterns, the mirror images across the identity line of hyper-
parallelograms in any correlation subspace need to be constrained (Propositions F.1 and
F.3).

2. For hierarchy and intersection patterns the intersections of hyper-parallelograms in any
correlation subspace need to be constrained (Propositions F.4 and F.5).

3. For general composition patterns the compositionally defined region needs to be subsumed
in any correlation subspace.

Since symmetry, inversion, hierarchy, intersection, and composition are all positive patterns of our
considered language of patterns, it suffices to analyze the mirror images (M), intersections (I), and
compositionally defined regions (C) of each relation hyper-parallelogram to check which positive
patterns have been captured. Furthermore, for the upcoming proofs, Definition G.1 defines head and
tail intervals.

Definition G.1 (Head and Tail Intervals) Let ri ∈ R be a relation and mh = (M ,fh) be a
relation configuration. We call an interval a head interval Hri,mh and respectively a tail interval
Tri,mh of ri and mh if for arbitrary entities eh, et ∈ E, virtual assignment functions fv, and
complete model configuration m over mh and fv the following property holds: if m captures a
triple r1(eh, et) to be true, then fv(eh) ∈ Hri,mh and fv(et) ∈ Tri,mh .

Using the Definition G.1 and the insights provided by (M), (I), and (C), we will followingly prove
that ExpressivE captures each considered pattern exactly and exclusively.

Proposition G.1 (Symmetry (Exactly and Exclusively)) Let mh = (M ,fh) be a relation con-
figuration and r1 ∈ R be a symmetric relation, i.e., r1(X,Y) ⇒ r1(Y,X) holds for any entities
X,Y ∈ E. Then mh can capture r1(X,Y) ⇒ r1(Y,X) exactly and exclusively.

Proposition G.2 (Anti-Symmetry (Exactly and Exclusively)) Let mh = (M ,fh) be a relation
configuration and r1 ∈ R be an anti-symmetric relation, i.e., r1(X,Y) ⇒ ¬r1(Y,X) holds for any
entities X,Y ∈ E. Then mh can capture r1(X,Y) ⇒ ¬r1(Y,X) exactly and exclusively.

The proofs for Propositions G.1 and G.2 are straightforward, as the only positive pattern that contains
only one relation is symmetry. Furthermore, since (i) Propositions F.1 and F.2 have shown that
there is a relation configuration that can capture symmetry/anti-symmetry exactly and (ii) a hyper-
parallelogram cannot be symmetric and anti-symmetric simultaneously, we have shown that there
is a relation configuration that captures symmetry/anti-symmetry exactly and exclusively, proving
Propositions G.1 and G.2.

31

Published as a conference paper at ICLR 2023

Proposition G.3 (Inversion (Exactly and Exclusively)) Let mh = (M ,fh) be a relation configu-
ration and r1, r2 ∈ R be relations where r1(X,Y) ⇔ r2(Y,X) holds for any entities X,Y ∈ E.
Then mh can capture r1(X,Y) ⇔ r2(Y,X) exactly and exclusively.

The proof for Proposition G.3 is straightforward, as the only positive patterns that contain at most two
relations are symmetry, hierarchy, and inversion. Furthermore, since (i) Proposition F.3 has shown
that there is a relation configuration that can capture inversion exactly and (ii) it is simple to show that
a hyper-parallelogram can be the mirror image of another hyper-parallelogram without one of them
subsuming the other (hierarchy) or one of them being symmetric across the identity line (symmetry),
we have shown that there is a relation configuration that captures inversion exactly and exclusively,
proving Proposition G.3.

Proposition G.4 (Hierarchy (Exactly and Exclusively)) Let mh = (M ,fh) be a relation config-
uration and r1, r2 ∈ R be relations where r1(X,Y) ⇒ r2(X,Y) holds for any entities X,Y ∈ E.
Then mh can capture r1(X,Y) ⇒ r2(X,Y) exactly and exclusively.

The proof for Proposition G.4 is straightforward, as the only positive patterns that contain at most two
relations are symmetry, hierarchy, and inversion. Furthermore, since (i) Proposition F.4 has shown
that there is a relation configuration that can capture hierarchy exactly and (ii) it is simple to show
that a hyper-parallelogram can subsume another hyper-parallelogram without one of them being
the mirror image across the identity line of the other (inversion) or one of them being symmetric
across the identity line (symmetry), we have shown that there is a relation configuration that captures
hierarchy exactly and exclusively, proving Proposition G.4.

Proposition G.5 (Intersection (Exactly and Exclusively)) Let mh = (M ,fh) be a relation con-
figuration and r1, r2, r3 ∈ R be relations where r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) holds for any
entities X,Y ∈ E. Then mh can capture r1(X,Y)∧ r2(X,Y) ⇒ r3(X,Y) exactly and exclusively.

Proof What is to be shown is that mh can capture intersection (r1(X,Y)∧r2(X,Y) ⇒ r3(X,Y))
exactly and exclusively. We have already shown that mh can capture r1(X,Y) ∧ r2(X,Y) ⇒
r3(X,Y) exactly in Proposition F.5. Now, to show that mh can capture intersection exactly and
exclusively, we construct an instance of mh such that (1) mh captures intersection r1(X,Y) ∧
r2(X,Y) ⇒ r3(X,Y) and (2) mh does not capture any positive pattern ϕ such that r1(X,Y) ∧
r2(X,Y) ⇒ r3(X,Y) ̸|= ϕ.

Table 6: One-dimensional relation embeddings of a relation configuration mh that captures intersec-
tion (i.e., r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y)) exactly and exclusively.

ch dh rt ct dt rh

r1 −6 2 2 8 2 3

r2 −11.5 3 5 11 3 3

r3 −9.5 5 5 9 1 3

Figure 2 visualizes the hyper-parallelograms defined by the one-dimensional relation embeddings
of Table 6. In particular, it displays the hyper-parallelograms of r1, r2, r3. As can be easily seen
in Figure 2 (and proven using Proposition F.5), the relation configuration mh described by Table 6
captures r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) exactly, as fh(r3) subsumes the intersection of fh(r1)
and fh(r2).

Now it remains to show that mh does not capture any positive pattern ϕ such that r1(X,Y) ∧
r2(X,Y) ⇒ r3(X,Y) ̸|= ϕ. To show this, we will show that (M) the mirror image of any relation
hyper-parallelogram is not subsumed by any other relation hyper-parallelogram (i.e., no unwanted
symmetry nor inversion pattern is captured) and (C) the compositionally defined region defined
by any pair of hyper-parallelograms is not subsumed by any relation hyper-parallelogram (i.e., no
unwanted composition pattern is captured). We do not need to show that (I) no unwanted relation
hyper-parallelograms intersect, as by the nature of the intersection pattern, fh(r1), fh(r2), and
fh(r3) should intersect.

32

Published as a conference paper at ICLR 2023

Figure 2: Visualization of the relation configuration mh described by Table 6.

For (M), observe in Figure 2 that all hyper-parallelograms fh(r1), fh(r2), and fh(r3) of mh are
on the same side of the identity line. Thus, the mirror images of fh(r1), fh(r2), and fh(r3) across
the identity line must be on the other side. Therefore, we have shown (M), i.e., that no relation
hyper-parallelograms subsume the mirror image of any other relation hyper-parallelogram and thus
that mh does not capture any unwanted symmetry nor inversion pattern.

For (C), observe in Figure 2 that for the displayed relation configuration mh, the head intervals of any
relation hyper-parallelogram of mh contain only negative values and the tail intervals contain only
positive values. Thus, for any pair (ri, rj) ∈ {r1, r2, r3}2, there is no virtual assignment function
fv such that m over mh and fv captures ri(x, y) and rj(y, z) for arbitrary entities x, y, z ∈ E.
Therefore, no pair of relations (ri, rj) defines a compositionally defined region. Thus, we have shown
(C) that no compositionally defined region is subsumed by any relation hyper-parallelogram (as no
compositionally defined region exists) and thus that mh does not capture any unwanted general
composition pattern.

By Proposition F.5 and by proving (M) and (C), we have shown that the constructed relation
configuration mh of Table 6 captures the intersection pattern r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y)
and does not capture any positive pattern ϕ such that r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y) ̸|= ϕ. This
means by the definition of capturing patterns exactly and exclusively that mh captures intersection
(r1(X,Y) ∧ r2(X,Y) ⇒ r3(X,Y)) exactly and exclusively, proving the proposition. □

Proposition G.6 (General Composition (Exactly and Exclusively)) Let r1, r2, r3 ∈ R be rela-
tions and let mh = (M ,fh) be a relation configuration, where fh is defined over r1, r2, and r3.
Furthermore let r3 be the composite relation of r1 and r2, i.e., r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z)
holds for all entities X,Y, Z ∈ E. Then mh can capture r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z) exactly
and exclusively.

Proof What is to be shown is that mh can capture general composition (r1(X,Y) ∧ r2(Y, Z) ⇒
r3(X,Z)) exactly and exclusively. We have already shown that mh can capture r1(X,Y) ∧
r2(Y,Z) ⇒ r3(X,Z) exactly in Proposition F.7. Now, to show that mh can capture general composi-
tion exactly and exclusively, we construct an instance of mh such that (1) mh captures general compo-
sition and (2) mh does not capture any positive pattern ϕ such that r1(X,Y)∧ r2(Y,Z) ⇒ r3(X,Z)
̸|= ϕ.

Figure 3 visualizes the hyper-parallelograms defined by the one-dimensional relation embeddings
of Table 7. In particular, it displays the hyper-parallelograms of r1, r2, r3, and the compositionally
defined region sd of auxiliary relation rd such that r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z) holds for

33

Published as a conference paper at ICLR 2023

Table 7: One-dimensional relation embeddings of a relation configuration mh that captures general
composition (i.e., r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z)) and that captures compositional definition (i.e.,
r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z)) exactly and exclusively.

ch dh rt ct dt rh

r1 −6 0 2 8 5 3

r2 −35 5 5 −1 2 5

rd −76 10 10 14 2 2.5

r3 −46 11 6 19 6 4

fh(r1), fh(r2), and sd. As can be easily seen in Figure 3 (and proven using Theorem E.2 and
Proposition F.7), the relation configuration mh described by Table 7 captures r1(X,Y)∧r2(Y,Z) ⇒
r3(X,Z) exactly, as fh(r3) subsumes the compositionally defined region sd.

Figure 3: Visualization of the relation configuration mh described by Table 7.

Now it remains to show that mh does not capture any positive pattern ϕ such that r1(X,Y) ∧
r2(Y,Z) ⇒ r3(X,Z) ̸|= ϕ. To show this, we will show that (M) the mirror image of any relation
hyper-parallelogram is not subsumed by any other relation hyper-parallelogram (i.e., no unwanted
symmetry nor inversion pattern is captured), (I) no relation hyper-parallelograms intersect with
each other (i.e., no unwanted hierarchy nor intersection pattern is captured), and (C) solely the
compositionally defined region sd defined by fh(r1) and fh(r2) is subsumed by fh(r3) and no
other compositionally defined region is subsumed by any other relation hyper-parallelogram (i.e., no
unwanted composition pattern is captured).

For (M), observe in Figure 3 that all hyper-parallelograms fh(r1), fh(r2), and fh(r3) of mh are
on the same side of the identity line. Thus, the mirror images of fh(r1), fh(r2), and fh(r3) across
the identity line must be on the other side. Therefore, we have shown (M), i.e., that no relation
hyper-parallelograms subsume the mirror image of any other relation hyper-parallelogram and thus
that mh does not capture any unwanted symmetry nor inversion pattern.

34

Published as a conference paper at ICLR 2023

For (I), observe in Figure 3 that no relation hyper-parallelograms fh(r1), fh(r2), and fh(r3) of
mh intersect with each other. Thus, we have shown (I), i.e., that mh does not capture any unwanted
hierarchy nor intersection pattern.

For (C), observe in Figure 3 that for the displayed relation configuration mh, the following head
and tail intervals can be defined: (i) Hr1,mh = [−4, 0] and Tr1,mh = [1, 3], (ii) Hr2,mh = [1, 3]
and Tr2,mh = [6, 9], and (iii) Hr3,mh = [−6,−1] and Tr3,mh = [4, 10]. The tail intervals solely
overlap with the head intervals for Tr1,mh and Hr2,mh , i.e., Tri,mh ∩ Hrj ,mh = ∅, (ri, rj) ∈
{r1, r2, r3}2 \ (r1, r2). Thus, for any pair (ri, rj) ∈ {r1, r2, r3}2 \ (r1, r2) there is no virtual
assignment function fv such that m over mh and fv captures ri(x, y) and rj(y, z) for arbitrary
entities x, y, z ∈ E. Therefore, (r1, r2) is the only pair of relations that defines a compositionally
defined region, i.e., no other pair of relations defines a compositionally defined region. Thus, we
have shown (C) that no other compositionally defined region is subsumed by any other relation (as
no other compositionally defined region exists) and thus that no unwanted composition pattern is
captured by mh.

By Proposition F.7 and by proving (I), (M), and (C), we have shown that the constructed relation
configuration mh of Table 7 captures the general composition pattern r1(X,Y) ∧ r2(Y,Z) ⇒
r3(X,Z) and does not capture any positive pattern ϕ such that r1(X,Y)∧r2(Y, Z) ⇒ r3(X,Z) ̸|= ϕ.
This means by the definition of capturing patterns exactly and exclusively that mh captures general
composition (r1(X,Y) ∧ r2(Y,Z) ⇒ r3(X,Z)) exactly and exclusively, proving the proposition. □

Proposition G.7 (Compositional Definition (Exactly and Exclusively)) Let r1, r2, rd ∈ R be re-
lations and let mh = (M ,fh) be a relation configuration, where fh is defined over r1, r2, and rd.
Furthermore, let rd be the compositionally defined relation of r1 and r2, i.e., r1(X,Y)∧ r2(Y,Z) ⇔
rd(X,Z) holds for all entitiesX,Y, Z ∈ E. Then mh can capture r1(X,Y)∧r2(Y,Z) ⇔ rd(X,Z)
exactly and exclusively.

The proof for Proposition G.7 is straightforward, as it can be proven analogously to Proposition G.6
with the only difference that instead of defining a relation embedding fh(r3) that subsumes the
compositionally defined region, we define the compositionally defined relation rd whose embedding
fh(rd) is equal to the compositionally defined region sd. We have stated the relation embeddings for
rd in Table 7 and also visualized fh(rd) in Figure 3.

Finally, the sum of Propositions G.1-G.7 proves Theorems 5.2 and 5.4. Thus, we have theoretically
shown that ExpressivE can capture any pattern from Table 1 exactly and exclusively.

H EXTENDED COMPOSITIONS

This section provides theoretical evidence that ExpressivE is not limited to capturing a single
composition pattern. Specifically, we prove that ExpressivE can capture more than one application
of a composition pattern. The following theoretical result is empirically backed up by further
experimental results of Appendix I.3.

Proposition H.1 Let r1, r2, r3, r1,2, r1,2,3 ∈ R be relations and let mh = (M ,fh) be a relation
configuration, where fh is defined over r1, r2, r3, r1,2, and r1,2,3. Furthermore, let r1(X,Y) ∧
r2(Y,Z) ⇒ r1,2(X,Z) and r1,2(X,Y)∧r3(Y,Z) ⇒ r1,2,3(X,Z) hold for all entitiesX,Y, Z ∈ E.
Then mh can capture r1(X,Y)∧r2(Y,Z) ⇒ r1,2(X,Z) and r1,2(X,Y)∧r3(Y,Z) ⇒ r1,2,3(X,Z)
exactly and exclusively.

Proof What is to be shown is that mh can capture ϕ1 := r1(X,Y) ∧ r2(Y, Z) ⇒ r1,2(X,Z)
and ϕ2 := r1,2(X,Y) ∧ r3(Y,Z) ⇒ r1,2,3(X,Z) exactly and exclusively. To show that there is
an mh that captures ϕ1 and ϕ2 exactly and exclusively, we construct an instance of mh such that
(1) mh captures ϕ1 and ϕ2 exactly, and (2) mh does not capture any positive pattern ψ such that
(ϕ1 ∧ ϕ2) ̸|= ψ.

Figure 4 visualizes the hyper-parallelograms defined by the one-dimensional relation embeddings
of Table 8. In particular, it displays the hyper-parallelograms of r1, r2, r1,2, r3, r1,2,3, and the
compositionally defined regions sd1,2, sd2,3, sd(1,2),3, sd1,(2,3) of auxiliary relation rd1,2, rd2,3 r

d
(1,2),3,

and rd1,(2,3) such that r1(X,Y) ∧ r2(Y,Z) ⇔ rd1,2(X,Z), r2(X,Y) ∧ r3(Y,Z) ⇔ rd2,3(X,Z),

35

Published as a conference paper at ICLR 2023

Table 8: One-dimensional relation embeddings of a relation configuration mh that captures two
general compositions (i.e., r1(X,Y) ∧ r2(Y,Z) ⇒ r1,2(X,Z) and r1,2(X,Y) ∧ r3(Y, Z) ⇒
r1,2,3(X,Z)) exactly and exclusively.

ch dh rt ct dt rh

r1 −6 0 2 8 5 3

r2 −35 5 5 −1 2 5

r1,2 −46 11 6 19 6 4

r3 −45 3 5 −20 0 4

r1,2,3 −215 20 20 22 8 4

r1,2(X,Y) ∧ r3(Y,Z) ⇔ rd(1,2),3(X,Z), and r1(X,Y) ∧ rd2,3(Y,Z) ⇔ rd1,(2,3)(X,Z) hold for
fh(r1), fh(r2), fh(r3), fh(r1,2), fh(r1,2,3), sd1,2, sd2,3, sd(1,2),3, and sd1,(2,3). Note that from
ϕ1 and ϕ2 together with the auxiliary relation rd1,(2,3) — defined above — follows that rd1,2(X,Y) ⇒
r1,2(X,Y), rd(1,2),3(X,Y) ⇒ r1,2,3(X,Y), and rd1,(2,3)(X,Y) ⇒ r1,2,3(X,Y) need to be satisfied.
Thus, as can be easily seen in Figure 4 (and proven using Theorem E.2 and Proposition F.7), the
relation configuration mh described by Table 8 captures ϕ1 and ϕ2 exactly, as fh(r1,2) subsumes
the compositionally defined region sd1,2 and as fh(r1,2,3) subsumes the compositionally defined
regions sd(1,2),3 and sd1,(2,3).

Figure 4: Visualization of the relation configuration mh described by Table 8.

Now it remains to show that mh does not capture any positive pattern ψ such that (ϕ1 ∧ ϕ2) ̸|= ψ.
To show this, we will show that (M) the mirror image of any relation hyper-parallelogram is not
subsumed by any other relation hyper-parallelogram (i.e., no unwanted symmetry nor inversion pattern

36

Published as a conference paper at ICLR 2023

is captured), (I) no relation hyper-parallelograms intersect with each other (i.e., no unwanted hierarchy
nor intersection pattern is captured), and (C) solely that sd1,2 ⊆ fh(r1,2) and (sd(1,2),3 ∪ sd1,(2,3)) ⊆
fh(r1,2,3) are satisfied, and no other compositionally defined region is subsumed by any other
relation hyper-parallelogram (i.e., no unwanted composition pattern is captured).

For (M), observe in Figure 4 that all hyper-parallelograms fh(r1), fh(r2), fh(r3), fh(r1,2), and
fh(r1,2,3) of mh are on the same side of the identity line. Thus, the mirror images of any of
these hyper-parallelograms across the identity line must be on the other side. Therefore, we have
shown (M), i.e., that no relation hyper-parallelograms subsume the mirror image of any other relation
hyper-parallelogram and thus that mh does not capture any unwanted symmetry nor inversion pattern.

For (I), observe in Figure 4 that no relation hyper-parallelograms fh(r1), fh(r2), fh(r3), fh(r1,2),
and fh(r1,2,3) of mh intersect with each other. Thus, we have shown (I), i.e., that mh does not
capture any unwanted hierarchy nor intersection pattern.

For (C), recall Definition G.1, describing head and tail intervals. We observe in Figure 4 that for the dis-
played relation configuration mh, the following head and tail intervals can be defined: (i) Hr1,mh =
[−4, 0] and Tr1,mh = [1, 3], (ii) Hr2,mh = [1, 3] and Tr2,mh = [6, 9], (iii) Hr1,2,mh = [−6,−1]
and Tr1,2,mh = [4, 9.7], (iv) Hr3,mh = [7, 9] and Tr3,mh = [10, 12], (v) Hr1,2,3,mh = [−6, 0]
and Tr1,2,3,mh = [9.8, 12], and (vi) Hrd

2,3,mh
= [1, 3] and Trd

2,3,mh
= [9.8, 12]. The tail inter-

vals solely overlap with the head intervals for the pairs {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd2,3)}, i.e.,
Tri,mh ∩Hrj ,mh = ∅, (ri, rj) ∈ {r1, r2, r3}2 \ {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd2,3)}. Thus, for
any pair (ri, rj) ∈ {r1, r2, r3}2 \ {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd2,3)} there is no virtual assign-
ment function fv such that m over mh and fv captures ri(x, y) and rj(y, z) for arbitrary entities
x, y, z ∈ E. Therefore, {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd2,3)} are the only pairs of relations that
define a compositionally defined region, i.e., no other pair of relations defines a compositionally de-
fined region. Thus we have shown that (1) mh captures ϕ1 and ϕ2 exactly — since sd1,2 ⊆ fh(r1,2)

and (sd(1,2),3 ∪ sd1,(2,3)) ⊆ fh(r1,2,3) — and (2) the only other existing compositionally defined
region sd2,3 is disjoint with any other relation hyper-parallelograms. By (1) and (2), we have shown
(C) that no other compositionally defined region (specifically sd1,2) is subsumed by any other relation
and thus that no unwanted composition pattern is captured by mh.

By proving that the constructed mh captures ϕ1 and ϕ2 exactly and by (I), (M), and (C), we have
shown that the constructed relation configuration mh of Table 8 captures ϕ1 and ϕ2 and does not
capture any positive pattern ψ such that (ϕ1 ∧ ϕ2) ̸|= ψ. This means by the definition of capturing
patterns exactly and exclusively that mh captures ϕ1 and ϕ2 exactly and exclusively, proving the
proposition. □

I ADDITIONAL EXPERIMENTS

This section presents additional experiments, providing further empirical evidence for our theoretical
results. Specifically, Section I.1 studies the benchmark performances of ExpressivE and its closest
relatives on WN18RR stratified by the cardinality of each relation, providing empirical evidence
that ExpressivE performs well on 1-1, 1-N, N-1, and N-N relations. Section I.2 provides empirical
evidence that ExpressivE can capture general composition and provides empirical support for a link
between ExpressivE’s significant performance gain on WN18RR and inference capabilities. Finally,
Section I.3 discusses empirical results, revealing that ExpressivE can reason over more than one step
of composition patterns.

I.1 CARDINALITY EXPERIMENTS

This section provides empirical evidence for our theoretical result that ExpressivE performs well on
1-N, N-1, and N-N relations.

Experiment Setup. Following the procedure of Bordes et al. (2013), we have categorized the
relations of WN18RR into four cardinality classes, specifically 1-1, 1-N, N-1, and N-N. As in Bordes
et al. (2013), we have classified a relation r ∈ R by computing:

37

Published as a conference paper at ICLR 2023

• µrt the averaged number of head entities h ∈ E per tail entity t ∈ E, appearing in a triple
r(h, t) of WN18RR.

• µrh the averaged number of tail entities t ∈ E per head entity h ∈ E, appearing in a triple
r(h, t) of WN18RR.

Following the soft classification of Bordes et al. (2013), a relation is:

• 1-1 if µrt ≤ 1.5 and µrh ≤ 1.5

• 1-N if µrt ≤ 1.5 and µrh ≥ 1.5

• N-1 if µrt ≥ 1.5 and µrh ≤ 1.5

• N-N if µrt ≥ 1.5 and µrh ≥ 1.5

Table 9: MRR of ExpressivE, RotatE, and BoxE on WN18RR stratified by cardinality classes (1-1,
1-N, N-1, N-N). The best results are bold, and the second-best are underlined.

Task Predicting Head Predicting Tail
Cardinality 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
ExpressivE 0.976 0.290 0.105 0.941 0.976 0.141 0.327 0.938
RotatE 0.833 0.294 0.103 0.930 0.875 0.107 0.288 0.925
BoxE 0.877 0.272 0.146 0.883 0.893 0.147 0.246 0.884

Results. Table 9 summarizes the performance results of ExpressivE and its closest spatial relative
BoxE and functional relative RotatE on WN18RR, stratified by the four cardinality classes defined
previously. It reveals that ExpressivE almost exclusively reaches a SotA or close-to-SotA performance
on 1-N, N-1, and N-N relations. In particular, ExpressivE outperforms both RotatE and BoxE
consistently on N-N relations, which are often considered the most complex relations to capture in
KGC with regard to cardinalities. Thus, Table 9 provides empirical results supporting our theoretical
claim that ExpressivE can capture 1-1, 1-N, N-1, and N-N relations well.

I.2 GENERAL COMPOSITION AND LINK TO PERFORMANCE GAIN

This section provides empirical evidence for the theoretical result of Appendices F and G that
ExpressivE can capture general composition exactly and exclusively. Even more, the experiments
of this section give evidence for a direct link between the support of general composition and
ExpressivE’s performance gain on WN18RR. In the following, we first discuss our experiments’
preparation and setup details, followed by the considered hypotheses and final results.

Pattern Identification. Our first goal, to provide empirical evidence for the discussed points, was to
identify patterns occurring in WN18RR. To reach this goal, we have analyzed patterns mined with
AMIE+ (Galárraga et al., 2015) from WN18RR by Akrami et al. (2020) that were provided in a
GitHub repository2. To identify the most relevant patterns, we have — similar to the discussion of
(Galárraga et al., 2013; 2015) — sorted the patterns ρ = ϕB1 ∧ · · · ∧ ϕBm ⇒ r(X,Y) by their head
coverage h(ρ), which is formally defined as (Galárraga et al., 2013):

h(ρ) =
|{(x, y) ∈ E2 | r(x, y) ∈ G ∧ ∃z1 . . . zk(ϕB1(z1, z2) ∈ G ∧ · · · ∧ ϕBm(zk−1, zk) ∈ G)}|

|{(x, y) ∈ E2 | r(x, y) ∈ G}|

On an intuitive level, the head coverage h(ρ) represents the ratio of true triples implied by the pattern
ρ on a given knowledge graph (G,E,R).

Pattern Selection. To analyze the most relevant patterns in the following experiments, we have
selected any patterns whose head coverage is greater than 15% (as inspection of the head coverage
of AMIE shows a very low number of inferred triples contained in the test set below that). From
these patterns, we have left out any pattern with the head relation _similar_to, as ExpressivE, BoxE,
and RotatE already have an MRR of 1 on this relation, thus further stratifying _similar_to’s test

2https://github.com/idirlab/kgcompletion

38

Published as a conference paper at ICLR 2023

triples will not reveal novel information. This procedure leads to the following set of patterns, where
relations r−1 represent the inverse counterpart of relations r ∈ R:

S1 := _verb_group(Y,X) ⇒ _verb_group(X,Y)

C2 := _derivationally_related_form(X,Y) ∧
_derivationally_related_form(Y, Z) ⇒ _verb_group(X,Z)

C3 := _derivationally_related_form(X,Y) ∧
_derivationally_related_form−1(Y, Z) ⇒ _verb_group(X,Z)

C4 := _derivationally_related_form−1(X,Y) ∧
_derivationally_related_form(Y, Z) ⇒ _verb_group(X,Z)

C5 := _also_see(X,Y) ∧ _also_see(Y,Z) ⇒ _also_see(X,Z)

C6 := _also_see(X,Y) ∧ _also_see−1(Y, Z) ⇒ _also_see(X,Z)
S7 := _also_see(Y,X) ⇒ _also_see(X,Y)

C8 := _hypernym(X,Y) ∧
_synset_domain_topic_of (Y, Z) ⇒ _synset_domain_topic_of (X,Z)

Experimental Setup. For each of these patterns ρ we have computed all triples that (i) can be derived
by ρ from the data known to our model and (ii) are known to be true in the KG, yet unseen to our
models. Thus, for each pattern ρ, we have computed the set sρ, containing all triples that (i) can be
derived with ρ from the training set and (ii) are contained in the test set of WN18RR. We have used
each of the computed sets of triples sρ to evaluate the performance of ExpressivE, BoxE, and RotatE
on the corresponding pattern ρ.

Hypotheses. Note that (as discussed in Appendix K.1) compositional definition r1(X,Y) ∧
r2(Y,Z) ⇔ r3(X,Z) defines the triples of the composite relation r3 completely, whereas gen-
eral composition r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) allows r3 to contain more triples than those
that the compositional definition pattern can directly infer. Thus, if ExpressivE captures general
composition and if RotatE captures compositional definition, we expect the following behavior:

• H1. RotatE will perform well solely on relations occurring as the head of maximally one
composition pattern, as RotatE solely supports compositional definition.

• H2. ExpressivE will perform well even when a relation is defined by multiple composition
patterns and/or multiple other patterns since ExpressivE supports general composition.

Table 10: MRR of ExpressivE, RotatE, and BoxE on WN18RR stratified by patterns S1-C8. Si

represents a [S]ymmetry pattern, Ci a [C]omposition pattern (i ∈ {1, . . . , 8}).

Head Rel. _verb_group _also_see _syn_dto
Model S1 C2 C3 C4 C5 C6 S7 C8

Base Exp. 1.000 1.000 1.000 1.000 0.818 0.907 0.985 0.621
RotatE 0.865 0.760 0.760 0.760 0.771 0.893 0.975 0.599
BoxE 0.906 0.801 0.806 0.806 0.632 0.645 0.727 0.547

Results. Table 10 lists for each pattern S1 to C8 the performances of BoxE, RotatE, and ExpressivE
on sρ, where ρ ∈ {S1, . . . , C8} and where Si represents a symmetry pattern and Ci represents a
composition pattern. Table 10 provides evidence for both hypotheses:

• Evidence for H1. In the case of the relation _synset_domain_topic_of (_syn_dto), there
is only one pattern that has _synset_domain_topic_of as its head relation, specifically the
composition pattern C8. RotatE achieves comparable performance to ExpressivE on sC8

as
RotatE is capable of defining _synset_domain_topic_of using compositional definition,
providing evidence for H1.

39

Published as a conference paper at ICLR 2023

• Evidence for H2. Yet, when a relation is defined via multiple patterns, RotatE’s performance
decreases drastically on most composition patterns compared to ExpressivE’s performance,
as can be seen for the patterns C2, C3, C4, and C5, giving evidence for H2.

Conclusion Thus, these experiments provide empirical evidence for (1) ExpressivE can capture
general composition, as ExpressivE and RotatE perform as expected by H1 and H2 under the
assumption that ExpressivE captures general composition and that RotatE captures compositional
definition. Furthermore, the experiments also provide evidence for (2) ExpressivE’s ability to capture
general composition contributes to the performance gain on WN18RR, as ExpressivE consistently
outperforms RotatE and BoxE on the predicted triples of composition patterns.

I.3 MULTIPLE STEPS OF COMPOSITION

In this section, we provide empirical evidence for the theoretical results of Appendix H. To evaluate
how well ExpressivE supports more than one step of a composition pattern, our first goal was
to identify multi-step patterns (i.e., patterns that can be “chained” in multiple steps) occurring in
WN18RR. We now recall parts of Appendix I.2 for the self-containedness of this section – readers
who have read that section can skip ahead to the “experimental setup” paragraph. To reach the goal
of identifying multi-step patterns occurring in WN18RR, we have analyzed patterns mined with
AMIE+ (Galárraga et al., 2015) from WN18RR by Akrami et al. (2020) that were provided in a
GitHub repository3. To identify the most relevant patterns, we have — similar to the discussion of
(Galárraga et al., 2013; 2015) — sorted the patterns ρ = ϕB1 ∧ · · · ∧ ϕBm ⇒ r(X,Y) by their head
coverage h(ρ), which is formally defined as (Galárraga et al., 2013):

h(ρ) =
|{(x, y) ∈ E2 | r(x, y) ∈ G ∧ ∃z1 . . . zk(ϕB1(z1, z2) ∈ G ∧ · · · ∧ ϕBm(zk−1, zk) ∈ G)}|

|{(x, y) ∈ E2 | r(x, y) ∈ G}|

On an intuitive level, the head coverage h(ρ) represents the ratio of true triples implied by the pattern
ρ on a given knowledge graph (G,E,R).

Next, we present the four multi-step patterns with head coverage of at least 15%, as discussed in
Appendix I.2:

R1 := _hypernym(X,Y) ∧
_synset_domain_topic_of (Y,Z) ⇒ _synset_domain_topic_of (X,Z)

R2 := _also_see(X,Y) ∧ _also_see(Y,Z) ⇒ _also_see(X,Z)

R3 := _also_see(X,Y) ∧ _also_see−1(Y, Z) ⇒ _also_see(X,Z)

R4 := _also_see−1(X,Y) ∧ _also_see−1(Y, Z) ⇒ _also_see(X,Z)

The relation _also_see−1 of R3 and R4 represents the inverse relation of _also_see.

Experimental Setup. For each of the selected multi-step patterns ρ ∈ {R1, R2, R3, R4}, we have
generated three datasets, the 1-Step, 2-Steps, and 3-Steps sets. Specifically, we have generated for
each ρ a j-Step(s) set by computing all triples that (i) can be derived by ρ in j steps from the data
known to our model and (ii) are known to be true in the KG, yet unseen to our model. Thus, we
have computed for each ρ a j-Step(s) set, containing all triples that (i) can be derived with ρ by j
applications on the training set and (ii) are contained in the test set of WN18RR. The performance of
ExpressivE on the computed datasets is summarised in Table 11.

Results. We report the performance of at most two steps of R1/R3/R4 as after applying R1/R3/R4

twice on the training set; no new triples are derived. Similarly, no new triples are derived after at
most three steps of R2 on the training set. We can see that the performance of ExpressivE increases
by a large margin when more than one step of reasoning is considered, depicted by the performance
gain of the 2-Steps and 3-Steps set over the 1-Step set. Interestingly, a small exception for this is
R1, where we see a slightly worse behavior – inspection of the results shows that this is due to a
single triple. In total, Table 11 provides empirical evidence that ExpressivE can capture chained
composition patterns and thus perform more than one step of reasoning.

3https://github.com/idirlab/kgcompletion

40

Published as a conference paper at ICLR 2023

Table 11: ExpressivE’s MRR on WN18RR in dependence on the number of reasoning steps. Hyphens
represent that no new triples can be inferred with additional steps.

1-Step 2-Steps 3-Steps 4-Steps+
R1 0.627 0.621 - -
R2 0.720 0.804 0.818 -
R3 0.768 0.907 - -
R4 0.716 0.922 - -

J DETAILS OF THE DISTANCE FUNCTION

In this section, we give additional details on the distance function of Equation 3. As in Section 4, let
τri(h,t) denote the embedding of a triple ri(h, t), i.e. τri(h,t) = (eht − cht

i − rthi ⊙ eth)
|.|, with

exy = (ex||ey) and axy
i = (ax

i ||a
y
i) for a ∈ {c, r,d} and x,y ∈ {h, t}.

The distance function D : E ×R×E → R2d of Equation 3 — measuring the distance of entity pair
embeddings (points) to relation embeddings (hyper-parallelograms) — is split into two parts:

• Di(h, ri, t) = τri(h,t) ⊘ wi for points inside the corresponding relation hyper-
parallelogram, i.e., τri(h,t) ⪯ di.

• Do(h, ri, t) = τri(h,t) ⊙ wi − k for points outside the corresponding relation hyper-
parallelogram, i.e., τri(h,t) ̸⪯ di.

Intuition. As briefly explained in Section 4, the general idea of splitting the distance function is to
assign high scores to entity pair embeddings within a hyper-parallelogram and low scores to entity
pair embeddings outside the hyper-parallelogram. Specifically, if a triple ri(h, t) is captured to be
true by an ExpressivE embedding, i.e., if τri(h,t) ⪯ dht

i , then the distance correlates inversely
with the hyper-parallelogram’s width — through the width-dependent factor wi — keeping low
distances/gradients for points within the hyper-parallelogram. Otherwise, the distance correlates —
again through the width-dependent factor wi — linearly with the width to penalize points outside
larger parallelograms.

K EXPRESSIVE’S TWO NATURES

In this section, we analyze functional and spatial models in more detail and outline how ExpressivE
combines the capabilities of both model families. ExpressivE has two natures, specifically:

• ExpressivE has a functional nature (in the spirit of functional models such as TransE and
RotatE), allowing it to capture functional composition, discussed in detail in Appendix K.1.

• ExpressivE has a spatial nature (in the spirit of spatial models such as BoxE), allowing it to
capture hierarchy, discussed in detail in Appendix K.2.

The combination of the functional and spatial nature is precisely the reason that allows ExpressivE
to capture hierarchy and composition patterns jointly. In the following, we review the inference
capabilities of spatial and functional models and discuss how ExpressivE combines both the spatial
and functional nature.

K.1 ANALYSIS OF FUNCTIONAL MODELS

We recall the definition of functional models provided in Section 3, which states that functional
models basically embed relations as functions fri : Kd → Kd and entities as vectors ej ∈ Kd over
some field K. These models represent true triples ri(eh, et) as et = fri(eh) in the embedding
space.

Our analysis has revealed that the root cause that functional models cannot capture general composi-
tion patterns lies within the functional nature of these models. In essence, these models employ mainly
functions to embed relations. This allows them to employ functional composition frd = fr2 ◦ fr1 to

41

Published as a conference paper at ICLR 2023

capture composition patterns. Yet, employing functional composition defines the composite relation
rd completely and thus represents a more restricted pattern that we call compositional definition
r1(X,Y) ∧ r2(Y,Z) ⇔ rd(X,Z).

In contrast, general composition r1(X,Y) ∧ r2(Y, Z) ⇒ r3(X,Z) does not completely define
its composite relation r3. This means that in the case of general composition, the composite
relation r3 may contain more triples than those that are directly inferable by compositional definition
patterns. Due to this notion of extensibility, we can describe general composition as a combination
of compositional definition and hierarchy, i.e., a general composition pattern defines its composite
relation r3 as a superset (hierarchy component) of the compositionally defined relation rd. This
explains why no KGE has managed to capture general composition, as any SotA KGE that supports
some notion of composition cannot represent hierarchy and vice versa (as will be discussed in
Appendix K.2) , yet both are essential to support general composition. Therefore, to capture general
composition, ExpressivE combines hierarchy and compositional definition patterns, as discussed in
more detail in Section 5.2.

K.2 ANALYSIS OF SPATIAL MODELS

Spatial models embed a relation r ∈ R via spatial regions in the embedding space. Furthermore,
they embed an entity ea ∈ E in the role of a head and tail entity with two independent embeddings
eha ∈ Kd and eta ∈ Kd. A triple r(eh, et) is true for spatial models if the embeddings of the entities
eh and et lie within the respective spatial regions of the relation r. Thus, spatial models may capture
hierarchy patterns via the spatial subsumption of the regions defined by the relations. However, since
there is no relation between eha and eta, spatial models — such as BoxE (Abboud et al., 2020) —
cannot capture composition.

ExpressivE embeds relations as regions (spatial nature). Yet to achieve the functional nature, it cannot
use two independent entity embeddings in the typical embedding space - as we discussed above.
The solution and key difference to BoxE is to define the virtual triple space, which is formed by
concatenating head and tail entity embeddings of the same embedding space (as described in detail in
Section 4). More specifically, any line through the virtual triple space defines a function between
head and tail entity embeddings of the same space - the key to the functional nature:

• Functional nature. Regions in this virtual triple space establish a mathematical relation
between head and tail entities of the same space, by which composition can be captured.

• Spatial nature. At the same time, regions can subsume each other, by which - as is intuitive
- hierarchy patterns can be captured.

Finally, it is precisely the combination of the functional and spatial nature that allows ExpressivE to
capture general composition, as described in detail in Section 5.2.

L TRADE-OFF: EXPRESSIVE POWER VS. DEGREES OF FREEDOM

This section discusses the trade-off between a higher expressive power and lower degrees of freedom,
observable in the results of Table 3. Specifically, this trade-off manifests in Table 3’s benchmark
results in the following way:

• Functional ExpressivE has a lower expressive power compared to Base ExpressivE as it
effectively loses the ability to capture hierarchy patterns. The effect of the reduced expressive
power of Functional ExpressivE can be seen in the performance drop on WN18RR over
Functional ExpressivE in Table 3. However, since Functional ExpressivE uses fewer
parameters than Base ExpressivE, it has a lower degree of freedom, making it less likely to
stop in a local minimum than Base ExpressivE as can be seen on Functional ExpressivE’s
performance on FB15k-237 in Table 3.

• Base ExpressivE has the full expressive powers - the high degree of freedom heightening
the chance of ending in a local minimum. Table 3 reveals the significant performance
increase of Base ExpressivE over Functional ExpressivE on WN18RR, giving evidence that
the expressive power is helpful, but the downside being that its higher degrees of freedom

42

Published as a conference paper at ICLR 2023

may make it likelier to stop in a local optimum, manifesting in its performance drop over
Functional ExpressivE on FB15k-237.

Further analyzing this trade-off to establish a link between dataset properties and the necessary
expressive power of a KGE will be subject for interesting future work.

M EXPERIMENTAL DETAILS

This section discusses our experiment setup, benchmark datasets, and evaluation metrics in detail.
The concrete experiment setups, including details of our implementation, used hardware, learning
setup, and chosen hyperparameters, are discussed in Subsection M.1. Subsection M.2 lists properties
of the used benchmark datasets and Subsection M.3 lists properties of the used ranking metrics.

M.1 EXPERIMENT SETUP AND EMISSIONS

Implementation Details. We have implemented ExpressivE in PyKEEN 1.7 (Ali et al., 2021),
which is a Python library that uses the MIT license and supports many benchmark KGs and KGEs.
Thereby, we make ExpressivE comfortably accessible to the community for future benchmarks and
experiments. We have made our code publicly available in a GitHub repository4. It contains, in
addition to the code of ExpressivE, a setup file to install the necessary libraries and a ReadMe.md file
containing library versions and running instructions to facilitate the reproducibility of our results.

Training Setup. Each model was trained and evaluated on one of 4 GeForce RTX 2080 GPUs of
our internal cluster. Specifically, the training process uses the Adam optimizer (Kingma & Ba, 2015)
to optimize the self-adversarial negative sampling loss (Sun et al., 2019). ExpressivE is trained with
gradient descent for up to 1000 epochs with early stopping, finishing the training if after 100 epochs
the Hits@10 score did not increase by at least 0.5% for WN18RR and 1% for FB15k-237. We have
increased the patience for OneBand ExpressivE to 150 epochs for FB15k-237, as it converges slower
than the other ablation versions of ExpressivE. We use the model of the final epoch for testing. Each
experiment was repeated three times to account for small performance fluctuations. In particular, the
MRR values fluctuate by less than 0.003 between runs for Base and Functional ExpressivE on any
dataset. We performed hyperparameter tuning over the learning rate λ, embedding dimensionality d,
number of negative samples neg , loss margin γ, adversarial temperature α, and minimal denominator
Dmin . Specifically, two mechanisms were employed to implicitly regularize the hyper-parallelogram:
(1) the hyperbolic tangent function tanh was element-wise applied to each entity embedding ep,
slope vector rpi , and center vector cpi , projecting them into the bounded space [−1, 1]d, and (2) the
size of each hyper-parallelogram is limited by the novel Dmin parameter. In the following, we will
briefly introduce the Dmin parameter and its function.

Minimal Denominator Dmin . As can be easily shown, Equations 108 describe the relation hyper-
parallelogram’s center, and Equations 109-110 its corners in the virtual triple space.

centerh
i =

chi + rtic
t
i

1− rhi r
t
i

and center t
i =

rhi c
h
i + cti

1− rhi r
t
i

(108)

cornAh
i = centerh

i ± dh
i + rtid

t
i

1− rhi r
t
i

and cornAt
i = center t

i ± rhi d
h
i + dt

i

1− rhi r
t
i

(109)

cornBh
i = centerh

i ± dh
i − rtid

t
i

1− rhi r
t
i

and cornB t
i = center t

i ± rhi d
h
i − dt

i

1− rhi r
t
i

(110)

Note that the denominator of each term is equal to (1 − rhi r
t
i). Since a small denominator in

Equations 109 and 110 produces large corners and, therefore, a large hyper-parallelogram, we have
introduced the hyperparameter Dmin , allowing ExpressivE to tune the maximal size of its hyper-
parallelograms. In particular,Dmin constrains the relation embeddings such that (1−rhi r

t
i) ⪯ Dmin ,

thereby constraining the maximal size of a hyper-parallelogram as required.
4https://github.com/AleksVap/ExpressivE

43

Published as a conference paper at ICLR 2023

Hyperparameter Optimization. Following Abboud et al. (2020), we have varied the learning
rate by λ ∈ {a ∗ 10−b|a ∈ {1, 2, 5} ∧ b ∈ {−2,−3,−4,−5,−6}}, the margin m by integer
values between 3 and 24 inclusive, the adversarial temperature by α ∈ {1, 2, 3, 4}, and the number
of negative samples by neg ∈ {50, 100, 150}. Furthermore, we have varied the novel minimal
denominator parameter by Dmin ∈ {0, 0.5, 1}. We have tuned the hyperparameters of ExpressivE
manually within the specified ranges. Finally, to allow a direct performance comparison of ExpressivE
to its closest spatial relative BoxE and its closest functional relative RotatE, we chose for each
benchmark the embedding dimensionality and negative sampling strategy of the best-performing
RotatE and BoxE model (Abboud et al., 2020; Sun et al., 2019). Concretely we chose self-adversarial
negative sampling (Sun et al., 2019) and the embedding dimensionalities listed in Table 12. The best
performing hyperparameters for ExpressivE on each benchmark dataset are listed in Table 12. We
have used the hyperparameters of Table 12 for any considered version of ExpressivE — namely Base,
Functional, EqSlopes, NoCenter, and OneBand ExpressivE —, which are described in the ablation
study of Section 6.2.

Table 12: Hyperparameters for the best-performing ExpressivE models on WN18RR and FB15k-237.

Dataset Embedding
Dimensionality Margin Learning

Rate
Adversarial
Temperature

Negative
Samples

Batch
Size

Minimal
Denominator

WN18RR 500 3 1 ∗ 10−3 2 100 512 0
FB15k-237 1000 4 1 ∗ 10−4 4 150 1024 0.5

CO2 Emission Related to Experiments. The computation of the reported experiments took below
200 GPU hours. On an RTX 2080 (TDP of 215W) with a carbon efficiency of 0,432 kg/kWh (based
on the OECD’s 2014 yearly carbon efficiency average), 200 GPU hours correspond to a rough CO2

emission of 18.58 kg CO2-eq. The estimations were conducted using the MachineLearning Impact
calculator (Lacoste et al., 2019).

M.2 BENCHMARK DATASETS

This section briefly discusses some details of the standard KGC benchmark datasets WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova & Chen, 2015). In particular, Table 13 lists the
following characteristics of the benchmark datasets, namely their number of: entities |E|, relation
types |R|, training, testing, and validation triples. Both WN18RR and FB15k-237 provide training,
testing, and validation splits, which were directly used in our experiments.

Table 13: Benchmark dataset characteristics.

Dataset |E| |R| Training Triples Validation Triples Testing Triples

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,034

We have not found licenses for FB15k-237 nor WN18RR. WN18RR is a subset of WN18 (Bordes
et al., 2013), whose license is also unknown, yet FB15k-237 is a subset of FB15k (Bordes et al.,
2013) that uses the CC BY 2.5 license.

M.3 METRICS

We have evaluated ExpressivE by measuring the ranking quality of each test set triple ri(eh, et) over
all possible head e′h and tail e′t: ri(e

′
h, et) for all e′h ∈ E and ri(eh, e′t) for all e′t ∈ E. The mean

reciprocal rank (MRR), and Hits@k are the standard evaluation metrics for this evaluation (Bordes
et al., 2013). In particular, we have reported the filtered metrics (Bordes et al., 2013), i.e., where all
triples that occur in the training, validation, and testing set (except the test triple that shall be ranked)
are removed from the ranking, as ranking these triples high does not represent a faulty inference.
Furthermore, the filtered MRR, Hits@1, Hits@3, and Hits@10 are the most widely used metrics for
evaluating KGEs (Sun et al., 2019; Trouillon et al., 2016; Balazevic et al., 2019; Abboud et al., 2020).

44

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute

Published as a conference paper at ICLR 2023

Finally, we will briefly discuss the definitions of these metrics: the MRR represents the average of
inverse ranks (1/rank), and Hits@k represents the proportion of true triples within the predicted
triples whose rank is at maximum k.

45

	Introduction
	Knowledge Graph Completion
	Related Work
	ExpressivE and the Virtual Triple Space
	Knowledge Capturing Capabilities
	Expressiveness
	Inference Patterns

	Experimental Evaluation and Space Complexity
	Knowledge Graph Completion
	Ablation Study
	WN18RR Performance Analysis

	Conclusion
	Overview of the Appendix
	Notation
	Formal Definitions
	Proof of Fully Expressiveness
	Proof of Compositionally Defined Region
	Details on Capturing Patterns Exactly
	Details on Capturing Patterns Exclusively
	Extended Compositions
	Additional Experiments
	Cardinality Experiments
	General Composition and Link to Performance Gain
	Multiple Steps of Composition

	Details of the Distance Function
	ExpressivE's Two Natures
	Analysis of Functional Models
	Analysis of Spatial Models

	Trade-Off: ExpressivE Power vs. Degrees of Freedom
	Experimental Details
	Experiment Setup and Emissions
	Benchmark Datasets
	Metrics

