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Abstract—Diagnosis of hematological disorders relies on 

cytomorphology and abundance of white blood cells (WBC) in 

peripheral blood smear (PBS). Hematology analyzers offer 

automated cell classification but cannot supersede manual review, 

especially in cancer patients where disease or treatment-induced 

morphological shifts necessitate frequent label corrections. To 

overcome both the rigid cell type definition and inefficient label 

usage, we developed a self-supervised model trained on image 

triplets with a lightweight EfficientNetV2-B0 encoder. With the 

learned morphological landscape, cell-type labels can be obtained 

using simple classifiers with tunable support sets, achieving a 

testing 9-way classification 𝑭𝟏  score of 96.2%. Moreover, our 

model readily generalizes to different label sets as demonstrated by 

predicting 11 morphological attributes. Active learning was used 

to further increase label efficiency without sacrificing 

performance. To enable wider adoption, the model was made 

accessible as a web application, HemoSight. We anticipate 

adaptive, accurate, and efficient self-supervised image 

classification to accelerate clinical workflow with morphological 

insight.  

Keywords—image classification, self-supervised learning, 

active learning, hematology, peripheral blood smear 

I. INTRODUCTION 

Peripheral blood smear (PBS) captures white blood cells 
(WBC) with diverse cytomorphology from the dynamic process 
of hematopoiesis. PBS assay is an essential primary screening 
of many hematologic disorders because it reveals disease-
characteristic cell type abundance and morphology [1]. In 
modern hematology laboratories, accurate classification of 
blood cells and fine-grained characterization of morphology are 
done by automated analyzers followed by hematopathologists’ 
review [2].  

However, the capability of hematology analyzers and the 
sequential nature of the workflow pose limitations. Automated 
analyzers have long been available and benchmarked to 
supplement direct microscopy review [3], but many platforms 
still require manual revision with much-anticipated accuracy 
improvement [4]. Especially in cancer hospitals, treatment and 
cancer-induced conditions lead to high rates of manual review 
and correction [5]. Because existing analyzers are designed to 
be disease-agnostic and case-independent, repeated corrections 
of misclassified cell type labels are needed even if patients share 
similar underlying disease contexts. Moreover, analyzers 
provide only a fixed number of cell type classes, limiting the 
ability to create customized cell groups based on morphological 
features [6], which currently have to be selected manually.  

Recently, computer vision models have been developed to 
ease the bottleneck of manual PBS review, but studies 
prevalently used supervised methods that have limited 
generalization on cell types. For example, convolutional neural 
networks (CNN) were used to classify eight or fewer classes of 
blood cells, excluding abnormal leukocytes such as blasts [7], 
[8], [9]. In addition, lightweight models such as EfficientNet 
were adopted but only for 2-way classification of lymphocytes 
[10] or non-blast cells [11]. By design, supervised approaches 
require labeled data points across predefined classes, so pseudo-
cell type classes like smudge or artifact need to be included to 
boost performance [12]. It can be argued that to exhaustively list 
all possible classes and prepare corresponding labeled examples 
to train a supervised model is impractical and inefficient, let 
alone classes defined by morphological features.  

Self-supervised methods can be exploited to overcome the 
rigid class definition and the cost of label collection of 
supervised methods. Self-supervised learning is particularly 
advantageous when a vast amount of unlabeled data is available 



 

and the number of relevant classes is unconstrained, such as in 
facial recognition [13]. With its growing adoption in medical 
imaging [14], [15], we hypothesize that self-supervised learning 
will increase the customization in problem-specific class 
definitions and the efficiency of labeled data usage (e.g. [16]). 
Furthermore, because labels are used only after lengthy pretext 
training, self-supervised models can benefit from accumulating 
labels and label corrections, to incrementally improve 
performance [17]. Incidentally, this added flexibility also 
addresses limitations of semi-supervised approaches by 
improving data utilization and offering task agnostic learning 
[18].  

Here, we present a label-efficient and adaptive self-
supervised model to classify digitized WBC image crops of 
leukocytes from PBS analyzers. The model establishes a 
morphological landscape using similarity learned by image 
triplets, whose features are extracted by fast EfficientNetV2 
encoder. We demonstrate that the model is adaptable to different 
proportions of labeled data, and different label domains (cell 
type vs. morphological attributes), with sufficient performance. 
By incorporating active learning strategies, label efficiency can 
be further improved without compromising performance. We 
also evaluated the model’s explainability using visualizations. 
Recognizing its potential significance in clinical applications 
and training, we encapsulated our model in a web application, 
HemoSight, that offers interactive exploration of morphological 
space and real-time model inferences.  

II. METHODS 

A. Data and Annotation Collection 

We collected blood samples from 44 randomly selected 
patients admitted to the University of Texas MD Anderson 
Cancer Center in 2023. PBS slides were prepared by Wright’s 
staining and then scanned by Sysmex DI-60 automated digital 
cell morphology system. Using CellaVision software, about 115 
cells were sampled from each slide to obtain image crops of 
about 360 × 360 pixels at 100× of magnification, each crop 
containing one white blood cell at the center. The labels of 
image crops were reviewed by three hematopathologists 
iteratively, based on the initial classification from CellaVision. 
We kept the class “blast” which was defined by the merged 
population of blast cells (e.g. myeloblasts, lymphoblasts, 
monoblasts) and blast equivalent cells (i.e. promonocyte). For 
the rest of the WBC classes of interest, we chose to use public 
dataset [7], [19], which included 17,902 images spanning eight 
classes: neutrophil, eosinophil, basophil, lymphocyte, 
monocyte, immature granulocyte (“ig”), erythroblast and 
platelet. The “ig” class contains promyelocytes, myelocytes, 
and metamyelocytes. In total, we appended 5,952 images to the 
public data to form a complete dataset of 23,044 images across 
nine classes with the following distribution: basophil (5.3%), 
blast (11.9%), eosinophil (13.8%), erythroblast (6.7%), ig 
(12.6%), lymphocyte (8.7%), monocyte (9.3%), neutrophil 
(21.4%), and platelet (10.2%).  

From this dataset, 10% of the images (2,305 cells) were 
randomly selected with stratified sampling across cell types to 
form the holdout test set. The rest of the data was further split 
by 5-fold stratified sampling to form the training set (~16,591) 
and the validation set (~4,148).  

This study received ethical approval from the Institutional 
Review Board of the University of Texas MD Anderson Cancer 
Center.  

B. Self-supervised Pretext Training 

Our self-supervised model consists of three encoder heads 
with shared weights followed by a similarity layer, we 
implemented the model using TensorFlow 2.10.1 and Python 
3.8.10.  

We opted EfficientNetV2-B0 as the feature encoder due to 
its small size and thus requires less computation resources and 
time [20]. Incoming images were color-normalized by the gray 
world algorithm [21]. Image augmentation included random 
horizontal and vertical flipping, rotation (±90°), zoom (±0.1×), 
horizontal and vertical translation (±20 pixels), and color jitter 
(brightness, contrast, saturation, and hue, with 0.2 magnitude). 
Finally, images were center cropped to 224 × 224 pixels before 
feeding to the encoder. Note that pixel intensity rescaling from 
0-255 to 0-1 was handled by the TensorFlow model internally.  

The output feature vectors from the top activation layer of 
the encoder were first passed through a global average pooling 
layer, and then a dropout layer with a rate of 0.2. Finally, the 
vectors were 𝐿2 -normalized by a lambda layer before 
computing the loss.  

The pretext similarity-based training requires anchor-
positive-negative triplets, where anchor and positive images are 
generated from augmentations of the same file, and the negative 
image is taken from a different file. In practice, when triplet 
semi-hard loss [13] from the TensorFlow Addons library 
(version 0.20) was used, the image generator supplied two 
augmented versions of all images in a batch to enable efficient 
online triplet mining.  

To train the network, we initialized the model using weights 
pre-trained on ImageNet [22]. The model was trained for all 
layers except batch normalization layers were frozen [23]. 
Semi-hard loss with a margin of 0.5 and 𝐿2 distance metric was 
used. The model was trained for 30 epochs at a batch size of 
100. Adam optimizer was used with a learning rate of 10−5, and 
default parameters of 𝛽1 = 0.9 , 𝛽2 = 0.999 , 𝜖 = 10−7 . We 
manually explored the hyperparameter space including 
optimizer, learning rate, learning rate schedule, loss margin.  

We containerized the script to a Docker container and 
deployed it on the Kubernetes cluster at our institution. For each 
job, one NVIDIA A100 GPU of a node was used with 40 GB of 
graphics memory. The script is available on GitHub: 
https://github.com/MXGHarryLiu/HemoSight.  

C. Supervised Fine-tuning and Label Set Generalization 

To obtain classification labels, a support set was created 
from the training set using the embeddings from the pretext-
trained encoder and the corresponding hematopathologist-
provided labels. A linear support vector machine (SVM) 
classifier [24] was used to predict categorical labels from 
embeddings. The SVM used one vs. rest decision function shape 
for multi-class classification and with the input standardized and 
probability estimates enabled for the output. For the following 
investigations, the learned embedding space was kept the same 
while the SVM was retrained for different tasks.  



 

To test the impact of labeled data proportion on the 
performance, we random-sampled an increasing number of 
labeled data stratified for each cell type to be included in the 
support set.  

To generalize the model, we applied the model to a subset 
of data with 11 morphological attributes obtained from the 
literature [25]. Because not all images have morphological 
annotations, we kept the same data split while using only the 
intersection of data points with available labels. This yielded 
~7,379 training images and ~1,826 validation ones. We repeated 
the classification for each morphological attribute with the same 
classifier settings.  

To account for class imbalance, we report macro-averaged 
scores.  

D. Supervised Baseline Model 

To serve as a baseline comparison to our self-supervised 
model, we implemented a simple supervised classifier with the 
same EfficientNetV2-B0 encoder. We kept a similar 
architecture to the self-supervised model except one encoder 
head was used and a dense layer with Softmax activation was 
added after the dropout layer to generate class probability and 
labels for 9-way classification. As commonly used in transfer 
learning, we performed two-stage training using the Adam 
optimizer, a batch size of 32, and the sparse categorical cross-
entropy loss. First, the model was trained at a learning rate of 
0.001 with all layers except the top layer frozen for 10 epochs. 
Then, we unfroze all layers except the batch normalization 
layers and trained the model for an additional 20 epochs at a 
lowered learning rate of 10−5  to fine-tune the weights. To 
prevent overfitting and ensure convergence, when the training 
data size is at or below 450 images, the second stage is skipped, 
and the model is trained for 30 epochs with only the top layer 
unfrozen.  

E. Active Learning 

To improve label efficiency, we simulated active learning 
strategies implemented by the modAL package (version 0.4.2.1) 
[26] on our dataset with cell-type labels. We initialized the 
model with 90 labels, randomly sampled and stratified across 
cell types. Then, inferred labels and their probabilities from 
SVM were used to determine the next batch of 90 samples to be 
labeled, using two sampling strategies: (a) uncertainty 
sampling, which selected samples with the highest uncertainty, 
i.e. lowest max probability across all classes, and (b) random 
sampling, which was used as a baseline. Note that this 
cumulative random sampling is different from random 
resampling of the training set with increasing sample size as we 
did in the above section. For each iteration, performance scores 
were logged, and the process was repeated until all training 
samples were used.  

To compare sampling strategies, we obtained a learning 
curve, i.e. performance (𝑃) vs. sample size (𝑛), for each class, 
and fitted it to an inverse power-law curve (1), where 𝑃max is the 
asymptote performance, 𝑟 is the learning rate, 𝑘 is the scaling 
factor, and 𝑛0 is the offset.  

𝑃(𝑛) = 𝑃max −
𝑘

(𝑛−𝑛0)
𝑟     (1) 

F. Explainability 

To visualize the learned embedding space of the self-
supervised model, we employed openTSNE (version 1.0.1) 
[27], an implementation of the t-distributed stochastic neighbor 
embedding (t-SNE) to reduce the dimensionality from 1280 of 
the output feature vectors to two. Euclidean distance was used, 
and the embedding was initialized using top principal 
components. 1000 iterations were used at a perplexity of 30.  

Gradient-weighted class activation mapping (GradCAM) is 
another technique for visualizing model decisions. However, it 
is commonly applied to supervised learning thus “class 
activation”. Inspired by a few studies that extended GradCAM 
to the Siamese network [28], we adapted the GradCAM++ 
algorithm [29] to our self-supervised triplet network. Output 
(7×7×1280) from the top activation layer was exported to 
compute the activation map (7×7). Because online triplet 
mining was used, informative triplets need to be inferred by 
images with the top matrix sum of activation maps for a given 
batch with a non-zero loss.  

G. Web Application Packaging and Deployment 

To ease access to the model, we developed a full-stack web 
application consisting of four Docker containers. First, a 
ReactJS container served the frontend web pages, which adopt 
styles from the Bootstrap framework. RESTful APIs were 
defined to send and receive data between the frontend and the 
backend container, which uses FastAPI (version 0.105) in 
Python. To improve server responsiveness, a third container 
running the TensorFlow models in Python was dedicated to 
model inference. This worker container, which also uses 
FastAPI, subscribed to the change stream of a database 
container (MongoDB) to receive user requests of incoming 
image classification jobs and push results back to the database. 
With this design, theoretically, multiple instances of this worker 
container can be deployed to speed up model inference. The 
results were visualized as interactive Vega charts in the web 
browser [30].  

III. RESULTS 

A. Adaptive Leukocytes Classification Based on Self-

supervised Triplet Model 

As labeled data are typically obtained at a higher cost than 
unlabeled data, we first evaluated model performance with 
varied sizes of the support set, thus the proportion of labeled 
data in the training set. For each class of 9 cell types, we selected 
data points to be used for SVM prediction using stratified 
random sampling. We saw the self-supervised model can 
tolerate few labeled data. For example, when 5.4% of labeled 
data were used, the 𝐹1 score only dropped 3.86% compared with 
that of 96.32% if all labels were used (Fig. 1). This demonstrates 
that our model can readily accept an expanding support set upon 
the availability of new labels.  

In addition, the self-supervised model surpasses supervised 
baseline models for label counts below 1,800, and when all 
labels were used, the 𝐹1  score of 96.32±0.25% is close to 
97.47±0.22% of supervised models (Fig. 1). When the hold-out 
set was evaluated, the model achieved an 𝐹1  score of 
96.20±0.09% across 5 repeats. This shows that our model  



 

                    

Fig. 1. Cell type prediction performance vs. proportion of labeled data. Values 
are mean across 5 folds of cross-validation, and error bars are std. y-axis is 

scaled by −log(1 − 𝑥).  

achieved consistent and sufficient performance.  

Then, we sought to investigate how the model can adapt to 
different attribute sets. Replacing cell-type labels with 
categorical labels of various WBC morphological attributes, we 
repeated the performance evaluation by retraining the classifier 
on the same embedding space. Our model achieved good 
performance, with an averaged mean 𝐹1 of 85.78±0.34% across 
all 11 morphological attributes (Fig. 2), which is comparable to 
published results from supervised models (91.20±0.06%) [25].  

 

Fig. 2. Self-supervised model’s performance across 11 morphological attributes. 

Values are mean across 5 folds of cross-validation, and error bars are std.  

Next, to further improve label efficiency, we tested the self-
supervised model’s performance with active learning strategies. 
Using uncertainty sampling, only 2250 labels (13.3% of total, 
after 25 iterations) were needed to have the performance 
reaching that of using all labels (Fig. 3).  

In addition, different cell types show different learning rates 
response to the same sampling strategy, with platelet raising the 
fastest, and monocyte the slowest (Fig. 4a). An increased 
learning rate might be caused by decreased intraclass variation 
or increased interclass separation. The learning rate 
improvement can be seen across 8 of 9 cell types and is 
significant compared with random sampling (𝑝 = 0.006  one 
sided Wilcoxon signed-rank test) (Fig. 4b). This indicates that 
active learning strategies can drastically cut down labeled data 
usage by focusing on only informative data points, and labeling 
can be further guided by cell type difference to account for 
different intraclass variations.  

 

Fig. 3. Learning curves of active learning sampling strategies. Mean macro-

averaged 𝐹1 score vs. increasing support set across 5 folds of cross-validation. 

Shaded areas denote std. y-axis is scaled by − log(1 − 𝑥).  

(a) 

 

(b) 

 

Fig. 4. Learning curves vs. active learning sampling strategies. (a) Learning 

curves of individual cell types during uncertainty sampling. Mean values across 

5 folds of cross-validation are shown. y-axis is scaled by − log(1 − 𝑥). (b) 

Learning rates obtained from mean learning curves of individual cell types from 

different active learning sampling strategies.  

Finally, to explain decisions made by the model, we first 
visualize the embedding space using t-SNE. Clear clustering by 
cell type can be seen in the t-SNE map (Fig. 5a). Interestingly, 
we can also see clusters of eosinophils and neutrophils showing 
polarized distribution of cell size (Fig. 5b), indicating the 
embedding space encodes similarity defined by both cell types 
and morphological attributes. In addition, to visualize model 
spatial attention, we computed class activation maps which 
allow us to confirm the model’s decision for similarity is mainly 
drawn from the center region, instead of the background or 
surrounding red blood cells (Fig. 6). We also noticed that strong 
activation often came from image pairs of the same underlying 
cell type, indicating the effect of semi-hard loss filtering and 
effectiveness of self-supervised training.  



 

(a) 

 

(b) 

 

Fig. 5. Visualization of morphological landscape by t-SNE. (a) Scatter plots 

showing embedding space dimension reduced by t-SNE of a representative 
model trained using one of cross-validation data splits. Data points colored by 

cell type. (b) Same as (a) but colored by cell size morphological attributes.  

 

Fig. 6. Class activation maps explain model decision spatially. Class activation 
maps of two neutrophils superimposed on corresponding input images. Anchor 

and positive are obtained from augmentations of the same image, while negative 

is obtained from a different image. Red indicates strong activation, while blue 

indicates weak activation.  

B. Web Application for AI-assisted Peripheral Blood Smear 

Review 

To enable wider adoption of our machine learning model in 
future AI-assisted workflow of peripheral blood smear review, 
we deployed our trained model to a web application, named 
HemoSight. HemoSight supports batch uploading of query 
images for cell type inference (Fig. 7a). Despite no parallel  

(a) 

 

(b) 

 

Fig. 7. Features of the HemoSight web application. (a) HemoSight enables users 

to upload query images and perform cell type inference. (b) Given one query 

image, its nearest neighbors in the embedding space are visualized.  



 

processing being used, the server was able to process incoming 
data at a speed of tens of images per second. For a given query 
image, probabilities of predicted labels are shown in the 
“details” tab to provide confidence of estimation (Fig. 7a).  

Moreover, using openTSNE [27], HemoSight can remap 
query images onto the learned embedding space, enabling 
visualization of neighboring similar images to be used for 
manual reference (Fig. 7b).  

IV. DISCUSSION 

In this paper, we demonstrated a label-efficient model for 
classifying WBC crops from peripheral blood smear into 
flexibly defined label sets such as cell type or morphological 
attributes. We showed that such a self-supervised model can 
tolerate label-scarce datasets with minimal tradeoffs in 
performance. The adoption of active learning sampling 
strategies further lowered the threshold for label proportion to 
achieve target performance. We visually examined the 
explainability of the model before deploying the model to a 
proof-of-concept web application.  

Our work is not without caveats or limitations, which 
present opportunities for future studies. On model assumptions, 
we defined similar images using augmentation of the entire 
image, and only one embedding is obtained per image to 
compute the distance metric. This means the model will have 
limited discernment of local features. In practice, subcellular 
morphologies such as Auer rods and hairy cell membrane are 
important hallmarks for certain diseases [6]. To detect these 
local features, examples from different cell types, and thus 
different dominant global features, are necessary, as in the case 
of vacuole, which may be the source of label inefficiency. We 
could explore alternative augmentation strategies or model 
frameworks to capture local similarity.  

Moreover, by supplementing the public dataset with our 
internal dataset, we hope to expose the model to systematic 
variations. However, we didn’t quantify batch differences and 
the impact of data normalization. Given we can see some intra-
class separations of data from different sources (Fig. 5), the 
robustness of the model can be potentially boosted by including 
training data from more institutions.  

On model implementation and evaluation, more 
complicated classifiers, such as tree-based ensemble methods, 
can be used instead of SVM. However, choices of classifier may 
influence pretext hyperparameter tuning and most downstream 
evaluations, and computation cost as well as overfitting from 
additional hyperparameters need to be monitored. In addition, 
other active learning sampling strategies can be explored, as 
well as the impact of initialization [31] or query batch size.  

We created the web application not only to show the benefit 
of fast and efficient machine learning models that could enable 
quick model inference but also to demonstrate the potential of 
integrating real-time label correction and post-training class 
definition to clinical workflows, when self-supervised models 
are paired with active learning. Realizing the latter in a fully-
fledged web application, however, is beyond the scope of this 
study.  

Our implementation of self-supervised learning should be 

domain agnostic, and we anticipate that the same approach can 
be applied to other modalities such as cytology samples of bone 
marrow[32], [33] or imaging flow cytometry [34]. However, 
additional preprocessing steps such as cell segmentation are 
necessary for densely populated images, and transfer learning 
may be required for cells in suspension. In addition, we could 
establish patient cohorts across diagnostics to study the effect of 
disease on morphology [35].  

Our study lays the foundation for AI-assisted peripheral 
blood smear review where machine learning models iteratively 
improve performance using expended human annotations on top 
of knowledge of image similarity mined from the vast amount 
of unlabeled data. We expect self-supervised models to shorten 
the turnaround time of model updates, leading to a better 
understanding of hematological disorders and their impact on 
morphology.  
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