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Abstract
Real-world human decision making often relies
on strategic planning, where high-level goals
guide the formulation of sub-goals and subsequent
actions, as evidenced by domains such as health-
care, business, and urban policy. Despite notable
successes in controlled settings, conventional re-
inforcement learning (RL) follows a bottom-up
framework, which can struggle to adapt to real-
world complexities such as sparse rewards and
limited exploration budgets. While methods like
hierarchical RL and environment shaping provide
partial solutions, they frequently rely on either
ad hoc designs (e.g. choosing the set of high-
level actions) or purely data-driven discovery of
high-level actions that still requires significant ex-
ploration. In this paper, we introduce a top-down
RL framework that explicitly leverages human-
inspired strategy to reduce sample complexity,
guide exploration, and enable high-level decision
making. We first formalize the Strategy Problem,
which frames policy generation as finding distri-
butions over policies that balance specificity and
value. Building on this definition, we propose
the Strategist agent—an iterative framework that
leverages large language models to synthesize do-
main knowledge into a structured representation
of actionable strategies and sub-goals. We fur-
ther develop a reward shaping methodology that
translates these strategies expressed in natural lan-
guage into quantitative feedback for RL methods.
Empirically, we demonstrate that our framework
significantly enhances the performance of differ-
ent underlying RL algorithms, leading to faster
convergence and the discovery of more complex
behaviors. Taken together, our findings highlight
that top-down strategic exploration opens new
avenues to improve RL in real-world decision
problems.
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1. Introduction
Real-world complexity and top-down planning. Real-
world human decision-making hinges on strategic goal-
setting and top-down planning (Correa et al., 2023; Collins
et al., 2024). From large-scale business decisions to complex
healthcare protocols (Strickland & Lizotte, 2021), experts
frequently define high-level objectives and then decompose
them into increasingly concrete subgoals to guide daily ac-
tions. This contrasts sharply with the way conventional
reinforcement learning (RL) often proceeds: bottom-up,
through extensive trial-and-error in controlled or simulated
environments (Mnih et al., 2015; Silver et al., 2016). Al-
though bottom-up RL has led to landmark successes in
various domains, its reliance on massive exploration and
repeated resets conflicts with real-world domains, where
errors can be costly or time-consuming (Dulac-Arnold et al.,
2021), and rewards are sparse and delayed (Rengarajan et al.,
2022).

Motivation: human-inspired strategies vs. bottom-up
RL. Top-down planning is standard for humans operating
in complex, uncertain, and resource-constrained contexts
(Correa et al., 2023). In business, strategists consider al-
ternative pathways for growth—such as increasing sales
volume, improving operational efficiency, or diversifying
product lines—before committing to one. In healthcare,
medical teams identify key bottlenecks—e.g., availability of
caregivers or patient discharge protocols—and define action
plans that interleave resource allocation and clinical proce-
dures. Such human-inspired strategy formation not only
structures the planning process, but also reduces the explo-
ration burden by focusing attention on the most promising
areas of the decision space (Sutton et al., 1999; Collins et al.,
2024).

Challenges in real-world exploration. In many real-
world contexts, an unstructured bottom-up search may be
neither feasible nor safe (Dulac-Arnold et al., 2021). If
a learning agent suffers significant penalties (like budget
overruns in a store or catastrophic patient care failures in a
hospital), it may never gather enough experience to converge
on a truly optimal policy. Even when exploration is feasi-
ble, the sheer scale of real-world decision spaces and the
unpredictability of evolving environments can overwhelm
trial-and-error learning.
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Illustrative Example: Collecting Meat

Environment: Minecraft
Goal: Maximize Meat Collection

Bottom-up Approach

• Learn low-level actions like movement.

• Trial-and-error explore to locate animals.

• Eventually discover hunting for meat.

Top-down Approach

• Identify overarching strategies: hunting,
farming, or trading.

• Outline sub-goals: crafting tools, building
enclosures, breeding livestock.

• Plan transitions: switch to farming once sta-
ble infrastructure is in place.

Summary: Bottom-up RL gets drawn to whichever ap-
proach yields immediate rewards—hunting. A top-down
strategy broadens the horizon to better, more complex,
approaches like farming.

Recent progress and key limitations. Recent progress
in hierarchical RL (Kulkarni et al., 2016; Liu et al., 2024a),
environment shaping (Park et al., 2024), and LLM-assisted
RL (Huang et al., 2022; Ahn et al., 2022; Singh et al., 2022;
Pternea et al., 2024; Yan et al., 2024) offers partial answers
but still leaves key gaps. Many current methods rely on
manually engineered sub-goals, or a purely data-driven dis-
covery of structure. Moreover, most approaches often gen-
erate a single plan rather than exploring multiple promising
strategies. To address these limitations, we propose a new
top-down RL framework that uses systematic strategic rea-
soning to reduce sample complexity, guide exploration, and
elevate decision-making to more abstract planning layers.

Contributions.

• We formalize strategy as a distribution over policies
that balances specificity (pruning the search space) and
value (encompassing optimal plans).

• We instantiate these ideas in the Strategist agent1,
which uses the LLM-based tree search to encode domain
knowledge into actionable top-down strategies without
prespecifying their components. Crucially, we introduce
a reward shaping methodology that translates strategies
into quantitative feedback for RL.

• We empirically validate that this procedure enables ef-
fective exploration in different task specifications in the
Crafter environment (Hafner, 2021), leading to faster
convergence and improved final performance when

1https://github.com/antoninbrthn/strategist

paired with PPO (Schulman et al., 2017) or SOTA meth-
ods such as EDE (Jiang et al., 2023).

We begin by formally introducing a novel top-down RL
framework named the Strategy Problem, along with theo-
retical grounding for its practical efficacy in § 2. Then we
discuss the existing work and how they differ from our top-
down approach in § 3. § 4 presents a first instantiation of
this framework in the Strategist Agent, combining the LLM-
based tree search with state-based reward shaping to train
strategy-guided RL agents. We demonstrate the efficacy of
this method compared to traditional RL methods in § 5, and
we discuss potential future directions in § 6.

2. The Strategy Problem
Informal Motivation: Why a Strategist? Real-world RL
problems often involve vast state and action spaces, sparse
rewards, and limited exploration budgets (Dulac-Arnold
et al., 2021). In such settings, standard “bottom-up” RL
(e.g., Q-learning (Watkins & Dayan, 1992)) without prior
knowledge requires a prohibitively large number of trials,
on the order of O

(
|S| |A|

ϵ2 (1−γ)2 log 1
δ

)
to provide an ϵ-optimal

policy with probability 1− δ (Strehl et al., 2009; Lattimore
& Hutter, 2012). In contrast, humans tackle complexity
by proposing multiple plausible high-level strategies—each
narrowing the search in different ways—and iteratively re-
fining them until one is chosen. Motivated by this, we define
a Strategist as an agent that constructs distributions over
policies that incorporate expert inductive bias to reduce the
search space while encompassing near-optimal policies.

2.1. Formalism Context and Definitions
RL in a Nutshell Let M = (S,A, P,R, γ) denote a
Markov Decision Process (MDP), where S is the state
space, A the action space, P (s′ | s, a) the transition
function, R(s, a) the reward function, and γ ∈ [0, 1]
the discount factor. A policy π maps states to ac-
tions (or action distributions), and its expected discounted
return is J(π) = Es0∼ρ [V

π(s0)], where V π(s) =

Eπ

[∑
k γ

kR(sk, ak)
∣∣∣s0 = s

]
is the value function and

ρ the initial state distribution. RL provides algorithms
A : M → ΠM that aim for an optimal policy π⋆ ∈
argmaxπ∈ΠM J(π), with ΠM as the set of policies.

Distributions over Policies Rather than searching over
ΠM from scratch, we propose the use of a strategist:

S : M×K −→ ∆(ΠM),

where K encapsulates high-level or “common sense” knowl-
edge about the domain (e.g., a description of the environ-
ment in natural language). The output δΠ = S (M,K) is
a probability distribution over policies. Intuitively, δΠ re-
stricts the policy space to “plausible” strategies in an option-
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Figure 1. Comparison between bottom-up and top-down frameworks when searching for optimal policies given a goal to maximize the
expected returns J(π).

spirited manner (Precup et al., 1998), focusing learning or
planning on a smaller and more promising subset.

Specificity and Value A good strategy δΠ must balance
two key properties:

1. Specificity: δΠ should focus on a relatively small set of
promising policies, thus reducing the effective search
space. We quantify the specificity through the entropy
H(δΠ). A “sufficiently specific” strategy satisfies

H(δΠ) ≤ Hmax,

for some small threshold Hmax.

2. Value: Among the policies in δΠ’s support, there
should exist at least one near-optimal policy. Formally,
define the ε-support of δΠ as

suppε(δΠ) =
{
π ∈ ΠM

∣∣∣ fδΠ(π) > ε
}
,

where fδΠ(π) is the density of δΠ. Let π∗ε
δΠ

=
argmaxπ∈suppε(δΠ) J(π) be the best policy within
that support. The strategy δΠ is said to have value
at least 1− vmin if

J(π∗ε
δΠ) ≥ (1− vmin)J(π

⋆),

where vmin > 0 is a small constant.

2.2. Formal Definition of the Strategy Problem

The Strategy Problem

Given an MDP M, high-level knowledge K, and
thresholds (Hmax, ε, vmin), find a distribution

δΠ ∈ ∆(ΠM)

such that:

1. Specificity: H(δΠ) ≤ Hmax.

2. Value: J(π∗ε
δΠ
) ≥ (1− vmin)J(π

⋆).

In essence, the Strategy Problem searches for one or multi-
ple distributions over policies δΠ that maintain low entropy
(i.e. high specificity) while ensuring that its support contains
at least one high-value policy.

2.3. How Specificity and Value Aid Sample Efficiency

The Strategy Problem aims to improve sample efficiency by
constraining the policy search to a structured distribution
δΠ that balances specificity and value. In traditional RL,
standard probably approximately correct (PAC) arguments
show that finding a near-optimal policy requires a number of
samples scaling with O(|S||A|) (Strehl et al., 2009), making
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learning in large state-action spaces infeasible. In contrast,
a well-designed δΠ focuses exploration on a smaller, high-
potential subset of policies, reducing the effective search
space in an options-like spirit (Precup et al., 1998; Fruit
& Lazaric, 2017) while still ensuring near-optimality. The
following theorem formalizes this advantage, showing that
the sample complexity depends on the entropy of δΠ rather
than the full size of the policy space.

Theorem 2.1 (High Specificity & Value =⇒ Sample
Efficiency). Consider a strategy δΠ ∈ ∆ΠM with high
specificity, i.e. H(δΠ) ≤ Hmax, and high-value, so that
J(π⋆) − J(π∗τ

δΠ
) ≤ ε/2. Then, with probability at least

1− δ, identifying a policy whose return is ε-close to optimal
requires at most

O

(
Hmax

τ ln
(
1
τ

) · 1

ε2
· ln

(
Hmax

δτ ln
(
1
τ

)))
episodes, where τ determines the lower probability thresh-
old for the candidate policies.

The proof is provided in § A. This theorem underscores the
rationale behind the Strategy Problem: the more concen-
trated δΠ is (i.e., the lower its entropy), the fewer candidate
policies, simplifying the search for a near-optimal policy.
Specificity ensures a reduced search space, while the value
condition guarantees that there is at least one near-optimal
policy within it. As a result, sample complexity depends
on Hmax rather than the full state-action space, reinforcing
the key idea that structured policy distributions can signifi-
cantly accelerate RL by narrowing the search space while
preserving near-optimality. Although this theoretical bound
does not extend to our implementation, it provides intuition
for the properties that we should strive for in a strategy.

3. Related work
Integrating high-level knowledge and structure into RL has
long been studied under various guises of hierarchical poli-
cies, curriculum learning, and, most recently, LLM-based
approaches. While these directions offer partial remedies to
the challenges of sparse rewards and massive exploration
costs, they often adopt a bottom-up perspective that requires
either extensive trial-and-error or ad-hoc high-level designs.
Our work instead proposes a top-down framework that sys-
tematically leverages human-inspired strategy formation.

LLM-as-policy A number of recent methods incorpo-
rate LLMs to guide RL policies by providing action pri-
ors through a bottom-up perspective. For example, (Yan
et al., 2024) view the LLM as a Bayesian prior over ac-
tions, enabling more focused exploration by restricting the
candidate action space. (Zhang et al., 2024) similarly em-
ploy value-based filtering of LLM-proposed moves. (Liu
et al., 2024b) use LLMs to both propose actions and model

world dynamics to carry out rollouts. These methods are
orthogonal to ours and could be used in tandem. While
these approaches reduce the search space, they typically do
so state-by-state, treating the LLM as a single-step planner,
rather than seeking multiple overarching strategies or ex-
plicitly balancing the value and specificity trade-offs that
our top-down method targets. More critically, many such
works are only applicable to tasks with text-format actions
(e.g., ‘open fridge’, ‘use key’) that can be inapplicable for
lower-level domains.

Hierarchical RL Several studies have explored hierarchi-
cal RL augmented by LLM-generated plans. SayCan (Ahn
et al., 2022) and Video-Language Planning (Du et al., 2024)
demonstrate that, if given a suitable set of action primitives
or a text-to-video planning system, an LLM can sequence
sub-goals. Language Planner (Huang et al., 2022) and Prog-
Prompt (Singh et al., 2022) adopt similar frameworks but
similarly rely on predefined macro-actions or prompts for
decomposing tasks. These methods remain fundamentally
bottom-up in that LLM suggestions must be hand-aligned to
a fixed set of learned or engineered primitives, which usually
requires either text-format action environments or extensive
training of a language-conditioned model, which partially
defeats the purpose in high-stakes scenarios. In contrast,
our framework’s strategies need not be limited to any single
level of abstraction or a subset of primitives; and it flexibly
explores multiple possible routes before committing to a
refined direction.

Reward shaping Another line of work tackles reward en-
gineering using LLMs. (Sarukkai et al., 2024), (Ma et al.,
2024), and (Xie et al., 2024) show how language models can
write code that shapes rewards. Although such approaches
mitigate purely sparse rewards, they still rely heavily on
trial-and-error adjustments of the reward logic by training
models. In contrast, our method embeds reward shaping
within a top-down strategizing process, automatically trans-
lating strategic knowledge into sub-goal rewards zero-shot
without requiring trial and error in the environment or large-
scale manual interventions.

While these prior works demonstrate that LLMs can of-
fer valuable inductive biases—either by constraining ac-
tion spaces, generating sub-goals, or shaping rewards—they
generally omit the notion of strategic exploration that can
fundamentally reduce sample complexity. By synthesizing
top-down strategies as distributions over policy families
and translating them into shaped rewards, our approach
strategically narrows the search space without sacrificing
expressivity, making a step toward real-world RL where
extensive trial and error is not required.

We elaborate on the distinction with these and additional
works across RL, Curriculum Learning, Hierarchical RL,
LLM planning, as well as LLM reasoning in § D.
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4. The Strategist Agent
We introduce the Strategist agent as our initial solution to
the Strategy Problem. This agent follows the top-down
approach to RL, operating in three key phases. First, it
generates and explores potential strategies expressed in nat-
ural language, following a tree-based structure (§ 4.1 and
4.2). Second, it evaluates and prioritizes these strategies,
iteratively refining them to achieve the necessary level of
specificity (§ 4.3). Finally, it uses the best strategies to
train RL agents through reward shaping, effectively guid-
ing the policy search process toward the chosen strategies
(§ 4.4). While this approach offers a promising direction for
addressing the Strategy Problem, it represents just one of
many possible solutions that merit future investigation.

4.1. Strategy Tree Construction

The Strategist’s core component is the Strategy Tree, a hier-
archical structure where each node represents a distribution
over policies through natural language descriptions.

Overview of the Strategist Let h0 denote the root node
corresponding to the overall objective G. The tree ex-
pands through a refinement process in which each child
hi,j ∈ C(hi) provides a more detailed specification of its
parent’s hi policy distribution. Formally, each node hi is
associated with a distribution δhi ∈ ∆(ΠM) in the pol-
icy space ΠM. Child nodes are constrained to represent
increasingly specific policy subsets of their parents, with
the branching factor reflecting the number of distinct ap-
proaches considered for decomposing the node’s goal.

This recursive refinement process continues until the nodes
reach sufficient specificity and value to serve as an effective
inductive bias for the learning agent.

4.2. Node Types: Strategic Decomposition

Building on the structure of the Strategy Tree, the nodes hi

can be categorized into two fundamental types that enable
different forms of strategic reasoning:

1. Approach Nodes: These nodes branch into {hi,j}mj=1

mutually exclusive strategies to achieve the parent’s
goal (e.g., “hunt” vs. “farm” to collect meat). Each
child distribution δhi,j narrows the scope of the policy
by specifying implementation details. In practice, only
the most promising approach branch is pursued.

2. Plan Nodes: These nodes decompose the parent goal
into a sequence (or set) of complementary sub-goals
that must all be completed (e.g., “craft a sword → lo-
cate animals → hunt”). The distribution δhi,plan factors
in these subgoals, and the overall properties of the node
are derived from the composition of its components.

This duality between vertical branching (alternative ap-
proaches) and horizontal decomposition (sequential sub-
goals) enables the Strategy Tree to perform flexible, multi-
level strategic reasoning.

4.3. Node Attributes: Value, feasibility and specificity

To select and prioritize exploration in the strategy tree ac-
cording to the strategy problem (§ 2), each node hi is as-
signed two attributes—value, and feasibility, to check that
the strategy is realizable in the environment. Note that speci-
ficity, the other key property of the Strategy Problem, is
implicitly captured by the hierarchical structure of the tree.
Hence, by design, the nodes satisfy H

(
δhi,j

)
< H

(
δhi
)
.

Value V (hi) captures how helpful the node’s strategy is
for achieving the parent objective. Formally, if J(π) is the
expected return of a policy π, then

V (hi) ≈
maxπ∈suppε(δ

hi,j ) J(π)

maxπ∈suppε(δ
hi ) J(π)

.

Feasibility f(hi) describes the likelihood that a policy
from δhi can actually be implemented by the RL agent in
the environment. Formally, f(hi) = δhi

(
Πagent

)
,, that is,

the probability that a random draw from δhi lies within the
set of policies Πagent implementable by our learning system
(e.g., limited action space, time constraints, etc.).

We detail aggregation, expansion, and selection in B.1.

4.4. Reward Shaping from Strategies

A key innovation of our framework is strategy-guided re-
ward shaping, which translates textual strategies into a quan-
titative reward to guide RL agents. Concretely, given a strat-
egy h⋆, corresponding to a root-to-leaf path of the Strategy
Tree, we instantiate a reward rh⋆(s, a) that augments the
original environmental reward. It proceeds in two steps:

1. Node-Specific Scoring: For the chosen strategy h⋆,
we prompt an LLM with relevant state details {st} and
the textual specification of the node. The LLM outputs
a scalar score ut, indicating how “close” the state is
to satisfying that sub-goal. We normalize ut to obtain
the reward R̃(st). For efficiency, we distill R̃ into a
student network to reduce LLM calls.

2. Aggregated Shaping Reward: We combine the LLM-
derived reward R̃(s, a) = Es′∼P (s,a)[R̃(s′)] with the
environment’s original reward R(s, a). α ∈ [0, 1] con-
trols the strength of the strategy signal. In practice,
α decays with training, progressively shifting to the
reward of the environment:

rh⋆(st, at) = (1− α)R(st, at) + α R̃(s, a). (1)
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Figure 2. (A) Building blocks of the Strategy Tree: option nodes
are different possible paths to reach the parent goal, while se-
quential nodes are sets of sub-goals that need to be sequentially
completed to reach the parent goal. (B) Example of a possible Strat-
egy Tree for the goal of maximizing meat collection in Minecraft.
(C) Illustration of our Strategy-based Reward Shaping process.

In environments where actions are sufficiently high-level
for the LLM, such as text-based environments, one can also
consider using LLM-proposed actions as a policy regularizer
(Yan et al., 2024; Zhang et al., 2024), and condition them
on the strategy, thereby further accelerating convergence.
However, we prefer to preserve applicability to low-level
settings; therefore, we opt not to include this in this work.
More details about this approach and the reward shaping
process are provided in B.

5. Experiments
We evaluate the Strategist framework on different versions
of Crafter (Hafner, 2021) and with different RL back-
bones: Proximal Policy Optimization (PPO) (Schulman
et al., 2017), and Exploration via Distributional Ensemble
(EDE) (Jiang et al., 2022). Our experiments demonstrate
how top-down strategy generation and reward shaping sig-
nificantly enhance sample efficiency and performance.

5.1. Environmental Setup

We utilize two main environment configurations:

Modified Crafter (Easy & Medium) We modify the task
to meat collection, and introduce additional mechanics that
allow multiple plausible strategies. Specifically, cows can
be bred via saplings, which can in turn be obtained from
grass with probability 1

2 . We disable nighttime and hostile
mobs, and we implement two difficulty tiers:

1. Crafter-Easy: cows require only one hit to kill and a
single sapling to breed.

2. Crafter-Medium: cows require three hits to kill without
a sword (one with a sword) and two saplings to breed.

In these modified versions, rewards are exclusively granted
for collecting meat, thereby introducing sparseness: it may
take many steps for an uninformed agent to discover how to
kill or breed cows effectively. Thus, we view this as a rich
test bed for examining strategic exploration.

Original Crafter We also evaluate our framework in the
original Crafter environment, which features 22 achieve-
ments, and the agent receives rewards for unlocking each
new achievement. This setting presents a different sparse
reward challenge and requires strategic prioritization across
a wider range of potential goals (e.g., tool crafting, combat,
resource gathering, survival needs).

5.2. Experimental Procedure

For each environment, we follow three stages:

1. Strategy Tree Generation. We run the Strategist agent
using GPT-4o (OpenAI et al., 2024) to build a Strat-
egy Tree (4.1) relevant to the overarching goal of the
environment (e.g. maximize meat or achievements).

2. Strategy Selection and Reward Shaping. We extract
promising strategies (the top two for Modified Crafter
and four for Original Crafter, based on feasibility and
value). For each strategy, we distill the LLM-based
reward with a ResNet-18 (He et al., 2015) on 5,000
states. We combine the learned reward with the original
environment one, gradually annealing α from 1.0 (or
0.9) to 0 or 0.1 during the course of training.

3. RL Agent Training. For each selected strategy, we
train N separate RL agents (typically N = 8 for PPO,
N = 3 for EDE due to computational cost) for a set
number of steps (e.g., 2 × 106 for Modified Crafter
and 1× 106 for Original Crafter). We use PPO (Schul-
man et al., 2017) as the primary RL backbone. For
further validation, we also employ EDE (Jiang et al.,
2022) and DreamerV3 (Hafner et al., 2023) as stronger
baselines, demonstrating that the Strategist framework
can be paired with different underlying RL algorithms
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Collect as much cow
meat as possible

Preparation (Gather
Resources and Craft Tools)

Plan(Gather Basic Re-
sources; Craft Basic Tools;

Gather Advanced Resources;
Craft Advanced Tools)

Breeding Cows
Plan(Collect Saplings;

Find Cows; Feed
Cows with Saplings)

Direct Cow Hunting (Seek
and Hunt Cows Directly)

Maintaining Health
and Survival Needs

Plan(Satisfy Hunger;
Satisfy Thirst; En-

sure Adequate Rest)

Strategy Craft

Strategy Hunt Strategy Breed

Strategy Surv

Collect as much cow
meat as possible

Craft a Weapon
and Kill Cows

Plan(Gather Resources
for Crafting Tools;
Craft Tools; Find
and Kill Cows)

Find and Kill Cows
with Bare Hands

Breed Cows and
Then Kill Them

Strategy Craft

Strategy Hunt

Strategy Breed

Figure 3. Strategy Tree obtained by running the Strategist agent (Section 4) with GPT-4o for the Crafter-Easy (left) and Crafter-Medium
(right) environments. The strategies are ordered according to the product of feasibility and value estimated by the Strategist at each node.

(e.g., Strategist+PPO, Strategist+EDE). Baseline agents
(PPO, EDE, DreamerV3) are trained under the same
conditions but without shaped rewards (α = 0).

The experimental setup is provided in detail in § B.

5.3. Results on Modified Crafter Environment

5.3.1. STRATEGY TREES

Figure 3 shows the results of the Strategist in the two mod-
ified environments, illustrating how it identifies multiple
high-level approaches before refining them into concrete
sub-goals. For instance, in Crafter-Medium, the Strategist
proposes to hunt cows by crafting weapons first, as well as
an alternative breeding-centered plan. Each node is anno-
tated with an LLM-estimated feasibility (likelihood that the
agent can achieve the strategy) and value (degree to which
it might produce high returns).

5.3.2. PERFORMANCE WITH PPO

Figure 4 compares the average episode reward of the top
two strategy-guided PPO agents (one focusing on hunting,
the other on breeding) against a vanilla PPO baseline on
Crafter-Medium. Both strategy-guided agents achieve faster
and more meat collection following their strategies, which
underscores the benefit of top-down guidance.

Table 1 further quantifies this by listing the number of steps
required to achieve key milestones. “Hunting” is defined as
“a > 0 average reward”; and “Breeding” as “> 1 average
saplings given to a cow”. Both strategy-guided PPO agents
achieve hunting in 8/8 runs, typically within 600-900k steps,
whereas PPO achieves this in only half of the runs and
takes 1.35M steps on average. Breeding is achieved only by
the breeding-guided agent, indicating that the strategist is
effective in eliciting more complex behaviors.

Figure 4. Performance of strategy-guided RL agents (PPO). Top
panel: Average episode reward on Crafter-Medium. Bottom panel:
Average number of saplings given to cows per episode (S→C =
“Saplings given to Cows”). Each line shows the average of N=8
runs, with error bars showing 95% confidence intervals.

5.3.3. EMPIRICAL STRATEGY METRICS WITH PPO

Next, we measure the feasibility and value in deployment
when using PPO, shown for Crafter-Easy in Table 2. Feasi-
bility is operationalized as the maximum normalized shap-
ing reward the agent achieves, while value is measured by
the maximum environment reward. We observe that for
some strategies (e.g., breeding in Crafter-Medium), the re-
alized feasibility and value exceed the initial estimates of
the Strategist. For others (e.g., crafting-based plans), the
observed performance is lower than anticipated. Figure 5 vi-
sually compares LLM-predicted metrics with post-training
PPO measurements, revealing a strong overall correlation
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Achieve Hunting Strategy Achieve Breeding Strategy

Model Successful runs Step (M) Successful runs Step (M)

PPO 4/8 1.35 (+/- 0.13) 0/8 -
Strategy Hunt 8/8 0.89 (+/- 0.12) 0/8 -
Strategy Breed 8/8 0.59 (+/- 0.17) 3/8 1.12 (+/- 0.76)

Table 1. Number of steps taken by PPO agents to reach Hunting
and Breeding stages in the Crafter-Medium environment.

but some notable miscalibrations. These results suggest that
while the Strategist can effectively propose strategies that
boost performance, its heuristic estimates of feasibility and
value can be refined through iterative feedback from the
environment.

Estimated Observed
Strategy Feas. Val. Prod. R. Feasibility Value

Strategy Hunt 1.00 1.00 1.00 1 0.74 (+/- 0.03) 17.18 (+/- 7.52)
Strategy Breed 0.70 0.80 0.56 2 0.77 (+/- 0.02) 19.44 (+/- 2.68)
Strategy Craft 0.80 0.60 0.48 3 0.51 (+/- 0.01) 3.86 (+/- 4.06)
Strategy Surv 0.60 0.40 0.24 4 0.55 (+/- 0.01) 2.02 (+/- 0.41)

Table 2. Estimated vs. observed metrics for different strategies
with PPO on Crafter-Easy. Feas.: Feasibility, Val.: Value, Prod.:
Product, R.: Rank.

Figure 5. Comparison of the LLM-estimated vs empirically-
observed feasibility and values (PPO) for in the Crafter-Easy
environment. Observed values are normalized by the maximum
observed value.

5.3.4. INTEGRATION WITH ADVANCED ALGORITHMS

As a stronger baseline RL algorithm, we run Dream-
erV3 (Hafner et al., 2023) with 50M parameters in the Modi-
fied Crafter environment. DreamerV3 performs slightly bet-
ter than vanilla PPO on Crafter-Medium, but Strategist+PPO
still outperforms it (see § C.5 for detailed DreamerV3 re-
sults). We also compare to two LLM-based baselines: LLM-
as-a-policy, and Eureka (Ma et al., 2024) (see § C.8 in the
appendix).

To further assess the Strategist’s utility, we pair it with EDE,
an advanced RL algorithm that achieves competitive re-
sults on the Crafter leaderboard2. As shown in Figure 6,
Strategist+EDE, particularly with the ”Breed” strategy, sig-
nificantly outperforms vanilla EDE on Crafter-Medium. The
increase in episode length for vanilla EDE suggests that its
reward gains stem from improved survival. In contrast, the
Strategist-guided agent consistently learns to breed cows
-as indicated by the ”sampling to cow” metric-, a complex
behavior vanilla EDE struggles with, leading to a substan-
tial increase in episode rewards. This indicates that even
advanced exploration mechanisms benefit from a top-down
strategic direction.

Figure 6. Results of EDE and Strategist+EDE on Crafter-
Medium. Top: Episode reward. Middle: Episode length. Bottom:
Average number of saplings given to cows per episode (Sapling to
Cow). The Strategist+EDE outperforms vanilla EDE with both the
hunting and breeding strategies. Error bars show the 95% confi-
dence intervals across N=3 runs.

5.4. Results on Original Crafter Environment

In the original Crafter environment, the Strategist identifies
four overarching strategies. Fight (combat and exploration),
Craft (tool making), Resource (resource collection), and
Needs (management of survival needs). We evaluate these
by pairing them with the EDE agent.

Figure 7 shows that the Strategist+EDE variants focus-
ing on Fight, Resource, and Craft significantly outperform
vanilla EDE in terms of overall rewards (cumulative achieve-
ments). The Needs-guided strategy performs comparably
with vanilla EDE, as basic survival achievements are easily
reached by the baseline algorithm.

2https://github.com/danijar/crafter
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Figure 7. Strategist+EDE on Original Crafter. Episode Re-
ward for vanilla EDE and Strategist+EDE with different strategies.
Strategist+EDE with Fight, Resource, and Craft significantly out-
perform vanilla EDE.

Figure 8. Relative efficiency of Strategist+EDE variants across
relevant achievements on the original Crafter environment.
Each subplot shows the change in number of environment steps
required to complete an achievement related to each strategy N
times (N=100 by default, N=10 for rare achievements marked
with *), relative to vanilla EDE. Green bars indicate the baseline
failed to complete the achievement within 1M steps. Each strategy
significantly improves efficiency for its related skills, demonstrat-
ing effective specialization.

5.4.1. QUALITATIVE BEHAVIOR AND SPECIALIZATION

The benefits of strategic guidance are more evident in the
specialized behaviors of the agents. Figure 8 illustrates the
relative efficiency gains in different achievements: Strate-
gist+EDE agents require significantly fewer steps to com-
plete achievements aligned with their given strategy com-
pared to vanilla EDE. For instance, the Craft-guided agent
is better at creating tools, and the Fight-guided agent excels
at achieving combat-related objectives.

A detailed visualization of the signature of the achievements
reached by each strategy compared to the baseline is shown
in Figure 16. Each Strategist+EDE variant focuses and suc-
cessfully unlocks achievements relevant to its high-level
strategy. This qualitative evidence suggests that agents are
indeed adopting behaviors consistent with the abstract strate-
gies provided by the Strategist, leading to more effective
exploration and task completion in this complex setting.

6. Key Takeaways and Outlook
Why Top–Down Matters. Our work reframes exploration
in RL as a strategic design problem: rather than searching
the entire policy space, we first search over distributions of
policies. The resulting Strategy Problem formalism and its
instantiation in the STRATEGIST agent deliver three concep-
tual advances:

1. A principled objective. By explicitly optimizing the
specificity–value trade-off (Thm. 2.1), we provide a mo-
tivating sample–complexity result that scales with the
entropy of a strategy rather than the state–action space.

2. LLM-powered structure discovery. LLMs are used
offline to inject high-level domain knowledge, producing
a Strategy Tree. This separates the quality of strategic
guidance from the availability of low-level language-
conditioned controllers, potentially expanding its appli-
cability to robotics or healthcare workflows.

3. End-to-end integration. Our reward-shaping mecha-
nism converts pure text into dense signals that any off-
the-shelf RL algorithm can exploit. We demonstrate
plug-and-play gains with PPO and EDE, showing con-
sistent improvements in convergence speed, final return,
and behavioral diversity.

Empirical Significance. Across three variants of Crafters,
Strategist-guided agents (i) master sparse tasks faster than
baselines, (ii) unlock qualitatively new behaviors (e.g., farm-
ing) that baselines never discover, and (iii) continue to add
value when combined with state-of-the-art RL methods.
These results position strategic guidance as an orthogonal
axis of progress, complementary to algorithmic or model-
architecture advances.

Limitations. First, LLM attribute proxies (§ 5.3.3) can be
miscalibrated, leading to overexploration of unproductive
branches. Second, once α → 0 and the rewards of the en-
vironment dominate, agents can revert to simpler strategies
that are not aligned with the intended strategy. We provide
a more detailed discussion of limitations in § E.

Pathways Forward. To address these limitations, sev-
eral promising directions emerge. Although we currently
commit to one final strategy during training, allowing the
agent to pivot among multiple strategies mid-training is
a natural extension, particularly in nonstationary settings.
Closing the loop by feeding back agent progress into strat-
egy updates may help address model miscalibration. Further
opportunities include making the Strategist more scalable
and integrating action-level guidance. A detailed discussion
of these future work directions can be found in § E.
With top-down RL, we do not learn to plan by acting — we
act because we have already planned.
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Impact Statement
We propose a top-down RL framework that explicitly uses
human-inspired strategies to guide exploration, bridging the
gap between purely bottom-up methods and real-world de-
cision making in complex domains like healthcare, logistics,
and policy. By structuring high-level plans and sub-goals,
our approach can reduce sample complexity, mitigate costly
mistakes, and uncover beneficial behaviors more quickly.

However, translating domain knowledge into strategies
through LLM brings new considerations. If an LLM’s es-
timates of feasibility or value are miscalibrated—or if the
underlying knowledge contains hidden biases—an agent
may be steered toward suboptimal or even harmful plans.
Robust oversight and validation of LLM outputs are there-
fore key, especially in sensitive applications.

Despite these risks, top-down RL has the potential to im-
prove interpretability, safety, and adaptability in settings
where traditional trial-and-error is impractical. By incor-
porating strategic knowledge from LLMs (or experts, if
deemed necessary), the method can deliver more targeted
exploration, potentially enabling faster convergence on high-
value solutions in real-world environments that demand
rigor and efficiency.
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A. Foundational Bounds for the Policy-Identification Meta-Algorithm
The results collected in this section justify why, under a suitably specific prior over policies and a simple probability
threshold, one can narrow the search to a finite, provably small subset of candidate policies. The concrete algorithm we
ultimately evaluate in the main paper is different and does not rely directly on the lemmas below; the present derivations
serve only to illuminate the sample-complexity trade-offs that motivate our design choices.

Entropy, probability thresholds, and support size

Let δΠ be a probability distribution over a (finite or countably–infinite) collection of policies {πi}i∈I . All logarithms are
natural. Assume a bounded (Shannon) entropy

H(δΠ) = −
∑
i∈I

δΠ(πi) ln δΠ(πi) ≤ ΩM ,

where ΩM ≥ 0 is a user–specified specificity budget. For any threshold τ ∈ (0, 1] set

Sτ =
{
πi : δΠ(πi) ≥ τ

}
.

Lemma A.1 (Entropy–threshold support bound). For every τ ∈ (0, 1],

|Sτ | ≤ min
{

1
τ , 2 +

ΩM

τ ln(1/τ)

}
. (∗)

The second term in (∗), 2 + ΩM

τ ln(1/τ) (where the fraction is taken as ∞ if τ = 1 and ΩM > 0, and as 0 if ΩM = 0 making
the term 2), shows the impact of the entropy budget. Reducing ΩM tightens this part of the bound. This second term is
strictly smaller than 1/τ if τ < 1/2 and ΩM < (1− 2τ) ln(1/τ).

Proof. Since each π ∈ Sτ has mass at least τ , 1 ≥
∑

π∈Sτ
δΠ(π) ≥ τ |Sτ |, so |Sτ | ≤ 1/τ .

Heavy and light atoms. Partition Sτ into

H = {π ∈ Sτ : δΠ(π) > 1/e}, L = Sτ \H.

Because
∑

π∈H δΠ(π) ≤ 1 and δΠ(π) > 1/e on H , |H| < e and hence |H| ≤ 2.

Entropy of light atoms (only if L ̸= ∅). If L ̸= ∅, its elements π satisfy τ ≤ δΠ(π) ≤ 1/e. The condition δΠ(π) ≤ 1/e
implies that τ ≤ 1/e is necessary for L to be non-empty. The function f(x) = −x lnx has derivative f ′(x) = − lnx− 1.
For x < 1/e, f ′(x) > 0, so −x lnx is increasing on (0, 1/e]. For every π ∈ L we have τ ≤ δΠ(π) ≤ 1/e. Therefore

−δΠ(π) ln δΠ(π) ≥ −τ ln τ = τ ln(1/τ).

If τ = 1/e, τ ln(1/τ) = 1/e. If τ < 1/e, τ ln(1/τ) is positive. Hence, for τ ∈ (0, 1/e], if L ̸= ∅:

ΩM ≥
∑
π∈L

−δΠ(π) ln δΠ(π) ≥ |L| τ ln(1/τ),

so |L| ≤ ΩM

/[
τ ln(1/τ)

]
. If τ > 1/e, then L = ∅, so |L| = 0. In this case, the inequality |L| ≤ ΩM/[τ ln(1/τ)] also

holds (as 0 is less than or equal to a non-negative quantity, assuming τ ln(1/τ) > 0 for τ ∈ (0, 1)).

Combine. If L = ∅ (e.g., if τ > 1/e), then |Sτ | = |H| ≤ 2.

If L ̸= ∅ (which requires τ ≤ 1/e), then

|Sτ | = |H|+ |L| ≤ 2 + ΩM

/[
τ ln(1/τ)

]
.

Thus, the bound |Sτ | ≤ 2 + ΩM

/[
τ ln(1/τ)

]
holds for all τ ∈ (0, 1). Taking the minimum with the normalisation bound

1/τ completes the proof for τ ∈ (0, 1). For τ = 1: δΠ(πi) = 1 means πi ∈ H , so L = ∅. |S1| = |H|. Since probabilities
sum to 1, at most one policy can have probability 1, so |S1| ≤ 1. The bound formula (∗) yields min{1,∞} = 1 if ΩM > 0,
and min{1, 2} = 1 if ΩM = 0.
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Implications. At most two policies can individually hold probability > 1/e, which explains the constant 2. Entropy alone
cannot guarantee finite |Sτ | for an arbitrarily small τ if the set of policies is infinite; but in conjunction with a positive floor
τ , it yields a tractable candidate set whose size is explicitly controlled by ΩM and τ , as shown in the lemma.

A.1. PAC Identification from a Finite Set of Policies

Consider a finite collection of candidate policies {π1, . . . , πP }. Executing πi for one episode of length K yields a return
Ri ∈ [0, 1]; and since the episodes are independent and each episode starts from the same initial-state distribution, within
each policy the returns are i.i.d. Let

µi = E[Ri], µ⋆ = max
1≤i≤P

µi.

Uniform–sampling algorithm. Fix accuracy ε ∈ (0, 1] and confidence δ ∈ (0, 1). Sample each policy

m =
⌈ 2

ε2
ln
(4P

δ

)⌉
episodes,

compute the empirical means µ̂i =
1
m

∑m
t=1 R

(t)
i , and return the policy π̂ = πargmaxi µ̂i

.

Proposition A.2 (Confidence PAC guarantee). The uniform–sampling algorithm outputs a policy π̂ such that

µπ̂ ≥ µ⋆ − ε

with probability at least 1− δ. The total number of episodes is N = P m = O
(
P
ε2 ln(

P
δ )
)
.

Proof. For any fixed i, Hoeffding’s inequality gives

Pr
(
|µ̂i − µi| > ε

2

)
≤ 2 exp

(
− 1

2mε2
)

≤ δ

2P
,

where the last step follows from the definition of m. A union bound over all P policies ensures that, with probability at least
1− δ, the event |µ̂i − µi| ≤ ε/2 holds simultaneously for every i. On this event

µ̂π̂ ≥ µ̂i⋆ ≥ µ⋆ − ε
2 , µπ̂ ≥ µ̂π̂ − ε

2 ≥ µ⋆ − ε.

The episode count is N = P m, completing the proof.

Instance–dependent refinement. One can significantly tighten the bound by making it gap-dependent, eliminating
policies that are clearly suboptimal earlier and not sampling all policies uniformly (Even-Dar et al., 2006).

A.2. From Episodic to Discounted Infinite Horizon

Many sequential–decision problems use a policy by its discounted return

Gπ =

∞∑
t=0

γt rt, γ ∈ (0, 1), rt ∈ [0, 1].

Because the sum is infinite, we truncate after T steps and control the bias and variance this incurs.

Lemma A.3 (Confidence estimation of discounted value). Let {π1, . . . , πP } be a finite set of policies in a discounted MDP
with factor γ ∈ (0, 1). Fix accuracy ε ∈ (0, 1] and confidence δ ∈ (0, 1).

Truncation horizon. Choose

T ≥ T ⋆(ε, γ) =
⌈ ln( 2

ε(1−γ)

)
ln 1

γ

⌉
=⇒ γT

1− γ
≤ ε

2
.

Sampling rule. For each policy collect m independent trajectories of length T , where

m ≥ 2

ε2(1− γ)2
ln
(

4P
δ

)
. (⋆)
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Guarantee. Let R(t)
i =

∑T−1
ℓ=0 γℓr

(t)
ℓ be the truncated return on trajectory t for πi, and set µ̂i =

1
m

∑m
t=1 R

(t)
i . Then, with

probability at least 1− δ, ∣∣µ̂i − µi

∣∣ ≤ ε for all i = 1, . . . , P,

where µi = E[Gπi ] is the true infinite–horizon value.

Proof. Bias. Since rewards lie in [0, 1],

0 ≤ Gπi
−R

(t)
i =

∞∑
k=T

γkr
(t)
k ≤ γT

1− γ
≤ ε

2
,

so |E[R(t)
i ]− µi| ≤ ε/2.

Variance. Each truncated return satisfies 0 ≤ R
(t)
i ≤ (1− γT )/(1− γ) ≤ 1/(1− γ). Hoeffding’s inequality with range

R = 1/(1− γ) gives, for any i,

Pr
(∣∣µ̂i − E[R(t)

i ]
∣∣ > ε

2

)
≤ 2 exp

(
−2m

(
ε
2

)2
(1− γ)2

)
≤ δ

2P
,

where the last step uses (⋆). A union bound over the P policies yields |µ̂i − E[R(t)
i ]| ≤ ε/2 for every i with probability at

least 1− δ/2.

Combine. On the intersection of the bias and variance events we have |µ̂i − µi| ≤ ε for all i. Because the variance event
already occurs with probability ≥ 1− δ/2 ≥ 1− δ, the stated guarantee follows.

Implication for identification. Running SUCCESSIVE-ELIMINATION (Section A.1) on trajectories of length T ⋆ and
allocating the sample budget (⋆) in place of the episodic bound preserves all guarantees. The gap–independent complexity
becomes

Õ
(
(1− γ)−2P ε−2

)
.

A.3. High Specificity & Near-Optimal Value ⇒ Small Sample Complexity

Problem setting. Consider an MDP M whose optimal value J(π⋆) is attained by policy π⋆. For the episodic case, episode
returns are normalised to [0, 1], so J(π⋆) ≤ 1. For the discounted infinite-horizon case with rt ∈ [0, 1], J(π⋆) may be up
to 1/(1− γ). Auxiliary knowledge K provides a prior distribution δΠ∈∆(ΠM). Given tolerances (Hmax, vmin, τ) with
Hmax≥0 and vmin, τ ∈(0, 1], assume

(a) Specificity : H(δΠ) ≤ Hmax;

(b) Value : there exists a policy π† such that δΠ(π†) ≥ τ and J(π†) ≥ J(π⋆)− vmin.

Thresholded support. With probability floor τ define the candidate set

Sτ =
{
π : δΠ(π) ≥ τ

}
.

Lemma A.1 gives the deterministic bound

|Sτ | ≤ Pτ := min
{1
τ
, 2 +

Hmax

τ ln(1/τ)

}
. (2)

Since π† ∈ Sτ , it holds that J(π⋆
Sτ
) := maxπ∈Sτ J(π) ≥ J(π†) ≥ J(π⋆) − vmin. Theorem A.4 demonstrates that by

applying UNIFORM-SAMPLING to Sτ with an algorithm accuracy parameter εalg = vmin/2, a policy π̂ can be identified
that is (3/2)vmin-optimal relative to J(π⋆) (i.e., J(π̂) ≥ J(π⋆)− (3/2)vmin).

Theorem A.4 (Specificity and value yield PAC efficiency). Let J(π⋆
Sτ
) = maxπ∈Sτ

J(π). Under assumption (b), J(π⋆
Sτ
) ≥

J(π⋆)−vmin. Run UNIFORM-SAMPLING (Proposition A.2) on the set Sτ with accuracy parameter ε = vmin

2 and confidence
δ ∈ (0, 1). The algorithm outputs π̂ such that J(π̂) ≥ J(π⋆

Sτ
) − ε with probability at least 1 − δ. Consequently,

J(π̂) ≥ J(π⋆)− (3/2)vmin with probability at least 1− δ.
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Episodic returns. If each episode return lies in [0, 1] (hence J(π) values are in [0, 1]), the total number of episodes is

N ≤ C Pτ
ln(Pτ/δ)

ε2
, (where ε = vmin/2)

for a universal constant C ≥ 8.

Discounted infinite horizon. With discount factor γ∈(0, 1) and per-step rewards rt ∈ [0, 1] (hence J(π) values can be up
to 1/(1− γ)), let εlem = ε/2 = vmin/4 be the accuracy target for Lemma A.3. Using trajectories of length T ⋆(εlem, γ)
(from Lemma A.3, with its accuracy parameter set to εlem) and budget m from Eq. (⋆) (also with its accuracy parameter set
to εlem) yields

N ≤ C ′ Pτ
ln(Pτ/δ)

(1− γ)2ε2
, (where ε = vmin/2 is the overall algorithm accuracy)

for another universal constant C ′ ≥ 8.

Proof. (i) Size of the candidate set. Equation (2) gives |Sτ | ≤ Pτ .

(ii) Achieved Optimality. As established, under assumption (b), π† ∈ Sτ and J(π⋆
Sτ
) = maxπ∈Sτ

J(π) ≥ J(π†) ≥
J(π⋆)− vmin. The UNIFORM-SAMPLING algorithm is applied with its accuracy parameter (denoted εalg in Proposition A.2)
set to ε = vmin/2. By Proposition A.2, the output π̂ satisfies J(π̂) ≥ J⋆

Sτ
− ε (i.e., J(π̂) ≥ J⋆

Sτ
− vmin/2) with probability

at least 1− δ. Therefore, J(π̂) ≥ (J(π⋆)− vmin)− vmin/2 = J(π⋆)− (3/2)vmin. Thus, the policy π̂ is (3/2)vmin-optimal
relative to J(π⋆).

(iii) Episodic complexity. Applying Proposition A.2 to Sτ (of size at most Pτ ) with an overall algorithm accuracy parameter
ε = vmin/2 yields the stated bound. Proposition A.2 itself requires mean estimates to be ε/2 = vmin/4 accurate. The
constant C accounts for the coefficient in Proposition A.2 (which is 2/((·)/2)2 = 8 effectively) and any effects of the
ceiling function.

(iv) Discounted case. For the UNIFORM-SAMPLING algorithm to achieve an overall accuracy of ε = vmin/2, it requires
estimates of policy values J(πi) that are accurate to ε/2 = vmin/4. Thus, Lemma A.3 is invoked with its accuracy parameter
set to εlem = vmin/4.

The number of trajectories m per policy from Lemma A.3 is then

m ≥ 2

ε2lem(1− γ)2
ln(4Pτ/δ) =

32

v2min(1− γ)2
ln(4Pτ/δ).

The total number of trajectories is N = Pτm

Interpretation. Low entropy compresses the candidate set through the Hmax/[τ ln(1/τ)] term in Eq. (2). This entropy-
dependent component of the bound is smaller than 1/τ if Hmax < (1− 2τ) ln(1/τ) (which implies τ < 1/2); otherwise,
the 1/τ cap may be tighter or equally constraining. Consequently the episode complexity scales linearly in the entropy-
controlled support size Pτ , polynomially in 1/ε (where ε = vmin/2 is the overall algorithm accuracy parameter), and only
logarithmically in 1/δ.
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B. Further Implementation Details
This appendix provides additional technical details to ensure clarity and reproducibility.

B.1. Aggregation for Plan Node Attributes

Recall from the main text that a plan node decomposes a higher-level goal into multiple sub-goals. Let hi,plan be a plan
node with children {hi,1, . . . , hi,m}, each corresponding to a sub-goal.

Feasibility. For plan nodes, the overall feasibility can be estimated as the minimum feasibility among the sub-goals,
reflecting the fact that all sub-goals must be achievable:

f
(
hi,plan

)
= min

j∈{1,...,m}
f
(
hi,j

)
.

In practice, to stabilize LLM predictions or incorporate domain knowledge, one could use a weighted combination of
sub-goal feasibilities. However, the minimum operator is the simplest and most intuitive choice.

Value. Because each sub-goal contributes to the overall objective, the final value can be viewed as an aggregated measure
of sub-goal values. One straightforward strategy is to assume independence and multiply sub-goal values:

V
(
hi,plan

)
=

m∏
j=1

V
(
hi,j

)
.

Alternatively, an average or maximum can be used if the sub-goals are substitutable or if certain sub-goals are more critical
than others. In our experiments, we primarily adopt the multiplicative approach.

Specificity. Plan nodes combine multiple sub-goals that the policy must execute. If H(δhi,j ) measures the entropy of each
sub-goal’s policy distribution, we approximate the overall entropy by the sum (or another suitable aggregator) of sub-goal
entropies:

H
(
δhi,plan

)
≈

m∑
j=1

H
(
δhi,j

)
.

This ensures that each sub-goal reduces the space of valid policies, consistent with a stricter overall plan.

Nonetheless, these are non-central elements in our work and, in fact, the strategy trees we obtain in practice usually place
plan nodes as leafs.

B.2. Tree Expansion and Selection

As described in the main text, the Strategist builds and refines its Strategy Tree in an iterative manner. Let L be the current
set of leaf nodes; each leaf is either an approach node or a plan node that has not yet been fully expanded. To decide which
leaf to expand next, we pick

hnext = arg max
him ∈L

[
f
(
him | h0

)
× V

(
him | h0

)]
,

where h0 is the root node, and

f
(
him | h0

)
=

m∏
j=1

f
(
hij | hij−1

)
, V

(
him | h0

)
=

m∏
j=1

V
(
hij | hij−1

)
.

Here, f
(
him | h0

)
represents the root-relative feasibility (likelihood that this path of strategies is implementable), and

V
(
him | h0

)
represents the root-relative value (potential return of following that path).

Strategy Decomposition Prompting. Once hnext is chosen, we prompt the LLM to refine it. Depending on its node type:

• Approach Node Expansion. The LLM is asked for a set of mutually exclusive “approaches” that refine the parent
node’s goal (e.g., different ways to gather resources). We then evaluate each approach in terms of feasibility, value, and
specificity.
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• Plan Node Expansion. The LLM is asked for a list of sub-goals or steps that collectively form a plan. We then
compute aggregated feasibility and value as described in §B.1.

Termination Criteria. Expansion continues until any leaf node meets certain specificity thresholds that are implicitly
evaluated by the LLM:

H
(
δhleaf

)
≤ Hmax.

If multiple leaves reach the threshold, we select the leaf with the highest f(·)× V (·) product as the final strategy.

• Additional stopping conditions. We limit the maximum depth of the tree to avoid too many queries, but the limit is
not hit in our runs.

B.2.1. HOW ENTROPY IS HANDLED AND SPECIFICITY IS ACHIEVED

In our framework, specificity is a key property of a strategy distribution δΠ, ensuring that the strategy concentrates on a
relatively small set of promising policies, thereby reducing the search space for the RL agent. We quantify specificity via the
entropy H(δΠ) of the policy distribution associated with a strategy node. A strategy is considered ”sufficiently specific” if
its entropy H(δΠ) is below a certain threshold Hmax, as defined in § 2.

Within the STRATEGIST agent’s implementation, an explicit numerical calculation of entropy H(δΠ) for each node using
the LLM is not performed during the tree construction phase. Instead, specificity is primarily achieved by design through
the hierarchical nature of the Strategy Tree. As described in § 4.3, child nodes are intended to represent increasingly
specific policy subsets of their parents. This means that by construction, the policy distribution δhi,j associated with a child
node hi,j should have a lower entropy than that of its parent hi, i.e., H(δhi,j ) < H(δhi).

The LLM is prompted (see § B.3) to generate sub-goals that are more concrete and narrower in scope than their parent goal.
The threshold Hmax serves as a conceptual guide in the Strategy Problem formulation (§ 2). While not directly calculated
and checked against Hmax by the LLM for each node, the process of decomposing goals into more detailed sub-goals
implicitly drives the entropy down.

B.2.2. HOW VALUE IS ESTIMATED

In the context of the Strategy Tree (§ 4.3), the value V (hi) of a node hi is an estimate of how much of the parent node’s
potential optimal return is preserved by focusing on the strategy δhi associated with node hi. It’s defined as the ratio of
the maximum expected return achievable within the support of δhi to the maximum expected return achievable within the
support of its parent’s strategy distribution δhparent . The term vmin in the Strategy Problem formulation (§ 2) relates to this by
ensuring that J(π∗ε

δΠ
) ≥ (1− vmin)J(π

⋆), meaning the best policy within the strategy’s support is at least (1− vmin) times
as good as the true optimal policy π⋆.

During the construction of the Strategy Tree by the STRATEGIST agent, the value attribute for each node is initially
estimated by the LLM. The LLM is prompted (see § B.3) to assess this based on its domain knowledge and the textual
description of the goal associated with the node. This is a heuristic estimate. The STRATEGIST agent does not perform
rollouts or direct calculation of J(π) during the tree generation phase to determine these values. Instead, it relies on the
LLM’s zero-shot estimation capabilities. As discussed in § 5.3.3, these initial LLM estimates can be refined with empirical
data.

B.2.3. HOW FEASIBILITY IS ESTIMATED

The feasibility f(hi) of a strategy node hi in the Strategy Tree quantifies the likelihood that the set of policies δhi associated
with that node can actually be implemented by the learning agent within the given environment and its constraints. As
formally defined in § 4.3, f(hi) = δhi(Πagent), which is the probability mass of δhi that falls within the set of policies Πagent
implementable by the RL agent. This probability represents how much of the current strategy aligns with policies achievable
by the agent’s learning hypothesis class.

Similar to V , the feasibility attribute for each node is estimated by the LLM (see § B.3) based on its understanding of
the task and the environment.
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B.2.4. HOW INITIAL LLM ESTIMATES CAN BE UPDATED

The initial estimates of feasibility and value for each node in the Strategy Tree are provided by the LLM in a zero-shot
manner. These are heuristic estimates and can be imperfect.

As suggested in § 5.3.3, these initial LLM estimates can and ideally should be dynamically updated based on feedback
from the agent’s actual interactions with the environment. As the RL agent attempts to execute strategies and sub-goals,
its performance (e.g., achieved rewards, completion rates) can be used to refine the ‘feasibility‘ and ‘value‘ attributes stored
in the tree. This “closing the loop” by feeding back agent progress into strategy updates is highlighted as an important area
for future work. The experimental setup presented primarily uses the initial LLM estimates for strategy selection but then
empirically measures the realized feasibility and value to compare against these initial heuristics.

B.2.5. BUILDING THE STRATEGY TREE

We instantiate the Strategist agent using a GPT-4o model (OpenAI et al., 2024), using the prompts provided in § B.3. After
building the entire Tree following the process detailed above and in § 4, we run another instance of GPT-4o to refine the
estimates of feasibility and value using the prompt in Listing 2 below.

B.3. LLM Prompts

LLM Prompting Details. Below are the different prompts used to query LLMs in our experiments.

1 strategy\_context: |
2 You are going to provide the high-level strategy for a goal by proposing different

options and breaking the problem down into progressively lower-level subgoals.
3 The structure of goals and sub-goals will be organised in a tree structure, where

the root node is the overall goal, and children of a node are different
strategies, ie options of subgoals that can each help fulfill the parent node.

4 It is important to note that the children of a node represent different **
independent** strategies. Each branch should be a viable way of getting to the
overall without needing any other branch of the tree to be completed.

5

6 Each node has two key measures:
7 - **Feasibility**: Confidence that this goal can be achieved, assessed

independently of the parent.
8 - A feasibility of 1 means the goal is certain to be achieved.
9 - A feasibility of 0.5 reflects 50\% confidence in the goal’s achievability.

10 - **Value**: How restrictive the present goal is compared to its parent in terms of
their potential to maximise expected returns. Especially between possible sub-
goals, the higher value subgoal should correspond to the one that is expected
to maximise expected rewards for the overall objectve.

11 - A value of 1 means achieving this goal is as good as it gets for the parent
goal.

12 - A value of 0.5 suggests that achieving this goal is expected to yield half the
parent’s potential returns.

13

14 The tree will be built iteratively, starting with the root node. At each step, the
most promising leaf node will be selected based on the highest product of
feasibility and value, and you’ll be provided with its root-to-leaf path as a
list of nodes.

15

16 You can one of the following but not both in the same response:
17 1. Break down the leaf node into children (use this only if you think the node

should be broken down further, avoid unnecessary complexity), or
18 2. Leave it as a leaf node if it’s specific enough to represent clear, low-level

actions that can be easily executed.
19

20 If the root-to-leaf path includes sequential nodes, you will receive multiple leaf
nodes. Apply the same process to each leaf, one after the other.

21

22 The root node (id=1) will already be in the tree. You will add children nodes to
break it down. Before making decisions, reflect on:

23 1. Whether to break down the node,
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24 2. Which nodes to add, and
25 3. How you assess their feasibility and value.
26

27 Use the appropriate command only when you are confident in your choice of subgoals
and feasibility/value estimates.

28 Finish your response after giving your commands.
29 Do not rehearse your commands. Once you give them it should be the end of your

response.
30

31

32 tree\_commands: |
33 ### Command Structure for Modifying the Tree
34

35 To execute a command, write it as a plain line without quotes or symbols. The
available commands are:

36

37 - **ADD|[goal description]|[parent id (int)]|[feasibility]|[value]**: Add a new
node.

38 - **MODIFY|[id (int)]|[new feasibility]|[new value]**: Modify the feasibility and
value of an existing node.

39 - **REMOVE|[id (int)]**: Delete a node and all its children.
40 - **ADD\_SEQUENTIAL|"Goal 1;Goal 2;...;Goal N"|[parent id]|[feasibility1]|[value1

]|[feasibility2]|[value2]|...[feasibilityN]|[valueN]**: Add multiple sequential
subgoals to the specified parent node. Goals are separated by semicolons. Make
sure there are as many feasibility and values as there are goals.

41 - **READ\_TREE**: read the current tree
42 - **END\_TREE**: Use this if the current strategy cannot be broken down any further

. Use this command only if you are **absolutely** sure that you want to end the
generation process.

43 Note: do not use the character "|" inside the goal description.
44 Once you have executed a command or a set of command, finish your response. Do not

write anything else after using a series of any of the commands above. You will
have the opportunity to read the tree and make further modifications at the
next iteration.

45

46 provide\_best\_node: |
47 Here is the current most promising root-to-leaf path in the tree:
48

49 {root\_to\_leaf\_path}
50

51 Please evaluate this path and choose to either:
52 1. Break down the leaf node into children (use this only if you think the node

should be broken down further, avoid unnecessary complexity), or
53 2. Leave it as a leaf node if it represents clear, low-level actions that an agent

can easily execute.
54

55 If you break down the node, explain your reasoning and use the ADD command to add
new children.

56 If you leave it as a leaf node, justify why it’s specific enough. Then, you can ask
to read the tree with READ\_TREE, freely modify the nodes of your choice.

57 If you do not want to do any further changes to the tree, terminate the process
with END\_TREE.

58

59 Ensure you reflect carefully about the factors that can influence the feasibility
and value of any new nodes you add, and provide a final estimation.

Listing 1. Base Prompt for building the Strategy Tree

1 You will be provided with a tree showing strategic options towards an overall goal
located in the root node. You will be asked to evaluate the feasibility and value
of each node, based on the following definitions:

2 Feasibility: How likely is the current node’s strategy can be successfully
implemented in the environment? A score between 0 (very unlikely) and 1 (very
likely).
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3 Value: If the current node’s strategy was achieved, how good would it be towards
achieving **its parent goal**, relative to other potential strategies? A score
between 0 (very bad strategy, e.g., even if achieved, achieving it does not imply
fulfilling the parent goal) and 1 (optimal way to reach the parent goal and

maximise the reward).A high-value node must be sufficient on its own to achieve
the parent goal.The maximum value goal should correspond to the strategy that can
yield the highest value for the parent goal.

4 **Make sure to evaluate each node strictly on the basis of the information provided
as part of the node description**.

5 Do not evaluate nodes downstream of a node that has flag ’sequential: True’. Evaluate
the sequential node as usual but ignore its downstream nodes.

6 For the root node (id=1), just set feasibility to 1 and value to 1.
7 For each node, reason step by step to reach your estimated feasibility and value.
8 Please format the final outcome between <answer> and </answer> as a dict: {’id’: {’

feasibility’:.., ’value’:..}, ..}

Listing 2. Value and Feasibility Metrics

1 Given the goal ’{goal}’, analyze each of the {n\_states} states provided by
describing how close or far it is from achieving the goal.

2

3 Based on this analysis, assign a score between 0 and 5 to each state, where:
4 - 0: The state is very far from the goal.
5 - 1: The state is far from the goal.
6 - 2: The state is somewhat far from the goal.
7 - 3: The state is somewhat close to the goal.
8 - 4: The state is close to the goal.
9 - 5: The state is very close to the goal.

10

11 **Examples of State Characteristics:**
12 - **Score 0 or 1:**
13 - No cows in sight.
14 - No saplings for breeding.
15 - Low health due to unmet survival needs.
16

17 - **Score 2:**
18 - Survival needs are stable.
19 - Maybe saplings in inventory but no cows in sight.
20

21 - **Score 3 or 4:**
22 - One or more cows in sight.
23 - Health and survival metrics not critical.
24

25 - **Score 5:**
26 - A cow adjacent to the agent and saplings in inventory for breeding.
27

28 Only take into account characteristics that are directly related to the goal. For
example, if the strategy involves breeding, take saplings into account in your
scoring; if the goal is simply hunting, ignore saplings in your evaluation; only
consider health and vitals if they are explicitly stated in the goal.

29 Do NOT repeat parts of the game description such as the different objects in the game
or the game objective.

30 Only reflect on things that are directly related to the states and the goal.
31

32 Once you reach a conclusion, always give your final answer with the following format:
33 SCORES:<score for state 1>,<score for state 2>,...,<score for state {n\_states}>
34

35 For example, if scores of 1, 5 and 4 are assigned to state 1, 2 and 3 respectively,
your answer would finish with: "SCORES:1,5,4".

36 Make sure to finish your response with this final line: "SCORES:"

Listing 3. Reward Shaper
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1 goal\_context: |
2 The environment is: Crafter
3 The overall goal is: "Collect as much cow meat as possible. Each item of meat

collected by killing a cow counts for 1 point. Your goal is to maximise the
number of points collected within one episode of the environment."

4

5

6 game\_context: |
7 Crafter is an open-world survival game used as a reinforcement learning (RL)

benchmark. The game focuses on evaluating an agent’s general capabilities by
presenting a procedurally generated, 2D environment where agents interact
through visual inputs. Crafter is designed for deep exploration, long-term
reasoning, and generalization, making it a rich environment for RL research.

8

9 # Environment Overview:
10 - World Generation: Each episode takes place in a procedurally generated 64x64 grid

world. Terrain types include:
11 - Grasslands
12 - Forests
13 - Lakes
14 - Mountains
15 - Caves
16 The terrain determines the distribution of creatures and resources.
17

18 # Game Mechanics:
19 1. Survival Needs:
20 - Health: The player/agent has health points (HP), which are depleted by hunger,

thirst, fatigue, or attacks from monsters. HP regenerate when hunger,
thirst, and fatigue are satisfied.

21 - Hunger: Decreases over time; satisfied by eating meat (from cows) or plants.
22 - Thirst: Decreases over time; satisfied by drinking from lakes.
23 - Rest: Decreases over time; replenished by sleeping in safe areas.
24 - If any of these values (hunger, thirst, rest) reach zero, the player starts

losing health.
25

26 2. Resources:
27 - Resources can be collected and used to craft tools. They include:
28 - Wood (from trees)
29 - Stone
30 - Coal
31 - Iron
32 - Diamonds
33 - Saplings (plants that can be grown for food)
34

35 3. Crafting and Technology Tree:
36 - Players can use a crafting table and a furnace to craft tools:
37 - Wood Pickaxe and Wood Sword
38 - Stone Pickaxe and Stone Sword
39 - Iron Pickaxe and Iron Sword
40 - Higher-tier tools like the iron pickaxe and sword require more advanced

resources (iron, coal) and improve efficiency in collecting resources and
defeating enemies.

41

42 4. Creatures:
43 - Cows: Source of meat (food). Can be found in grass areas.
44

45 # Game Interface:
46 - Observation: Agents receive 64x64 pixel images representing a top-down view of

the world, including an 8x8 grid area surrounding the player and an inventory
display (health, hunger, thirst, rest, collected materials).

47 - Action Space: A flat categorical space with 17 actions, including movement,
interacting with objects (e.g., gathering resources or attacking), crafting
tools, and placing objects.

48

49 # Other important comments:
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50 Blocks that can be freely moved through are: grass, path, sand.
51 Blocks that can be placed and easily destroyed are: stone, tree, table, furnace.
52 Blocks that can be destroyed are: coal, iron, diamond, water.
53 Blocks that can neither be moved through nor destroyed are: lava.
54 Meat can only be collected by killing a cow. Cows can be found in grassy areas.
55 A cow is killed by hitting it 1 time. No weapons or tools are required to kill a

cow.
56 Cows can be bred by feeding them 1 sapling. In such case, a new cow will spawn next

to the first one.
57 The player can move in four directions: up, down, left, right.

Listing 4. Crafter Easy Environment

1 goal\_context: |
2 The environment is: Crafter
3 The overall goal is: "Collect as much cow meat as possible. Each item of meat

collected by killing a cow counts for 1 point. Your goal is to maximise the
number of points collected within one episode of the environment."

4

5 game\_context: |
6 Crafter is an open-world survival game used as a reinforcement learning (RL)

benchmark. The game focuses on evaluating an agent’s general capabilities by
presenting a procedurally generated, 2D environment where agents interact
through visual inputs. Crafter is designed for deep exploration, long-term
reasoning, and generalization, making it a rich environment for RL research.

7

8 # Environment Overview:
9 - World Generation: Each episode takes place in a procedurally generated 64x64 grid

world. Terrain types include:
10 - Grasslands
11 - Forests
12 - Lakes
13 - Mountains
14 - Caves
15 The terrain determines the distribution of creatures and resources.
16

17 # Game Mechanics:
18 1. Survival Needs:
19 - Health: The player/agent has health points (HP), which are depleted by hunger,

thirst, fatigue, or attacks from monsters. HP regenerate when hunger,
thirst, and fatigue are satisfied.

20 - Hunger: Decreases over time; satisfied by eating meat (from cows) or plants.
21 - Thirst: Decreases over time; satisfied by drinking from lakes.
22 - Rest: Decreases over time; replenished by sleeping in safe areas.
23 - If any of these values (hunger, thirst, rest) reach zero, the player starts

losing health.
24

25 2. Resources:
26 - Resources can be collected and used to craft tools. They include:
27 - Wood (from trees)
28 - Stone
29 - Coal
30 - Iron
31 - Diamonds
32 - Saplings (plants that can be grown for food)
33

34 3. Crafting and Technology Tree:
35 - Players can use a crafting table and a furnace to craft tools:
36 - Wood Pickaxe and Wood Sword
37 - Stone Pickaxe and Stone Sword
38 - Iron Pickaxe and Iron Sword
39 - Higher-tier tools like the iron pickaxe and sword require more advanced

resources (iron, coal) and improve efficiency in collecting resources and
defeating enemies.
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40

41 4. Creatures:
42 - Cows: Source of meat (food). Can be found in grass areas.
43

44 # Game Interface:
45 - Observation: Agents receive 64x64 pixel images representing a top-down view of

the world, including an 8x8 grid area surrounding the player and an inventory
display (health, hunger, thirst, rest, collected materials).

46 - Action Space: A flat categorical space with 17 actions, including movement,
interacting with objects (e.g., gathering resources or attacking), crafting
tools, and placing objects.

47

48 # Other important comments:
49 Blocks that can be freely moved through are: grass, path, sand.
50 Blocks that can be placed and easily destroyed are: stone, tree, table, furnace.
51 Blocks that can be destroyed are: coal, iron, diamond, water.
52 Blocks that can neither be moved through nor destroyed are: lava.
53 Meat can only be collected by killing a cow. Cows can be found in grassy areas.
54 By default, a cow is killed by hitting it 3 times. When using a sword however, only

1 hit is required.
55 Cows can be bred by feeding them 2 saplings. In such case, a new cow will spawn

next to the first one.
56 The player can move in four directions: up, down, left, right.

Listing 5. Crafter Medium Environment

B.4. Reward Shaping Details

Reward Shaping Network. We use a ResNet-18 (He et al., 2015) to predict sub-goal progress scores for each environment
state. Key architectural choices:

• Input shape: 64× 64 image frames.

• Output dimension: continuous score R̃(s) ∈ [−1, 1], using tanh as the final activation function.

• Data Augmentation: We augment the labeled dataset by a factor of 10 using mixup (Zhang et al., 2018).

• Loss function: Mean-Squared Error (MSE) loss.

• Training setting: We train the model for 10 epochs on the augmented dataset.

We backpropagate using the Adam optimizer (Kingma & Ba, 2017) with learning rate 1 · 10−4, β1 = 0.9, β2 = 0.999.

Data collection pipelines: We collect 5000 frames: 4000 from 200 trajectories of PPO agents pretrained on the environ-
ment, and 1000 from the expert human demonstration dataset provided with the original Crafter environment (Hafner, 2021).
Observations are converted to textual data using Smartplay (Wu et al., 2024). We iteratively sample 5 states, provide their
textual descriptions to a GPT-4o-mini model, and use the prompt for reward shaping (provided above) to generate reward
signals.

Combining Rewards. The final reward at time t is

rh⋆(st, at) = (1− α)R(st, at) + α
R̃(st)

β
,

with β a normalization constant that we set to 10 to balance the shaped reward with the original reward R. We use an inverse
square-root decay schedule for α, either from 1 to 0 between 50k and 1M (“short schedule”) or from 0.9 to 0 between 500k
and 1.5M (“long schedule”). A piecewise or adaptive schedule could be employed if the environment exhibits dynamic
difficulty or if sub-goals are naturally learned in stages.
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B.5. RL Algorithm Details

PPO Hyperparameters. In our experiments, we use the standard PPO (Schulman et al., 2017) implementation from
stable baselines 3 (Raffin et al., 2021) with the default hyperparameters:

• Policy/Value Network Architecture: “CnnPolicy”

• Rollout Length per Update: 2048

• Learning Rate: 3 · 10−4.

• Batch Size: 64

• Clip Range: 0.2

• Discount Factor: 0.99

Training Schedules. We train for a total of 2M steps, logging performance metrics and 20k and saving checkpoints every
500k steps). We evaluate each performance metrics over 10 episodes.

B.6. Extended Environment Details

Modified Crafter Setup. We create a modified version of the Crafter environment (Hafner, 2021), with the following
modifications:

• Reward Function: The reward corresponds to the number of meat items collected. We also include the original
rewards of −0.1 when the player loses health. We discard all other rewards related to achievements in the original
environment.

• Breeding Mechanism: Collecting a sapling and giving it to a cow spawns an additional cow nearby.

• Increased : Collecting a sapling and giving it to a cow spawns an additional cow nearby.

• Sapling Collection Probability: We increased the probability of collecting saplings from grass from 10% to 50%.

• Discard night mechanism: We discard the night mechanism, zombies and skeletons.

• Difficulty Levels: We implemented two difficulty levels:

– Crafter-Easy: Cows die with one hit (whether or not a sword is used) and breed with one sapling.
– Crafter-Medium: Cows die with three hits without a sword and one hit with a sword, and breed with two saplings.

B.7. Code and hardware

Experiments were ran on two NVIDIA RTX 6000 ADA GPUs with 48GB VRAM and 120GB RAM.

To ensure reproducibility, we will provide the full source code upon acceptance.
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C. Extended Experimental Results
This appendix provides a more detailed look at our experimental results, complementing the analysis in § 5. We present
learning curves across different environment difficulties and hyperparameter settings, provide quantitative metrics on how
quickly agents achieve key strategic milestones (hunting and breeding), and compare the Strategist’s initial LLM-based
estimates of strategy feasibility and value against their empirically observed counterparts. These extended results underscore
the robustness of our top-down approach, demonstrating its ability to accelerate learning and guide exploration effectively
across various conditions, while also offering insights into the current capabilities and limitations of LLM-based strategy
assessment.

C.1. Environment Reward Over Optimization Steps

Figures 9 and 10 illustrate the learning dynamics of our strategy-guided agents compared to the PPO baseline across both
Crafter-Easy and Crafter-Medium environments, using both short and long α schedules (controlling the transition from
shaped to environment rewards).

In the Crafter-Easy setting (Figure 9), both strategy-guided agents generally learn faster than PPO, although PPO eventually
catches up in terms of average reward. Notably, the “Strategy Breed” agent consistently achieves a much higher rate of
giving saplings to cows (S→C), demonstrating its successful adherence to the breeding strategy, especially under the long
alpha schedule (Figure 9b). The “Strategy Hunt” agent also shows some breeding behavior (Figure 9a), suggesting some
overlap or discovery.

The benefits of strategic guidance become even more pronounced in the Crafter-Medium environment (Figure 10). Here,
PPO struggles significantly, often failing to achieve substantial rewards. In contrast, both “Strategy Breed” and “Strategy
Hunt” achieve significantly higher rewards and converge much faster. Crucially, only the “Strategy Breed” agent learns to
breed cows effectively, highlighting how top-down guidance is essential for discovering these more complex, long-horizon
behaviors in challenging, sparse-reward settings. The α schedule influences the learning speed, with the short schedule
(Figure 10a) often leading to faster initial gains, particularly for “Strategy Breed”.

Additionally, Figures 9 and 10 show the same results with 68% confidence intervals instead of 95%. The conclusions from
each plot remain unchanged.

(a) Short alpha schedule (b) Long alpha schedule

Figure 9. Crafter-Easy Environment Results. Average episode reward (top row of each subfigure) and saplings-to-cows (S→C, bottom
row) for short (a) and long (b) alpha schedules. Each line shows the average of N=8 runs, with error bars showing 95% confidence
intervals.
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(a) Short alpha schedule (b) Long alpha schedule

Figure 10. Crafter-Medium Environment Results. Average episode reward (top row of each subfigure) and saplings-to-cows (S→C,
bottom row) for short (a) and long (b) alpha schedules. Each line shows the average of N=8 runs, with error bars showing 95% confidence
intervals.

(a) Short alpha schedule (b) Long alpha schedule

Figure 11. Crafter-Easy Environment Results. Average episode reward (top row of each subfigure) and saplings-to-cows (S→C, bottom
row) for short (a) and long (b) alpha schedules. Each line shows the average of N=8 runs, with error bars showing 68% confidence
intervals.
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(a) Short alpha schedule (b) Long alpha schedule

Figure 12. Crafter-Medium Environment Results. Average episode reward (top row of each subfigure) and saplings-to-cows (S→C,
bottom row) for short (a) and long (b) alpha schedules. Each line shows the average of N=8 runs, with error bars showing 68% confidence
intervals.
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C.2. Steps to Hunting and Breeding

To quantify the efficiency gains, Tables 3 through 6 report the number of training steps required for agents to consistently
achieve “Hunting” (average reward > 0) and “Breeding” (average S→C > 1), along with the success rate across 8 runs.

These tables confirm the visual trends. In Crafter-Medium (Tables 5 and 6), PPO only succeeds in hunting in half its runs
and never learns to breed. In stark contrast, both strategy-guided agents achieve hunting in almost all runs, often significantly
faster than PPO. Most importantly, the “Strategy Breed” agent is the only one to achieve any consistent breeding success in
the medium environment, even though its success rate remains below 100%, indicating the difficulty of this long-horizon
task. The “Strategy Hunt” agent, when guided by the short alpha schedule, focuses solely on hunting and does not discover
breeding, further emphasizing the specificity induced by our reward shaping.

Achieve Hunting Strategy Achieve Breeding Strategy

Successful runs Step (M) Successful runs Step (M)
Model

PPO 8/8 0.20 (+/- 0.08) 3/8 1.00 (+/- 0.26)
Strategist—Breed...lings 8/8 0.45 (+/- 0.10) 3/8 0.87 (+/- 0.88)
Strategist—Direc...ctly) 8/8 0.67 (+/- 0.12) 6/8 0.68 (+/- 0.23)

Table 3. Number of steps taken to reach Hunting and Breeding stages in the Crafter-Easy environment (short alpha).

Achieve Hunting Strategy Achieve Breeding Strategy

Successful runs Step (M) Successful runs Step (M)
Model

PPO 8/8 0.20 (+/- 0.08) 3/8 1.00 (+/- 0.26)
Strategist—Breed...lings 8/8 0.65 (+/- 0.15) 8/8 0.65 (+/- 0.20)
Strategist—Direc...ctly) 8/8 1.07 (+/- 0.41) 7/8 1.03 (+/- 0.61)

Table 4. Number of steps taken to reach Hunting and Breeding stages in the Crafter-Easy environment (long alpha).

Achieve Hunting Strategy Achieve Breeding Strategy

Successful runs Step (M) Successful runs Step (M)
Model

PPO 4/8 1.35 (+/- 0.13) 0/8 -
Strategist—Breed... Them 8/8 0.59 (+/- 0.17) 3/8 1.12 (+/- 0.76)
Strategist—Find ...Hands 8/8 0.89 (+/- 0.12) 0/8 -

Table 5. Number of steps taken to reach Hunting and Breeding stages in the Crafter-Medium environment (short alpha).

Achieve Hunting Strategy Achieve Breeding Strategy

Successful runs Step (M) Successful runs Step (M)
Model

PPO 4/8 1.35 (+/- 0.13) 0/8 -
Strategist—Breed... Them 8/8 1.02 (+/- 0.09) 3/8 1.29 (+/- 0.46)
Strategist—Find ...Hands 7/8 1.15 (+/- 0.17) 1/8 1.00 (+/- 0.00)

Table 6. Number of steps taken to reach Hunting and Breeding stages in the Crafter-Medium environment (long alpha).
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C.3. Strategy Metrics: Estimated vs. Observed

We now examine how well the LLM’s initial estimates of strategy feasibility and value align with the actual performance
observed during training. Tables 7 through 10 present these comparisons. Feasibility and value are defined in § 5.

A consistent finding is that the LLM’s initial ranking does not always perfectly predict the best-performing strategy. In
Crafter-Medium (Tables 9 and 10), “Strategy Breed” was ranked third by the LLM but achieved the highest observed value
and feasibility in both alpha settings. This suggests that while LLMs provide valuable heuristics, they can underestimate
the potential of more complex strategies or overestimate the ease of others (like “Strategy Craft,” which was ranked first
but performed less well). This highlights the importance of potentially closing the loop, as discussed in § 6, allowing
environmental feedback to refine these initial estimates.

Estimated Observed
Strategy Feasibility Value Product Rank Feasibility Value

Strategy Hunt 1.00 1.00 1.00 1 0.69 (+/- 0.02) 13.82 (+/- 7.82)
Strategy Breed 0.70 0.80 0.56 2 0.70 (+/- 0.03) 6.48 (+/- 7.35)
Strategy Craft 0.80 0.60 0.48 3 0.45 (+/- 0.01) 6.19 (+/- 5.43)
Strategy Surv 0.60 0.40 0.24 4 0.53 (+/- 0.00) 2.29 (+/- 0.77)

Table 7. Strategist metrics for Crafter-Easy environment, using a short alpha schedule.

Estimated Observed
Strategy Feas. Val. Prod. R. Feasibility Value

Strategy Hunt 1.00 1.00 1.00 1 0.74 (+/- 0.03) 17.18 (+/- 7.52)
Strategy Breed 0.70 0.80 0.56 2 0.77 (+/- 0.02) 19.44 (+/- 2.68)
Strategy Craft 0.80 0.60 0.48 3 0.51 (+/- 0.01) 3.86 (+/- 4.06)
Strategy Surv 0.60 0.40 0.24 4 0.55 (+/- 0.01) 2.02 (+/- 0.41)

Table 8. Strategist metrics for Crafter-Easy environment, using a long alpha schedule.

Estimated Observed
Strategy Feasibility Value Product Rank Feasibility Value

Strategy Craft 0.75 0.85 0.64 1 0.60 (+/- 0.02) 1.83 (+/- 0.10)
Strategy Hunt 0.90 0.50 0.45 2 0.63 (+/- 0.03) 1.80 (+/- 0.15)
Strategy Breed 0.60 0.70 0.42 3 0.68 (+/- 0.04) 2.95 (+/- 1.73)

Table 9. Strategist metrics for Crafter-Medium environment, using a short alpha schedule.

Estimated Observed
Strategy Feasibility Value Product Rank Feasibility Value

Strategy Craft 0.75 0.85 0.64 1 0.63 (+/- 0.02) 2.38 (+/- 1.72)
Strategy Hunt 0.90 0.50 0.45 2 0.66 (+/- 0.01) 2.01 (+/- 1.85)
Strategy Breed 0.60 0.70 0.42 3 0.72 (+/- 0.01) 2.49 (+/- 1.45)

Table 10. Strategist metrics for Crafter-Medium environment, using a long alpha schedule.
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C.4. Visualizing Estimated vs. Observed Strategy Metrics

Figures 13 and 14 provide a visual comparison between the LLM-estimated and empirically observed feasibility and value
metrics for each strategy across different settings. Each point represents a strategy: circles denote the LLM’s initial estimates,
while ’X’ marks show the values observed after training the RL agents. These plots allow us to assess the LLM’s zero-shot
prediction capabilities.

These scatter plots visually confirm the findings from the strategy metrics tables. While there is often a positive cor-
relation—strategies estimated as highly feasible and valuable tend to perform well—there are notable and informative
discrepancies. For example, in the Crafter-Medium environment with the long alpha schedule (Figure 14b), “Strategy Breed”
(green) moves significantly up and to the right from its estimated position (circle) to its observed position (X), indicating it
performed much better than predicted. Conversely, “Strategy Hunt” (pink) moves down and left, showing it was somewhat
overestimated in that specific run.

These visualizations emphasize both the promise and the current limitations of using LLMs for zero-shot strategy evaluation.
They provide valuable heuristics that can guide initial strategy selection, but they also highlight the need for incorporating
environmental feedback to refine these estimates, motivating future work on iterative refinement and adaptive strategy
selection.

(a) Short alpha schedule (b) Long alpha schedule

Figure 13. Crafter-Easy: Estimated vs. Observed Metrics. Comparison of LLM-estimated (circles) vs. empirically-observed (X marks)
feasibility and value for the (a) short and (b) long alpha schedules. Observed values are normalized by the maximum observed value.
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(a) Short alpha schedule (b) Long alpha schedule

Figure 14. Crafter-Medium: Estimated vs. Observed Metrics. Comparison of LLM-estimated (circles) vs. empirically-observed (X
marks) feasibility and value for the (a) short and (b) long alpha schedules. Observed values are normalized by the maximum observed
value.
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C.5. Comparison with Stronger Baselines (DreamerV3) on Crafter-Medium

Figure 15 shows the performance of DreamerV3 (medium size, 50M parameters) on Crafter-Medium. The DreamerV3
baseline performs slightly better than vanilla PPO on Crafter-Medium, but Strategist+PPO still outperforms it.

Figure 15. DreamerV3 on Crafter-Medium. We train a DreamerV3 (50M parameters) model on Crafter-Medium over 2M training steps.
Results averaged over N=4 runs. Error bars show the 95% confidence intervals.

C.6. Combining the Strategist with Stronger RL Agents (EDE) on Crafter-Medium

To demonstrate the Strategist’s complementarity with strong, exploration-focused RL algorithms, we combined our
framework with Exploration via Distributional Ensemble (EDE) (Jiang et al., 2023). We evaluated this combination on our
Crafter-Medium task. Figure 6 in the main paper shows these results.

The results highlight that while vanilla EDE learns an effective survival-focused hunting strategy (indicated by increasing
episode length), it fails to discover the more complex breeding strategy. In contrast, when guided by the Strategist,
EDE+Breed not only discovers breeding (as shown by the Sapling to Cow metric) but achieves approximately double the
final reward compared to vanilla EDE. This demonstrates that our top-down strategic guidance can unlock high-value,
complex behaviors that even strong, modern exploration methods miss on their own.
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C.7. Performance on the Original Crafter Environment

To further assess the generalizability of our approach, we also evaluated Strategist+EDE on the original Crafter environment
(Hafner, 2021), which features a diverse set of achievement-based rewards rather than a single ’collect meat’ goal. The
Strategist identified four distinct high-level approaches for maximizing achievements:

• Fight (Combat and Exploration): Manage combat with creatures and explore the environment to unlock achievements
related to enemies and rare resources.

• Craft (Tool Crafting): Use collected resources to create essential tools needed for higher-tier activities.

• Resource (Resource Gathering): Focus on collecting primary resources required for various achievements.

• Needs (Survival Needs Management): Maintain hunger, thirst, rest, and health to ensure the agent can complete other
goals efficiently.

Figure 7 shows the overall performance. The Fight, Resource, and Craft strategies significantly outperform vanilla EDE
in terms of total achievements collected. The Needs strategy performs similarly to the baseline, likely because survival
achievements are relatively easy to obtain through basic exploration, which EDE already does well.

To understand how these strategies achieve better performance, we analyzed their impact on specific achievements. Figure 8
illustrates the relative efficiency gains. For many achievements, especially rarer ones (marked with *), the guided strategies
achieve them much faster than vanilla EDE, and in some cases (green bars), EDE fails to achieve them at all within the 1M
step budget.

Finally, Figure 16 provides a compelling visual summary of this specialization. The heatmap clearly shows distinct
“footprints” for each strategy. The Craft strategy excels at tool-making; Fight boosts combat and related crafting; Resource
gathers materials like stone, coal, and iron (which vanilla EDE barely reaches); and Needs focuses on basic survival. This
demonstrates the Strategist’s ability to generate diverse and effective high-level plans that successfully steer strong RL
agents toward specific, valuable behaviors, unlocking performance gains and enabling targeted skill acquisition in complex,
multi-faceted environments.
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Figure 16. Achievement completion counts for Vanilla EDE and different Strategist+EDE strategies on the original Crafter
environment. Each cell shows the number of times an achievement was completed within 1M training steps, colored by relative difference
to the maximum per row. Gray indicates zero completions. Strategist+EDE variants show clear specialization: the Craft strategy excels at
tool-related achievements (e.g.: make stone pickaxe and sword), Fight boosts combat outcomes (e.g.: make stone sword, defeat skeletons),
Resource collects rare resources (e.g.: collect stone, coal, iron), and Needs supports survival needs (e.g.: drink, sleep).
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C.8. Comparison with LLM-Based Baselines

To further contextualize our contributions, we compared the Strategist framework against prominent LLM-based approaches
that operate differently, either by using the LLM directly as a policy or by using it for iterative reward design. These
comparisons were conducted on our Crafter-Medium environment.

C.8.1. LLM-AS-POLICY.

We implemented a baseline where a GPT-4o-mini model was prompted at each timestep to select the next action directly.
This represents a direct, a-strategic use of the LLM’s world knowledge and reasoning for low-level control. This approach
performed poorly, achieving an average reward of only 0.43± 1.01 (over N = 15 runs), similar to the baseline PPO at 2
million steps. Furthermore, the computational cost associated with LLM inference at every single step makes this approach
impractical for many RL tasks.

C.8.2. LLM-BASED REWARD DESIGN (EUREKA)

To contextualize the Strategist’s approach, we conducted experiments with Eureka (Ma et al., 2023), an LLM-based reward
design framework, on our modified Crafter “collect meat” task. Eureka iteratively employs an LLM (GPT-4o) to propose
Python reward functions3, in our case 5 options at each iteration, each of which is then used to train an RL agent (PPO)
for 4 × 105 environment steps. Agent performance data is subsequently fed back to the LLM for generating improved
reward functions. Eureka’s objective was to design a reward function maximizing meat collection, and the RL agent trained
exclusively on this LLM-generated reward signal, replacing the environment’s intrinsic reward.

Summary of Eureka Iterations and Results. The primary metric for Eureka’s success was the average reward over 10
trajectories achieved by the agent using the iteration’s best reward function.

In the Crafter Easy (5 iterations), Eureka’s LLM initial’s attempt focused on food change and grassland exploration yielding
–0.80 average reward. Subsequent iterations, reacting to feedback on ineffective or inconsistent rewards, saw the LLM
emphasize meat collection (–0.45 average reward), incorporate sapling-to-cow breeding (0.60 average reward), refine
temperature parameters (–0.25 average reward), and a final iteration resulted in 0.30 average reward.

In the Crafter-Medium (5 iterations), the initial reward design achieved –0.90 average reward. The LLM then focused on
re-scaling penalties and applying exponential transformations, achieving –0.25 average reward. Further iterations attempted
to reduce oversized food rewards by lowering temperature parameters (–0.65 average reward) and later discarded inactive
components to concentrate on transformed food change rewards and moderated penalties (–0.75 average reward) before a
final iteration that resulted in -0.9 average reward.

Distinction from the Strategist Framework. Eureka’s results, while informative for reward design, are not directly
comparable to the Strategist’s due to fundamental differences in the goals of the two methods:

• Role of LLM: In the Strategist, the LLM is a high-level planner providing strategic guidance. In Eureka, the LLM is a
reward function coder.

• Core Objective: The Strategist uses LLMs for top-down strategic planning, generating shaping rewards to guide an
agent through a strategy. Eureka’s aim is to learn the shaped reward itself, requiring multiple training iterations, and it
does not aim for overall sample efficiency.

Note that each iteration takes 2 million environment interactions (aggregating the 5 options), and even if we consider just
the interaction budget a single run in each iteration, average reward lags behind strategist-guided agents.

In essence, the Strategist enhances learning from existing environment signals via strategic context, whereas Eureka focuses
on creating entirely new reward signals. These represent distinct research goals. The Eureka experiments confirm LLMs can
iteratively generate reward code that leads to task achievement, but not necessarily improve sample efficiency given a new
environment.

3We provide an equivalent context about the environment as to the Strategist and the Reward Shaper.
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D. Extended Related Work

Table 11. Comparison with Related Works. “Many Options” indicates whether the method proposes multiple policies or strategic paths
rather than a single plan. “External Knowledge” indicates whether the method incorporates external knowledge, e.g., from LLMs or
domain experts. “Flexible Primitives” indicates flexible primitives beyond a fixed set of macro-actions or text commands. “Multi-Level
Abstraction” indicates whether it supports multiple levels of abstraction or only a single planning layer.

Framework Many
Options

External
Knowledge

Flexible
Primitives

Multi-Level
Abstraction

Baseline Methods
PPO (Schulman et al., 2017) ✗ ✗ ✓ ✗
DreamerV3 (Hafner et al., 2023) ✓ ✗ ✓ ✗

Hierarchical RL
SayCan (Ahn et al., 2022) ✓ ✓ ✗ ✗

Curriculum Learning
Voyager (Wang et al., 2023) ✗ ✓ ✓ ✓

LLM-Based RL
Yan et al. (Yan et al., 2024) ✗ ✓ ✗ ✗
Zhang et al. (Zhang et al., 2024) ✗ ✓ ✗ ✗
Liu et al. (Liu et al., 2024b) ✗ ✓ ✗ ✗
ProgPrompt (Singh et al., 2022) ✗ ✓ ✗ ✗
Lang. Planner (Huang et al., 2022) ✓ ✓ ✗ ✗
Vid-Lang. Plan. (Du et al., 2024) ✓ ✓ ✗ ✗

LLM-Based Reward Shaping
Sarukkai et al. (Sarukkai et al., 2024) ✗ ✓ ✗ ✗
Ma et al. (Ma et al., 2024) ✗ ✓ ✗ ✗
Xie et al. (Xie et al., 2024) ✗ ✓ ✗ ✗

Strategist (Ours) ✓ ✓ ✓ ✓

Real-world decision-making tasks often pose significant challenges for traditional RL methods. The immense state-action
spaces, sparse rewards, and evolving dynamics make it difficult for bottom-up approaches to efficiently learn optimal
policies. As a result, researchers have explored various strategies to improve RL agents by incorporating external knowledge,
structuring learning processes, and leveraging the recent powerful language models. In this section, we provide an extended
review of related work, focusing on methods that align closely with our proposed strategist framework and comparing them
specifically to our Strategist agent. Table 11 provides an overview of how our work differs from existing works across
different subfields of reinforcement learning.

D.1. Limitations of Traditional Reinforcement Learning Methods

Traditional RL methods such as Proximal Policy Optimization (Schulman et al., 2017) and DreamerV3 (Hafner et al.,
2023) have achieved notable successes in controlled environments with well-defined state and action spaces. However, they
operate under the bottom-up framework, relying heavily on trial-and-error interactions with the environment to learn optimal
policies. This approach can be impractical in complex real-world scenarios where exploration is costly or risky.

Proximal Policy Optimization (PPO): PPO (Schulman et al., 2017) is an on-policy algorithm known for its balance
between performance and computational efficiency. It updates policies by maximizing a clipped surrogate objective function,
which helps maintain stable learning. However, PPO does not incorporate external knowledge or strategic planning into the
learning process. It relies solely on interactions with the environment, making it inefficient in tasks with sparse rewards or
where exploration is costly.

DreamerV3: DreamerV3 (Hafner et al., 2023) extends model-based RL by learning a world model that predicts future states
and rewards. This allows agents to plan by imagining future scenarios, leading to improved sample efficiency. Although
DreamerV3 can handle larger state spaces better than pure model-free methods, it still operates within the bottom-up

38



Strategic Planning: A Top-Down Approach to Option Generation

framework and does not leverage external knowledge or strategic planning at multiple abstraction levels.

Environment Shaping: In practice, to get these methods to perform acceptably on non-trivial tasks, practitioners often
employ environment shaping (Park et al., 2024), which involves modifying the environment to facilitate learning. This
requires significant human effort and expertise, reducing the flexibility of RL and potentially leading to overestimation of
the capabilities of the methods. More critically, not all environments lend themselves to effective shaping.

In contrast, our Strategist integrates high-level knowledge and strategic planning to guide policy optimization without
requiring human supervision. Using LLMs to incorporate external knowledge and generate strategies at various levels
of abstraction, the Strategist reduces reliance on extensive exploration, allowing more efficient learning in complex
environments.

D.2. Curriculum Learning

To overcome the limitations of traditional RL, researchers have explored methods that integrate external knowledge to
structure the learning process. Curriculum learning involves training agents on a sequence of tasks that gradually increase in
difficulty (Bengio et al., 2009; Portelas et al., 2020). This approach helps agents build on previously acquired skills to tackle
more complex tasks over time.

Traditional curriculum learning typically focuses on designing a progression of tasks that guide the agent toward the target
task. The curriculum can be designed manually or automatically based on certain criteria, such as the agent’s performance.
However, it does not fully account for incomplete knowledge that might require the exploration of alternative strategies.
Additionally, curriculum learning methods usually involve a trade-off between the effort to define the set of potential tasks
within the environment and the quality or amount of learning needed to generate good curricula.

Voyager: The Voyager agent (Wang et al., 2023) exemplifies curriculum learning by autonomously creating and solving tasks
in the Minecraft environment. It leverages external knowledge from LLMs to generate meaningful tasks and uses program
synthesis to execute actions. Although Voyager incorporates external knowledge and operates at different abstraction levels,
it focuses on sequential task progression without explicitly considering multiple strategic options.

Our Strategist agent builds upon these ideas by not only structuring the learning process but also explicitly generating
and evaluating multiple strategies. This allows for more flexible and adaptive decision making, as the agent can consider
alternative approaches and select the one that offers the best trade-off between feasibility and expected value.

D.3. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) aims to decompose complex tasks into subtasks, allowing agents to learn
policies at different levels of abstraction. By hierarchically structuring the decision-making process, HRL can significantly
reduce sample complexity and improve learning efficiency.

Feudal Reinforcement Learning: Feudal learning, pioneered by Dayan & Hinton (1992), is one of the foundational
approaches in HRL. In feudal learning, the agent is organized as a hierarchy of “managers” and “sub-managers,” where higher-
level managers set goals or subgoals for their sub-managers. Each manager operates at its own level of abstraction, making
decisions based on a subset of the environment’s state. While this introduces hierarchical control, early implementations
typically required manual design of the hierarchy and subgoals, limiting adaptability. More recent approaches like Feudal
Networks (Vezhnevets et al., 2017) leverage deep learning to learn these hierarchies but often focus on a fixed structure
rather than exploring diverse high-level strategies.

MAXQ Value Function Decomposition: The MAXQ framework (Dietterich, 2000) offers another approach by decom-
posing the value function itself into a hierarchy. It breaks down a task into subtasks and learns a value function for each,
representing the expected reward for completing that subtask and then following the optimal policy for the parent task. This
allows for structured value-based planning but often relies on a pre-defined task graph, which may not capture all potential
strategies or adapt easily to new information.

Option-Critic Framework: The Option-Critic Framework (Bacon et al., 2017) provides a method for learning “options,” or
temporally extended actions, in an end-to-end manner. Options consist of an intra-option policy (how to act), a termination
condition (when to stop), and an initiation set (where the option can start). The framework learns both the policies and
termination conditions using policy gradient methods, allowing agents to discover useful temporal abstractions autonomously.
However, these learned options are typically grounded in the agent’s experience and may not capture high-level strategies
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that require external knowledge or complex reasoning.

LLM-Based HRL (e.g., SayCan): The SayCan framework (Ahn et al., 2022) combines LLMs with RL to enable robots to
interpret high-level instructions and generate action plans. It uses LLMs to suggest potential actions (sub-goals) and RL
(often through pre-trained value functions) to evaluate their feasibility. While powerful, SayCan and similar approaches
often focus on sequential planning, require a fixed set of high-level action primitives, and do not typically reason across
multiple levels of abstraction or explore fundamentally different strategic pathways.

How the Strategist Differs: In contrast, our Strategist agent explicitly generates a hierarchical Strategy Tree that considers
various approaches (mutually exclusive strategies) and plans (sequences of sub-goals) at multiple levels of abstraction,
without relying on a fixed set of primitives. Using LLMs, the Strategist incorporates external knowledge to generate and
evaluate these different strategies based on estimated feasibility and expected value. This allows for a more comprehensive
exploration of the strategic landscape. Unlike Feudal RL or MAXQ, which often require manual hierarchy/task design, or
Option-Critic, which learns temporal abstractions from experience, the Strategist uses external knowledge (via LLMs) to
propose and evaluate high-level strategic structures before committing to low-level learning. This enables it to consider
complex, potentially counter-intuitive strategies that might not be discoverable through purely bottom-up or experience-
driven HRL methods alone. While classic HRL methods focus on executing a (often pre-defined or learned) hierarchy,
our framework emphasizes generating and selecting from multiple hierarchies (strategies), making it complementary; the
Strategist could potentially propose high-level structures that classic HRL methods then learn to execute.

D.4. Leveraging Large Language Models in Reinforcement Learning

Recent advances in LLMs have opened new avenues for integrating language understanding and reasoning into RL agents.

Programmatic Prompting (ProgPrompt): ProgPrompt (Singh et al., 2022) uses LLMs to generate code-like action
plans for robots. By translating high-level instructions into executable programs, agents can perform complex tasks more
effectively. However, ProgPrompt focuses on translating instructions into actions without considering alternative strategies
and hierarchical levels of abstraction. Furthermore, it is only applicable in shaped environments that can be readily acted on
using code.

Language Planner: The Language Planner (Huang et al., 2022) uses LLMs to generate action sequences for embodied
agents in interactive environments. Although it leverages language understanding to produce plans, it does not generate
these plans hierarchically at different levels of abstraction and is constrained to plan on a fixed set of primitives, limiting the
reasoning flexibility that language provides.

Video-Language Planning: Video-Language Planning (Du et al., 2024) combines an LLM to plan, a generative diffusion
video model as a world model, and a VLM to evaluate the resulting state predicted by the world model. However, this
method does not incorporate high-level strategic planning and requires a practically omniscient world model that might be
unavailable in many settings.

Our Strategist agent distinguishes itself by using LLMs for the construction of a hierarchical strategy tree that aids reasoning
by considering decisions at different levels of abstraction. Assessment and choice between different strategies further
solidifies our framework for complex decision making.

D.5. Reward modeling

A key component of the Strategist agent is design appropriate reward signals to guide RL agents towards specific high-level
policies. In this section we review different existing approaches for reward modeling.

LLM-based reward modeling LLMs have provided new opportunities for reward shaping. Text2Reward (Xie et al.,
2024) leverages LLMs to generate dense reward functions as executable programs from natural language goals. Eureka (Ma
et al., 2024) performs evolutionary optimization over LLM-generated reward code to exceed human-engineered rewards.
Sarukkai et al. (2024) uses LLMs to author progress estimation functions that are converted into count-based intrinsic
rewards for efficient learning. Although these methods enable the creation of dense rewards from natural language goals
similarly to the Strategist, they require significant trial-and-error through either RL training iterations or human feedback
collection to refine the reward functions. In contrast, the Strategist designs strategy-specific reward functions zero-shot,
without the need for extensive environment interaction or human feedback loops.
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Inverse Reinforcement Learning While RL aims to learn an optimal policy from interactions with an environment and a
reward signal, inverse RL (Ng et al., 2000; Abbeel & Ng, 2004) instead aims to recover the reward signal based on observed
traces from an optimal policy interacting with the environment. One motivation for inverse RL is that the reward function
provides a compact representation of the incentives behind an existing expert behavior than the underlying expert policy
itself, allowing to learn the expert policy more efficiently than via direct imitation learning. More recently, IRL has played a
crucial role in reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Bai et al., 2022a), enabling
the extraction of implicit reward functions from human preferences for LLM alignment. However, the reliance on expert
demonstrations limits the applicability of inverse RL to environment where such expert demonstrations are available. In
contrast, the reward shaping part of the Strategist agent aims to design reward signal for specific strategic options, for which
expert demonstrations might not be available.

Self-Supervised Reward Modeling Self-Supervised Reward Modeling aims at autonomously generating reward functions
that guide agent behavior without human supervision. Plan2Explore (Sekar et al., 2020) facilitates intrinsic reward shaping
by predicting future novelty, enhancing exploration efficiency. VIP (Ma et al., 2022) learns from large-scale human videos
to provide dense and smooth reward functions for unseen robotic tasks. These approaches reduce reliance on handcrafted
reward functions and primarily focus on general reward function design as a pretraining mechanism. In contrast, the
Strategist designs strategy-specific reward functions zero-shot, ensuring that the reward explicitly guides the agent toward a
particular strategy rather than being designed for general exploration or pertaining.

D.6. Human-Inspiration in Strategic Planning: A Bridge Between Cognition and RL

While our framework does not aim to be a precise cognitive model of human decision-making, its top-down approach is
inspired by research in cognitive science and neuroscience on how humans tackle complex problems. Humans excel at
navigating novel and intricate situations by not just reacting but by strategizing—forming high-level plans, considering
alternatives, and abstracting away unnecessary details. This contrasts with traditional bottom-up RL, which often requires
vast exploration. By drawing inspiration from these human capabilities, we aim to build RL agents that are more sample-
efficient, flexible, and capable of tackling real-world challenges.

Hierarchical Planning and Goal Decomposition. A cornerstone of human cognition is the ability to decompose complex
goals into a hierarchy of manageable sub-goals. Early theories, such as those by Miller et al. (1960), proposed that
hierarchical structures are fundamental to human problem-solving, echoing insights on serial order (Lashley, 1951) and
means-ends analysis (Newell & Simon, 1972). This is supported by empirical evidence showing that people naturally
break down tasks like the Tower of Hanoi or cooking into smaller steps. Neuroscience research further corroborates this,
linking the prefrontal cortex to the segmentation of behavior into nested tasks and subtasks (Botvinick, 2008). Hierarchical
Reinforcement Learning (HRL) mirrors this, and studies suggest a mapping between HRL mechanisms and neural structures
(Botvinick et al., 2009), indicating that the brain might employ reusable sub-goal routines. This principle directly motivates
our Strategist agent’s design, which features a top-level agent orchestrating lower-level policies to handle decomposed
sub-goals.

Strategy Formation and Evaluation. Humans rarely commit to a single plan without considering alternatives. We
maintain an “adaptive toolbox” of strategies (Gigerenzer & Todd, 1999; Payne et al., 1993) and select among them based
on context. This involves exploring various approaches and refining them over time, as seen even in children’s strategy
development (Siegler, 1996). Crucially, humans engage in metacognitive evaluation, assessing the potential outcomes and
costs (e.g., cognitive effort) of different strategies before acting (Lieder & Griffiths, 2017). Neural evidence suggests we can
simulate these strategies internally, using mechanisms like hippocampal replay to pre-play future action sequences (Pfeiffer
& Foster, 2013). This capacity for generating and evaluating diverse, high-level policies is a key inspiration for our Strategist
agent, which explicitly builds and explores multiple strategic pathways (Approach Nodes) before committing to a plan.

Structural Inference and Abstraction. Humans efficiently navigate complex environments by inferring latent structures
and forming abstractions (Gershman & Niv, 2010). We don’t treat every situation as new; instead, we identify higher-level
patterns, rules, or categories that allow us to organize experience and generalize solutions. This “structure learning” enables
us to create abstract representations—like mental landmarks in navigation or reusable sub-problems in mathematics—that
significantly reduce planning complexity (Gershman & Niv, 2010). This ability also underpins transfer learning, where
abstract principles learned in one context are applied to new situations. Our Strategist agent is informed by this, as it reasons
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over a space of possible policies (structures of behavior) and evaluates their abstract properties, rather than getting bogged
down in low-level action details.

Cognitive Maps and Mental Models. Effective planning often relies on internal models of the world, often termed
“cognitive maps” or “mental models”. Tolman (1948)’s work showed that even rats form internal representations that allow
for flexible navigation and planning. More generally, mental models allow humans to simulate scenarios (“what if I do
X?”) and anticipate consequences without direct action, a concept dating back to Craik (1943). Neuroscience supports this,
showing hippocampal activity representing possible future paths (Pfeiffer & Foster, 2013), effectively allowing the brain to
“project” futures onto its cognitive map. Prefrontal regions interact with these maps, much like a planner querying a model.
Our Strategist agent, by building and exploring a Strategy Tree, is implicitly creating an internal abstracted model—a map
of the policy space—to guide its exploration and decision-making. Future works could explore in more depth the usage of
more explicit world models within the strategist framework.

Bounded Rationality and Plan Simplification. Despite our planning abilities, human cognition is resource-limited—we
operate under “bounded rationality,” as described by Simon (1956). We don’t exhaustively optimize; instead, we use
heuristics and simplified models to make planning tractable, often “satisficing” with good-enough solutions. This involves
pruning decision trees by ignoring unlikely or highly negative paths (Huys et al., 2012) and often preferring simpler
policies even if they might yield slightly lower rewards (Lai & Gershman, 2024). This human tendency towards rational
simplification and balancing costs (effort) with benefits (rewards) tangentially resonates with our Strategy Problem’s core
idea: finding policies that balance feasibility, specificity (simplification, pruning) and value (optimality).

In summary, human planning is characterized by its hierarchical nature, its exploration of multiple strategies, its use of
abstraction and internal models, and its resource-rational approach to simplification. By drawing inspiration from these
cognitive hallmarks, our top-down RL framework and the Strategist agent aim to equip RL systems with a more efficient,
structured, and human-like approach to navigating complex decision-making landscapes.

D.7. A Real-World Illustrative Example: Hospital Management

To further illustrate the applicability and intuition behind our top-down strategic approach—especially in complex, real-world
domains where bottom-up exploration is impractical due to vast state spaces, sparse rewards, and high-stakes decisions
(Dulac-Arnold et al., 2021; Rengarajan et al., 2022)—we present an example based on hospital management. This example
aims to provide a more broadly relatable illustration of how strategic decomposition, inspired by human planning (Correa
et al., 2023; Collins et al., 2024), can address challenges where traditional RL struggles. Consider the goal of improving
patient discharge rates, a common challenge in healthcare operations (Strickland & Lizotte, 2021).
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Real-world Example: Improving Discharge Rate in a Hospital

Environment: Real-world hospital
Goal: Maximize Discharge Rate

Bottom-up Approach
Impractical due to prohibitively large state-action space and limited margin for trial-and-error, where

failures can have significant costs (Dulac-Arnold et al., 2021).

Top-down Approach

• Identify current bottlenecks: E.g., insufficient community care, scheduling gaps, or prolonged
recovery times (Strickland & Lizotte, 2021).

• Derive strategic options: E.g., streamline coordination with social services or improve recovery
pathways, decomposing high-level goals (Correa et al., 2023).

• Implement and monitor: Select the most promising plan, implement it, and regularly review its
effectiveness.

Summary: Bottom-up approaches often struggle in such open-ended, high-risk settings. A top-down approach
intelligently diagnoses the initial problem, contemplates different plausible strategies, and focuses efforts on the
most relevant ones, reducing the exploration burden much like human experts do (Sutton et al., 1999; Collins et al.,
2024).
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E. Extended limitations and future work
This section expands on the primary constraints of our framework and outlines promising directions for future research.
Although the Strategist agent represents a principled step toward incorporating high-level human-inspired reasoning into RL,
each limitation highlights pathways for deeper improvements.

E.1. Limitations

Reliance on LLMs. Our framework leverages LLMs to generate strategies, estimate feasibility and value, and assess
specificity. While these models encode broad knowledge and can produce coherent strategies, they are susceptible to
inaccuracies such as factual errors, hallucinations, or bias (Wei et al., 2025). LLMs may propose strategies that are infeasible
or misaligned with real dynamics, which we try to palliate by introducing the notion of feasibility. Moreover, reliance on
pre-trained models implies an assumption of sufficiently rich domain knowledge in the LLM’s parameters, which may not
always hold (Vafa et al., 2024). In domains where up-to-date or highly specialized information is unavailable, LLM-based
strategies risk becoming misleading or incomplete.

Accuracy of the Strategist’s Metric Estimations. Feasibility and value are core metrics for pruning the search space
and identifying promising policies; however, their quality depends on LLM-based approximations, which our empirical
results suggest are imperfect. Without an environment feedback loop, the Strategist currently has no mechanism to adapt
feasibility/value estimates based on actual agent performance. Although promising but slightly inaccurate strategies may
still accelerate exploration, genuinely flawed strategies—especially in safety-critical applications—could yield wasted
computational effort or detrimental real-world outcomes.

Integration with Low-Level Policies. Bridging the gap between abstract strategies and concrete actions remains a
challenge. Even if a strategy appears “feasible” at a high level (e.g., “collect saplings, then breed cows”), there is no
guarantee an RL agent will be able implement the sub-goals. The coordination between top-down plans and bottom-up policy
learning can break down if the strategy is misaligned with the agent’s capabilities or environment constraints. Adaptive
mechanisms for on-the-fly revisions in response to low-level agent feedback would be required to address this.

Scalability and Latency. Querying an LLM for sub-goal evaluations introduces overhead, particularly for large domains
or frequent strategy updates. Although we reduce costs by distilling LLM-based scores into a learned reward-shaping model,
computational constraints could remain a concern. In some settings, even moderate overhead could be prohibitive.

Larger Evaluation Before Real-world Deployment. Our current evaluations primarily demonstrate improvements in
exploration and sample efficiency on moderately complex tasks. However, larger benchmarks that comprehensively capture
sparse rewards, large state-action spaces, and safety constraints are not provided. More extensive or domain-specific
evaluations (e.g., in robotics, supply chain optimization, or clinical decision support), would be required before advocating
for real-world deployment.

Ethical and Safety Considerations. Real-world domains (e.g., healthcare, finance) impose strict ethical and legal
requirements, making suboptimal exploration especially risky. While top-down strategies can reduce harmful exploration,
they do not guarantee compliance with external regulations or ethical norms. LLM biases might also inadvertently introduce
fairness or safety concerns (Wei et al., 2025). Integrating explicit safety checks or moral-legal filters into strategy generation
is critical to ensure that the Strategist remains compliant when deployed beyond simulated environments.

E.2. Future Work

Real-World Feedback Loops. To improve the reliability of feasibility and value estimations, one natural extension is to
close the loop between the Strategist and the environment. After initial strategy selection, the agent’s observed performance
and environment feedback could update LLM-based metrics, prompting refined strategy suggestions or pruning. Such
iterative, active-learning procedures would mitigate errors arising from purely static, zero-shot LLM predictions. It would
also be interesting to investigate how a strategist can be used to pivot from an incumbent policy.

Enhancing LLM Capabilities and Bias Mitigation. Fine-tuning or instruction-tuning LLMs on domain-specific data
might reduce inaccuracies. In parallel, systematic bias detection and mitigation (with techniques such as Constitutional AI
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(Bai et al., 2022b)) are crucial if top-down strategies are deployed in sensitive domains where fairness is paramount.

On-the-Fly Re-Strategizing. Real-world tasks often present non-stationary conditions, unforeseen obstacles, or shifting
resource constraints. An important open problem is enabling the Strategist to revise or pivot among multiple high-level
strategies mid-training, rather than committing to a single final plan. Bayesian updates to feasibility and value, or active
assessment of partial sub-goals, could enable dynamically selection among promising strategies.

Top-Down vs. Bottom-Up Synergies. While our experiments emphasize top-down guidance, purely bottom-up RL retains
advantages in discovering unanticipated solutions or optimizing fine-grained control, which underpins our use of a decaying
weight for the shaped reward. Future work could investigate further hybrid frameworks that initially constrain exploration
through top-down plans, then loosen these constraints to allow bottom-up refinements. Such synergies might prove valuable
in dynamic tasks where specifying every sub-goal a priori is infeasible. Future works could also investigate how to combine
the strategist with other bottom-up methods such as Q-learning (Li et al., 2024), among others.

Incorporation of action-biases. As explained on the main text, works such as, (Yan et al., 2024), (Zhang et al., 2024) or
(Liu et al., 2024b) use LLMs to bias actions. These methods are orthogonal to ours, and future work could be investigate
using them in tandem.

Safe, Multi-Agent, and Continuous Deployment. Beyond single-agent settings, extending the Strategist to multi-agent
coordination, competitive games, or collaborative tasks would necessitate strategy-level negotiation among agents. In
continuous deployment scenarios (e.g., warehouse robotics or healthcare scheduling), strategies may need periodic re-
synthesis to remain optimal under evolving conditions. Additionally, explicit safety and ethical constraints must be baked
into both the strategy-generation mechanism (LLM queries and reasoning) and the learned sub-policies to ensure responsible
real-world usage.
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