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ABSTRACT

Practical generative modeling pipelines and diffusion Monte-Carlo schemes,
which adapt diffusion models for sampling from unnormalized log-densities, both
rely on denoisers (or score estimates) at different noise scales. This complicates
the sampling process as denoising schedules require careful tuning and nested
inner-MCMC loops. In this work, we propose a single noise level sampling pro-
cedure that only requires a single low-noise denoiser. Our framework results from
improvements we bring to the multimeasurement Walk-Jump sampler of Saremi
& Srivastava (2021) by mixing in ideas from the proximal sampler of Shen et al.
(2020). Our analysis shows that annealing (or multiple noise scales) is unneces-
sary if one is willing to pay an increased memory cost. We demonstrate this by
proposing an entirely log-concave sampling framework.

1 INTRODUCTION

Denoising diffusion models Ho et al. (2020b); Dhariwal & Nichol (2021) generate samples by first
training a sequence of denoisers at various noise levels and chaining them in a clever manner to
transform unstructured random noise into a sample from a target distribution. The different noise
levels, the methods in which the denoisers are chained, and the balancing of the loss for different
noise levels all require careful tuning Karras et al. (2022). So much so that one might ask why we
must sample using different noise levels and not simply just one? Why is the annealing (i.e., the
gradual decrease of noise) during the sampling stage necessary?

The reason, as discussed in section 2, is to break down a difficult sampling problem into a sequence
of uni-modal sampling problems. Indeed, distributions of interest such as natural images are often
multi-modal. The denoising diffusion framework breaks down this sampling task into a sequence of
uni-modal distributions that are easily approximable by Gaussians. In this work, we show that this
sequence of simpler distributions need not be at different noise levels. To propose our framework
that operates at a single noise level, we build on ideas from log-concave sampling.

In particular, we build on the work of Saremi & Srivastava (2021) and earlier investigations in Jain
& Poole (2022) that propose a single noise level generative framework. Their sampling process
involves sampling from a distribution that is not log-concave. To mitigate this, Saremi et al. (2023)
propose a chain of log-concave breakdown of the task but at the cost of requiring denoisers at several
different noise scales. Moreover, their work merely guarantees that the distributions sampled in their
framework are increasingly log-concave. The following question remained unanswered

Is there an entirely log-concave single-noise level generative framework ?
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Figure 1: The MultiProx Sampler on a mixture of Gaussians and on the FFHQ and AFHQ 64× 64
datasets. The samples above are generated using a single MCMC chain: our sampler is able to
traverse between modes effectively.

In this work, we first study the case when the unnormalized log-density is known to propose the
MultiProx sampler. Then, we conduct experiments to show that our framework still yields good
results when using a score function from data on real datasets.

2 A CASE AGAINST ANNEALING

In this preliminary section, we present the necessary background on the variance-preserving variant
of Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020a). Our goal is to characterize
the motivation for time annealing in diffusion models and question its necessity.

2.1 DDPMS AND THE MOTIVATION BEHIND ANNEALING

For a data distribution X0 ∼ p0 over Rd, DDPMs first learn how to denoise by generating noisy
versions of p0 (i.e., the forward process). Concretely, noisy measurements Xt, with density denoted
pt, of the target distribution are generated as

Xt =
√
αtX0 +

√
1− αtZt, (FWD)

where αt < 1 is a chosen scaling factor; Zt ∼ N (0, I) is an independently sampled standard
Gaussian; and X0 is a sample from the data distribution p0. Given these noisy measurements, a
network netθ(x, t) is trained to denoise Xt by learning to predict the noise Zt given Xt. This
boils down to approximating the rescaled score of Xt given by −

√
1− αt∇ log pt. With simple

algebra, we can show that the network is merely a reparametrized approximation to the conditional
expectation of X0|Xt. In other words, we can show that

1
√
αt

(
Xt −

√
1− αtnetθ(Xt, t)

)
= E[X0|Xt]. (1)

Once the network is trained, diffusion models use this network to progressively denoise a standard
Gaussian to generate new samples. The network has learned to compute conditional expectations
and the goal of the denoising process is to exploit these conditional expectations to output a new
sample. If T is the largest amount of noise added during training, the denoising process starts from
an approximation X̃T of XT , which is sampled from a standard Gaussian N (0, I). The closer
the distribution of X̃T is to pT the better: the quality of the Gaussian initialization improves as T
increases since the larger T is, the closer pT is to N (0, I). After the initialization, the denoising is
achieved by simulating the reverse process. A single step of the latter yields the following Gaussian
approximation,

X0|XT ≈ E[X0|XT ] + σTZ, (2)

where Z ∼ N (0, I). Unfortunately, this single-step estimation of X0 from XT becomes increas-
ingly poor as T becomes large. This large discrepancy between X0|XT and its Gaussian approxi-
mation N (E[X0|XT ], σT I) is the central motivation for time-annealing. One-step denoising does
not work because X0|XT is too multi-modal. Indeed multi-modal distributions are not well approx-
imated by their expectation so we must progressively denoise in smaller steps where multi-modality
is not an issue and each individual step is well-approximated by a Gaussian distribution.
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To restate the trade-off: the one-step Gaussian approximation is increasingly worsened by large
choices of T , yet we must choose T to be large in order for the initialization at X̂T to be valid. Time
annealing is precisely the design choice that allows diffusion models to balance these competing
trade-offs. For any large T , we can define a discretization sequence 0 = t0 < t1 < · · · < tN = T
such that the Gaussian approximation Xti−1

|Xti ≈ E
[
Xti−1

|Xti

]
+ σti−1

Zti−1
, where Zti−1

∼
N (0, I) is valid. These Gaussian approximations using the conditional expectation correspond pre-
cisely to the exponential integration scheme with N discretization points applied to equation 2. This
is the reason why annealing is necessary: it breaks down the difficult multi-modal sampling step of
going from XT to X0 into a sequence of uni-modal sampling problems Xti−1

|Xti .

Diffusion models are a sequence of Gaussian approximations and time-annealing is what makes
these Gaussian approximations valid by defining a sequence of steps over which Gaussian approxi-
mations using the learned conditional expectations are appropriate. This comes at a cost: a series of
conditional expectations E

[
Xti−1

|Xti

]
must be approximated, which requires denoisers at different

noise scales.

2.2 THE DISADVANTAGES OF TIME ANNEALING

Having expounded on the motivation for time-annealing, we now argue that time-annealing comes
with critical drawbacks.

First, annealing is taxing to the denoising network. In practice, the most successful denoising net-
works are built on the ADM networks of Dhariwal & Nichol (2021) which have been carefully
improved in Karras et al. (2024). There, a single network is trained to denoise images at varying
noise scales, where a separate component informs the network of the noise level.

The task of denoising varies greatly at different noise scales. At high-noise levels, the denoiser must
learn how to introduce low-frequency elements in the images; at low-noise levels, it must act solely
on the high frequencies to introduce detail. Performing both these tasks using the same network re-
quires careful balancing of the training loss. Indeed, as observed in Karras et al. (2024), a multi-task
training approach is adopted to stabilize training. Denoising different noise levels can be so radically
different that recent work Balaji et al. (2022) trains an ensemble of denoisers that separately focus on
the high-noise and low-noise stages. In addition to the architectural difficulties, time annealing also
introduces tuning difficulties: the training noise schedule was observed to be highly sensitive to the
output resolution in Chen (2023). Finally, taking inspiration from Rissanen et al. (2022); Dieleman
(2024), we perform a frequency analysis on intermediate images generated during the denoising
process of a standard diffusion model, EDM Karras et al. (2022). Figure 2 illustrates the power
spectrum throughout the denoising stages of EDM, which was trained on the FFHQ dataset. We
see that the time-annealing schedule, despite requiring architectural modifications and meticulous
tuning, results in a significant portion of the denoising process adding minimal structural detail to
the images. Specifically, the bottom middle plot of Figure 2 demonstrates that the spectrum remains
flat, akin to white noise, for a substantial part of the process.

In summary, while time annealing is a pivotal component as discussed earlier in this section, it places
a considerable demand on the design of denoising architectures and necessitates precise tuning that
is both resolution- and dataset-dependent. Yet, a significant part of this process is spent without
contributing any meaningful structure to the images.

In the ensuing sections, we will introduce an alternative approach to decomposing the sampling
task. This method does not require a time-embedding sub-network and alleviates the tuning burden
by reducing the number of variables involved, offering a more streamlined and efficient framework.

3 RELATED WORK

Diffusion Monte Carlo: Our work builds on previous schemes that mix ideas from log-concave
sampling and denoising diffusions. Huang et al. (2023) first introduce the idea of inner langevin
loops for sampling from potentials and provide a theoretical analysis. Similar ideas also appear
in McDonald & Barron (2022) and Vargas et al. (2023) which incorporate score estimation for
diffusive sampling, as do Akhound-Sadegh et al. (2024). Chen et al. (2024) propose DiGs which
corresponds exactly to the proximal sampler of Shen et al. (2020) made practical with MALA as an
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Figure 2: A visualization of the average spectral power density throughout the denoising process of
EDM Karras et al. (2022) on FFHQ64: Observe that pure noise has a flat power spectrum (bottom
left) and natural images have a linearly decreasing power spectrum on a log-log plot (bottom right)
since lower frequencies dominate in natural images. We plot the power spectrum of the intermediate
images in the denoising process (middle). Observe that the first half of the denoising acts on all
frequencies by lowering the power spectrum but does not add structure, it is only later in the process
that the denoising starts acting on higher frequencies and adds structure in the images.

approximation of the restricted Gaussian Oracle. They circumvent the difficulty of sampling from
high-noise levels by initializing in a ”clever way”, which unlike our proposal is only a heuristic. He
et al. (2024) suggest a zeroth order method to improve over the proximal sampler. Phillips et al.
(2024) also propose a sequential Monte Carlo scheme based on diffusions. The work of Chehab &
Korba (2024) reviews all recent tempering schemes. Crucially, the fundamental difficulty of duality
of log-concavity which underlies sampling tasks is detailed in Grenioux et al. (2024). It is this
difficulty that our scheme addresses.

The Restricted Gaussian Oracle (RGO) in the literature: Practical implementations of the
RGO of Shen et al. (2020) appears in earlier forms in Gao et al. (2020) and Xiao et al. (2021).

Multi-measurement process: Using multiple correlated measurements appears in Saremi & Sri-
vastava (2021) and Saremi et al. (2023). More generally, multi-measurements correspond to linear
observation as defined in Montanari (2023) or posterior sampling in linear regression with fixed
design.

4 A PRINCIPLED MULTI-MEASUREMENT SAMPLING FRAMEWORK

4.1 MULTI-MEASUREMENT MODEL

Let X0 ∼ p0. Let t > 0 be a fixed noise level. We define m, correlated, noisy measurements
(Y1, . . . , Ym) of X , at noise level t > 0, as

Yi = e−tX +
√

1− e−2tZi (3)

where Z1, . . . , Zm are independent N (0, I) variables. These m measurements are correlated
through X . Our method builds on the observation from Saremi & Srivastava (2021) that denois-
ing from an entire set of correlated noisy measurements (Y1, . . . , Ym) is easier than denoising from
a single noisy measurement. The multimeasurement sampling framework we analyze in this section
consists of generating X0 by denoising from the m fixed-noise level measurements (Y1, . . . , Ym).
Unlike DDPMs, this framework does not progressively denoise following an annealing schedule.
It consists of two components: a denoising component that produces a sample X0 from the noisy
measurements and an initialization component that generates the noisy measurements (Y1, . . . , Ym)
to denoise from. We summarize the framework in Algorithm 1 and explain its soundness in detail in
what follows.
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Algorithm 1: Gibbs Multi-measurement Sampling Framework
Input: m, t ≥ 0
(Y 0

1 , . . . , Y
0
m)← N (0, Imd);

for i ∈ [1,m] do
Yi ← Sample from Yi|Y−i

end
return Sample from X|Y1,...,m

4.2 DENOISING FROM MULTIPLE MEASUREMENTS

We first consider the denoising component: the process generating X0 from (Y1, . . . , Ym). This
can be achieved by sampling from the conditional distribution X0|(Y1, . . . , Ym). Fortunately, for
any noise level t, the denoising distribution X0|(Y1, . . . , Ym) can be made to be uni-modal by ac-
cumulating enough measurements, i.e., by choosing m large enough. This follows from the simple
observation that the average of the m measurements yields

1

m

m∑
i=1

Yi
L
= e−tX +

√
1− e−2t

m
Z (4)

where Z ∼ N (0, I), which reduces the amount of noise by a factor
√
m. The parameter m can thus

be set to compensate for a large choice of t. Indeed, as discussed in section 2, a large choice of t is
necessary in order to be able to initialize (Y1, . . . , Ym) before denoising, but the denoising becomes
increasingly difficult as multi-modality increases with t. With the parameter m, we can act on this
trade-off to ensure that the denoising stays a uni-modal sampling problem. We formally show this
in the following theorem.
Assumption 4.1. The score ∇ log p0 is L-Lipschitz.

Theorem 4.2 (Uni-modality of Denoising distribution). Under assumption 4.1, for any t and
Y1, . . . , Ym defined as in equation 3, the Hessian of the conditional distribution X|Y1, . . . , Ym sat-
isfies

∇2 log p(x|y1, . . . , ym) ⪯
(
L−m

e−2t

1− e−2t

)
I. (5)

According to equation 5, as long as
m > (e2t − 1)L,

the denoising distribution X0|(Y1, . . . , Ym) is strongly-log-concave, i.e, unimodal, making the de-
noising tractable. Consequently, as long as a sample from (Y1, . . . , Ym) can be obtained, a sample
of X0 can be obtained through sampling from a strongly log-concave distribution.
Remark 4.3. Our result holds for log-smooth distributions (Assumption 4.1), this assumption is
standard in the analysis of denoising diffusions Chen et al. (2022); Benton et al. (2023). An alter-
native way of obtaining a log-smooth distribution is through Gaussian convolution of a bounded
distribution: if X is bounded, then X +

√
δZ, with Z ∼ N (0, I) is log-smooth. This convolution

trick to obtain log-smooth distributions corresponds to the early-stopping criterion assumption in
convergence proofs of diffusion samplers.

4.3 SAMPLING THE NOISY MEASUREMENTS

We turn our attention to the initialization problem of obtaining a sample from (Y1, . . . , Ym). If t is
large, each Yi approaches a standard Gaussian according to equation 3. The individual coordinates
approximate standard Gaussians, but they must be appropriately correlated in order to accurately ap-
proximate (Y1, . . . , Ym). Indeed, the benefit of multiple measurements follows from the correlation
of the measurements and is a crucial component as the noise reduction in equation 4 depends on it.

Instead of sampling each coordinate by sequentially increasing the conditioning as in Saremi et al.
(2023), we propose a Gibbs sampling strategy Casella & George (1992); Roberts & Sahu (1997).
Gibbs sampling consists of iteratively sampling each component Yi conditioned on all the other
m−1 measurements, denoted Y−i. Gibbs sampling is guaranteed to converge to the joint distribution
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Rosenthal (1995) and is a well-studied strategy for sampling when each conditioned marginal is easy
to sample from(see 12.3.1 of Koller & Friedman (2009)). The following theorem will help show that
there exists a choice of t such that each conditional marginal Yi|Y−i is easy to sample from.
Theorem 4.4 (Uni-modality of conditional noisy measurements). Under 4.1. For any, t > 0 and
Y1, . . . , Ym as in equation 3, we have that for any i ∈ [m], the hessian of log p(yi|y−i) is given by

∇2
yi
log p(yi|y−i) = covX|Y1,...,Ym=(y1,...,ym)

(
e−tX − yi
1− e−2t

)
− 1

1− e−2t
I

=

(
e−t

1− e−2t

)2

covX|Y1,...,Ym=(y1,...,ym) (X)− 1

1− e−2t
I.

(6)

In order to use the theorem above to show that the distributions are log-concave, we need to control
the covariance term in equation 6. We can upper-bound this covariance term using Bakry-Emery’s
result, showing that strongly log-concave measures verify the Poincaré inequality.
Theorem 4.5 (Variance of log-concave measures). Let X be an L-smooth density, if m is such that
m ≥ 2(e2t − 1)L, then it holds that

covX|Y1,...,Ym=(y1,...,ym) (X) ≤ L

2
.

Equipped with the result above, we can show that, in order for equation 6 to be negative, the noise
level should be set such that

t ≥ 1

2
log

(
1 +

L

2

)
.

With the above conditions, we can show that our sampling framework, detailed in 1, is a fully uni-
modal sampling pipeline. This was achieved not with annealing but with multiple measurements.
Indeed combining the previous theorems, we have that the following theorem holds for the Gibbs
multi-measurement sampler.
Theorem 4.6 (Fully log-concave pipeline). Under assumption 4.1. For t > 1

2 log
(
1 + L

2

)
and

m ≥ 2(e2t − 1)L, we have that the framework 1 is a fully log-concave pipeline, where each step
only samples from a unimodal distribution.

5 THE MULTIPROX SAMPLER

In the previous section, we showed that the Gibbs multimeasurement is an entirely log-concave
sampling framework. In this section, we show that each individual sampling step is computationally
tractable. We first show that each sampling step in Algorithm 1 can be implemented exactly. We
derive from this result an implementation of our framework we call the MultiProx sampler.

5.1 HIGH-ACCURACY SAMPLERS FOR STRONGLY-LOG-CONCAVE DISTRIBUTIONS

Having reduced all sampling steps in Algorithm 1 to log-concave sampling, we now further improve
over Saremi & Srivastava (2021); Saremi et al. (2023) by using high-accuracy samplers. The work
Saremi et al. (2023) suggests using Tweedie’s denoiser to approximately sample from X|Y1,...,m

and a Langevin MCMC scheme to sample from Yi|Y−i. Unfortunately, both these choices do not
fully exploit the strong log-concavity achieved with the careful selection of m and t in Theorem
4.6. Their work requires estimations of ∇ log p(yi|y−i) even when ∇ log p(x) is known, a severe
drawback that was shown to negatively affect the performance of OAT in Grenioux et al. (2024). In
what follows, we show that using a Restricted Gaussian Oracle (RGO) implemented with a rejection
sampling algorithm yields exact samplers for both sampling steps in Algorithm 1.

Rejection sampling applied to a strongly-log-concave distribution is a sampling scheme that always
outputs an exact sample. It functions by accepting samples from a proposal distribution under a
well-chosen acceptance probability. As shown in 5, the denoising distribution X0|Y1,...,m is strongly
log-concave if m is chosen appropriately. In the following theorem, we show that we can exactly
sample from the denoising distribution.
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Algorithm 2: Restricted Gaussian Oracle with Rejection sampling
Input: Averaged m noisy measurements ȳ
Output: A sample from p ∝ exp

(
f̄(x) := −f(x) + m

2(1−e−2t)∥ȳ − e−tx∥2
)

Compute x⋆
ȳ = argminx∈Rd f̄(x);

while True do
s← Sample from N

(
x⋆
ȳ,

1
LI

)
;

u← Sample from U (0, 1);
if log u < −f̄(s) + f̄(x⋆

ȳ) +
L
2 ∥s− x⋆

ȳ∥2 then
return s;

end
end

Figure 3: CIFAR10 and FFHQ 64x64

Theorem 5.1 (Exact denoising RGO). Under assumption equation 4.1, for m > d(e2t − 1), the
rejection sampling algorithm 2 outputs an exact sample from X|Y1,...,m in O (1) iterations.

Observe that the condition on m was strengthened by including the dimension d. The additional
dimension factor ensures that X|Y1,...,m is well-conditioned. Consequently, rejection sampling can
output an exact sample from X|Y1,...,m in a constant number of iterations.

Remarkably, this very same result allows us to sample from Yi|Y−i. Indeed observe that

Yi|Y−i = e−t (X0|Y−i) +
√
1− e−2tZi,

since Zi is independent from Y−i. Consequently, to obtain a sample from it suffices to obtain a
sample from X|Y−i, which is the denoising distribution with one less sample, i.e, m − 1 noisy
measurements. If follows that, with choice of m > 1+d(e2t−1), the RGO applied to denoise from
the average of the m− 1 measurements Y−i outputs an exact sample from Yi|Y−i in a finite number
of steps.

With these observations, we derive the implementable MultiProx sampler which outputs a sample
in a finite number of steps.

Algorithm 3: MultiProx sampler
Input: K,m, t ≥ 0
(Y 0

1 , . . . , Y
0
m)← N (0, Imd);

for k = 1, . . . ,K do
for i ∈ [1,m] do

Y k
i ← Sample from Yi|(Y k

1 , . . . , Y k
i−1, Y

k−1
i+1 , . . . , Y k−1

m ) using RGOm−1 2
end
X ← Sample from using RGOm 2 from ȳ = average(Y1,...,m)

end

7
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Figure 4: An example of a sample chain obtained with MultiProx and a ConGress denoiser
trained on QM9. We set for QM9 K = 10, m = 100, t = 250, t′ = 2 (50% and 0.4% of T ).

6 EXPERIMENTS

We present our results using the EDM denoiser of Karras et al. (2022) at a a single noise level using
our MultiProx framework in figures 1 and 3.

We also provide results on discrete distributions. Modeling and sampling from discrete distributions
such as graphs is a more complicated generative learning task but of high interest in many domains.
We thus focused on evaluating our sampling technique on two classical graph distribution learn-
ing tasks: learning to generate novel small molecular structures using the QM9 dataset of 9-node
graphs with 4 atom (node) types and 5 bond (edge) types Ruddigkeit et al. (2012); Ramakrishnan
et al. (2014), and Comm20, a toy dataset of 100 2-block SBM-sampled random graphs. Evaluation
metrics for molecules include measuring the sampling rates of valid, unique, and novel molecular
structures. For the simpler Comm20 dataset lacking graph interpretation, one can perform Maximum
Mean Discrepancy (MMD) statistical tests for the difference between sampled and true distributions
of various classical graph features Gretton et al. (2012); Liao et al. (2019).

Graph diffusion model experiments differ from standard practice in that the noise process and de-
noising model act potentially on both continuous and discrete features, where discrete features are
sampled through denoising the per-class log-probability and a final argmax over all logits to sam-
ple a graph node or edge type. DiGress Vignac et al. (2023), the state-of-the-art model that we
re-evaluated with MultiProx, also introduces a discrete noise process with a categorical instead
of a Gaussian distribution, however, we focused on the authors’ ConGress version with Gaussian
continuous-space noising for consistency with other experiments.

Table 1 displays our performance on the QM9 dataset, while Figure 4 visualizes the molecule graphs
in an example sampled Gibbs chain. Refer to Appendix B for our results on the Comm20 dataset.

Table 1: Sampling metrics for each noise level hyperparameter configuration we tested for the QM9
dataset of molecule graphs. Left to right: MultiProx fixed noise level t and final output noise
level t′ ≤ t (as percentages of T ), percentage of valid molecule graphs, percentage of unique valid
molecules, percentage of novel unique valid molecules (not present in the dataset) and total execu-
tion time of sampling. Arrows indicate whether higher or lower values of a metric are better. Best
values per metric are in bold, while second-best values are underlined.

t t′ ↑ Valid [%] ↑ Unique [%] ↑ Novel [%] ↓Wall time [s]

Baseline 96.52 78.34 54.92 6302
50% 50% 0.00 0.00 0.00 151
50% 25% 0.16 100.0 96.01 1655
50% 10% 74.61 87.74 66.28 2561
50% 0.4% 96.62 77.95 55.20 3137
10% 10% 14.52 30.64 95.32 151
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A PROOFS

Theorem 4.2 (Uni-modality of Denoising distribution). Under assumption 4.1, for any t and
Y1, . . . , Ym defined as in equation 3, the Hessian of the conditional distribution X|Y1, . . . , Ym sat-
isfies

∇2 log p(x|y1, . . . , ym) ⪯
(
L−m

e−2t

1− e−2t

)
I. (5)

Proof. For y1, . . . , ym fixed, we now from Bayes that
p(x|y1, . . . , ym) ∝ p(x, y1, . . . , ym) = p(x)Πm

i=1p(yi|x)
The log-gradient with respect to x is then given by

∇ log p(x|y1, . . . , ym) = ∇ log p(x) +

m∑
i=1

∇ log p(yi|x).

Recall that, since Yi − e−tX is a Gaussian, we have that log p(yi|x) = −∥yi−e−tx∥2

2(1−e−2t) +C, where C

is a constant. It follows that the Hessian is

∇2 log p(x|y1, . . . , ym) = ∇2 log p(x)−
m∑
i=1

e−2t

1− e−2t
⪯ LI −m

e−2t

1− e−2t

where the last inequality follows from the Lipschitz Assumption 4.1.

Theorem 4.4 (Uni-modality of conditional noisy measurements). Under 4.1. For any, t > 0 and
Y1, . . . , Ym as in equation 3, we have that for any i ∈ [m], the hessian of log p(yi|y−i) is given by

∇2
yi
log p(yi|y−i) = covX|Y1,...,Ym=(y1,...,ym)

(
e−tX − yi
1− e−2t

)
− 1

1− e−2t
I

=

(
e−t

1− e−2t

)2

covX|Y1,...,Ym=(y1,...,ym) (X)− 1

1− e−2t
I.

(6)

Proof. The result follows from the following identity

∇2 log p = ∇∇p
p

=
∇2p

p
− ∇p

p

(
∇p
p

)⊤

The joint distribution of the noisy measurements is easy to compute, and we find that for any noisy
measurement Yi, given the other m− 1 measurements, we have that

pm,e−t(yi|y−i) ∝ p(y1, . . . , ym) =

∫
p(y1, . . . , ym|x)p(x)dx = EX

[
m∏

k=1

γ0,1

(
yk − e−tX√
1− e−2t

)]
We can compute the gradient of its log-density as follows

∇yi log pm,e−t(yi|y−i) =
EX

[
∇yi

∏m
k=1 γ0,1

(
yk−e−tX√

1−e−2t

)]
p(y1 . . . , ym)

= EX

[(
e−tX − yi
1− e−2t

) m∏
k=1

γ0,1

(
yk − e−tX√
1− e−2t

)]
1

p(y1, . . . , ym)

=

∫ (
e−tX − yi
1− e−2t

)
p(y1, . . . , ym|x)p(x)

p(y1, . . . , ym)
dx

= EX|Y1,...,Ym=(y1,...,ym)

[
e−tX − yi
1− e−2t

]
=

e−t

1− e−2t
E [X|Y1, . . . , Ym = y1, . . . , ym]− 1

1− e−2t
yi
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B GRAPH DIFFUSION EXPERIMENTS FOR COMM20

Figure 5: An example of a sample chain obtained with MultiProx and a ConGress denoiser
trained on Comm20. We set for Comm20 K = 10, m = 100, t = 200, t′ = 50 (40% and 10% of
T ).

Table 2: Sampling metrics for each noise level hyperparameter configuration we tested for the
Comm20 dataset of molecule graphs. Left to right: MultiProx fixed noise level t and final output
noise level t′ ≤ t (as percentages of T ), Maximum Mean Discrepancy (MMD) metrics for node
degrees, per-node clustering coefficients, node orbits, and node eigenvalues between sampled and
dataset graph distributions, and total execution time of sampling. Arrows indicate whether higher or
lower values of a metric are better. Best values per metric are in bold, while second-best values are
underlined.
t t′ ↓ Degree MMD ↓ Cluster MMD ↓ Orbit MMD ↓ Spectral MMD ↓Wall time [s]

Baseline 0.0064 0.0725 0.0214 0.0232 846
40% 40% 0.1630 0.1230 0.6954 0.0718 139
40% 20% 0.0022 0.1148 0.0666 0.0633 305
40% 10% 0.0037 0.0864 0.0051 0.1219 388
40% 0.2% 0.0150 0.0833 0.0376 0.1965 467
10% 10% 0.0734 0.1272 0.6653 0.0752 138

C IMPLEMENTATION

For the molecule generation experiments, we extend the implementation of Vignac et al. (2023)
(available at https://github.com/cvignac/DiGress) with code for our novel specific
sampling method tailored to the architecture of DiGress. Our graph experiment code implementa-
tion is fully available at https://github.com/LIONS-EPFL/MultiProxDiffusion to
facilitate reproducibility.

All code was executed on a single machine with the following specifications:

• AMD EPYC™ 7742 64-core CPU @ 2.25GHz;

• NVIDIA A100-SXM4-40GB GPU;

• 1.0TB RAM.

D IMPLEMENTATION OF AN RGO WHEN THE LOG-DENSITY IS AVAILABLE

1 import jax
2 import jax.numpy as jnp
3 from jax.scipy.optimize import minimize
4 from jax_tqdm import scan_tqdm
5 import optimistix as optx
6

7

8 def build_restricted_gaussian_oracle(logprob_fn, m, sigma, alpha):
9
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10 def rgo(y_bar, rng):
11 def f_bar(x, *_):
12 return -logprob_fn(x, None) + 0.5 * m / sigma * jnp.sum((x -

y_bar) ** 2)
13

14 minimizer_sol = optx.minimise(f_bar, optx.BFGS(rtol=1e-4, atol=1e
-4), y_bar)

15 x_star = minimizer_sol.value
16

17 def propose(params):
18 rng_key_x, _, _, count = params
19 rng_key_x, rng_proposal = jax.random.split(rng_key_x)
20 noise = jax.random.normal(rng_proposal, shape=y_bar.shape)
21 z = x_star + jnp.sqrt(1 / alpha) * noise
22 rng_key_x, rng_uniform = jax.random.split(rng_key_x)
23 u = jax.random.uniform(rng_uniform, shape=(1,))
24 log_accept_ratio_term = -f_bar(z, None) + f_bar(x_star, None)

+ 0.5 * jnp.sum(noise**2)
25 return rng_key_x, jnp.log(u) - log_accept_ratio_term, z,

count + 1
26

27 def cond(params):
28 rng_key_x, log_u_minus_log_accept, z, count = params
29 is_rejected = log_u_minus_log_accept > 0
30 return is_rejected
31

32 rng, rng_loop_init = jax.random.split(rng)
33 initial_gap = jnp.array([1.0])
34 initial_state = (rng_loop_init, initial_gap, x_star, 0)
35

36 _, _, sample, final_count = jax.lax.while_loop(cond, propose,
initial_state)

37

38 return sample
39

40 return rgo

Listing 1: Python code for a restricted Gaussian oracle using JAX and Optimistix.

E IMPLEMENTATION OF AN APPROXIMATE RGO WITH EDM

1 def sample_images(M:int, sigma:float, N: int, b_sz:int, res:int, start=
None):

2 sigma = torch.tensor(sigma).cuda()
3 M = torch.tensor(M).cuda()
4 if start is None:
5 repeated_noised = sigma * torch.randn(M, b_sz, 3, res, res).cuda

()
6 start = repeated_noised[0, 0]
7 else:
8 repeated_noised = start.repeat(M, b_sz, 1, 1, 1).cuda() + sigma *

torch.randn(M,b_sz, 3, res, res).cuda()
9 denoised_lst = [start.unsqueeze(0).repeat(b_sz, 1, 1, 1).detach().cpu

()]
10 previous = start.repeat(b_sz, 1, 1, 1).cuda()
11 for i in range(N):
12 for k in tqdm.tqdm(range(M)):
13 averaged = torch.mean(repeated_noised, dim=0)
14 denoised = net(averaged, sigma / torch.sqrt(torch.tensor(M)),

None)
15 denoised = 2*denoised - previous
16 previous = denoised
17 repeated_noised[k] = denoised + sigma * torch.cuda.

FloatTensor(b_sz, 3, res, res).normal_()
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18 averaged = torch.mean(repeated_noised, dim=0)
19 denoised = net(averaged, sigma / torch.sqrt(torch.tensor(M)),

None)
20 denoised_lst.append(denoised.detach().cpu())
21 repeated_noised = denoised.unsqueeze(0).repeat(M, 1, 1, 1, 1) +

sigma * torch.cuda.FloatTensor(M, b_sz, 3, res, res).normal_()
22 return denoised_lst
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