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ABSTRACT

Isotropic Gaussian priors are the de facto standard for modern Bayesian neural
network inference. However, it is unclear whether these priors accurately reflect
our true beliefs about the weight distributions or give optimal performance. To find
better priors, we study summary statistics of neural network weights in networks
trained using stochastic gradient descent (SGD). We find that convolutional neural
network (CNN) and ResNet weights display strong spatial correlations, while fully
connected networks (FCNNs) display heavy-tailed weight distributions. We show
that building these observations into priors can lead to improved performance on
a variety of image classification datasets. Surprisingly, these priors mitigate the
cold posterior effect in FCNNs, but slightly increase the cold posterior effect in
ResNets.

1 INTRODUCTION

In a Bayesian neural network (BNN), we specify a prior p(w) over the neural network parameters,
and compute the posterior distribution over parameters conditioned on training data, p(w|x, y) =
p(y|w, x)p(w)/p(y|x). This procedure should give considerable advantages for reasoning about
predictive uncertainty, which is especially relevant in the small-data setting. Crucially, to perform
Bayesian inference, we need to choose a prior that accurately reflects our beliefs about the parameters
before seeing any data (Bayes, 1763; Gelman et al., 2013). However, the most common choice
of prior for BNN weights is the simplest one: the isotropic Gaussian. Isotropic Gaussians are
used across almost all fields of Bayesian deep learning, ranging from variational inference (e.g.,
Hernández-Lobato & Adams, 2015; Louizos & Welling, 2017; Dusenberry et al., 2020), sampling-
based inference (e.g., Neal, 1992; Zhang et al., 2019), and Laplace’s method (e.g., Osawa et al., 2019;
Immer et al., 2021b), to even infinite networks (e.g., Lee et al., 2017; Garriga-Alonso et al., 2019). It
is troubling that no alternatives are usually considered, since better choices likely exist.

Indeed, despite the progress on more accurate and efficient inference procedures, in some settings,
the posterior predictive distribution of BNNs using Gaussian priors still leads to worse predictive
performance than a baseline obtained by training the network with standard stochastic gradient descent
(SGD) (e.g., Zhang et al., 2019; Heek & Kalchbrenner, 2019; Wenzel et al., 2020a). Surprisingly,
∗Equal contribution.
†Equal contribution.
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these issues can largely be fixed by artificially reducing posterior uncertainty using “cold posteriors”
(Wenzel et al., 2020a). The cold posterior is p(w|x, y)

1
T for a temperature 0 < T < 1, where the

original Bayes posterior would be obtained by setting T = 1 (see Eq. 1). Using cold posteriors can be
interpreted as overcounting the data and, hence, deviating from the Bayesian paradigm. This should
not happen if the prior and likelihood accurately reflect our beliefs. Assuming inference is working
correctly, the Bayesian solution, T = 1, really should be optimal (Gelman et al., 2013). Hence, it
raises the possibility that either the prior (Wenzel et al., 2020a) or likelihood (Aitchison, 2020b) (or
both) are misspecified.

In this work, we study empirically whether isotropic Gaussian priors are indeed suboptimal for
BNNs and whether this can explain the cold posterior effect. We analyze the performance of dif-
ferent BNN priors for different network architectures and compare them to the empirical weight
distributions of standard SGD-trained neural networks. We conclude that correlated Gaussian priors
are better in ResNets, while uncorrelated heavy-tailed priors are better in fully connected neural
networks (FCNNs). Thus, we would recommend these choices instead of the widely-used isotropic
Gaussian priors. While these priors eliminate the cold posterior effect in FCNNs, they slightly
increase the cold posterior effect in ResNets. This provides evidence that the cold posterior effect
arises due to a misspecification of the prior (Wenzel et al., 2020a) in FCNNs. In ResNets, it is
difficult to draw any strong conclusions about the cold posterior effect from our results. Our obser-
vations are compatible with the hypothesis that the cold posterior effect arises in large-scale image
models due to a misspecified likelihood (Aitchison, 2020b) or due to data augmentation (Izmailov
et al., 2020), but there could of course be a prior that we did not consider that improves perfor-
mance and eliminates the cold posterior effect. We make our library available on Github1, inviting
other researchers to join us in studying the role of priors in BNNs using state-of-the-art inference.
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Figure 1: Empirical marginal weight distributions
of a layer of FCNNs and CNNs trained with SGD
on MNIST, and an early layer of several ResNets
trained on CIFAR-10. We show weight histograms
(left) and quantile-quantile (Q-Q) plots with differ-
ent distributions (right). The empirical weights are
clearly heavier-tailed than a Gaussian (green line),
and better fit by a Laplace (orange line).

1.1 CONTRIBUTIONS

Our main contributions are:

• An analysis of the empirical weight distribu-
tions of SGD-trained neural networks with
different architectures, suggesting that FC-
NNs learn heavy-tailed weight distributions
(Sec. 3.1), while CNN and ResNet weight
distributions show significant spatial corre-
lations (Sec. 3.2).

• Experiments in Bayesian FCNNs showing
that heavy-tailed priors give better classi-
fication performance than the widely-used
Gaussian priors (Sec. 4.2).

• Experiments in Bayesian ResNets show-
ing that spatially correlated Gaussian priors
give better classification performance than
isotropic priors (Sec. 4.3).

• Experiments showing that the cold posterior
effect can be reduced by choosing better,
heavy-tailed priors in FCNNs, while the
cold posterior is slightly increased when
using better, spatially correlated priors in
ResNets (Sec. 4).

1https://github.com/ratschlab/bnn_priors. MIT licensed.
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2 BACKGROUND: THE COLD POSTERIOR EFFECT

When performing inference in Bayesian models, we can temper the posterior by a positive temperature
T , giving

log p(w|x, y)
1
T =

1

T
[log p(y|w, x) + log p(w)] + Z(T ) (1)

for neural network weights w, inputs x regression targets or class-labels y, prior p(w), likelihood
p(y|w, x), and a normalizing constant Z(T ). Setting T = 1 yields the standard Bayesian posterior.
The temperature parameter can be easily handled when simulating Langevin dynamics, as used in
molecular dynamics and MCMC (Leimkuhler & Matthews, 2012).

In their recent work, Wenzel et al. (2020a) have drawn attention to the fact that cooling the posterior
in BNNs (i.e., setting T < 1), often improves performance. Testing different hypotheses for potential
problems with the inference, likelihood, and prior, they conclude that the BNN priors (which were
Gaussian in their experiments) are misspecified—at least when used in conjuction with standard
neural network architectures on standard benchmark tasks—which could be one of the main causes
of the cold posterior effect (c.f., Germain et al., 2016; van der Wilk et al., 2018). Reversing this
argument, we can hypothesize that choosing better priors for BNNs may lead to a less pronounced
cold posterior effect, which we can use to evaluate different candidate priors.

3 EMPIRICAL ANALYSIS OF NEURAL NETWORK WEIGHTS

As we have discussed, standard Gaussian priors may not be the optimal choice for modern BNN
architectures. But how can we find more suitable priors? Since it is hard to directly formulate
reasonable prior beliefs about neural network weights, we turn to an empirical approach. We trained
fully connected neural networks (FCNNs), convolutional neural networks (CNNs), and ResNets with
SGD on various image classification tasks to obtain an approximation of the empirical distribution of
the fitted weights, that is, the distribution of the maximum a posteriori (MAP) solutions reached by
SGD. If the distributions over SGD-fitted weights differ strongly from the usual isotropic Gaussian
prior, that provides evidence that those features should be incorporated into the prior. Hence, we can
use our insights by inspecting the empirical weight distribution to propose better-suited priors.

Formally, this procedure can be viewed as approximate human-in-the-loop expectation maximization
(EM). In particular, in expectation maximization, we alternate expectation (E) and maximization
(M) steps. In the expectation (E) step, we infer the posterior p(w|x, y, θt−1) over the weights, w,
given the parameters of the prior from the previous step, θt−1. In our case, we approximately infer
the weights using SGD. Then, in the maximization step, we compute new prior parameters θt, by
sampling weights w from the posterior computed in the E step, and maximizing the joint probability
of sampled weights and data. As y is independent of the prior parameters if the weights are known,
the M-step reduces to fitting a prior distribution to the weights sampled from the posterior, that is,

Lt(θ) = Ep(w|x,y,θt−1)[log p(y|x,w) + log p(w|θ)]
= Ep(w|x,y,θt−1)[log p(w|θ)] + const (2)

θt = arg maxLt(θ) . (3)

Intuitively, this procedure allows the prior (and therefore the posterior) to assign more probability
mass to the SGD solutions, which are known to work well in practice. This is also related to ideas
from empirical Bayes (Robbins, 1992), where the (few) hyperparameters of the prior are fit to the data,
and to recent ideas in PAC-Bayesian theory, where data-dependent priors have been shown to improve
generalization guarantees over data-independent ones (Rivasplata et al., 2020; Dziugaite et al., 2021).
While such approaches introduce a certain risk of overfitting (Ober et al., 2021), we would argue that
standard BNNs are typically thought to be underfitting (Neal, 1996; Wenzel et al., 2020a; Dusenberry
et al., 2020) and that we do not directly fit the prior parameters, but merely draw inspiration for the
choice of prior family from the qualitative shape of the empirical weight distributions.

We begin by considering whether the weights of FCNNs and CNNs are heavy-tailed, and move on
to look at correlational structure in the weights of CNNs and ResNets. Note that in the exploratory
experiments here, we used SGD to perform MAP inference with a uniform prior (that is, maximum
likelihood fitting). This avoids any prior assumptions obscuring interesting patterns in the inferred
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Figure 2: (a) Degrees of freedom for Student-t distributions fitted to the weights of a ResNet20
trained on CIFAR-10. The degrees of freedom get larger in deeper layers, implying that the weight
distributions become less heavy-tailed and more similar to Gaussians. The layers marked with
asterisks (*) are the first layers of their respective ResNet blocks. (b) Spatial covariance of the
weights within CNN filters for a three-hidden layer network trained on MNIST, normalized by the
number of channels. The weights correlate strongly with neighboring pixels, and anti-correlate (layer
1) or do not correlate (layer 2) with distant ones. Each delineated square shows the covariances of a
filter location (marked with ×) with all other locations.

weights. These patterns inspired our choice of priors, and we then evaluated these priors in BNNs,
showing that they improved classification performance (see Sec. 4).

3.1 FCNN WEIGHTS ARE HEAVY-TAILED

We trained an FCNN (Fig. 1, top) and a CNN (Fig. 1, middle) on MNIST (LeCun et al., 1998). The
FCNN is a three layer network with 100 hidden units per layer and ReLU nonlinearities. The CNN is
a three layer network, with two convolutional layers and one fully connected layer. The convolutional
layers have 64 channels and use 3 × 3 convolutions, followed by 2 × 2 max-pooling layers. All
layers use ReLU nonlinearities. Networks were trained with SGD for 450 epochs using a learning
rate schedule of 0.05, 0.005, and 0.0005 for 150 epochs each. We can see in Figure 1 that the weight
values of the FCNNs and CNNs follow a more heavy-tailed distribution than a Gaussian, with the
tails being reasonably well approximated by a Laplace distribution. This suggests that “true” BNN
priors might be more heavy-tailed than isotropic Gaussians.

Next, we did a similar analysis for a ResNet20 trained on CIFAR-10 (Krizhevsky, 2009) (Fig. 1,
bottom). Since this network had many layers, we quantified the degree of heavy-tailedness by fitting
the degrees of freedom parameter ν of a Student-t distribution. For ν →∞, the Student-t becomes
Gaussian, so large values of ν indicate that the weights are approximately Gaussian, whereas smaller
values indicate heavy-tailed behavior (see Sec. 4.1). We found that at lower layers, ν was small, so
the weights were somewhat heavy-tailed, whereas at higher layers, ν became much larger, so the
weights were approximately Gaussian (Fig. 2a).

These results are perhaps expected if we assume that the filters have (using neuroscience terminology)
“localized receptive fields”, like those in Olshausen & Field (1997). Such filters contain a large
number of near-zero weights outside the receptive field, with a number of very large weights inside
the receptive field (Sahani & Linden, 2003; Smyth et al., 2003), and thus will follow a heavy-tailed
distribution. As we get into the deeper layers of the networks, receptive fields are expected to become
larger, so this effect may be less relevant.

3.2 CNN WEIGHTS ARE SPATIALLY CORRELATED

In the second part of our empirical inspection of fitted weight distributions, we looked at spatial
correlations in CNN filters. In particular, we considered 9-dimensional vectors formed by the 3× 3
filters for every input and output channel. We studied our three-layer network trained on MNIST
and found strong correlations between nearby pixels, and lesser (layer 2) or even negative (layer 1)
correlations at more distant pixels (Fig. 2b). We found similar spatial correlations in a ResNet20
trained on CIFAR-10, across all layers, with correlation strength increasing as we move to later layers
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Figure 3: Spatial covariances for the convolutional weights of the layers of a ResNet-20, normalized
by the maximum variance for each layer, which is shown on the bottom right. We trained the network
with SGD on CIFAR-10 with data augmentation (10 times). Layer 1 is the closest to the input. The
first layer of every ResNet block is marked with an asterisk (*). We see that there are significant
covariances in all layers, but that their strength increases for later layers.

(Fig. 3). We found by far the strongest evidence of correlations spatially, that is, between weights
within the same convolutional filter. This could potentially be due to the smoothness and translation
equivariance properties of natural images (Simoncelli, 2009). However, we also found some evidence
for spatial correlations in the input layer of an FCNN (Fig. A.1 in the appendix), but no evidence for
correlations between the channels of a convolutional layer (Fig. A.5 in the appendix). Note though
that this methodology cannot find structured correlations between channels, except at the input and
output. This is because NN functions are invariant to permutations of channels (Sussmann, 1992;
MacKay, 1992; Bishop et al., 1995; Aitchison, 2020a; Aitchison et al., 2020).

These findings suggest that better priors could be designed by explicitly taking this correlation
structure into account. We hypothesize that multivariate distributions with non-diagonal covariance
matrices could be good candidates for convolutional layer priors, especially when the covariances are
large for neighboring pixels within the convolutional filters (see Sec. 4.3).

Additional evidence for the usefulness of correlated weights comes from the theory of infinitely
wide CNNs and ResNets. Novak et al. (2019) noticed that the effect of weight-sharing disappears
when infinite filters are used with isotropic priors. More recently, Garriga-Alonso & van der Wilk
(2021) showed that this effect can be avoided by using spatially correlated priors, leading to improved
performance. Our experiments investigate whether this prior is also useful in the finite-width case.

4 EMPIRICAL STUDY OF BAYESIAN NEURAL NETWORK PRIORS

We performed experiments on MNIST and on CIFAR-10. We compare Bayesian FCNNs, CNNs,
and ResNets on these tasks. For the BNN inference, we used Stochastic Gradient Markov Chain
Monte Carlo (SG-MCMC), in order to scale to large training datasets. To obtain posterior samples
that are close to the true posterior, we used an inference method that builds on the inference approach
used in Wenzel et al. (2020a), which has been shown to produce high-quality samples. In particular,
we combined the gradient-guided Monte Carlo (GG-MC) scheme from Garriga-Alonso & Fortuin
(2021) with the cyclical learning rate schedule from Zhang et al. (2019) and the preconditioning
and convergence diagnostics from Wenzel et al. (2020a). We ran each chain for 60 cycles of 45
epochs each, taking one sample at the end of each of the last five epochs of each cycle, thus yielding
300 samples after 2,700 epochs, out of which we discarded the first 50 samples as a burn-in. Per
temperature setting, dataset, model, and prior, we ran five such chains as replicates. Additional
experimental results can be found in Appendix A, details about the evaluation metrics in Appendix B,
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about the priors in Appendix C, and about the implementation in Appendix D. In the figures, we
generally include an SGD baseline for the predictive error, where it is often competitive with some
of the priors. For the likelihood, calibration, and OOD detection, the SGD baselines were out of
the plotting range and are therefore not shown. For completeness, we show them in Appendix A.4.
We show results for higher temperatures (T > 1) in Appendix A.6, for different prior variances
in Appendix A.7, and for different network architectures in Appendix A.8. Moreover, while we
focus on image classification tasks in this section, we provide results on UCI regression tasks in
Appendix A.9. We also show inference diagnostics highlighting the accuracy of our MCMC sampling
in Appendix A.10. Finally, we replicate our experiments on ResNets and CIFAR-10 for mean-field
variational inference (Blundell et al., 2015) in Appendix A.11.

4.1 PRIORS UNDER CONSIDERATION

We contrast the widely used isotropic Gaussian priors with heavy-tailed distributions, including the
Laplace and Student-t distributions, and with correlated Gaussian priors. We chose these distributions
based on our observations of the empirical weight distributions of SGD-trained networks (see Sec. 3)
and for their ease of implementation and optimization. Further details on the distributions and their
density functions can be found in Appendix C.

The isotropic Gaussian distribution (Gauss, 1809) is the de-facto standard for BNN priors in recent
work (e.g., Hernández-Lobato & Adams, 2015; Louizos & Welling, 2017; Dusenberry et al., 2020;
Wenzel et al., 2020a; Neal, 1992; Zhang et al., 2019; Osawa et al., 2019; Immer et al., 2021b; Lee
et al., 2017; Garriga-Alonso et al., 2019). However, its tails are relatively light compared to some
of the other distributions that we will consider and compared to the empirical weight distributions
described above. The Laplace distribution (Laplace, 1774), for instance, has heavier tails than the
Gaussian. It is often used in the context of (frequentist) lasso regression (Tibshirani, 1996). Similarly,
the Student-t distribution is also heavy-tailed. Moreover, it can be seen as a Gaussian scale-mixture,
where the scales are inverse-Gamma distributed (Helmert, 1875; Lüroth, 1876).

For our correlated Bayesian CNN priors, we use multivariate Gaussian priors and define the
covariance Σ to be block-diagonal, such that the covariance between weights in different filters is 0
and between weights in the same filter is given by a Matérn kernel (ν = 1/2) on the pixel distances.
Formally, for the weights wi,j and wi′,j′ in filters i and i′ and for pixels j and j′, the covariance is

cov(wi,j , wi′,j′) =

{
σ2 exp

(
−d(j,j′)

λ

)
if i = i′

0 otherwise
, (4)

where d(·, ·) is the Euclidean distance between pixel positions and we set σ = λ = 1. This kernel
was chosen to capture the decay with distance of spatial correlations (Fig. 3).

4.2 BAYESIAN FCNN PERFORMANCE WITH DIFFERENT PRIORS

Following our observations from the empirical weight distributions (Sec. 3.1), we hypothesized that
heavy-tailed priors should work better than Gaussian priors for Bayesian FCNNs. We tested this
hypothesis by performing BNN inference with the same network architecture as in Sec. 3, using
different priors. We report the predictive error and log likelihood on the MNIST test set. We follow
Ovadia et al. (2019) in reporting the calibration of the uncertainty estimates on rotated MNIST digits
and the out-of-distribution (OOD) detection accuracy on FashionMNIST (Xiao et al., 2017). For
more details about our evaluation metrics, see Appendix B.

We observe that the heavy-tailed priors indeed outperform the Gaussian prior in terms of test error
and test NLL in all cases, except for the Student-t distribution on MNIST at low temperatures
(Fig. 4). That said, calibration and OOD metrics are less clear, with heavy-tailed priors giving worse
calibration and roughly similar OOD detection on MNIST and better calibration but worse OOD
detection on FashionMNIST. Despite the unclear results on calibration and OOD detection, the error
and NLL performance improvement for heavy-tailed priors at T = 1 is considerable, and suggests
that Gaussian priors over the weights of FCNNs induce poor priors in the function space and inhibit
the posterior from assigning probability mass to high-likelihood solutions, such as the SGD solutions
analyzed above (Sec. 3). Finally, the cold posterior effect is removed—or even inverted—when
using heavy-tailed priors, which supports the hypothesis that it is caused by prior misspecification in
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Figure 4: Performances of fully connected BNNs with different priors on MNIST and FashionMNIST
(see Sec. 4.2). The heavy-tailed priors generally perform better, especially at higher temperatures,
and lead to a less pronounced cold posterior effect. Note the reversed y-axis for OOD detection on the
right to ensure that lower values are better in all plots. Shaded regions represent one standard error.
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Figure 5: Performances of convolutional BNNs with different priors on MNIST, FashionMNIST,
and CIFAR-10 (see Sec. 4.3). The (Fashion)MNIST experiments used CNNs, while the CIFAR-10
experiments used ResNet20. The correlated prior generally performs better than the isotropic ones,
but still exhibits a cold posterior effect, while the heavy-tailed priors reduce the cold posterior effect,
but yield a worse performance. Note the reversed y-axis for OOD detection on the right to ensure
that lower values are better in all plots. Shaded regions represent one standard error.

FCNNs. Note that the cold posterior effect is typically observed in terms of performance metrics
like error and NLL, and not calibration and OOD detection performance (Wenzel et al., 2020a). As
such, even with Gaussian priors, we do not necessarily expect calibration and OOD detection to
exhibit a cold posterior effect. Indeed, only calibration for FashionMNIST exhibits a cold posterior
effect, with calibration for MNIST and all OOD detection results exhibiting an inverted cold posterior
effect. Notably, we see in Appendix A.5 and Appendix A.7 that these observations generalize to
different activation functions and prior variances and in Appendix A.6 that warm posteriors (T > 1)
deteriorate the performance for all considered priors, such that for the heavy-tailed priors, T ≈ 1 is
indeed ideal.

4.3 BAYESIAN CNN AND RESNET PERFORMANCE WITH DIFFERENT PRIORS

We repeated the same experiment for Bayesian CNNs on MNIST and FashionMNIST (Fig. 5, first
two rows). Given our observations about SGD-trained weights (Sec. 3.1), we might again expect
heavy-tailed priors to outperform Gaussian priors. However, this is not the case: the Gaussian and
correlated Gaussian priors perform better in almost all cases, with the exception of calibration for

7



Published as a conference paper at ICLR 2022

FashionMNIST. Interestingly, the performance of different methods tends to be very similar at T = 1,
and to diverge for lower temperatures, with performance improving for Gaussian and correlated
Gaussian priors (indicating a cold posterior effect), and worsening for heavy-tailed priors, indicating
no cold posterior effect.

Our analysis of SGD-trained weights (Sec. 3.2) also suggested that introducing spatial correlations in
the prior (Sec. 4.1) might help. We observe that introducing correlations indeed improves performance
compared to the isotropic Gaussian prior (Fig. 5). Notably, the performance improvement is small
for CNNs trained on MNIST and FashionMNIST, and for ResNets trained on CIFAR-10 at higher
temperatures, but more considerable for ResNets at lower temperatures. As such, correlated priors
actually increase the magnitude of the cold posterior effect in ResNets trained on CIFAR-10. This
might be because ResNets trained at very low temperatures on CIFAR-10 have a tendency to overfit,
and imposing the prior helps to mitigate this overfitting. To support this hypothesis, we indeed see
that correlated priors considerably improve over all other methods in terms of calibration and OOD
detection at low temperatures for ResNets trained on CIFAR-10.

To reiterate a point raised in Sec. 4.2, the original cold posterior paper (Wenzel et al., 2020a)
considered only predictive performance (error and likelihood), and not other measures of uncertainty
such as calibration and OOD detection. Indeed, we see different effects of temperature on these
measures, with calibration improving for FashionMNIST at lower temperatures, but worsening for
MNIST and CIFAR-10. At the same time, we see performance at OOD detection worsen at lower
temperatures in the smaller CNN model trained on MNIST and FashionMNIST, but increase at lower
temperatures in the ResNet trained on CIFAR-10. These results are consistent with other observations
that measures of uncertainty do not necessarily correlate with predictive performance (Ovadia et al.,
2019; Izmailov et al., 2021), and indicate that the cold posterior effect is a complex phenomenon that
demands careful future investigation. Again, we see in Appendix A.5 and Appendix A.7 that these
observations generalize to different activation functions and prior variances and in Appendix A.6 that
warm posteriors (T > 1) deteriorate the performance for all considered priors.

In practice, models on this dataset are often trained using data augmentation (as is our model in Fig. 5).
While this does indeed improve the performance (Fig. A.11 in the appendix), it also strengthens
the cold posterior effect. When we do not use data augmentation, the cold posterior effect (at
least between T = 1 and lower temperatures) is almost entirely eliminated (see Fig. A.11 in the
appendix and Wenzel et al., 2020a; Izmailov et al., 2021). This observation raises the question of why
data augmentation drives the cold posterior effect. Given that data augmentation adds terms to the
likelihood while leaving the prior unchanged, we could expect that the problem is in the likelihood, as
was recently argued by Aitchison (2020b). On the other hand, van der Wilk et al. (2018) argued that
treating synthetic augmented data as extra datapoints for the purposes of the likelihood is incorrect
from a Bayesian point of view. Instead, they express data augmentation in the prior, by constraining
the classification functions to be invariant to certain transformations. More investigation is hence
needed into how data augmentation and the cold posterior effect relate.

5 RELATED WORK

Empirical analysis of weight distributions. There is some history in neuroscience of analysing
the statistics of data to inform inductive priors for learning algorithms, especially when it comes to
vision (Simoncelli, 2009). For instance, it has been noted that correlations help in modeling natural
images (Srivastava et al., 2003), as well as sparsity in the parameters (Smyth et al., 2003; Sahani &
Linden, 2003). In the context of machine learning, the empirical weight distributions of standard
neural networks have also been studied before (Bellido & Fiesler, 1993; Go & Lee, 1999), including
the insight that SGD can produce heavy-tailed weights (Gurbuzbalaban & Simsekli, 2020), but these
works have not systematically compared different architectures and did not use their insights to
inform Bayesian prior choices.

BNNs in practice. Since the inception of Bayesian neural networks, scholars have thought about
choosing good priors for them, including hierarchical (MacKay, 1992) and heavy-tailed ones (Neal,
1996). In the context of infinite-width limits of such networks (Lee et al., 2017; Matthews et al., 2018;
Garriga-Alonso et al., 2019; Yang, 2019; Tsuchida et al., 2019) it has also been shown that networks
with very heavy-tailed (i.e., infinite variance) priors have different properties from finite-variance
priors (Neal, 1996; Peluchetti et al., 2020). However, most modern applications of BNNs still relied
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on simple Gaussian priors. Although a few different priors have been proposed for BNNs, these
were mostly designed for specific tasks (Atanov et al., 2018; Ghosh & Doshi-Velez, 2017; Overweg
et al., 2019; Nalisnick, 2018; Cui et al., 2020; Hafner et al., 2020) or relied heavily on non-standard
inference methods (Sun et al., 2019; Ma et al., 2019; Karaletsos & Bui, 2020; Pearce et al., 2020).
Moreover, while many interesting distributions have been proposed as variational posteriors for BNNs
(Louizos & Welling, 2017; Swiatkowski et al., 2020; Dusenberry et al., 2020; Ober & Aitchison,
2020; Aitchison et al., 2020), these approaches have still used Gaussian priors. Others use a non-
Gaussian prior, but approximate the posterior with a diagonal Gaussian (Blundell et al., 2015; Ghosh
& Doshi-Velez, 2017; Nalisnick et al., 2015), somewhat limiting the prior’s effect. Another BNN
posterior approximation is dropout (Gal & Ghahramani, 2016; Kingma et al., 2015), which is often
poorly calibrated (Foong et al., 2019), but can also be seen to induce a scale-mixture prior, similar to
our heavy-tailed priors (Molchanov et al., 2017).

BNN priors. Finally, previous work has investigated the performance of neural network priors chosen
without reference to the empirical distributions of SGD-trained networks (Blundell et al., 2015; Ghosh
& Doshi-Velez, 2017; Wu et al., 2018; Atanov et al., 2018; Nalisnick, 2018; Overweg et al., 2019;
Farquhar et al., 2019; Cui et al., 2020; Rothfuss et al., 2020; Hafner et al., 2020; Matsubara et al.,
2020; Tran et al., 2020; Ober & Aitchison, 2020; Garriga-Alonso & van der Wilk, 2021; Fortuin,
2021; Immer et al., 2021a). While these priors might in certain circumstances offer performance
improvements, they did not offer a recipe for finding potentially valuable features to incorporate into
the weight priors. In contrast, we offer such a recipe by examining the distribution of weights trained
under a uniform prior with SGD. Importantly, unlike prior work, we use SG-MCMC with carefully
evaluated convergence metrics and systematically address the cold posterior effect.

Contemporaneous work2 (Izmailov et al., 2021) compared gold-standard HMC inference with the
more practical cyclical SG-MCMC used in our work. They confirmed that cyclical SG-MCMC
methods indeed have high-fidelity to the true posterior, and interestingly show that heavy-tailed priors
offer slight performance improvements for language modeling tasks (though they do not assess the
interaction of the cold posterior effect with these priors).

6 CONCLUSION

We consider empirical weight distributions in non-Bayesian networks trained using SGD, finding
that FCNNs displayed heavy-tailed weight distributions, and CNNs and ResNets displayed spatial
correlations in the convolutional filters. We therefore tested the performance of these priors and their
interaction with the cold posterior effect. Indeed, we found that these priors improved performance,
but their impact on the cold posterior effect was more complex, with heavy-tailed priors in FCNNs
eliminating the cold posterior effect, correlated priors in CNNs trained on MNIST and FashionMNIST
leaving the cold posterior largely unchanged, and correlated priors in ResNets trained on CIFAR-10
actually increasing the cold posterior effect, as they yield much larger performance improvements
at lower temperatures. Importantly though, we do not expect there to be one “universal” prior that
improves performance in all architectures and all tasks. The best prior is almost certain to be highly
task- and architecture-dependent, and indeed we found that heavy-tailed priors offer little or no
benefits for regression on UCI datasets (Sec. A.9).

Thus, we can conclude that isotropic Gaussian priors are often non-optimal, and that it is worth
exploring other priors more generally (as always though, the correct prior will heavily depend on the
architecture and dataset). However, it is difficult to come to any strong conclusions regarding the
origin of the cold posterior effect. At least in FCNNs, it does indeed appear that a misspecified prior
can cause the cold posterior effect. However, in perhaps more relevant large-scale image models, we
found that better (correlated) priors actually increase the cold posterior effect, which is consistent
with other hypotheses, such as a misspecified likelihood (Aitchison, 2020b), though of course we
cannot rule out that there is a better prior that eliminates the cold posterior effect that we did not
consider. We hope that our PyTorch library for BNN inference with different priors will catalyze
future research efforts in this area and will also be useful on real-world tasks.

2released on arXiv two months after ours
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 COVARIANCE MATRICES OF FCNN, CNN AND RESNET

Here we report the full covariance matrices for the layers that were analyzed above (Sec. 3.2). We
display the covariances for the FCNN for layer 1 (Fig. A.1), layer 2 (Fig. A.2) and layer 3 (Fig. A.3).
The only discernable structure is in the first layer, presumably because the weights from neighboring
pixels will be correlated. The other plots are less smooth than an empirical covariance matrix from an
isotropic Gaussian (left image of every pair), but tend to have no discernible structure.

Next, we give the covariances of CNN weights in layer 1 (Fig. A.4) and layer 2 (Fig. A.5). We have
omitted layer 3 of the CNN because it is just a fully connected layer and also showed no interesting
structure.

Finally, Fig. A.6 (left) measures the amount of covariance of every layer in the ResNet. We fit the
lengthscale of a Gaussian distribution with squared exponential kernel, on the spatial correlations of
the convolutional filters. The right-hand figure is the same as Fig. 2a.

A.2 EMPIRICAL OFF-DIAGONAL COVARIANCES

We report results for the distributions of off-diagonal covariances for the respective second layers
of our FCNN and CNN in Figure A.7. The empirical distribution of off-diagonal elements in the
covariance matrices is shown as a histogram, overlayed with a kernel density estimate of the expected
distribution if the weights were samples from an isotropic Gaussian. We see that the empirical
covariance distributions are generally more heavy-tailed than the ideal ones, that is, the empirical
weights generally have larger covariances than would be expected from isotropic Gaussian weights.
Note that, as observed above, the strongest covariances by far are found spatially in the CNN weights,
that is, between weights within the same CNN filter. We report the same results for the other layers
in the following. The FCNN results are shown in Figures A.8 and A.9 and the CNN results in
Figure A.10.

A.3 THE INFLUENCE OF DATA AUGMENTATION ON THE COLD POSTERIOR EFFECT

When running the CIFAR-10 experiments with Bayesian ResNets with and without data augmentation,
we find that data augmentation seems to significantly increase the cold posterior effect (Fig. A.11).
Moreover, data augmentation seems to increase the performance of the models a lot at colder
temperatures, but not at the true Bayes posterior T = 1. This suggests that data augmentation can
also be one of the reasons for the cold posterior effect, as already hypothesized by Wenzel et al.
(2020a) and Aitchison (2020b).

A.4 SGD BASELINES

In terms of likelihood, calibration, and OOD detection, almost all our BNN models consistently
outperformed the SGD baselines. The results including SGD are shown for FCNNs in Figure A.12,
for CNNs in Figure A.13, and for ResNets in Figure A.14.

A.5 ALTERNATIVE ACTIVATION FUNCTIONS

We repeated the experiments on MNIST with Bayesian FCNNs and CNNs and replaced the ReLU
activation functions from Figure 4 and Figure 5 with sigmoid (see Fig. A.15) and tanh (see Fig. A.16)
activations respectively. We observe that while the performances are overall worse than with ReLU
activations (as is generally expected), the effects of the different priors are qualitatively very similar.

A.6 HIGHER TEMPERATURES

In the main body of the paper, we followed Wenzel et al. (2020a) in showing only posteriors with
temperatures T ≤ 1, because we were interested in studying cold posteriors. Here, we also show
results for warm posteriors, that is, T > 1. We see in Figure A.17 and Figure A.18 that these
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Figure A.1: FCNN layer 1 empirical covariances of the weights, trained with SGD on MNIST. We can
see correlations in the spatial direction in the weights of the input layer (left). In the other directions,
the covariance matrix is less smooth than we would expect from an isotropic Gaussian draw of the
same size (left matrix of every pair), but otherwise has no discernible structure. This suggests that the
weights are not isotropic Gaussian.
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Figure A.2: FCNN layer 2 empirical covariances of the weights, trained with SGD on MNIST. The
covariance matrix is less smooth than we would expect from an isotropic Gaussian draw, but has no
discernible structure.
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Figure A.3: FCNN layer 3 empirical covariances of the weights, trained with SGD on MNIST. The
covariance matrix is less smooth than we would expect from an isotropic Gaussian draw, but has no
discernible structure.
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Figure A.4: CNN layer 1 empirical covariance of the weights, trained with SGD on MNIST. The
input (also spatial) direction has correlations, also shown in Figure 2b. The output direction has no
discernible structure.

0 37 74 11
1

14
8

18
5

22
2

25
9

29
6

33
3

37
0

40
7

44
4

48
1

51
8

55
5

gaussian

0
37
74

111
148
185
222
259
296
333
370
407
444
481
518
555

0 37 74 11
1

14
8

18
5

22
2

25
9

29
6

33
3

37
0

40
7

44
4

48
1

51
8

55
5

empirical

0
37
74

111
148
185
222
259
296
333
370
407
444
481
518
555

0.000

0.002

0.004

0.006

(a) Input covariance

0 5 10 15 20 25 30 35 40 45 50 55 60
gaussian

0
5

10
15

20
25

30
35

40
45

50
55

60

0 5 10 15 20 25 30 35 40 45 50 55 60
empirical

0
5

10
15

20
25

30
35

40
45

50
55

60

0.000

0.001

0.002

0.003

0.004

0.005

0.006

(b) Output covariance

Figure A.5: CNN layer 2 empirical covariance of the weights, trained with SGD on MNIST. The input
direction is less smooth than the isotropic Gaussian, and some low-rank structures can be observed. It
should display the spatial correlation of Figure 2b. The output direction has no discernible structure.

warm posteriors generally do not improve the performance and that hence some of the priors (e.g.,
heavy-tailed priors in FCNNs) do indeed achieve their optimal performance for T ≈ 1.

A.7 DIFFERENT PRIOR VARIANCES

In the main text, we use models where the prior variance is chosen according to the He initialization
(He et al., 2016), which is motivated by the conservation of the activation norm across the depth of
the networks. Here, we see in Figures A.19, A.20, A.21, A.22, and A.23 that our main observations
regarding the ordering of the different priors and the cold posterior effect still hold, even for different
prior variances (in this case, four times larger and smaller than the He variance).

A.8 DIFFERENT FCNN ARCHITECTURES

In the main text, we use FCNN models with three layers. Here, we see in Figure A.24 that our main
observations regarding the ordering of the different priors and the cold posterior effect still hold, even
for different architectures (in this case, between 2 and 4 layers).

A.9 UCI REGRESSION

While the experiments in the main paper focus on image classification, we also performed BNN
experiments on UCI regression tasks. The architecture is a 3-layer FCNN, the hidden layers are 64
units wide. We run GGMC for 30,000 epochs without minibatching on “boston”, “energy”, “yacht”,
and “wine”, discarding runs where the potential diverges. For the other datasets, which are larger, we
run 3000 epochs, also without minibatching. The learning rate is a flat 5 · 10−5, and we do not use a
cosine schedule.

Even with full batch MCMC, it is clear that the dynamics for regression networks are much less
stable, especially at lower temperatures (which have a “sharper” potential landscape). Figure A.25
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Figure A.6: Left: fitted lengthscale of a multivariate Gaussian with a squared exponential kernel (see
eq. 4) to the data of Figure 3. All the entries of the SE covariance are positive, so this cannot capture
all the features of the data, which has negative empirical covariance. Right: fitted degrees of freedom
of a multivariate t-distribution, to same data. The empirical covariance was used in this case. The
fitting criterion is the log-likelihood of the data. This is the same plot as Figure 2a.
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Figure A.7: Distributions of off-diagonal elements in the empirical covariances of the layer 2 weights
of FCNNs and CNNs trained with SGD on MNIST. The empirical distributions are plotted as
histograms, while the idealized random Gaussian weights are overlaid in orange. We see that the
covariances of the empirical weights are more heavy-tailed than for the Gaussian weights.
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Figure A.8: Distributions of off-diagonal elements in the empirical covariances of the weights of the
FCNN in layers 1 and 3. The empirical distributions are plotted as histograms, while the idealized
random Gaussian weights are overlaid in orange. We see that the covariances of the empirical weights
are more heavy-tailed than for the Gaussian weights.
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Figure A.9: Distributions of singular values of the weight matrices of the FCNN in layers 1 and 3.
We see that the spectra of the empirical weights decay faster than the ones of the Gaussian weights.
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shows that T = 1 is best for all datasets, in terms of the median mean squared error (MSE) as well as
the quantiles and outliers. The priors are generally reasonably close in performance, such that it is
harder in this case to strongly prescribe a certain prior choice. Of course, it is absolutely expect that
different priors will be appropriate for different problems, especially when those problems are quite
so distinct as regression and image classification.

The split-R̂ diagnostics are considerably higher for regression (Table A.1) than for the classification
setting (Sec. A.10.2, for which the diagnostics look very good). Thus, the results here should be
taken with a grain of salt. They are representative of how GGMC-trained BNNs behave at each of
these temperatures and priors, but the results may be different for other (more accurate) ways of
approximating the posterior. However, one thing is clear: UCI regression datasets exhibit no cold
posterior effect, and for lower temperatures, the GGMC chains are less stable.

Table A.1: Diagnostics and median performance at temperature T = 1 for every prior and UCI
dataset. The split-R̂ is generally high, which shows the chain has not fully explored the posterior.
The best prior (in terms of median mean squared error, MSE) for each dataset is bolded, no prior is
better overall. Additionally, each prior’s performance is very similar for each dataset, which implies
that the choice of prior does not matter much here (at least among these three).

split-R̂ diagnostic Median MSE
laplace gaussian student-t laplace gaussian student-t

boston 1.984856 1.664200 2.164047 0.051899 0.061199 0.056180
concrete 1.923906 1.960722 1.654736 0.962948 0.802203 0.728850
energy 2.026471 1.939554 2.309070 0.000759 0.000705 0.001500
kin8nm 1.523657 1.795404 1.609185 0.976947 1.520133 0.958203
naval 1.506857 1.700794 1.583324 1.241157 1.146679 1.679176
power 1.666368 1.738743 2.471113 0.156302 0.286625 0.148974
protein 1.574833 2.037037 1.510434 1.151049 1.296588 1.259395
wine 2.133220 1.936430 1.844044 0.674713 0.617795 0.604185
yacht 2.034536 1.880282 2.414279 0.000612 0.000559 0.000599

A.10 INFERENCE DIAGNOSTICS

One of the main goals of our work is to make statements about the true BNN posteriors that are as
accurate as possible. To this end, we closely monitored the accuracy of our inference algorithm. In
order to check the correctness of our SG-MCMC inference, we estimated the temperature of the
sampler using the two diagnostics from Wenzel et al. (2020a), namely the kinetic temperature and the
configurational temperature.

The kinetic temperature is derived from the sampler’s momentum m ∈ Rd. The inner product
1
dm

TM−1m, for the (in this case diagonal) mass matrixM , is an estimate of the scaled variance of
the momenta. If the sampler is correct it should, in expectation, be equal to the desired temperature.
The configurational temperature is slightly more involved and is discussed in Appendix A.10.1.

As an example, we show the estimated kinetic temperatures for our ResNet experiment on CIFAR-10
in Figure A.26. The desired temperature is shown as a dotted horizontal line. The kinetic temperatures
for the other experiments look qualitatively similar and are shown in Appendix A.10.1. We see that
the kinetic temperatures generally agree well with the true temperatures, so the sampler works as
expected there. In contrast, the configurational temperature estimates can be somewhat larger than T ,
especially when T is small (see Appendix A.10.1). This suggests that there could be small inference
inaccuracies at low temperatures. However, these inaccuracies are small, and the configurational
temperature certainly decreases as T decreases, so there should be no impact on the overall trends.

We also computed the rank-normalized split-R̂ diagnostic Vehtari et al. (2021), which measures
how well a collection of independent Markov chains have mixed. The split-R̂ is related to the ratio
of between-chain and within-chain variances, and should be as close to 1 as possible. Given the
complexity of neural network weight posteriors, we report the R̂ for the quantities we are interested
in estimating (the y-values in Figs. 4 and 5). For every considered model and function, Table A.2
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contains the worst (highest) R̂ estimate we obtained across all priors. Appendix A.10.2 contains a
more detailed explanation and empirical R̂ estimates for different priors.

We can see that, for most experiments, the chains have mixed sufficiently. Only for the larger models
(CIFAR10 ResNets)—and, to a lesser extent, Student-t FCNNs—the chains have mixed less well.
Interestingly, for all convolutional networks, the correlated prior mixes best. This further supports its
suitability as a prior for image data and CNNs.

A.10.1 KINETIC AND CONFIGURATIONAL TEMPERATURE ESTIMATES

As described above, we use two temperature diagnostics (inspired by Wenzel et al. (2020a)): the
kinetic temperature and the configurational temperature. The kinetic temperature is derived from the
sampler’s momentumm ∈ Rd. The inner product 1

dm
TM−1m, for the (in this case diagonal) mass

matrix M , is an estimate of the scaled variance of the momenta. It is always positive and should,
in expectation, be equal to the desired temperature. In contrast, the configurational temperature is
1
dθ

T∇H(θ,m), where H(θ,m) = − log p(θ | D) + 1
2m

TM−1m+ const is the Hamiltonian. In
expectation, this should also equal T . Unlike the kinetic temperature estimator, the configurational
temperature estimator is not guaranteed to be always positive, even though the temperature is always
positive. Using subsets of a parameter or momentum also yields estimators of the temperature.

In both cases, we estimate the mean and its standard error from a weighted average of parameters
or momenta. That is, for each separate NN weight matrix or bias vector, we estimate its kinetic
and configurational temperature using the expressions above. Then, we take their average and
standard-deviation, weighted by the number of elements in that parameter matrix or vector.

We show the estimated temperatures of all our BNN experiments in Figures A.27, A.28, A.29, A.30,
A.31, and A.32, as a mean ± one standard error. The desired temperature is shown as a dotted
horizontal line. The kinetic temperatures generally agree well with the true temperatures, so our
sampler works as expected there.

The configurational temperature estimates have a higher variance than the kinetic ones. Especially
in the regime of small true temperatures, they often tend to slightly over- or underestimate the
temperature. This is not surprising, since at low temperatures the noise in the gradients is dominated
by the minibatching as opposed to the temperature noise. Correctly estimating the temperature from
the gradients thus becomes harder.

Note that while the relative deviations can seem large in this regime, the absolute deviations are still
quite small. Note also that while the conditioned momenta are strictly positive, the inner products
between gradients and parameters can become negative in principle, which is why at low temperatures
(close to 0) the configurational temperature estimates might sometimes be a bit below 0. Overall, the
sampler is still within the tolerance levels of working correctly here, but there could be some small
inaccuracies at low temperatures. However, judging from the shape of the actual tempering curves
(see Sec. 4), the measures usually change more in the higher temperature regimes than in the lower
ones, so there is no strong reason to believe that the inference at low temperatures was too inaccurate
to support the results.

A.10.2 BETWEEN-CHAIN AND WITHIN-CHAIN VARIANCES

The split-R̂ estimator measures the difference between posterior variance estimate in each chain,
and between chains. It is roughly the square root of the between-chain variance divided by the
within-chain variance (Vehtari et al., 2021, eq. 1–3). Its value is usually not smaller than 1, and
a chain that has mixed well should have a value no larger than R̂ ≤ 1.01 (Vehtari et al., 2021).
(Previously, a threshold of 1.1 was considered enough (Gelman et al., 2013, Section 11.5).)

Neural network functional forms have a large number of parameter symmetries (for example, per-
mutation invariance). Accordingly, the true BNN posterior should sample from all these modified
parameters with probability proportional to their prior. However, for prediction purposes, it does not
matter if the parameters are stuck in a single “permutation” and do not mix.

Therefore, for the purposes of this paper, we calculate the R̂ diagnostic not directly on the parameters,
but on symmetry-invariant functions of the parameters. In practice, this amounts to evaluating the
NN on a test set, and calculating the R̂ diagnostic for functions of the logits and the prior probability.
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Table A.3: Estimated R̂ values for the different models and priors with respect to the loss.

Gaussian Laplace Student-t Correlated

MNIST FCNN 1.000 1.001 1.006 -
FashionMNIST FCNN 1.000 1.000 1.007 -
MNIST CNN 1.000 1.000 1.002 1.000
FashionMNIST CNN 1.001 1.003 1.009 1.001
CIFAR10 ResNet 1.115 1.115 1.125 1.109
CIFAR10 ResNet (augmented) 1.057 1.054 1.047 1.066

Table A.4: Estimated R̂ values for the different models and priors with respect to the potential.

Gaussian Laplace Student-t Correlated

MNIST FCNN 1.000 1.002 1.023 -
FashionMNIST FCNN 1.000 1.000 1.013 -
MNIST CNN 1.000 1.000 1.001 1.000
FashionMNIST CNN 1.000 1.002 1.007 1.000
CIFAR10 ResNet 1.166 1.147 1.171 1.139
CIFAR10 ResNet (augmented) 1.085 1.083 1.073 1.090

Tables A.3, A.4 and A.5 display the value of the diagnostic R̂ for different such functions: the
log-likelihood, the unnormalized log-posterior (potential), and the log-prior, respectively.

We employ the rank-normalized R̂ estimator (Vehtari et al., 2021, eq. 14) as implemented in the
ArviZ library (Kumar et al., 2019).

The diagnostics are generally favorable (R̂ ≤ 1.01, mostly) for smaller NNs (FCNNs and 2-layer
CNNs) and for MNIST. Within the ResNets applied to CIFAR10, the prior distribution with the R̂
closer to 1 is the correlated Gaussian. This provides evidence that inference is easier in the case of
the correlated Gaussian, and therefore that the correlated Gaussian is a better prior (Gelman et al.,
2013; Yang et al., 2015). This is because if the prior is good, the data are plausible simulations from
it; so the posterior is close to the prior and will be easy to approximate.

A.11 VARIATIONAL INFERENCE

In this paper, our experimental results have focused on inference with SG-MCMC, as we wished to
obtain the most reliable posterior possible. However, non-sampling approaches such as variational
inference (VI; e.g., Graves, 2011; Blundell et al., 2015; Dusenberry et al., 2020) and Laplace’s
method (e.g. Immer et al., 2021b) remain popular in the literature. Therefore, it might be valuable
to understand the effect of the prior on the performance of these methods. In this section, we focus
on variational inference (Wainwright et al., 2008), in particular the mean-field VI (MFVI) approach
(Graves, 2011; Blundell et al., 2015).

Table A.5: Estimated R̂ values for the different models and priors with respect to the log prior.

Gaussian Laplace Student-t Correlated

MNIST FCNN 1.000 1.005 1.101 -
FashionMNIST FCNN 1.000 1.003 1.104 -
MNIST CNN 1.001 1.002 1.013 1.001
FashionMNIST CNN 1.002 1.006 1.013 1.001
CIFAR10 ResNet 1.404 1.232 1.366 1.195
CIFAR10 ResNet (augmented) 1.274 1.346 1.264 1.198
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Variational inference attempts to approximate the true intractable posterior p(w|x, y) by a tractable
approximate posterior q(w) from an approximating family Q by maximizing the evidence lower
bound (ELBO):

q∗(w) = arg max
q∈Q

L(q;λ) = arg max
q∈Q

Eq[log p(y|x,w)]− λKL(q(w)||p(w)). (5)

For λ = 1, the ELBO is a true lower bound to the marginal likelihood of the model, and the
true posterior is recovered as the optimal solution when Q is the family of all distributions over
w. For MFVI, we restrict the approximating distribution to be a fully-factorized Gaussian, that is,
q(w) =

∏
iN (wi|µi, σ2

i ), so that there is no correlation structure in the approximate posterior. The
variational parameters {µi, σi} can then be optimized using the reparameterization trick (Kingma &
Welling, 2014; Rezende et al., 2014).

As with (SG-)MCMC, we can temper the posterior by adjusting λ, with 0 < λ < 1 resulting in a
“cold posterior”. However, we note that apart from the case λ = T = 1, where we target the true
posterior in both VI and MCMC, there is no straightforward, direct relationship between the cold
posterior obtained in Eq. 1 and that obtained from Eq. 5 (for discussion see Wenzel et al. (2020a),
particularly App. E).

A.11.1 EXPERIMENTAL DETAILS AND RESULTS

We replicate the experiment in Sec. 4.3 for the ResNet architecture using CIFAR-10. We train each
model for 1,000 epochs on batches of 500 augmented datapoints, using Adam (Kingma & Ba, 2015)
with an initial learning rate of 0.01, which we reduce to 0.001 after 500 epochs. We are able to use
these relatively high learning rates because we follow the parameterization introduced in Ober &
Aitchison (2020); we also follow their step-wise tempering scheme for the first 100 epochs, which
gradually increases the influence of the KL term. We use 1 sample from the approximate posterior
for training and 10 samples for testing. Finally, we again run 5 replicates for each model.

We plot the results of this experiment in Figure A.33. We immediately make a few observations.
First, the performance of MFVI is far worse than that of SG-MCMC on all metrics with the exception
of calibration. We note that the performance at λ = 1 is particularly bad, which reflects the well-
documented behavior that tempering with λ < 1 is required for decent performance with MFVI
(e.g., Wenzel et al., 2020a). Finally, it does not seem that the choice of prior has much effect on
the performance of MFVI, as all priors perform similarly. We hypothesize that this is largely due
to the mean-field assumption imposed on the approximate posterior, which severely restricts its
expressiveness and can lead to pathological behavior (Foong et al., 2019; Trippe & Turner, 2018).
The mean-field assumption leads to a poor approximation to the true posterior, and therefore will not
be as influenced by the choice of prior as SG-MCMC. However, we leave a full investigation of these
effects to future work.

B EVALUATION METRICS

When using BNNs, practitioners might care about different outcomes. In some applications, the
predictive accuracy might be the only metric of interest, while in other applications calibrated
uncertainty estimates could be crucial. We therefore use a range of different metrics in our experiments
in order to highlight the respective strengths and weaknesses of different priors. Moreover, we
compare the priors to the empirical weight distributions of conventionally trained networks.

B.1 EMPIRICAL TEST PERFORMANCE

Test error The test error is probably the most widely used metric in supervised learning. It
intuitively measures the performance of the model on a held-out test set and is often seen as an
empirical approximation to the true generalization error. While it is often used for model selection, it
comes with the risk of overfitting to the used test set (Bishop, 2006) and in the case of BNNs also
fails to account for the predictive variance of the posterior.

Test log-likelihood The predictive log-likelihood also requires a test set for its evaluation, but it
takes the predictive posterior variance into account. It can thus offer a built-in tradeoff between the
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mean fit and the quality of the uncertainty estimates. Moreover, it is a proper scoring rule (Gneiting
& Raftery, 2007).

B.2 UNCERTAINTY ESTIMATES

Uncertainty calibration Bayesian methods are often chosen for their superior uncertainty esti-
mates, so many users of BNNs will not be satisfied with only fitting the posterior mean well. The
calibration measures how well the uncertainty estimates of the model correlate with predictive perfor-
mance. Intuitively, when the model is for instance 70 % certain about a prediction, this prediction
should be correct with 70 % probability. Many deep learning models are not well calibrated, because
they are often overconfident and assign too low uncertainties to their predictions (Ovadia et al., 2019;
Wenzel et al., 2020b). When the models are supposed to be used in safety-critical scenarios, it is
often crucial to be able to tell when they encounter an input that they are not certain about (Kendall &
Gal, 2017). For these applications, metrics such as the expected calibration error (Naeini et al., 2015)
might be the most important criteria.

Out-of-distribution detection The out-of-distribution (OOD) detection measures how well one
can tell in-distribution and out-of-distribution examples apart based on the uncertainties. This is
important when we believe that the model might be deployed under some degree of dataset shift. In
this case, the model should be able to detect these OOD examples and be able to reject them, that is,
refuse to make a prediction on them.

C DETAILS ABOUT THE CONSIDERED PRIORS

We contrast the widely used isotropic Gaussian priors with heavy-tailed distributions, including the
Laplace and Student-t distributions, and with correlated Gaussian priors. We chose these distributions
based on our observations of the empirical weight distributions of SGD-trained networks (see Sec. 3)
and for their ease of implementation and optimization. We now give a quick overview over these
different distributions and their most salient properties.

Gaussian. The isotropic Gaussian distribution (Gauss, 1809) is the de-facto standard for BNN
priors in recent work (e.g., Hernández-Lobato & Adams, 2015; Louizos & Welling, 2017; Dusenberry
et al., 2020; Wenzel et al., 2020a; Neal, 1992; Zhang et al., 2019; Osawa et al., 2019; Immer et al.,
2021b; Lee et al., 2017; Garriga-Alonso et al., 2019). Its probability density function (PDF) is

p(x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
with mean µ and standard deviation σ. It is attractive, because it is the central limit of all finite-
variance distributions (Billingsley, 1961) and the maximum entropy distribution for a given mean and
scale (Bishop, 2006). However, its tails are relatively light compared to some of the other distributions
that we will consider.

Laplace. The Laplace distribution (Laplace, 1774) has heavier tails than the Gaussian and is
discontinuous at x = µ. Its PDF is

p(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
with mean µ and scale b. It is often used in the context of (frequentist) lasso regression (Tibshirani,
1996).

Student-t. The Student-t distribution characterizes the mean of a finite number of samples from a
Gaussian distribution (Student, 1908). Its PDF is

p(x;µ, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
νπ

(
1 +

(x− µ)2

ν

)− ν+1
2

,

where µ is the mean, Γ is the gamma function, and ν are the degrees of freedom. The Student-t also
arises as the marginal distribution over Gaussians with an inverse-Gamma prior over the variances
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(Helmert, 1875; Lüroth, 1876). For ν →∞, the Student-t distribution approaches the Gaussian. For
any finite ν it has heavier tails than the Gaussian. Its k-th moment is only finite for ν > k. The ν
parameter thus offers a convenient way to adjust the heaviness of the tails. Note that it also controls
the variance of the distribution, which is ν/(ν − 2) (or else undefined). Unless otherwise stated, we
set ν = 3 in our experiments, such that the distribution has rather heavy tails, while still having a
finite mean and variance.

Multivariate Gaussian with Matérn covariance. For our correlated Bayesian CNN priors, we
use multivariate Gaussian priors

p(x;µ,Σ) =
1√

(2π)d det Σ
exp

(
−1

2
‖x− µ‖2Σ−1

)
with ‖x− µ‖2Σ−1 = (x− µ)>Σ−1(x− µ) ,

where d is the dimensionality.

In our experiments, we set µ = 0 and define the covariance Σ to be block-diagonal, such that the
covariance between weights in different filters is 0 and between weights in the same filter is given
by a Matérn kernel (ν = 1/2) on the pixel distances, as applied by Garriga-Alonso & van der Wilk
(2021) in the infinite-width case. Formally, for the weights wi,j and wi′,j′ in filters i and i′ and for
pixels j and j′, the covariance is

cov(wi,j , wi′,j′) =

{
σ2 exp

(
−d(j,j′)

λ

)
if i = i′

0 else
, (6)

where d(·, ·) is the Euclidean distance in pixel space and we set σ = λ = 1.

D IMPLEMENTATION DETAILS

Training setup. For all the MNIST BNN experiments, we perform 60 cycles of SG-MCMC (Zhang
et al., 2019) with 45 epochs each. We draw one sample each at the end of the respective last five
epochs of each cycle. From these 300 samples, we discard the first 50 as a burn-in of the chain.
Moreover, in each cycle, we only add Langevin noise in the last 15 epochs (similar to Zhang et al.
(2019)). We start each cycle with a learning rate of 0.01 and decay to 0 using a cosine schedule. We
use a mini-batch size of 128.

For the SGD experiments yielding the empirical weight distributions, we use the same settings, but
do not add any Langevin noise. We also do not use any cycles and just train the networks once to
convergence, which in our case took 600 epochs.

We ran the experiments on GPUs of the type NVIDIA GeForce GTX 1080 Ti and NVIDIA GeForce
RTX 2080 Ti on our local cluster. The main experiments (see Fig. 4 and Fig. 5) took around 10,000
GPU hours to run.

FCNN architecture. For the FCNN experiments, we used a feedforward neural network with three
layers, a hidden layer width of 100, and ReLU activations.

CNN architecture. For the CNN experiments, we use a convolutional network with two convolu-
tional layers and one fully connected layer. The hidden convolutional layers have 64 channels each
and use 3× 3 convolutions and ReLU activations. Each convolutional layer is followed by a 2× 2
max-pooling layer.

ResNet architecture and data augmentation. For the ResNet experiments on CIFAR-10, we use
a ResNet20 architecture (He et al., 2016), equal to the one used in Wenzel et al. (2020a). For data
augmentation, we pad all the images with 4 pixels on each border and then randomly crop out a
32x32 image out of that padded one and then randomly flip half of the images horizontally
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Software packages. We implemented the inference and models with the PyTorch library (Paszke
et al., 2019). To manage our experiments and schedule runs with several settings, we used Sacred
(Greff et al., 2017) and Jug (Coelho, 2017) respectively. For the diagnostics, we also use Arviz
(Kumar et al., 2019).
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Figure A.10: Distributions of off-diagonal elements in the empirical covariances of the weights and
singular values of the CNN in the other layer. The empirical distributions are plotted as histograms,
while the idealized random Gaussian weights are overlaid as an orange line. We see that the
covariances of the empirical weights are more heavy-tailed than for the Gaussian weights and that the
singular value spectrum for the empirical weights decays faster than the Gaussian ones.
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Figure A.11: Performances of Bayesian ResNets with different priors on CIFAR-10 with and without
data augmentation in terms of different metrics. Data augmentation seems to increase the cold
posterior effect.
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Figure A.12: Performances of fully connected BNNs with different priors on MNIST and Fashion-
MNIST in terms of different metrics, compared to SGD solutions. The heavy-tailed priors perform
better for Fashion MNIST, and perform better for MNIST at least for Laplace for error and NLL.
heavy-tailed priors also eliminate the cold posterior effect (they get worse as temperature falls).
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Figure A.13: Performances of convolutional BNNs with different priors on MNIST and Fashion-
MNIST in terms of different metrics, compared to SGD solutions. The correlated prior generally
performs better than the isotropic ones, but still exhibits a cold posterior effect, while the heavy-tailed
priors reduce the cold posterior effect, but yield a worse performance.
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Figure A.14: Performances of Bayesian ResNets with different priors on CIFAR-10 with and without
data augmentation in terms of different metrics, compared to SGD solutions. The correlated prior
generally outperforms the other ones. Moreover, data augmentation seems to increase the cold
posterior effect.

Error Likelihood Calibration OOD detection

C
N

N
F
C

N
N

10−3 10−2 10−1 100
temperature

0.02

0.03

0.04

0.05

er
ro
r

student-t
laplace
gaussian

10−3 10−2 10−1 100
temperature

0.10

0.15

0.20

1
LL

10−3 10−2 10−1 100
temperature

0.06

0.08

0.10

0.12

EC
E

10−3 10−2 10−1 100

temperDture

0.80

0.85

0.902
2

D
 A

85
2

C

10−3 10−2 10−1 100
temperature

0.02

0.03

0.04

er
ro
r

student-t
laplace
gaussian
correlated

10−3 10−2 10−1 100
temperature

0.05

0.10

0.15

1
LL

10−3 10−2 10−1 100
temperature

0.05

0.10

EC
E

10−3 10−2 10−1 100

temperDture

0.900

0.925

0.950

0.975

2
2

D
 A

U5
2

C

Figure A.15: Performances of fully connected and convolutional BNNs with sigmoid activation
functions on MNIST. The observed effects are qualitatively similar to the ones with ReLU activations
in the main body of the paper.
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Figure A.16: Performances of fully connected and convolutional BNNs with tanh activation functions
on MNIST. The observed effects are qualitatively similar to the ones with ReLU activations in the
main body of the paper.
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Figure A.17: Performances of Bayesian FCNNs with different priors on (Fashion-)MNIST, including
temperatures T > 1. The performances generally do not improve for warm posteriors, such that
T ≈ 1 is indeed optimal for some priors.
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Figure A.18: Performances of Bayesian CNNs and Resnets with different priors on (Fashion-)MNIST
and CIFAR, including temperatures T > 1. The performances generally do not improve for warm
posteriors, such that T ≈ 1 is indeed optimal for some priors. Note that here, we do not use data
augmentation for CIFAR.
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Figure A.19: Performances of Bayesian FCNNs with different priors and different prior variances on
MNIST. The qualitative behavior is similar to the one for the He variance in the main text.
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Figure A.20: Performances of Bayesian CNNs with different priors and different prior variances on
MNIST. The qualitative behavior is similar to the one for the He variance in the main text.

Error Likelihood Calibration OOD detection

F
C

N
N

 o
n 

F
as

hi
on

M
N

IS
T

0.12

0.14

0.16

0.18

0.20

er
ro
r

scDle=0.35

10−3 10−2 10−1 100 101
temperDture

0.12

0.14

0.16

er
ro
r

scDle=5.64

student-t
lDplDce
gDussiDn
6GD

0.4

0.5

1
LL

scale=0.35

10−3 10−2 10−1 100 101
temperature

0.35

0.40

0.45

1
LL

scale=5.64

0.02

0.04

0.06

0.08

EC
E

scale=0.35

10−3 10−2 10−1 100 101
temperature

0.01

0.02

0.03

0.04

EC
E

scale=5.64

0.8

0.92
2
D
 A
UR
2
C

scale 0.35

10−3 10−2 10−1 100 101
temperature

0.85

0.90

0.95

2
2
D
 A
UR
2
C

scale 5.64

Figure A.21: Performances of Bayesian FCNNs with different priors and different prior variances on
Fashion-MNIST. The qualitative behavior is similar to the one for the He variance in the main text.
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Figure A.22: Performances of Bayesian CNNs with different priors and different prior variances on
Fashion-MNIST. The qualitative behavior is similar to the one for the He variance in the main text.

Error Likelihood Calibration OOD detection

R
es

N
et

on
 C

IF
A

R
-1

0

0.1

0.2

0.3

er
ro
r

scDle=0.35

10−3 10−2 10−1 100 101
temperDture

0.1

0.2

0.3

er
ro
r

scDle=5.64

stuGent-t
lDplDce
gDussiDn
correlDteG
6GD

0.4

0.6

0.8

1
LL

scale=0.35

10−3 10−2 10−1 100 101
temperature

0.4

0.6

0.8

1
LL

scale=5.64

0.04

0.06

0.08

0.10
EC
E

scale=0.35

10−3 10−2 10−1 100 101
temperature

0.04

0.06

0.08

0.10

0.12

EC
E

scale=5.64

0.65

0.70

0.75

0.80

0.85

2
2
D
 A
UR
2
C

scale 0.35

10−3 10−2 10−1 100 101
temperature

0.70

0.75

0.80

0.852
2
D
 A
UR
2
C

scale 5.64

Figure A.23: Performances of Bayesian Resnets with different priors and different prior variances on
CIFAR-10. The qualitative behavior is similar to the one for the He variance in the main text. Note
that here, we do not use data augmentation.
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Figure A.24: Performances of Bayesian FCNNs with different priors and different depths on MNIST.
The qualitative behavior for the different numbers of layers is similar to the one for three layers in the
main text.
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Figure A.25: Box plots of the mean-squared error of Bayesian FCNNs doing regression on UCI
datasets. For each temperature, and prior, each box displays the median ±1.5 times the inter-quartile
range. Outliers are plotted as ×. We exclude runs where the potential diverges. Temperature 1 is
clearly best for all datasets, but otherwise there is no clear trend.
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Figure A.26: Kinetic temperature diagnos-
tics of the ResNet CIFAR-10 experiments
with data augmentation. We see that the ki-
netic temperatures agree almost perfectly
with the target temperature of the sampler.

Table A.2: Worst (highest) R̂ values for different
models and neuron-permutation-invariant functions.

Loss Potential Log-prior

FCNN MNIST 1.006 1.023 1.101
FCNN Fashion 1.007 1.013 1.104
CNN MNIST 1.002 1.001 1.013
CNN Fashion 1.009 1.007 1.013
ResNet CIFAR-10 1.125 1.171 1.404
ResNet C.-10 (aug) 1.066 1.090 1.346
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Figure A.27: Temperature diagnostics of the MNIST experiment with FCNNs.
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Figure A.28: Temperature diagnostics of the MNIST experiment with CNNs.
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Figure A.29: Temperature diagnostics of the FashionMNIST experiment with FCNNs.
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Figure A.30: Temperature diagnostics of the FashionMNIST experiment with CNNs.
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Figure A.31: Temperature diagnostics of the CIFAR-10 experiment with ResNets without data
augmentation.
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Figure A.32: Temperature diagnostics of the CIFAR-10 experiment with ResNets with data augmen-
tation.
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Figure A.33: Performances of mean-field variational inference ResNets with different priors on
CIFAR-10. Note the reversed y-axis for OOD detection on the right to ensure that lower values are
better in all plots. Shaded regions represent one standard error.
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