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Abstract

Graph Transformers (GTs) have recently emerged as popular alternatives to tradi-
tional message-passing Graph Neural Networks (GNNs), due to their theoretically
superior expressiveness and impressive performance reported on standard node
classification benchmarks, often significantly outperforming GNNs. In this paper,
we conduct a thorough empirical analysis to reevaluate the performance of three
classic GNN models (GCN, GAT, and GraphSAGE) against GTs. Our findings
suggest that the previously reported superiority of GTs may have been overstated
due to suboptimal hyperparameter configurations in GNNs. Remarkably, with
slight hyperparameter tuning, these classic GNN models achieve state-of-the-art
performance, matching or even exceeding that of recent GTs across 17 out of
the 18 diverse datasets examined. Additionally, we conduct detailed ablation
studies to investigate the influence of various GNN configurations—such as nor-
malization, dropout, residual connections, and network depth—on node classifi-
cation performance. Our study aims to promote a higher standard of empirical
rigor in the field of graph machine learning, encouraging more accurate compar-
isons and evaluations of model capabilities. Our implementation is available at
https://github.com/LUOyk1999/tunedGNN.

1 Introduction

Node classification is a fundamental task in graph machine learning [92, 79, 54, 78, 71, 77], with
high-impact applications across many fields such as social network analysis, bioinformatics, and
recommendation systems. Graph Neural Networks (GNNs) [20, 28, 69, 80, 52, 33, 8, 84, 18, 9, 55,
4, 81, 60, 10, 56, 57, 70, 85, 37] have emerged as a powerful class of models for tackling the node
classification task. GNNs operate by iteratively aggregating information from a node’s neighbors,
a process known as message passing [19], leveraging both the graph structure and node features to
learn useful node representations for classification. While GNNs have achieved notable success,
studies have identified several limitations, including over-smoothing [35], over-squashing [1], lack of
sensitivity to heterophily [90], and challenges in capturing long-range dependencies [11].

Recently, Graph Transformers (GTs) [53, 51, 23] have gained prominence as popular alternatives to
GNNs. Unlike GNNs, which primarily aggregate local neighborhood information, the Transformer
architecture [68] can capture interactions between any pair of nodes via a self-attention layer. GTs
have achieved significant success in graph-level tasks, e.g., graph classification involving small-scale
graphs like molecular graphs [13, 82, 30, 45, 59, 6]. This success has inspired efforts [12, 17, 76,
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75, 74, 88, 91, 15, 64, 7, 29, 41, 38] to utilize GTs to tackle node classification tasks, especially on
large-scale graphs, addressing the aforementioned limitations of GNNs. While recent advancements
in state-of-the-art GTs [12, 76] have shown promising results, it’s observed that many of these models,
whether explicitly or implicitly, still rely on GNNs for learning local node representations, integrating
them alongside the global attention mechanisms for a more comprehensive representation.

This prompts us to reconsider: Could the potential of message-passing GNNs for node classification
have been previously underestimated? While prior research has addressed this issue to some extent
[24, 14, 73, 47, 58], these studies have limitations in terms of scope and comprehensiveness, including
a restricted number and diversity of datasets, as well as an incomplete examination of hyperparameters.
In this study, we comprehensively reassess the performance of GNNs for node classification, utilizing
three classic GNN models—GCN [28], GAT [68], and GraphSAGE [20]—across 18 real-world
benchmark datasets that include homophilous, heterophilous, and large-scale graphs. We examine the
influence of key hyperparameters on GNN training, including normalization [2, 26], dropout [67],
residual connections [21], and network depth. We summarize the key findings in our empirical study
as follows:

• With proper hyperparameter tuning, classic GNNs can achieve highly competitive performance
in node classification across homophilous and heterophilous graphs with up to millions of nodes.
Notably, classic GNNs outperform state-of-the-art GTs, achieving the top rank on 17 out of 18
datasets. This indicates that the previously claimed superiority of GTs over GNNs may have been
overstated, possibly due to suboptimal hyperparameter configurations in GNN evaluations.

• Our ablation studies have yielded valuable insights into GNN hyperparameters for node classi-
fication. We demonstrate that (1) normalization is essential for large-scale graphs; (2) dropout
consistently proves beneficial; (3) residual connections can significantly enhance performance,
especially on heterophilous graphs; and (4) GNNs on heterophilous graphs tend to perform better
with deeper layers.

2 Classic GNNs for Node Classification

Define a graph as G = (V, E ,X,Y ), where V denotes the set of nodes, E ⊆ V × V represents the
set of edges, X ∈ R|V|×d is the node feature matrix, with |V| representing the number of nodes and
d the dimension of the node features, and Y ∈ R|V|×C is the one-hot encoded label matrix, with C
being the number of classes. Let A ∈ R|V|×|V| denote the adjacency matrix of G.

Message Passing Graph Neural Networks (GNNs) [19] compute node representations hl
v at each

layer l as:
hl
v = UPDATEl

(
hl−1
v ,AGGl

({
hl−1
u | u ∈ N (v)

}))
, (1)

where N (v) represents the neighboring nodes adjacent to v, AGGl serves as the message aggregation
function, and UPDATEl is the update function. Initially, each node v begins with a feature vector
h0
v = xv ∈ Rd. The function AGGl aggregates information from the neighbors of v to update its

representation. The output of the last layer L, i.e., GNN(v,A,X) = hL
v , is the representation of v

produced by the GNN. In this work, we focus on three classic GNNs: GCN [28], GraphSAGE [20],
and GAT [68], which differ in their approach to learning the node representation hl

v .

Graph Convolutional Networks (GCN) [28], the standard GCN model, is formualated as:

hl
v = σ(

∑
u∈N (v)∪{v}

1√
d̂ud̂v

hl−1
u W l), (2)

where d̂v = 1 +
∑

u∈N (v) 1,
∑

u∈N (v) 1 denotes the degree of node v, W l is the trainable weight
matrix in layer l, and σ is the activation function, e.g., ReLU(·) = max(0, ·).

GraphSAGE [20] learns node representations through a different approach:

hl
v = σ(hl−1

v W l
1 + (meanu∈N (v)h

l−1
u )W l

2), (3)

where W l
1 and W l

2 are trainable weight matrices, and meanu∈N (v)h
l−1
u computes the average

embedding of the neighboring nodes of v.
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Graph Attention Networks (GAT) [68] employ masked self-attention to assign weights to different
neighboring nodes. For an edge (v, u) ∈ E , the propagation rule of GAT is defined as:

αl
vu =

exp
(

LeakyReLU
(
a⊤l

[
W lhl−1

v ∥W lhl−1
u

]))
∑

r∈N (v) exp
(

LeakyReLU
(
a⊤l

[
W lhl−1

v ∥W lhl−1
r

])) ,
hl
v = σ

 ∑
u∈N (v)

αl
vuh

l−1
u W l

 , (4)

where al is a trainable weight vector, W l is a trainable weight matrix, and ∥ represents the concate-
nation operation.

Node Classification aims to predict the labels of the unlabeled nodes. Typically, for any node v,
the node representation generated by the last GNN layer is passed through a prediction head g(·),
to obtain the predicted label ŷv = g(GNN(v,A,X)). The training objective is to minimize the
total loss L(θ) =

∑
v∈Vtrain

ℓ(ŷv,yv) w.r.t. all nodes in the training set Vtrain, where yv indicates the
ground-truth label of v and θ indicates the trainable GNN parameters.

Homophilous and Heterophilous Graphs. Node classification can be performed on both ho-
mophilous and heterophilous graphs. Homophilous graphs are characterized by edges that tend to
connect nodes of the same class, while in heterophilous graphs, connected nodes may belong to
different classes [58]. GNN models implicitly assume homophily in graphs [48], and it is commonly
believed that due to this homophily assumption, GNNs cannot generalize well to heterophilous graphs
[90, 9]. However, recent works [46, 40, 58, 42] have empirically shown that standard GCNs also
work well on heterophilous graphs. In this study, we provide a comprehensive evaluation of classic
GNNs for node classification on both homophilous and heterophilous graphs.

3 Key Hyperparameters for Training GNNs

In this section, we present an overview of the key hyperparameters for training GNNs, including
normalization, dropout, residual connections, and network depth. These hyperparameters are widely
utilized across different types of neural networks to improve model performance.

Normalization. Specifically, Layer Normalization (LN) [2] or Batch Normalization (BN) [26] can
be used in every layer before the activation function σ(·). Taking GCN as an example:

hl
v = σ(Norm(

∑
u∈N (v)∪{v}

1√
d̂ud̂v

hl−1
u W l)). (5)

The normalization techniques are essential for stabilizing the training process by reducing the
covariate shift, which occurs when the distribution of each layer’s node embeddings changes during
training. Normalizing the node embeddings helps to maintain a more consistent distribution, allowing
the use of higher learning rates and leading to faster convergence [5].

Dropout [67], a technique widely used in convolutional neural networks (CNNs) to address overfit-
ting by reducing co-adaptation among hidden neurons [22, 83], has also been found to be effective
in addressing similar issues in GNNs [68, 65], where the co-adaptation effects propagate and accu-
mulate through message passing among different nodes. Typically, dropout is applied to the feature
embeddings after the activation function:

hl
v = Dropout(σ(Norm(

∑
u∈N (v)∪{v}

1√
d̂ud̂v

hl−1
u W l))). (6)

Residual Connections [21] significantly enhance CNN performance by connecting layer inputs
directly to outputs, thereby alleviating the vanishing gradient issue. They were first adopted by the
seminal GCN paper [28] and subsequently incorporated into DeepGCNs [33] to boost performance.
Formally, linear residual connections can be integrated into GNNs as follows:

hl
v = Dropout(σ(Norm(hl−1

v Wr
l +

∑
u∈N (v)∪{v}

1√
d̂ud̂v

hl−1
u W l))), (7)
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Table 1: Overview of the datasets used for node classification.

Dataset Type # nodes # edges # Features Classes Metric

Cora Homophily 2,708 5,278 1,433 7 Accuracy
CiteSeer Homophily 3,327 4,522 3,703 6 Accuracy
PubMed Homophily 19,717 44,324 500 3 Accuracy
Computer Homophily 13,752 245,861 767 10 Accuracy
Photo Homophily 7,650 119,081 745 8 Accuracy
CS Homophily 18,333 81,894 6,805 15 Accuracy
Physics Homophily 34,493 247,962 8,415 5 Accuracy
WikiCS Homophily 11,701 216,123 300 10 Accuracy

Squirrel Heterophily 2,223 46,998 2,089 5 Accuracy
Chameleon Heterophily 890 8,854 2,325 5 Accuracy
Roman-Empire Heterophily 22,662 32,927 300 18 Accuracy
Amazon-Ratings Heterophily 24,492 93,050 300 5 Accuracy
Minesweeper Heterophily 10,000 39,402 7 2 ROC-AUC
Questions Heterophily 48,921 153,540 301 2 ROC-AUC

ogbn-proteins Homophily (Large graphs) 132,534 39,561,252 8 2 ROC-AUC
ogbn-arxiv Homophily (Large graphs) 169,343 1,166,243 128 40 Accuracy
ogbn-products Homophily (Large graphs) 2,449,029 61,859,140 100 47 Accuracy
pokec Heterophily (Large graphs) 1,632,803 30,622,564 65 2 Accuracy

where W l
r is a trainable weight matrix. This configuration mitigates gradient instabilities and

enhances GNN expressiveness [80], addressing the over-smoothing [35] and oversquashing [1] issues
since the linear component (hl−1

u Wr
l) helps to preserve distinguishable node representations [73].

Network Depth. Deeper network architectures, such as deep CNNs [21, 25], are capable of extracting
more complex, high-level features from data, potentially leading to better performance on various
prediction tasks. However, GNNs face unique challenges with depth, such as over-smoothing [35],
where node representations become indistinguishable with increased network depth. Consequently,
in practice, most GNNs adopt a shallow architecture, typically consisting of 2 to 5 layers. While
previous research, such as DeepGCN [33] and DeeperGCN [34], advocates the use of deep GNNs
with up to 56 and 112 layers, our findings indicate that comparable performance can be achieved with
significantly shallower GNN architectures, typically ranging from 2 to 10 layers.

4 Experimental Setup for Node Classification

Datasets. Table 1 presents a summary of the statistics and characteristics of the datasets.

• Homophilous Graphs. Cora, CiteSeer, and PubMed are three widely used citation networks [62].
We follow the semi-supervised setting of [28] for data splits and metrics. Additionally, Computer
and Photo [63] are co-purchase networks where nodes represent goods and edges indicate that the
connected goods are frequently bought together. CS and Physics [63] are co-authorship networks
where nodes denote authors and edges represent that the authors have co-authored at least one
paper. We adhere to the widely accepted practice of training/validation/test splits of 60%/20%/20%
and metric of accuracy [7, 64, 12]. Furthermore, we utilize the WikiCS dataset and use the official
splits and metrics provided in [50].

• Heterophilous Graphs. Squirrel and Chameleon [61] are two well-known page-page networks
that focus on specific topics in Wikipedia. According to the heterophilous graphs benchmarking
paper [58], the original split of these datasets introduces overlapping nodes between training and
testing, leading to the proposal of a new data split that filters out the overlapping nodes. We use
its provided split and its metrics for evaluation. Additionally, we utilize four other heterophilous
datasets proposed by the same source [58]: Roman-Empire, where nodes correspond to words in
the Roman Empire Wikipedia article and edges connect sequential or syntactically linked words;
Amazon-Ratings, where nodes represent products and edges connect frequently co-purchased
items; Minesweeper, a synthetic dataset where nodes are cells in a 100 × 100 grid and edges
connect neighboring cells; and Questions, where nodes represent users from the Yandex Q
question-answering website and edges connect users who interacted through answers. All splits
and evaluation metrics are consistent with those proposed in the source.
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Table 2: Node classification results over homophilous graphs (%). ∗ indicates our implementation, while other
results are taken from [12, 76]. The top 1st, 2nd and 3rd results are highlighted.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS

# nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 11,701
# edges 5,278 4,732 44,324 245,861 119,081 81,894 247,962 216,123
Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GraphGPS 82.84 ± 1.03 72.73 ± 1.23 79.94 ± 0.26 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 78.66 ± 0.49

GraphGPS∗ 83.87 ± 0.96 72.73 ± 1.23 79.94 ± 0.26 91.79 ± 0.63 94.89 ± 0.14 94.04 ± 0.21 96.71 ± 0.15 78.66 ± 0.49

NAGphormer 82.12 ± 1.18 71.47 ± 1.30 79.73 ± 0.28 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03 77.16 ± 0.72

NAGphormer∗ 80.92 ± 1.17 70.59 ± 0.89 80.14 ± 1.06 91.69 ± 0.30 96.14 ± 0.16 95.85 ± 0.16 97.35 ± 0.12 77.92 ± 0.93

Exphormer 82.77 ± 1.38 71.63 ± 1.19 79.46 ± 0.35 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 96.89 ± 0.09 78.54 ± 0.49

Exphormer∗ 83.29 ± 1.36 71.85 ± 1.11 79.67 ± 0.73 91.80 ± 0.35 95.69 ± 0.39 95.92 ± 0.25 97.06 ± 0.13 79.38 ± 0.62

GOAT 83.18 ± 1.27 71.99 ± 1.26 79.13 ± 0.38 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 77.00 ± 0.77

GOAT∗ 83.26 ± 1.24 72.21 ± 1.29 80.06 ± 0.67 92.29 ± 0.37 94.33 ± 0.21 93.81 ± 0.19 96.47 ± 0.16 77.96 ± 0.63

NodeFormer 82.20 ± 0.90 72.50 ± 1.10 79.90 ± 1.00 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 74.73 ± 0.94

NodeFormer∗ 82.73 ± 0.75 72.37 ± 1.20 79.59 ± 0.92 87.29 ± 0.58 93.43 ± 0.56 95.69 ± 0.27 96.48 ± 0.34 75.13 ± 0.93

SGFormer 84.50 ± 0.80 72.60 ± 0.20 80.30 ± 0.60 91.99 ± 0.76 95.10 ± 0.47 94.78 ± 0.20 96.60 ± 0.18 73.46 ± 0.56

SGFormer∗ 84.82 ± 0.85 72.72 ± 1.15 80.60 ± 0.49 92.42 ± 0.66 95.58 ± 0.36 95.71 ± 0.24 96.75 ± 0.26 80.05 ± 0.46

Polynormer 83.25 ± 0.93 72.31 ± 0.78 79.24 ± 0.43 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 97.27 ± 0.08 80.10 ± 0.67

Polynormer∗ 83.43 ± 0.89 72.19 ± 0.83 79.35 ± 0.73 93.78 ± 0.10 96.57 ± 0.23 95.42 ± 0.19 97.18 ± 0.11 80.26 ± 0.92

GCN 81.60 ± 0.40 71.60 ± 0.40 78.80 ± 0.60 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07 77.47 ± 0.85

GCN∗ 85.10 ± 0.67 3.50↑ 73.14 ± 0.67 1.54↑ 81.12 ± 0.52 2.32↑ 93.99 ± 0.12 4.34↑ 96.10 ± 0.46 3.40↑ 96.17 ± 0.06 3.25↑ 97.46 ± 0.10 1.28↑ 80.30 ± 0.62 2.83↑
GraphSAGE 82.68 ± 0.47 71.93 ± 0.85 79.41 ± 0.53 91.20 ± 0.29 94.59 ± 0.14 93.91 ± 0.13 96.49 ± 0.06 74.77 ± 0.95

GraphSAGE∗ 83.88 ± 0.65 1.20↑ 72.26 ± 0.55 0.33↑ 79.72 ± 0.50 0.31↑ 93.25 ± 0.14 2.05↑ 96.78 ± 0.23 2.19↑ 96.38 ± 0.11 2.47↑ 97.19 ± 0.05 0.70↑ 80.69 ± 0.31 5.92↑
GAT 83.00 ± 0.70 72.10 ± 1.10 79.00 ± 0.40 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08 76.91 ± 0.82

GAT∗ 84.46 ± 0.55 1.46↑ 72.22 ± 0.84 0.12↑ 80.28 ± 0.64 1.28↑ 94.09 ± 0.37 3.31↑ 96.60 ± 0.33 2.73↑ 96.21 ± 0.14 2.60↑ 97.25 ± 0.06 1.08↑ 81.07 ± 0.54 4.16↑

• Large-scale Graphs. We consider a collection of large graphs released recently by the Open Graph
Benchmark (OGB) [24]: ogbn-arxiv, ogbn-proteins, and ogbn-products, with node numbers
ranging from 0.16M to 2.4M. We maintain all the OGB standard evaluation settings. Additionally,
we analyze performance on the social network pokec [32], which has 1.6M nodes, following the
evaluation settings of [12].

Baselines. Our main focus lies on classic GNNs: GCN [28], GraphSAGE [20], GAT [68], the
state-of-the-art scalable GTs: SGFormer [76], Polynormer [12], GOAT [29], NodeFormer [75],
NAGphormer [7], and powerful GTs: GraphGPS [59] and Exphormer [64]. Furthermore, various
other GTs like [17, 15, 38, 86, 31, 3, 6, 82, 13] exist in related surveys [23, 53], empirically shown to
be inferior to the GTs we compared against for node classification tasks. For heterophilous graphs,
We also consider five models designed for node classification under heterophily following [58]:
H2GCN [90], CPGNN [89], GPRGNN [9], FSGNN [49], GloGNN [36]. Note that we adopt the
empirically optimal Polynormer variant (Polynormer-r), which demonstrates superior performance
over advanced GNNs such as LINKX [37] and OrderedGNN [66]. We report the performance results
of baselines primarily from [12, 76, 58], with the remaining obtained from their respective original
papers or official leaderboards whenever possible, as those results are obtained by well-tuned models.

Hyperparameter Configurations. We conduct hyperparameter tuning on classic GNNs, consistent
with the hyperparameter search space of Polynormer [12]. Specifically, we utilize the Adam optimizer
[27] with a learning rate from {0.001, 0.005, 0.01} and an epoch limit of 2500. And we tune
the hidden dimension from {64, 256, 512}. As discussed in Section 3, we focus on whether to
use normalization (BN or LN), residual connections, and dropout rates from {0.2, 0.3, 0.5, 0.7},
the number of layers from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Additionally, we retrain all baseline GTs
using the same hyperparameter search space and training environments as the classic GNNs. For
hyperparameters specific to each GT, which are not present in the classic GNNs, we tune them
according to the search space specified in the original GT paper. We report mean scores and standard
deviations after 5 independent runs with different initializations. Model∗ denotes our implementation.

Detailed experimental setup and hyperparameters are provided in Appendix A.

5 Empirical Findings

5.1 Performance of Classic GNNs in Node Classification

In this subsection, we provide a detailed analysis of the performance of the three classic GNNs
compared to state-of-the-art GTs in node classification tasks. Our experimental results across
homophilous (Table 2), heterophilous (Table 3), and large-scale graphs (Table 4) reveal that classic
GNNs often outperform or match the performance of advanced GTs across 18 datasets. Notably,
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Table 3: Node classification results on heterophilous graphs (%). ∗ indicates our implementation, while other
results are taken from [12, 76, 58]. The top 1st, 2nd and 3rd results are highlighted.

Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper Questions

# nodes 2223 890 24,492 22,662 10,000 48,921
# edges 46,998 8,854 93,050 32,927 39,402 153,540
Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ ROC-AUC↑ ROC-AUC↑
H2GCN 35.10 ± 1.15 26.75 ± 3.64 36.47 ± 0.23 60.11 ± 0.52 89.71 ± 0.31 63.59 ± 1.46

CPGNN 30.04 ± 2.03 33.00 ± 3.15 39.79 ± 0.77 63.96 ± 0.62 52.03 ± 5.46 65.96 ± 1.95

GPRGNN 38.95 ± 1.99 39.93 ± 3.30 44.88 ± 0.34 64.85 ± 0.27 86.24 ± 0.61 55.48 ± 0.91

FSGNN 35.92 ± 1.32 40.61 ± 2.97 52.74 ± 0.83 79.92 ± 0.56 90.08 ± 0.70 78.86 ± 0.92

GloGNN 35.11 ± 1.24 25.90 ± 3.58 36.89 ± 0.14 59.63 ± 0.69 51.08 ± 1.23 65.74 ± 1.19

GraphGPS 39.67 ± 2.84 40.79 ± 4.03 53.10 ± 0.42 82.00 ± 0.61 90.63 ± 0.67 71.73 ± 1.47

GraphGPS∗ 39.81 ± 2.28 41.55 ± 3.91 53.27 ± 0.66 82.72 ± 0.68 90.75 ± 0.89 72.56 ± 1.33

NodeFormer 38.52 ± 1.57 34.73 ± 4.14 43.86 ± 0.35 64.49 ± 0.73 86.71 ± 0.88 74.27 ± 1.46

NodeFormer∗ 38.89 ± 2.67 36.38 ± 3.85 43.79 ± 0.57 74.83 ± 0.81 87.71 ± 0.69 75.02 ± 1.61

SGFormer 41.80 ± 2.27 44.93 ± 3.91 48.01 ± 0.49 79.10 ± 0.32 90.89 ± 0.58 72.15 ± 1.31

SGFormer∗ 42.65 ± 2.41 45.21 ± 3.72 54.14 ± 0.62 80.01 ± 0.44 91.42 ± 0.41 73.81 ± 0.59

Polynormer 40.87 ± 1.96 41.82 ± 3.45 54.81 ± 0.49 92.55 ± 0.37 97.46 ± 0.36 78.92 ± 0.89

Polynormer∗ 41.97 ± 2.14 41.97 ± 3.18 54.96 ± 0.22 92.66 ± 0.60 97.49 ± 0.48 78.94 ± 0.78

GCN 38.67 ± 1.84 41.31 ± 3.05 48.70 ± 0.63 73.69 ± 0.74 89.75 ± 0.52 76.09 ± 1.27

GCN∗ 45.01 ± 1.63 6.34↑ 46.29 ± 3.40 4.98↑ 53.80 ± 0.60 5.10↑ 91.27 ± 0.20 17.58↑ 97.86 ± 0.24 8.11↑ 79.02 ± 0.60 2.93↑
GraphSAGE 36.09 ± 1.99 37.77 ± 4.14 53.63 ± 0.39 85.74 ± 0.67 93.51 ± 0.57 76.44 ± 0.62

GraphSAGE∗ 40.78 ± 1.47 4.69↑ 44.81 ± 4.74 7.04↑ 55.40 ± 0.21 1.77↑ 91.06 ± 0.27 5.32↑ 97.77 ± 0.62 4.26↑ 77.21 ± 1.28 0.77↑
GAT 35.62 ± 2.06 39.21 ± 3.08 52.70 ± 0.62 88.75 ± 0.41 93.91 ± 0.35 76.79 ± 0.71

GAT∗ 41.73 ± 2.07 6.11↑ 44.13 ± 4.17 4.92↑ 55.54 ± 0.51 2.84↑ 90.63 ± 0.14 1.88↑ 97.73 ± 0.73 3.82↑ 77.95 ± 0.51 1.16↑

among the 18 datasets evaluated, classic GNNs achieve the top rank on 17 of them, showcasing their
robust competitiveness. We highlight our main observations below.

Observations on Homophilous Graphs (Table 2). Classic GNNs, with only slight adjustments
to hyperparameters, are highly competitive in node classification tasks on homophilous graphs,
often outperforming state-of-the-art graph transformers in many cases.

While previously reported results show that most advanced GTs outperform classic GNN on ho-
mophilous graphs [12, 76], our implementation of classic GNNs can place within the top two for
four datasets, with GCN∗ and GAT∗ demonstrating near-consistent top performances. Specifically,
on CS and WikiCS, classic GNNs experience about a 3% accuracy increase, achieving top-three
performances. On WikiCS, the accuracy of GAT∗ increases by 4.16%, moving it from seventh to first
place, surpassing the leading GT, Polynormer. Similarly, on Photo and CS, GraphSAGE∗ outperforms
Polynormer and SGFormer, establishing itself as the top model. On Cora, CiteSeer, PubMed, and
Physics, tuning yields significant performance improvements for GCN∗, with accuracy increases
ranging from 1.54% to 3.50%, positioning GCN∗ as the highest-performing model despite its initial
lower accuracy compared to advanced GTs.

Observations on Heterophilous Graphs (Table 3). Our implementation has significantly en-
hanced the previously reported best results of classic GNNs on heterophilous graphs, surpassing
specialized GNN models tailored for such graphs and even outperforming the leading graph
transformer architectures. This advancement not only supports but also strengthens the findings
in [58] that conventional GNNs are strong contenders for heterophilous graphs, challenging the
prevailing assumption that they are primarily suited for homophilous graph structures.

The three classic GNNs secure top positions on five out of six heterophilous graphs. Specifically,
on well-known page-page networks like Chameleon and Squirrel, our implementation enhances the
accuracy of GCN∗ by 4.98% and 6.34% respectively, elevating it to the first place among all models.
Similarly, on larger heterophilous graphs such as Minesweeper and Questions, GCN∗ also exhibits
the highest performance, highlighting the superiority of its local message-passing mechanism over
GTs’ global attention. On Roman-Empire, a 17.58% increase is observed in the performance of
GCN∗. Interestingly, we find that improvements primarily stem from residual connections, which are
further analyzed in our ablation study (see Section 5.2).
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Table 4: Node classification results on large-scale graphs (%). ∗ indicates our implementation, while other
results are taken from [12, 76]. The top 1st, 2nd and 3rd results are highlighted. OOM means out of memory.

ogbn-proteins ogbn-arxiv ogbn-products pokec

# nodes 132,534 169,343 2,449,029 1,632,803
# edges 39,561,252 1,166,243 61,859,140 30,622,564
Metric ROC-AUC↑ Accuracy↑ Accuracy↑ Accuracy↑
GraphGPS 76.83 ± 0.26 70.97 ± 0.41 OOM OOM
GraphGPS∗ 77.15 ± 0.64 71.23 ± 0.59 OOM OOM
NAGphormer 73.61 ± 0.33 70.13 ± 0.55 73.55 ± 0.21 76.59 ± 0.25

NAGphormer∗ 72.17 ± 0.45 70.88 ± 0.24 74.63 ± 0.29 75.92 ± 0.68

Exphormer 74.58 ± 0.26 72.44 ± 0.28 OOM OOM
Exphormer∗ 77.62 ± 0.33 72.32 ± 0.36 OOM OOM
GOAT 74.18 ± 0.37 72.41 ± 0.40 82.00 ± 0.43 66.37 ± 0.94

GOAT∗ 79.31 ± 0.42 72.76 ± 0.29 82.27 ± 0.56 72.64 ± 0.67

NodeFormer 77.45 ± 1.15 59.90 ± 0.42 72.93 ± 0.13 71.00 ± 1.30

NodeFormer∗ 77.86 ± 0.84 67.78 ± 0.28 73.96 ± 0.30 71.00 ± 1.30

SGFormer 79.53 ± 0.38 72.63 ± 0.13 74.16 ± 0.31 73.76 ± 0.24

SGFormer∗ 79.92 ± 0.48 72.76 ± 0.33 81.54 ± 0.43 82.44 ± 0.76

Polynormer 78.97 ± 0.47 73.46 ± 0.16 83.82 ± 0.11 86.10 ± 0.05

Polynormer∗ 79.53 ± 0.67 73.40 ± 0.22 83.82 ± 0.11 86.06 ± 0.25

GCN 72.51 ± 0.35 71.74 ± 0.29 75.64 ± 0.21 75.45 ± 0.17

GCN∗ 77.29 ± 0.46 4.78↑ 73.53 ± 0.12 1.79↑ 82.33 ± 0.19 6.69↑ 86.33 ± 0.17 10.88↑
GraphSAGE 77.68 ± 0.20 71.49 ± 0.27 78.29 ± 0.16 75.63 ± 0.38

GraphSAGE∗ 82.21 ± 0.32 4.53↑ 73.00 ± 0.28 1.51↑ 83.89 ± 0.36 5.60↑ 85.97 ± 0.21 10.34↑
GAT 72.02 ± 0.44 71.95 ± 0.36 79.45 ± 0.59 72.23 ± 0.18

GAT∗ 85.01 ± 0.46 12.99↑ 73.30 ± 0.18 1.35↑ 80.99 ± 0.16 1.54↑ 86.19 ± 0.23 13.96↑

Observations on Large-scale Graphs (Table 4). Our implementation has significantly enhanced
the previously reported results of classic GNNs, with some cases showing double-digit increases
in accuracy. It has achieved the best results across these large graph datasets, either homophilous
or heterophilous, and has outperformed state-of-the-art graph transformers. This indicates that
message passing remains highly effective for learning node representations on large-scale graphs.

Our implementation of classic GNNs demonstrate superior performance consistently, achieving top
rankings across all four large-scale datasets included in our study. Notably, GCN∗ emerges as the
leading model on ogbn-arxiv and pokec, surpassing all evaluated advanced GTs. Furthermore, on
pokec, all three classic GNNs achieve over 10% performance increases by our implementation. For
ogbn-proteins, an absolute improvement of 12.99% is observed in the performance of GAT∗, signifi-
cantly surpassing SGFormer by 5.09%. Similarly, on ogbn-products, GraphSAGE∗ demonstrates
a significant performance increase, securing the best performance among all evaluated models. In
summary, a basic GNN can achieve the best known results on large-scale graphs, suggesting that
current GTs have not yet addressed GNN issues such as over-smoothing and long-range dependencies.

5.2 Influence of Hyperparameters on the Performance of GNNs

To examine the unique contributions of different hyperparameters in explaining the enhanced perfor-
mance of classic GNNs, we conduct a series of ablation analysis by selectively removing elements
such as normalization, dropout, residual connections, and network depth from GCN∗, GraphSAGE∗,
and GAT∗. The effect of these ablations is assessed across homophilous (see Table 5), heterphilous
(see Table 6), and large-scale graphs (see Table 7). Our findings, which we detail below, indicate that
the ablation of single components affects model accuracy in distinct ways.

Observation 1: Normalization (either BN or LN) is important for node classification on large-
scale graphs but less significant on smaller-scale graphs.
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Table 5: Ablation study on homophilous graphs (%). - indicates that the corresponding hyperparameter is not
used in GNN∗, as it empirically leads to inferior performance.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS

Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN∗ 85.10 ± 0.67 73.14 ± 0.67 81.12 ± 0.52 93.99 ± 0.12 96.10 ± 0.46 96.17 ± 0.06 97.46 ± 0.10 80.30 ± 0.62

(-) Normalization - - - 92.60 ± 0.14 95.48 ± 0.36 95.30 ± 0.05 97.16 ± 0.11 79.67 ± 0.52

(-) Dropout 83.46 ± 1.16 71.40 ± 0.35 80.14 ± 0.55 93.78 ± 0.26 95.31 ± 0.10 95.95 ± 0.14 97.30 ± 0.06 79.84 ± 0.86

(-) Residual Connections - - - - 94.43 ± 0.16 94.71 ± 0.12 96.56 ± 0.18 -

GraphSAGE∗ 83.88 ± 0.65 72.26 ± 0.55 79.72 ± 0.50 93.25 ± 0.14 96.78 ± 0.23 96.38 ± 0.11 97.19 ± 0.05 80.69 ± 0.31

(-) Normalization - - - 92.77 ± 0.63 95.51 ± 0.46 95.42 ± 0.13 96.97 ± 0.07 80.08 ± 0.85

(-) Dropout 82.78 ± 0.54 71.02 ± 1.34 77.02 ± 0.83 92.02 ± 0.35 96.03 ± 0.27 96.11 ± 0.17 97.07 ± 0.09 79.89 ± 0.39

(-) Residual Connections - - - - 96.47 ± 0.11 95.73 ± 0.13 97.09 ± 0.04 -

GAT∗ 84.46 ± 0.55 72.22 ± 0.84 80.28 ± 0.64 94.09 ± 0.37 96.60 ± 0.33 96.21 ± 0.14 97.25 ± 0.06 81.07 ± 0.54

(-) Normalization - - - 93.22 ± 1.27 96.09 ± 0.20 95.13 ± 0.16 97.08 ± 0.04 80.34 ± 0.41

(-) Dropout 83.30 ± 1.34 71.22 ± 1.02 78.36 ± 1.22 93.14 ± 0.29 96.36 ± 0.26 96.05 ± 0.09 97.01 ± 0.05 79.46 ± 0.32

(-) Residual Connections 82.62 ± 1.08 71.60 ± 0.89 - - 95.05 ± 0.14 94.47 ± 0.09 96.44 ± 0.03 80.32 ± 0.90

Table 6: Ablation study on heterophilous graphs (%).

Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper Questions

Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ ROC-AUC↑ ROC-AUC↑
GCN∗ 45.01 ± 1.63 46.29 ± 3.40 53.80 ± 0.60 91.27 ± 0.20 97.86 ± 0.24 79.02 ± 0.60

(-) Normalization 44.13 ± 2.03 - 53.68 ± 0.82 90.53 ± 0.33 96.94 ± 1.96 -
(-) Dropout 42.89 ± 1.28 45.28 ± 4.78 51.37 ± 0.34 85.10 ± 0.61 94.28 ± 2.29 76.58 ± 0.40

(-) Residual Connections 43.14 ± 1.82 - 51.14 ± 0.34 74.84 ± 0.62 86.45 ± 0.89 75.87 ± 4.47

GraphSAGE∗ 40.78 ± 1.47 44.81 ± 4.74 55.40 ± 0.21 91.06 ± 0.27 97.77 ± 0.62 77.21 ± 1.28

(-) Normalization 40.27 ± 2.27 44.02 ± 3.53 54.41 ± 0.30 90.58 ± 0.24 97.64 ± 0.41 76.17 ± 0.41

(-) Dropout 38.83 ± 1.94 43.11 ± 3.36 51.12 ± 0.66 84.49 ± 0.35 93.83 ± 0.38 76.36 ± 1.50

(-) Residual Connections 40.06 ± 2.31 41.85 ± 3.86 53.52 ± 0.19 - 96.64 ± 0.85 -

GAT∗ 41.73 ± 2.07 44.13 ± 4.17 55.54 ± 0.51 90.63 ± 0.14 97.73 ± 0.73 77.95 ± 0.51

(-) Normalization 41.08 ± 1.63 43.25 ± 3.84 54.85 ± 0.39 89.69 ± 0.39 97.42 ± 0.85 76.32 ± 0.24

(-) Dropout 39.81 ± 3.15 41.19 ± 2.36 51.48 ± 0.28 82.47 ± 0.70 92.26 ± 4.63 76.19 ± 0.88

(-) Residual Connections 38.46 ± 1.96 42.57 ± 3.66 51.08 ± 0.49 85.15 ± 0.82 92.83 ± 1.61 75.17 ± 0.71

We observe that the ablation of normalization does not lead to substantial deviations on small graphs.
However, normalization becomes consistently crucial on large-scale graphs, where its ablation results
in accuracy reductions of 4.79% and 4.69% for GraphSAGE∗ and GAT∗ respectively on ogbn-proteins.
We believe this is because large graphs display a wider variety of node features, resulting in different
data distributions across the graph. Normalization aids in standardizing these features during training,
ensuring a more stable distribution.

Observation 2: Dropout is consistently found to be essential for node classification.

Our analysis highlights the crucial role of dropout in maintaining the performance of classic GNNs
on both homophilous and heterophilous graphs, with its ablation contributing to notable accuracy
declines—for instance, a 2.70% decrease for GraphSAGE∗ on PubMed and a 6.57% decrease on
Roman-Empire. This trend persists in large-scale datasets, where the ablation of dropout leads to a
2.44% and 2.53% performance decline for GCN∗ and GAT∗ respectively on ogbn-proteins.

Observation 3: Residual connections can significantly boost performance on specific datasets,
exhibiting a more pronounced effect on heterophilous graphs than on homophilous graphs.

While the ablation of residual connections on homophilous graphs does not consistently lead to a
significant performance decrease, with observed differences around 2% on Cora, Photo, and CS,
the impact is more substantial on large-scale graphs such as ogbn-proteins and pokec. The effect is
even more dramatic on heterophilous graphs, with the classic GNNs exhibiting the most significant
accuracy reduction on Roman-Empire, for instance, a 16.43% for GCN∗ and 5.48% for GAT∗.
Similarly, on Minesweeper, significant performance drops were observed, emphasizing the critical
importance of residual connections, particularly on heterophilous graphs. The complex structures of
these graphs often necessitate deeper layers to effectively capture the diverse relationships between
nodes. In such contexts, residual connections are essential for model training.
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Table 7: Ablation study on large-scale graphs (%).

ogbn-proteins ogbn-arxiv ogbn-products pokec

Metric ROC-AUC↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN∗ 77.29 ± 0.46 73.53 ± 0.12 82.33 ± 0.19 86.33 ± 0.17

(-) Normalization 74.48 ± 1.13 71.53 ± 0.14 80.01 ± 0.48 85.21 ± 0.23

(-) Dropout 74.85 ± 0.87 72.06 ± 0.13 79.30 ± 0.37 84.47 ± 0.38

(-) Residual Connections 73.19 ± 1.46 72.91 ± 0.17 - 79.59 ± 0.97

GraphSAGE∗ 82.21 ± 0.32 73.00 ± 0.28 83.89 ± 0.36 85.97 ± 0.21

(-) Normalization 77.42 ± 0.98 71.13 ± 0.27 82.12 ± 0.31 84.95 ± 0.33

(-) Dropout 80.52 ± 0.49 71.30 ± 0.21 80.36 ± 0.43 83.06 ± 0.28

(-) Residual Connections 81.75 ± 0.53 72.22 ± 0.49 - 85.81 ± 0.45

GAT∗ 85.01 ± 0.46 73.30 ± 0.18 80.99 ± 0.16 86.19 ± 0.23

(-) Normalization 80.32 ± 0.83 71.33 ± 0.29 78.62 ± 0.33 84.63 ± 0.64

(-) Dropout 82.48 ± 0.34 71.68 ± 0.32 77.68 ± 0.21 85.12 ± 0.49

(-) Residual Connections 82.43 ± 0.75 72.47 ± 0.34 - 81.37 ± 0.87
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Figure 1: Ablation studies of the number of layers showing, from left to right, results for homophilous graphs,
heterophilous graphs, and large-scale graphs, respectively.

Observation 4: Deeper networks generally lead to greater performance gains on heterophilous
graphs compared to homophilous graphs.

As demonstrated in Figure 1, the performance trends for GCN∗ and GraphSAGE∗ are consistent
across different graph types. On homophilous graphs and ogbn-arxiv, both models achieve optimal
performance with a range of 2 to 6 layers. In contrast, on heterophilous graphs, their performance
improves with an increasing number of layers, indicating that deeper networks are more beneficial
for these graphs. We discuss scenarios with more than 10 layers in Appendix B.

6 Conclusion

Our study provides a thorough reevaluation of the efficacy of foundational GNN models in node
classification tasks. Through extensive empirical analysis, we demonstrate that these classic GNN
models can reach or surpass the performance of GTs on various graph datasets, challenging the
perceived superiority of GTs in node classification tasks. Furthermore, our comprehensive ablation
studies provide insights into how various GNN configurations impact performance. We hope our
findings promote more rigorous empirical evaluations in graph machine learning research.
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A Datasets and Experimental Details

A.1 Computing Environment

Our implementation is based on PyG [16] and DGL [72]. The experiments are conducted on a
single workstation with 8 RTX 3090 GPUs. Notably, only the experiments on the pokec dataset are
performed on a separate workstation with 2 A100 GPUs.

A.2 Hyperparameters and Reproducibility

For the hyperparameter selections of classic GNNs, in addition to what we have covered, we list
other settings in Tables 8, 9, 10. Notably, for heterophilous graphs, we expand the search range
for the number of layers to include three additional settings: {12, 15, 20} (See Section B.2 for
further analysis). This adjustment is based on our empirical evidence suggesting that deep networks
tend to yield performance improvements on heterophilous graphs. The ReLU function serves as
the non-linear activation. Further details regarding hyperparameters can be found in our code
https://github.com/LUOyk1999/tunedGNN.

For hyperparameters specific to each GT, which are not present in classic GNNs, we tuned them
according to the search space specified in the original GT papers:

• GraphGPS: the number of heads from {1, 2, 4}, GNNs from {GCN,GraphSAGE,GAT},
positional encoding schemes from {None,LapPE,RWSE}.

• NAGphormer: the number of heads from {1, 2, 4}, number of hops from {3, 10}.

• Exphormer: the number of heads from {1, 2, 4}, positional encoding schemes from
{None,LapPE,RWSE}.

• GOAT: the number of heads from {1, 2, 4}, codebook size from {1024, 2048, 4096}.

• NodeFormer: the number of heads from {1, 2, 4}, M from {30, 50}, K from {5, 10}, rb
from {1, 2}, temperature from {0.25}.

• Polynormer: the number of heads from {1, 2, 4, 8}.

• SGFormer: the number of heads from {1, 2, 4}, GNN weight from {0.5, 0.8}.

Due to the large size of the graphs in ogbn-proteins, ogbn-products, and pokec, which prevents
full-batch training on GPU memory, we adopt different batch training strategies. For ogbn-proteins,
we utilize the optimized neighbor sampling method [20]. For pokec and ogbn-products, we apply the
random partitioning method previously used by GTs [12, 76, 75] to enable mini-batch training. For
other datasets, we employ full-batch training.

The testing accuracy achieved by the model that reports the highest result on the validation set is used
for evaluation. Additionally, we report mean scores and standard deviations after 5 independent runs
with different initializations.

Our code is available under the MIT License.

B Additional Benchmarking Results

B.1 GAT∗ with Edge Features on ogbn-proteins

While DeepGCN [33] introduced training models up to 56 layers deep and DeeperGCN [34] further
extended this to 112 layers, our experiments suggest that such depth is not necessary. Specifically,
while the DeeperGCN achieved an accuracy of 85.50% on ogbn-proteins, it utilized edge features as
input, a configuration not commonly employed in the standard baselines of the OGB dataset [24]. As
our experiments do not incorporate edge features on ogbn-proteins, we exclude DeeperGCN from the
main text to maintain a fair comparison.
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Table 8: Dataset-specific hyperparameter settings of GCN∗.

Dataset ResNet Normalization Dropout rate GNNs layer L Hidden dim LR epoch

Cora False False 0.7 3 512 0.001 500
Citeseer False False 0.5 2 512 0.001 500
Pubmed False False 0.7 2 256 0.005 500
Computer False LN 0.5 3 512 0.001 1000
Photo True LN 0.5 6 256 0.001 1000
CS True LN 0.3 2 512 0.001 1500
Physics True LN 0.3 2 64 0.001 1500
WikiCS False LN 0.5 3 256 0.001 1000

Squirrel True BN 0.7 4 256 0.01 500
Chameleon False False 0.2 5 512 0.005 200
Amazon-Ratings True BN 0.5 4 512 0.001 2500
Roman-Empire True BN 0.5 9 512 0.001 2500
Minesweeper True BN 0.2 12 64 0.01 2000
Questions True False 0.3 10 512 0.001 1500

ogbn-proteins True BN 0.3 3 512 0.01 100
ogbn-arxiv True BN 0.5 5 512 0.0005 2000
ogbn-products False LN 0.5 5 256 0.003 300
pokec True BN 0.2 7 256 0.0005 2000

Table 9: Dataset-specific hyperparameter settings of GraphSAGE∗.
Dataset ResNet Normalization Dropout rate GNNs layer L Hidden dim LR epoch

Cora False False 0.7 3 256 0.001 500
Citeseer False False 0.2 3 512 0.001 500
Pubmed False False 0.7 4 512 0.005 500
Computer False LN 0.3 4 64 0.001 1000
Photo True LN 0.2 6 64 0.001 1000
CS True LN 0.5 2 512 0.001 1500
Physics True BN 0.7 2 64 0.001 1500
WikiCS False LN 0.7 2 256 0.001 1000

Squirrel True BN 0.7 3 256 0.01 500
Chameleon True BN 0.7 4 256 0.01 200
Amazon-Ratings True BN 0.5 9 512 0.001 2500
Roman-Empire False BN 0.3 9 256 0.001 2500
Minesweeper True BN 0.2 15 64 0.01 2000
Questions False LN 0.2 6 512 0.001 1500

ogbn-proteins True BN 0.3 6 512 0.01 1000
ogbn-arxiv True BN 0.5 4 256 0.0005 2000
ogbn-products False LN 0.5 5 256 0.003 1000
pokec True BN 0.2 7 256 0.0005 2000

Table 10: Dataset-specific hyperparameter settings of GAT∗.
Dataset ResNet Normalization Dropout rate GNNs layer L Hidden dim LR epoch

Cora True False 0.2 3 512 0.001 500
Citeseer True False 0.5 3 256 0.001 500
Pubmed False False 0.5 2 512 0.01 500
Computer False LN 0.5 2 64 0.001 1000
Photo True LN 0.5 3 64 0.001 1000
CS True LN 0.3 1 256 0.001 1500
Physics True BN 0.7 2 256 0.001 1500
WikiCS True LN 0.7 2 512 0.001 1000

Squirrel True BN 0.5 7 512 0.005 500
Chameleon True BN 0.7 2 256 0.01 200
Amazon-Ratings True BN 0.5 4 512 0.001 2500
Roman-Empire True BN 0.3 10 512 0.001 2500
Minesweeper True BN 0.2 15 64 0.01 2000
Questions True LN 0.2 3 512 0.001 1500

ogbn-proteins True BN 0.3 7 512 0.01 1000
ogbn-arxiv True BN 0.5 5 256 0.0005 2000
ogbn-products False LN 0.5 5 256 0.003 1000
pokec True BN 0.2 7 256 0.0005 2000
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Table 11: Node classification results on ogbn-proteins (%).

ogbn-proteins

Metric ROC-AUC↑
DeeperGCN 85.80 ± 0.17
GAT∗ (with edge features) 87.82 ± 0.16

Table 12: Ablation study of the number of layers L on heterophilous graphs (%).

Roman-Empire Minesweeper

Metric Accuracy↑ ROC-AUC↑
GCN∗ (L = 12) 90.68 ± 0.44 97.76 ± 0.24
GCN∗ (L = 15) 90.74 ± 0.38 97.65 ± 0.81
GCN∗ (L = 20) 90.43 ± 0.52 97.52 ± 0.28

GrapSAGE∗ (L = 12) 90.96 ± 0.46 97.02 ± 0.51
GrapSAGE∗ (L = 15) 90.78 ± 0.63 97.77 ± 0.62
GrapSAGE∗ (L = 20) 90.22 ± 0.69 97.73 ± 0.88

Table 13: Node classification results over homophilous graphs (%). + indicates the implementation of classic
GNNs using JK as a hyperparameter configuration in our past experiments.

Cora CiteSeer PubMed Computer Photo CS Physics WikiCS

Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN+ 85.08 ± 0.52 72.98 ± 0.84 81.32 ± 0.72 93.80 ± 0.29 96.51 ± 0.20 95.80 ± 0.28 97.43 ± 0.05 80.27 ± 0.71

GraphSAGE+ 84.18 ± 0.81 71.93 ± 0.85 79.41 ± 0.53 93.59 ± 0.22 96.41 ± 0.17 96.12 ± 0.24 97.21 ± 0.05 80.51 ± 0.48

GAT+ 84.64 ± 1.27 72.10 ± 1.10 79.70 ± 0.70 93.93 ± 0.16 96.67 ± 0.13 96.08 ± 0.10 97.30 ± 0.06 80.75 ± 0.74

Table 14: Node classification results on heterophilous graphs (%).

Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper Questions

Metric Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑ ROC-AUC↑ ROC-AUC↑

GCN+ 44.50 ± 1.92 46.11 ± 3.16 53.57 ± 0.32 91.35 ± 0.37 97.77 ± 0.38 77.40 ± 1.07

GraphSAGE+ 39.93 ± 1.58 43.44 ± 3.19 54.72 ± 0.38 92.19 ± 0.58 96.95 ± 0.41 77.96 ± 0.72

GAT+ 38.72 ± 1.46 43.44 ± 3.00 54.99 ± 0.71 91.60 ± 0.21 97.76 ± 0.37 79.04 ± 1.27

Table 15: Node classification results on large-scale graphs (%).

ogbn-proteins ogbn-arxiv ogbn-products pokec

Metric ROC-AUC↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN+ 77.29 ± 0.46 73.60 ± 0.18 82.33 ± 0.19 86.33 ± 0.17

GraphSAGE+ 82.21 ± 0.32 72.95 ± 0.31 83.89 ± 0.36 85.97 ± 0.21

GAT+ 85.01 ± 0.46 73.30 ± 0.16 80.99 ± 0.16 86.19 ± 0.23

Now we incorporate edge features into the GAT∗, same as the approach in [73], with the results
shown in Table 11. A 6-layer GAT achieve an accuracy of 87.47%, significantly surpassing the
85.50% by DeeperGCN. This demonstrates that GNNs do not need to be as deep as proposed by
DeeperGCN; a range of 2 to 10 layers is typically sufficient.

B.2 Deeper Networks on Heterophilous Graphs

On heterophilous graphs, the performance of classic GNNs improves with an increasing number
of layers limited to 10, as evidenced by Figure 1 in the main text. We explore scenarios with more
than 10 layers in this subsection. Specifically, we consider GCN∗ and GraphSAGE∗ with layer
configurations of 12, 15, and 20 for the Roman-Empire and Minesweeper datasets. The results are
shown in Table 12. The variation in the optimal number of layers (L) could stem from the distinct
structures inherent in different graphs. Heterophilous graphs may have more complex structures, thus
necessitating a higher L. However, the slight improvements observed with larger L values suggest
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(a) GCN∗ on Cora (b) Polynormer∗ on Cora

(c) GCN∗ on PubMed (d) Polynormer∗ on PubMed

Figure 2: t-SNE visualizations of node embeddings.

that very deep networks may not yield significantly better results. Overall, the best results for classic
GNNs are achieved when L is limited to 15.

B.3 Jumping Knowledge Mode and Early Results

Jumping Knowledge (JK) Mode [81] aggregates representations from different GNN layers, effec-
tively capturing information from varying neighborhood ranges within the graph. For any node v, the
summation version of JK mode produces the representation of v by:

GNNJK(v,A,X) = h1
v + h2

v + . . .+ hL
v , (8)

where L is the number of GNN layers. In our previous experimental setups, we treated JK as a hyper-
parameter configuration for GNNs. Based on the hyperparameter configurations outlined in Section 3,
we expanded the tuning space to include the decision of whether to use JK. In past experiments, we
did not perform an exhaustive search; instead, we selected subsets based on experience within this
search space, and our early results are reported in Table 13, 14, and 15 (For additional information,
please refer to https://arxiv.org/abs/2406.08993v1). However, after a more detailed hyperparameter
tuning, we found that JK may not be necessary. In most datasets, the results without using JK are
comparable to, and sometimes even better than, those with JK. Consequently, we removed JK from
the hyperparameter tuning search space in our paper.

C Visualization

Here, we present t-SNE visualizations of classification results. As shown in Figure 2, the node
embeddings generated by GCN∗ (our implementation) display greater inter-class distances than those
produced by Polynormer∗.

D Limitations & Broader Impacts

Broader Impacts. This paper presents work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

Limitations. In this study, we focus solely on the node classification task, without delving into graph
classification [14, 44, 43] and link prediction [39, 87] tasks. It would be beneficial to extend our
benchmarking efforts to include classic GNNs in graph-level and edge-level tasks.
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