PEARL: Peer-Enhanced Adaptive Radio via
On-Device LLM

Ju-Hyung Lee*' |Yanging Lu*"? |Klaus Doppler’

+Nokia Technologies, Sunnyvale, CA, USA
2Department of Computer Science, University of Southern California, Los Angeles, CA, USA

Abstract

We present PEARL (Peer-Enhanced Adaptive Radio via On-Device LLM), a
framework for cooperative cross-layer optimization in device-to-device (D2D)
communication. Building on our previous work on single-device on-device LLMs
[Lee et al., [2025[], PEARL extends the paradigm by leveraging both publisher and
subscriber states to guide Wi-Fi Aware (WA) parameter selection. A context-
aware reward, which normalizes latency by application tolerances and modulates
energy by device battery states, provides richer supervision for KL-based fine-
tuning. We study two lightweight variants: PEARL (Head + Low-Rank Adaptation
(LoRA) [Hu et al., [2022]]) achieves the best overall performance, while PEARL-Lite
(Head-only) delivers sub-20 ms inference at near-identical objective scores. Across
synthetic scenarios grounded in real measurements, PEARL improves objective
scores over heuristic and compact model baselines and reduces energy by up to
16% in cooperative low-battery cases. These results demonstrate that peer-aware
context, reward-aligned training, and head-based efficiency make LL.Ms practical
for always-on, on-device cross-layer control. Code, real-world demo, and dataset
are available at https://github. com/abman23/pearl,

1 Introduction

Large language models (LLMs) are increasingly being adapted for resource-constrained edge devices
[Qu et al., [2025]], where they can enable adaptive networking, sensing, and cross-layer optimization
[Shao et al., [2024] without relying on the cloud. Our previous work demonstrated that on-device
LLMs can improve wireless performance by tuning cross-layer parameters in single-device settings,
leveraging local context such as user location and time of day [Lee et al.| [ 2025]. While promising, this
prior line of research leaves open the question of how LLM-based optimization can extend beyond
isolated devices to cooperative, device-to-device (D2D) scenarios.

In D2D communication, link performance depends not only on the local device state but also on peer
conditions such as battery level. For example, when the publisher has ample energy but the subscriber
is low on battery, an energy-preserving configuration may be preferable even at the cost of slightly
higher latency. Designing a learning system that accounts for such asymmetric, two-sided context
remains an open challenge. Moreover, efficient on-device deployment requires parameter-efficient
fine-tuning (PEFT) strategies [Bucher and Martini, 2024, Han et al., |2024], but it is unclear how
different PEFT modules compare in this setting, or how to ensure that training signals faithfully
reflect heterogeneous application and device constraints.

Contributions. We propose PEARL (Peer-Enhanced Adaptive Radio via On-Device LLM), the first
on-device LLM framework for cooperative cross-layer D2D optimization. Our key contributions are:
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Figure 1: System overview of PEARL. The agent runs on the publisher (D), combining local context (e.g.,
battery level, time, running applications) with peer-side context shared by the subscriber (D2, e.g., battery level,
device type). Based on these inputs, PEARL selects WA parameters (PerformanceMode, AccessCategory),
which configure the WA stack to minimize latency and energy on the D2D link.

(i) Peer-context integration (Sec. [3.1] f.3): subscriber-side information is incorporated into the
model input, enabling two-sided adaptation beyond single-device optimization.

(ii) Context-aware reward (Sec.[3.2] f-4): a reward function that normalizes latency by application-
specific tolerances and modulates energy by device battery state, providing richer supervision for
KL-based fine-tuning.

(iii) Head-based PEFT (Sec.[3.3] [.6): lightweight classification heads (PEARL and PEARL-Lite)
that achieve strong objective scores with sub-20 ms inference, narrowing the gap to the oracle while
remaining deployable on mobile hardware.

Extensive evaluation on Wi-Fi Aware (Sec.[]and Table[3) shows that PEARL consistently outper-
forms heuristic baselines and compact non-LLM models, demonstrating that peer-aware, reward-
aligned training substantially improves both efficiency and robustness in D2D optimization.

2 Problem Formulation

Scenario. We consider a D2D link established via Wi-Fi Aware (WA) between a publisher D and
a subscriber Dy [Camps-Mur et al.,|2015]]. The publisher transmits application data while selecting
cross-layer WA parameters that directly affect link performance. The decision model leverages both
local and peer-side context, including device battery levels, device type (e.g., iPhone, iPad), time of
day, and foreground application type sampled from a synthetic, time-varying distribution.

Action Space. At each decision step, the model chooses one of 8 discrete parameter tuples
(PerformanceMode, AccessCategory), where PerformanceMode € {realtime,bulk} and
AccessCategory € {bestEffort,background, interactiveVideo, interactiveVoice}.

Objective. The objective is to balance link latency and device energy consumption while satisfy-
ing application-specific requirements. Both local (publisher) and peer (subscriber) context guide
parameter selection. For example, when the subscriber has low battery, the model should prefer
energy-preserving modes even at the cost of slightly higher latency.

3 Method

3.1 System Architecture

PEARL builds on a pre-trained large language model (LLM) as a general-purpose feature en-
coder, and adapts it into a lightweight classifier for cross-layer parameter selection [Wu et al.,
2024]]. Context features from both publisher and subscriber devices (e.g., battery levels, time,
application) are embedded into a structured prompt and passed to the frozen LLM backbone. A



task-specific classification head is attached on top, predicting one of the discrete parameter tuples
(PerformanceMode, AccessCategory).

We consider two variants: PEARL (Head + Low-Rank Adaptation (LoRA) [Hu et al.,|2022])), where
the classification head is trained jointly with lightweight LoRA adapters inserted into the LLM,
and PEARL-Lite (Head-only), where only the head is trained while the backbone remains frozen.
For comparison, we also evaluate LoRA-only, where decisions are generated through the language
modeling head without a classification head.

At inference, context features are encoded into a structured prompt, passed through the frozen LLM
encoder, and mapped by the classification head to one of the 8 WA parameter tuples (Fig. [2).
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Figure 2: Architecture of PEARL. Context features are encoded into a structured prompt and passed through
a frozen LLM encoder. In PEARL-Lite, a classification head directly predicts one of 8 WA parameter tuples.
In PEARL, LoRA adapters are added to the encoder and trained jointly with the head. In both cases, the head
produces a single-token decision, avoiding autoregressive decoding.

3.2 Context-Aware Reward Design
We design a reward function that captures both application-specific latency requirements and device
battery states. Each is normalized into a score, where higher values indicate better performance.

For an application a with latency tolerance L, and parameters p yielding average latency ¢(p), the
latency score is

Ria(a,p) = max(l()O —~100- 42, 0) .

For a device d with battery level b; and energy usage E(p) under parameters p, the energy score is
ba

Reng(d, p) = m

The overall reward combines these terms across active applications .4 and devices D:

R(p) = wy - |7_,14‘ Z R]a[(a;p> —wp- ‘fél Z m
acA deD

Here, £(p) and E(p) are the measured latency and energy under parameters p, A is the set of active
applications, and D = {publisher, subscriber} the two devices considered. Weights wy, and wp
control the trade-off between latency and energy.

This formulation produces a reward distribution that yields soft labels for KL-based fine-tuning,
preserving relative action preferences and improving generalization (Appendix [C| [H).

3.3 Post-Training Strategies
We evaluate several post-training strategies for adapting the LLM encoder and prediction head:

* Supervised Fine-Tuning (SFT): We compare cross-entropy (CE) loss with Kull-
back-Leibler (KL) divergence loss. CE uses hard argmax labels, while KL leverages
the full reward distribution as soft labels, preserving relative preferences across actions
[Hinton et al., 2015]).



* Preference Optimization (DPO): Optionally, we apply Direct Preference Optimization
[Rafailov et al., 2023]] on paired contexts, where the higher-reward action is labeled as
preferred and the lowest-reward action as non-preferred.

» Head-based efficiency: In PEARL and PEARL-Lite, the classification head consumes the
last hidden state and outputs logits over the 8§ actions, producing a one-token decision. This
avoids autoregressive decoding and yields sub-20 ms inference on edge hardware.

These strategies allow us to study the trade-offs between reward alignment, training cost, and inference
efficiency (see Section ).

4 Experiments

4.1 Setup

Dataset. We construct a simulation dataset from WA measurements combined with synthetic
application usage distributions. For each parameter tuple (PerformanceMode, AccessCategory),
we measure average latency and power usage during controlled sessions. Each sample consists
of (context, action, score), with scores computed as described in Section Further details and
parameter settings are provided in Table ] and Appendix

Baselines. We evaluate our proposed framework for context-driven cross-layer optimization un-
der the PEARL and PEARL-Lite variants introduced in Section For comparison, we also
include: (i) an oracle, which selects the configuration that maximizes the context-aware reward
derived from ground-truth latency and energy — effectively representing the optimal balance be-
tween latency and energy consumption under the defined application constraints; (ii) LoRA-only
(LoRA); (iii) a rule-based baseline (Rule), which selects WA parameters heuristically based only on
application type (see Table[§]in Appendix [E); and (iv) two fixed baselines, Fixed (RT/IV) (fix-RT/IV,
(realtime, interactiveVoice)) and Fixed (Bulk/BG) (fix-Bulk/BG, (bulk,background)).

Metrics. We report three metrics aligned with the definitions in Section[3.2} (i) the Objective Score,
corresponding to the overall reward R(p) that combines normalized latency and energy; (ii) Latency,
the latency score R, normalized by application-specific tolerance (higher is better); and (iii) Energy,
the energy score Re,g, which reflects normalized energy consumption relative to device battery state
(higher is better). Unless otherwise specified, results are averaged across scenarios covering different
times of day and battery levels.

4.2 Performance Comparison
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Figure 3: Objective score, latency, and energy comparison across PEARL variants and baselines.

Figure [3] shows that PEARL outperforms rule-based and fixed baselines on the joint objective
score. The default PEARL variant achieves 7.58, with PEARL-Lite close behind at 7.54; both are
about 7% below the oracle (8.16) but remain well above LoRA-only (7.32) and Rule (7.29). While
PEARL-Lite emphasizes lower latency at the cost of higher energy, PEARL strikes a more balanced
trade-off, leading to the best overall performance. These results demonstrate that head-based designs
enable effective context-driven adaptation and substantially narrow the gap to the oracle compared to
heuristic strategies.



4.3 Impact of Peer Context Information

Variant | Aggregated Scenario | Cooperative Scenario (Low-Battery Subscriber)
\ Objective Score T Latency T Energy T \ Objective Score T Latency 1 Energy T

w/ peer info 7.58 97.24 46.72 5.38 94.55 24.56

wlo peerinfo (PEARL) ‘ 755 9798 4450 ‘ 5.04 99.13 20,53

w/ peer info . 7.54 99.27 41.85 5.22 99.14 21.29

wlo peerinfo (PEARL-Lte) 7.49 9927 4099 ‘ 5.03 99.13 2047

Table 1: Impact of including peer information in the context. In the aggregated scenario, models trained w/ peer
info achieve consistently higher objective scores than those w/o peer info. In the cooperative scenario—where
the subscriber is low on battery and the publisher adapts its configuration to assist—adding peer info reduces
energy consumption by up to ~16% while maintaining reasonable latency, highlighting where peer awareness
provides the greatest benefit.

Table T] shows that incorporating peer (subscriber) information consistently improves performance.
In aggregated scenarios, PEARL and PEARL-Lite w/ peer info achieve slightly higher objective
scores than their w/o peer info counterparts. In the cooperative case, PEARL w/ peer info reduces
energy consumption by ~16% while maintaining latency within 0.5% of w/o peer info, confirming
that peer awareness provides tangible benefits in asymmetric conditions where coordination is critical.
Additional qualitative snapshots illustrating this effect are provided in Appendix [H]

4.4 TImpact of Context-Aware Reward Design

Figure [] shows that context-aware reward improves performance e
for both PEARL and PEARL-Lite. By normalizing latency against
application-specific tolerances and incorporating device battery states
into the energy term, the design generates richer supervision signals
that better reflect heterogeneous requirements. Although absolute gains
over the naive formulation are modest, they consistently yield higher ob-
jective scores, indicating more accurate adaptation. This demonstrates
that careful reward design is crucial for leveraging context effectively 74
in cross-layer optimization and for ensuring robustness across diverse
usage scenarios.
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4.5 Effect of Post-Training Strategy
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Figure 5: Objective scores for different training strategies. KL-based fine-tuning consistently outperforms CE
and DPO, both in-distribution and out-of-distribution (OOD).

Figure [5] compares post-training strategies for PEARL and PEARL-Lite. Without fine-tuning
(NoFT), objective scores are substantially lower in both in-distribution and OOD cases. Supervised
fine-tuning with cross-entropy (SFT-CE) improves scores, while adding preference optimization
(SFT+DPO) yields only marginal gains despite higher cost. In contrast, KL.-based fine-tuning (SFT-
KL) consistently achieves the best scores across both architectures. Its advantage stems from using
soft labels derived from reward distributions, which preserve relative action preferences instead of
collapsing them into hard labels. This provides richer supervision signals, enabling more nuanced
trade-offs and better generalization across diverse scenarios.



4.6 Efficiency of Post-Training Modules

Baseline | Objective Score 1 | Inference | | Training |

\ Time (ms) Tokens RAM (GB) \ RAM (GB) Time (min/epoch)
Base 7.04 760.7 (x1.0) 48.9 6.58 — —
LoRA-only 7.32 243.1 (x3.1) 7.62 9.39 29.17 30
PEARL-Lite 7.54 14.5 (x52) 1.00 6.80 11.03 12
PEARL 7.58 40.3 (x18.9) 1.00 9.44 46.83 38

Table 2: Performance and efficiency of post-training modules. Parentheses denote speedup vs. Base (NoFT) .
“Tokens” = average generated tokens per decision; head-based models always produce 1.00 (classification head).
PEARL-Lite is most efficient, while PEARL yields the highest objective score.

Table [2 highlights the trade-off between performance and efficiency across different post-training
modules. PEARL achieves the highest objective score (7.58) but incurs moderate training cost, while
PEARL-Lite attains nearly comparable performance (7.54) with substantially lower inference latency
(14.5 ms, 52x faster than the Base) and reduced training memory. In contrast, LoRA-only yields
lower objective scores (7.32) and slower inference, underscoring that head-based designs provide the
most favorable balance for on-device deployment. This efficiency comes from the classification head:
it consumes the last token’s hidden state to produce logits over the 8-action space (a single token),
whereas LoRA-only relies on text generation, producing ~8 tokens on average.

5 Discussion

Q1 — Interpretation: How do peer context and a context-aware reward improve PEARL’s on-
device D2D decisions?. Incorporating subscriber-side context reduces partial observability and
enables coordinated adaptation across devices. This leads to consistently higher objective scores,
and in cooperative cases (e.g., low-battery subscriber) reduces energy by ~16% with negligible
latency change (<0.5%) (Table [I)), showing that peer awareness makes PEARL more responsive
to asymmetric conditions. The context-aware reward amplifies this effect by aligning training with
heterogeneous constraints: latency is normalized by application-specific tolerances, and energy is
scaled according to device battery states (Sec. [3.2} Fig.[d] Appendix [C). Together, these choices
guide PEARL toward energy-efficient yet latency-safe actions, improving robustness in asymmetric
scenarios.

Q2 — Practical Implications: How does PEARL’s head-based design enable efficient deployment
on real edge devices?. PEARL’s head-based design performs inference by emitting a single classi-
fication token from the last hidden state, avoiding autoregressive decoding and its latency/memory
overhead. This allows PEARL-Lite to run in under 20 ms (~52x faster than the base) with low
memory usage, while full PEARL achieves the highest objective score with roughly 3x inference
latency and 3—4x training memory relative to PEARL-Lite — a trade-off that yields measurable gains
in accuracy and robustness. By contrast, LoRA-only is slower and less effective due to multi-token
generation. In deployment, PEARL-Lite is well-suited when latency or GPU memory (VRAM)
budgets are tight, PEARL is preferable when slight overhead is acceptable for maximum accuracy,
and merging adapters into the base can approximate PEARL’s performance at near PEARL-Lite cost
(Table[2). Overall, these properties give PEARL the latency—energy—memory profile required for
always-on, on-device cross-layer control without server support.

Q3 — Alternatives: Why not replace PEARL with a compact feed-forward network (FFN/MLP),
a reinforcement-learning (RL) baseline, or a lightweight Transformer encoder?. While small feed-
forward networks or RL baselines can be efficient for narrow tasks, they struggle with mixed-format
context (numeric + categorical) and typically require additional feature engineering. Lightweight
Transformer encoders such as MiniLM (22.7M parameters) [Wang et al.,|2020]] can process heteroge-
neous inputs more flexibly and achieve very low inference latency (~5—6 ms). However, as Table 3|
shows, they yield lower objective and OOD scores than PEARL. By contrast, PEARL and PEARL-
Lite leverage pretrained language modeling to naturally parse diverse context, providing stronger
generalization while still running in the sub-20 ms range. Thus, although compact models may be
attractive under extreme latency budgets, PEARL offers the best balance of accuracy, robustness, and
deployability for always-on D2D optimization.



Baseline Objective Score T  OOD Score T Inference Time (ms) |

PEARL 7.58 7.39 40.3
PEARL-Lite 7.54 7.39 14.5
MiniLM (Head+LoRA) 7.51 7.34 6.0
MinilLM (Head) 7.49 7.34 5.1

Table 3: Comparison of PEARL with a lightweight Transformer encoder (all-MiniLM-L6-v2, 22.7M).

Q4 — Limitations & Future Directions. We provide a proof-of-concept demo, with code, dataset,
and a full demonstration video available at https://github.com/abman23/pearl to ensure re-
producibility. Nevertheless, rigorous validation on hardware testbeds with real-time counters (e.g.,
per-packet latency and energy) is required for robust evaluation. Our study is currently limited
to a narrow task space (2 PerformanceMode options X 4 AccessCategory options) and a single
protocol (WA). Extending PEARL to richer parameter spaces, additional protocols (e.g., 5G), and het-
erogeneous devices remains an open challenge. Moreover, while head-based inference provides fast
and accurate decisions, scaling to multiple tasks with separate heads may become burdensome. Future
work should explore multi-task optimization strategies that preserve efficiency while maintaining
accuracy.
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A Real-World Demonstration

To validate the feasibility of PEARL beyond simulation, we implemented a real-world prototype
as an iPad0sS app. The app establishes D2D communication between two devices using Apple’s
WA framework and integrates Apple’s on-device Foundation Models (AFM) to run the LLM agent
directly on the publisher [Apple Inc., 2024]. The agent monitors local and peer-side context and
dynamically updates WA parameters (PerformanceMode, AccessCategory) to reconfigure the
ongoing connection. We deploy the app on two iPad Pro devices (Apple M4 chip, 8 GB RAM,
iPad0S 26.0). A full demonstration video is available at https://github.com/abman23/pearl.

Figure 6: Prototype demonstration of PEARL on two iPad Pro devices. The publisher (left) hosts the on-device
LLM agent, while the subscriber (right) receives updated WA parameters.
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Figure 7: Step-by-step illustration of WA parameter tuning. The publisher observes context features and proposes
anew configuration (realtime, interactiveVideo), then reconfigures the WA link and notifies the subscriber
to update.
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B Setup

Table E] summarizes the hardware, software, dataset, and training configurations. For task design, we
synthesize eight application types with time-of-day usage distributions that mimic typical mobile
usage patterns (Fig.[8a). These distributions are used to sample application types as part of the context
features in training and in-distribution evaluation. To test generalization, we construct an alternative

distribution (Fig. [8b) to generate out-of-distribution (OOD) evaluation sets.

HW/SW

Device (Publisher / Subscriber)

iPad Pro (M4, 8 GB RAM)

0S iPad0S 26.0

Frameworks Wi-Fi Aware, Foundation Models

LLM Backbone Llama-3.2-3B, AFM-on-device [Apple Inc.|[2024]
Dataset (WA Log)

Total Samples 32,000

Train / Test Split 80% /20%

Sampling Interval 5s

Task Configuration

Action Space
Scenarios

Application Types
Contextual Inputs

Reward Weights
History Window

2 modes X 4 categories = 8 actions

16 combinations of time-of-day (morning, afternoon, evening, night) and device
battery levels (both high, medium, low, publisher high / subscriber low)
textMessage, voiceChat, videoCall, sensorSync, photoTransfer,
videoUpload, firmwareUpdate, mapSync

Time, App Types, Publisher Battery Level, Subscriber Battery Level

wr, = 0.1, wp = 1.0

10 past time steps

Training Configuration

Learning Rate

Batch Size / Grad. Accum.
Epochs

Weight Decay

Loss Functions

LoRA Rank / Alpha

DPO Beta

Optimizer

GPU

1x107°

4/ 16 (effective batch = 64)
5

0.01

CE, KL, DPO

128 /128

0.1

AdamW

1 x NVIDIA L40S

Table 4: Experiment setup including hardware, dataset, task configuration, and training details.

morning:

textMessage: 0.25,

voiceChat:

videoCall:

mapSync:

photoTransfer: 0.10
afternoon:

voiceChat:

morning:
videoCall: 0.30,
0.20, textMessage: 0.25,
0.25, voiceChat: 0.20,
0.20, photoTransfer: 0.15,

videoUpload: 0.10
afternoon:

textMessage: 0.20, videoCall: 0.25,
0.20, textMessage: 0.25,
0.25, voiceChat: 0.20,

videoCall:
sensorSync: 0.20,
photoTransfer: 0.15

evening:

textMessage: 0.10,
voiceChat:
videoUpload: 0.30,

photoTransfer: 0.20,
videoCall:

night:

firmwareUpdate: 0.40,
sensorSync: 0.30,

photoTransfer: 0.20,
videoUpload: 0.10

evening:
videoUpload: 0.35,
0.20, videoCall: 0.25,

photoTransfer: 0.20,
voiceChat: 0.15,
0.20 textMessage: 0.05
night:
videoUpload: 0.30,
videoCall: 0.25,

textMessage: 0.10,
photoTransfer: 0.10,
mapSync: 0.10

(a) Training / in-distribution

textMessage: 0.20,
voiceChat: 0.15,
photoTransfer: 0.10

(b) Out-of-distribution evaluation

Figure 8: Synthetic application usage distributions used to generate context logs.



C Context-Aware Evaluation Metrics

We define two context-dependent metrics, Latency and Energy, to evaluate link quality under D2D
dynamics. Unlike raw values, these metrics incorporate application- and device-specific constraints,
providing not only quantitative measurement but also qualitative insight into how well system behavior
aligns with user needs.

Latency is computed as a function of WA parameters and application type, expressed as a percentage
score indicating how well the observed link latency satisfies the latency tolerance of the active
application (Table[5)). Energy is computed as a function of WA parameters and device battery level,
reflecting how well the energy consumption of a configuration aligns with the current battery status.

Application Type Latency Tolerance (ms)

textMessage 200
voiceChat 50
videoCall 100
sensorSync 1,000
photoTransfer 2,000
videoUpload 5,000
firmwareUpdate 10,000
mapSync 500

Table 5: Latency tolerance thresholds for each application type.

To highlight the benefit of these metrics, we contrast them with raw measurements. Table[6]shows that
while raw latency (ms) varies significantly across time periods, the Latency score remains consistent
with application tolerance. For example, although average link latency at night (15.61 ms) is much
higher than in the morning (4.97 ms), most nighttime applications are delay-tolerant, producing
similarly high scores. Likewise, Table /| compares Energy with raw energy consumption across
high, medium, and low battery states. Here, the metric magnifies differences under low-battery
conditions, assigning greater penalty and dynamically shifting the optimization objective toward
energy efficiency.

Scenario (time, battery) Latency Score T Link Latency (ms) |

(morning, both medium) 98.41 4.97
(afternoon, both medium) 98.43 6.60
(evening, both medium) 98.94 9.56
(night, both medium) 98.95 15.61

Table 6: Comparison of context-aware Latency score and raw link latency across scenarios.

Scenario (time, battery) Energy Score T Energy Consumption (%/h) |

(afternoon, both high) 102.99 3.15
(afternoon, both medium) 59.46 3.24
(afternoon, both low) 24.26 2.90

Table 7: Comparison of context-aware Energy score and raw energy consumption across scenarios.
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D Data Collection

The simulation dataset is constructed from real WA logs, combined with synthetic application usages
defined in Fig.[8] To collect logs, we developed an iPad0S app that establishes a WA connection
between two devices, simulates their interactions, and records context information. The app was
deployed on two iPad Pro devices (Table ), where we executed 16 sessions of data collection, each
consisting of 2,000 consecutive logs. Each session corresponds to one specific scenario defined by
time of day and device battery levels. Battery levels were sampled uniformly across high, medium,
and low states to ensure balanced representation of energy conditions.

During each session, we iterated over all WA parameter tuples in the action space so that every con-
figuration (PerformanceMode, AccessCategory) was exercised. For each tuple, the app recorded
both link latency values and battery usage, which are later used to compute the objective score as
described in Section[3.21and Section

Logged features. The following features were logged per record:

* Device context: publisher and subscriber device IDs, battery levels, time of day, application
type.
* WA parameters: current PerformanceMode and AccessCategory.
* Performance metrics: measured latency and battery usage.
Additional fields such as charging status, throughput capacity, signal strength, and throughput-related

counters were also recorded (Figs. El, @, but were not used for training or inference. These remain
available for future extensions or cross-validation.

Figure 9: Data collection pipeline. WA logs are recorded on the publisher and uploaded to a computer for
pre-processing.
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Figure 10: Example WA logs received by the computer, including device context, WA parameters, and perfor-
mance metrics.

E Baseline Details (Rule)

The Rule baseline is a simple heuristic policy that depends only on application type. For each
application, we assign a preferred WA parameter tuple based on common-sense intuition about its
latency or throughput requirements (Table ). At inference time, the baseline examines the past n
applications (with n = 10 in our setup, consistent across all baselines) and selects the parameter
tuple that appears most frequently among their preferred mappings.

This design makes Rule adaptive only to recent application history, without considering device
battery states or other contextual factors. It thus serves as a lightweight non-learning baseline for
comparison against context-aware methods such as PEARL and PEARL-Lite. Future extensions
could incorporate a simple “battery-safe” heuristic—e.g., switching to energy-preserving modes
below 20% battery—to better reflect real-world smartphone behavior.

Application Type Preferred Parameter Tuple

textMessage (realtime, bestEffort)
voiceChat (realtime, interactiveVoice)
videoCall (realtime, interactiveVideo)
sensorsSync (bulk, background)
photoTransfer (bulk, bestEffort)
videoUpload (bulk, bestEffort)
firmwareUpdate (bulk, background)
mapSync (realtime, bestEffort)

Table 8: Preferred WA parameter tuple assigned heuristically for each application type.

13



F Single-Objective Optimization Results

101 60
99.22 99.28 99.29 99.30

5535 5574 55.74
52.42

45.26

Latency ( T)
Energy (1)

(a) Latency-only (b) Energy-only

Figure 11: Performance comparison of PEARL variants and baselines for single-objective optimization.

Although PEARL is primarily designed for the joint optimization of latency and energy, we also
evaluate performance under single-objective settings. Figure [IT|compares PEARL variants against
baselines when optimizing for Latency only or Energy only.

In the latency-only setting (Fig.[ITa), PEARL, PEARL-Lite, and LoRA-only achieve scores within
1% of Fixed(RT/IV), which always selects (realtime, interactiveVoice)—a configuration
strongly favoring low latency. In the energy-only setting (Fig. [11b), PEARL and PEARL-Lite
achieve performance close to Fixed(Bulk/BG), the parameter choice that minimizes energy consump-
tion, while outperforming other adaptive baselines.

Interestingly, PEARL-Lite performs on par with, and sometimes slightly better than, full PEARL
in single-objective settings. This suggests that lightweight head-only models may be particularly
well-suited for simpler optimization tasks, offering both efficiency and strong performance.
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G Head Module Design Details

The head module in PEARL-Lite (and PEARL) is responsible for mapping the last-token embedding
of the frozen LLM encoder to logits over the WA action space. Because this component is lightweight
compared to the backbone LLM, its depth can be adjusted without incurring meaningful additional
cost. We therefore explore different head architectures to examine whether deeper designs improve
representational power.

Variant | Performance 1 | Inference | | Training |

| Objective Score Latency Energy | Time (ms) RAM (GB) | Time (min/epoch) RAM (GB)
3-layer Head 7.54 99.27 41.85 14.5 6.80 12 11.03
2-layer Head 7.50 99.27 41.21 14.6 6.80 12 10.54
1-layer Head 7.51 99.27 41.35 14.7 6.80 12 11.30

Table 9: Performance and efficiency of different head module depths in PEARL-Lite.

As shown in Table[J] the 3-layer head—the default configuration—achieves the highest objective
score, while maintaining identical inference and training efficiency compared to shallower variants.
This result suggests that slightly deeper heads can better utilize the LLM’s feature representations,
while the overall system cost remains dominated by the backbone. Hence, deeper heads are a simple
but effective design choice for improving performance without compromising efficiency.
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H Full Scenario Snapshots

To complement the quantitative analysis in Section [d.3] we present two qualitative snapshots of
context logs and the corresponding predictions made by PEARL, PEARL w/o peer info, and Rule.
These examples illustrate how peer-side context guides parameter selection toward more energy-aware
configurations when the subscriber is low on battery.

Sample 181, context feature:

| Time of day | Application | Publisher Battery Level | Subscriber Battery Level |
| | ['sensorSync'] | © 0

| ['videoCall'] |

| ['sensorSync'] | ©

| ['photoTransfer'] | @
| ['videoCall'] | 0.

| ['textMessage']l | ©

| ['photoTransfer'] |

| ['textMessage'] |

| ['photoTransfer'] |

| | ['textMessage'] | 5] 0.1 |

PERAL prediction: ('bulk', 'background'), objective score: 6.34

PEARL w/o peer info prediction: ('realtime', 'bestEffort'), objective score
Rule prediction: ('bulk', 'bestEffort'), objective score: 3.940

(a) Afternoon scenario.

Sample 135, context feature:

| Time of day | Application | Publisher Battery Level | Subscriber Battery Level |
| | ['videoUpload'] | 0.75 ). 1

| ['photoTransfer'] | 1

| ['photoTransfer'] |

| ['videoCall'] | @

| ['videoUpload'] |

| ['voiceChat'] | ©

| ['videoCall'] | ©

| ['videoUpload']

| ['videoCall'] | 0.7 :

| | ['videoCall'] | 0.75 | O@.

PERAL prediction: ('bulk', 'background'), objective score: 8.1

PEARL w/o peer info prediction: ('realtime', 'bestEffort'), objective score: 5.0
Rule prediction: ('bulk', 'bestEffort'), objective score: 7

|
|
|
|
|
|
|
|

(b) Evening scenario.

Figure 12: Context logs and decisions of PEARL, PEARL w/o peer info, and Rule under the subscriber
low-battery case.

In Fig.[12a] when the subscriber battery is only 10%, PEARL leverages this information to select
(bulk, background), prioritizing energy saving. Without access to peer context, PEARL w/o peer
info observes only the publisher’s high battery level and instead selects (realtime, bestEffort).
Rule, based solely on application type, chooses (bulk, bestEffort), yielding the lowest objective
score.

Fig. [I2b] shows a complementary case from the evening period. Here, despite a mix of latency-
sensitive and high-throughput applications such as videoCall and videoUpload, PEARL again
adapts to the low-battery subscriber and opts for (bulk, background). Both PEARL w/o peer
info and Rule fail to adjust accordingly, resulting in lower scores.

Taken together, these snapshots demonstrate that PEARL consistently leverages peer-side con-
text across different scenarios, leading to more energy-aware decisions while maintaining strong
performance.
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