
Published in Transactions on Machine Learning Research (03/2023)

Towards Better Out-of-Distribution Generalization of Neural
Algorithmic Reasoning Tasks

Sadegh Mahdavi smahdavi@ece.ubc.ca
University of British Columbia

Kevin Swersky kswersky@google.com
Google Research, Brain Team

Thomas Kipf tkipf@google.com
Google Research, Brain Team

Milad Hashemi miladh@google.com
Google Research, Brain Team

Christos Thrampoulidis cthrampo@ece.ubc.ca
University of British Columbia

Renjie Liao rjliao@ece.ubc.ca
University of British Columbia

Reviewed on OpenReview: https: // openreview. net/ forum? id= xkrtvHlp3P

Abstract

In this paper, we study the OOD generalization of neural algorithmic reasoning tasks,
where the goal is to learn an algorithm (e.g., sorting, breadth-first search, and depth-first
search) from input-output pairs using deep neural networks. First, we argue that OOD
generalization in this setting is significantly different than common OOD settings. For
example, some phenomena in OOD generalization of image classifications such as accuracy
on the line are not observed here, and techniques such as data augmentation methods
do not help as assumptions underlying many augmentation techniques are often violated.
Second, we analyze the main challenges (e.g., input distribution shift, non-representative
data generation, and uninformative validation metrics) of the current leading benchmark,
i.e., CLRS (Veličković et al., 2021), which contains 30 algorithmic reasoning tasks. We
propose several solutions, including a simple-yet-effective fix to the input distribution shift
and improved data generation. Finally, we propose an attention-based 2WL-graph neural
network (GNN) processor which complements message-passing GNNs so their combination
outperforms the state-of-the-art model by a 3% margin averaged over all algorithms. Our
code is available at: https://github.com/smahdavi4/clrs.

1 Introduction

Algorithms have been a vital part of today’s computing systems, solving tasks ranging from scheduling
to finding the shortest path in real-world maps. Algorithms often come with benefits like performance
guarantees, provable correctness, and generalization to various instances. Designing algorithms to solve tasks,
however, can be quite hard in many situations. For instance, given any task, a computer scientist has to either
follow some existing algorithm paradigms (e.g., divide and conquer) or come up with some new algorithm,
which typically requires significant hand-design efforts. Moreover, some problems lie in the NP-hard class of
which the solutions require an exponential amount of time for execution, and designing efficient approximate
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algorithms for such problems often requires several years of research. Finally, executing an algorithm often
requires preprocessing data into a predefined format before feeding the data into a computer program. On the
other hand, deep learning has been successful in solving tasks of many domains without much task-specific
adaptation. For instance, a Transformer (Vaswani et al., 2017) could solve image classification, machine
translation, and language modeling with negligible changes to its architecture. Moreover, deep learning
models are well known for their ability in solving tasks in an end-to-end fashion, thus removing the necessity
of data preprocessing and feature design. Neural networks, however, are not resilient to distribution shifts,
and their symbolic manipulation and reasoning capabilities are limited (Zhang et al., 2021).

Therefore, it is natural to ask whether one can leverage deep neural networks to mimic algorithms, i.e., neural
networks execute the same computation as given algorithms. The hope is to combine the strength of both
worlds, e.g., 1) performance guarantees, generalization to various instances, and transferability across tasks
from algorithms, and 2) end-to-end training, universal approximation, and fast parallel computation from
neural networks. Recently, researchers have been working on this problem and the area is dubbed as Neural
Algorithmic Reasoning (Veličković & Blundell, 2021). Here, the goal is not only to enhance the symbolic
manipulation and reasoning capabilities of neural networks but also to leverage them to find more efficient
and faster algorithms.

Existing works have shown that this problem is challenging, especially when the model is evaluated on
test samples that are drawn from a different distribution than train samples (i.e., it is hard to generalize
to out-of-distribution data) Veličković et al. (2021). For example, while deep neural networks could be
trained to perform sorting on sequences of a given, fixed length, when faced with longer sequences, their
performance drops substantially (Varis & Bojar, 2021). In this work, we analyze the out-of-distribution
(OOD) generalization of neural networks on algorithmic reasoning tasks. We first investigate several challenges
with OOD generalization in our problem context and propose solutions to some of the issues that arise. In
particular, our contributions are as follows:

• In Section 3, based on the CLRS benchmark, we show how OOD settings of neural algorithmic
reasoning tasks are different from common ones (Section 3.1) and identify several key challenges:
input distribution shift (Section 3.2), unrepresentative dataset generation in both train and test
(Section 3.3), model selection difficulties due to near-perfect in-distribution validation metrics (Section
3.4), and a systematic investigation of OOD generalization under controlled distribution shift of
graph sizes and node degrees (Section 3.5).

• In Section 4, we propose solutions to some of these challenges, including 1) enlarging the in-distribution
training dataset to push the limits of OOD performance (Section 4.1), 2) a simple-yet-effective fix
to input distribution shift (Section 4.2), 3) an attention-based 2-WL graph neural network (GNN)
(Morris et al., 2019) processor that significantly outperforms the state-of-the-art when combined with
message passing GNNs (Sections 4.3 and 4.4 ).

2 Background

We follow the setup of the CLRS benchmark (Veličković et al., 2021). All algorithmic tasks are translated and
represented as graphs (possibly empty or fully-connected) with task-specific node/edge/graph feature inputs
and node/edge/graph-level target outputs. Each task also contains the ground truth values of all variables
presented in intermediate steps of an algorithm, which are called hints and could be used as additional
supervision to train the model. The aim of hints is to help mimic individual steps of the underlying algorithm
and finally predict the target output.

Each instance of a task contains a graph G = (V, E) with a set of n nodes V = {v1, v2, . . . , vn} and m edges
E = {ei = (vi1 , vi2) : vi1 , vi2 ∈ V, 1 ≤ i ≤ m} with an adjacency matrix A ∈ Rn×n, edge feature tensor
XE ∈ Rn×n×dE , and node feature matrix XV ∈ Rn×dV . We eschew an explicit graph feature vector as it could
be represented as a concatenation of features to the node feature matrix. For a node (column) vector zv, we
use capital from Z to indicate a vertically stacked matrix (one row per node) of all node vectors across the
graph. Moreover, we denote column-wise concatenation of two matrices/row-vectors E and F as [ E, F ].
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Figure 1: Encode-process-decode visualization for the BFS task. The input is a graph with starting node index
of two. The node representations are encoded into a latent space. Then T consecutive steps of processing
are applied to the latent dimensions using a GNN. Finally, the output pointer for each node is decided by
pairwise comparisons of node representations.

All models we consider are GNNs with an encode-process-decode framework (Battaglia et al., 2018). For an
algorithm with T iterative steps, we consider a recurrent GNN whole message passing steps correspond to
algorithms steps. At each step t (1 ≤ t ≤ T ) of processing, all input features are embedded into embedding
vectors zinpv

∈ Rdh by their corresponding encoders, for each individual node v ∈ V. The processor then
takes the embedding vectors and the hidden states at step t and outputs the hidden representations of step
t + 1. Formally, a (simplified) formula for the processor is as follows:

H(t+1) = GNN([ H(t), Zinp ], A), (1)

where GNN(X, A) represents the one-step computation process of a GNN processor with input node features
X and adjacency matrix A. Finally, outputs are decoded using a simple MLP per node/edge, with shared
parameters. The loss value is evaluated based on the outputs of decoders at iteration T .

To better illustrate this framework, we explain how Breadth-first Search (BFS) is formulated in this framework.
Given an input undirected graph and a starting node, the task is to predict for each node the pointer to its
predecessor when applying BFS on this graph. Namely, we have two-dimensional node features XV ∈ Rn×2

where the first dimension determines the index of a node and the second dimension determines whether the
node is the starting node. We also have the adjacency matrix A of the graph. The encoder is a linear layer
with a weight matrix Wenc ∈ R2×dh where dh is the latent embedding size. Then, for the processing step, T
recurrent steps of GNN are applied to the latent space with adjacency matrix A to get the final latent node
representations H(T ) ∈ Rn×dh . Finally, for each pair of nodes i, j (1 ≤ i, j ≤ n), a score αi,j determines how
likely i points to j as the predecessor and ŷi = arg maxj αi,j is the predicted output pointer of node i. To
compute αi, we can apply an MLP to [h(t)

i , h
(t)
j ] followed by a (row-wise) Softmax non-linearity. The loss for

this task is a cross-entropy loss between predicted row scores αi,: and the true (one-hot row-wise) pointer
scores for each node i. This process is illustrated in Figure 1. For additional examples, see Appendix A.3.

As the processor is considered the central part of this architecture, here we explain the three processor
baselines used by the benchmark:

• MPNN (Gilmer et al., 2017): A message passing neural network with a max-aggregation. On the
benchmark, this processor assumes a fully connected graph regardless of whether the downstream
task contains any graph or not. We regard this fully-connected MPNN processor as MPNN-FC.
We also consider the original MPNN which operates on given graphs (if graphs are unavailable for a
task, a fully connected graph is used), and call it MPNN-G.
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Table 1: Test scores of three processors (MPNN-FC, PGN, GAT) on the CLRS benchmark proposed by
Veličković et al. (2021) on all 30 algorithms averaged over three random seeds. The performances with hints
are lower on the majority of algorithms, for all processors. The mean is taken over all 30 algorithms, the wins
are taken within each processor. For each algorithm, a win is declared when the score for that algorithm is
higher than the alternative (i.e., with vs. without hints).

Method MPNN-FC PGN GAT
Use Hints Yes No Yes No Yes No
Mean 51.02 60.04 52.31 57.02 44.69 49.53
Wins 8/30 22/30 10/30 20/30 14/30 16/30

• PGN (Veličković et al., 2020a): Similar to MPNN, but PGN operates on a graph derived from
both the input and hints. When no hints are available, and the task does not contain any graph, it
assumes an empty graph and hence behaves the same as DeepSets (Zaheer et al., 2017).

• GAT (Veličković et al., 2018): Similar to PGN, but GAT replaces the max-aggregation-based message
passing in MPNN with the attention based one.

To fairly benchmark these processors, the encoder and the decoder are controlled to be the same.

3 Current Challenges of OOD generalization of Neural Algorithmic Reasoning Tasks

In the CLRS, Veličković et al. (2021) measures both the in-distribution (ID) and the out-of-distribution
(OOD) generalization of the aforementioned processors over 30 classical algorithms. For example, they
generate validation graphs from the same distribution as training but generate testing graphs from different
distributions, e.g., larger sizes in terms of the number of nodes. Table 1 contains the OOD test accuracies of
the algorithms when using hints (i.e. intermediate steps). We also include the performance of the different
models when disabling hints. As the table shows, in the current form of benchmark, hints do not bring
any performance gain on the final output for the majority of algorithms. Moreover, to learn algorithms
beyond those in the CLRS benchmark, hints might be unavailable or infeasible to collect at all (e.g., NP-hard
problems). Based on these considerations, we deactivate hints for the rest of the paper and instead focus
on end-to-end training with only the supervision of the final output. In the following, we highlight the
fundamental challenges in the OOD generalization of neural algorithmic reasoning in the CLRS.

3.1 Difference with Common OOD Settings

Several recent works have studied the problem of OOD generalization in both image and graph domains
(Arjovsky et al., 2019; Anil et al., 2022; Ovadia et al., 2019; Chen et al., 2022). However, the nature of OOD
generalization in neural algorithmic reasoning is fundamentally different from these works. To illustrate an
example, consider the phenomena of accuracy on the line (Miller et al., 2021) for image classifications where
some works have observed the OOD performance has a linear relationship with (and often is close to) ID
performance in some image classification benchmarks. However, in our setting, we often observe perfect ID
generalization with poor (sometimes even less than random guesses) OOD accuracy, and OOD generalization
might keep improving after the ID validation performance completely saturates (see Bridges task in Figure 2a).
Moreover, popular data augmentation technique as an effective remedy for OOD generalization (Gulrajani &
Lopez-Paz, 2021; Wenzel et al., 2022), are generally inapplicable to our setting. For instance, Mixup (Zhang
et al., 2018) assumes convex combinations of inputs have the same convex combination of outputs, but for
many algorithms, a convex combination of inputs from two tasks creates a new task with output significantly
different from the convex combination of outputs from two tasks (e.g., sorting the average of two sequences
creates a whole new task, and the output is not a linear function of outputs of two tasks), thus violating
the assumptions of Mixup. Even graph-specific data augmentation methods are generally inapplicable. For
instance, DropEdge (Rong et al., 2020) assumes by randomly dropping an edge in the graph, the target
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Figure 2: (a) In-distribution (ID) accuracy (x-axis) vs OOD accuracy (y-axis) during different optimization
steps for four different algorithms; in contrast to previous literature (Miller et al., 2021), either the linear
correlation is non-existent, or the slope of the line is far from being one. (b) Failure of two widely-used
data augmentation methods when applied to neural algorithmic reasoning tasks. Top: dropping a single
edge ((Rong et al., 2020)) on DFS (starting from node 1) causes all of the output pointers in the graph (i.e.
red arrows) to reverse direction. Bottom: using Mixup (Zhang et al., 2018) for sorting a convex node-wise
combination of two sequences leads to a new sequence to sort, rather than the node-wise convex combination
of labels of nodes of each sequence.

output stays the same. However, for many graph algorithms, altering any edge could change the output of
the underlying task significantly. For example, performing DFS on a ring graph is an extreme failure example,
since removing a single edge changes the outputs (e.g., pointers of nodes to be visited next) of all nodes in
the graph. See Figure 2b for an illustration of the failure modes of such examples.

A recent line of work has particularly investigated OOD generalization in GNN settings. However, the
assumptions they make about generalization across environments (in our case graph sizes) are invalid to
the neural algorithmic reasoning. Yehudai et al. (2021) studied such generalization from a local k-hop
neighborhood perspective (where k is the number of GNN layers) and connected failures in generalization to
distribution shifts in the such local neighborhood. For algorithmic tasks, the numbers of reasoning steps
are so large (sometimes larger than the number of nodes) that such a local neighborhood often contains the
whole graph and the analysis would be vacuous. Some prior works have also analyzed the OOD generalization
through the lens of graphons (Zhou et al., 2022; Bevilacqua et al., 2021; Maskey et al., 2022) where graphs
along with labels are drawn from some grahpon models. In these settings, the implicit assumption is that if
we restrict the original graph to a subgraph induced by a subset of its nodes, the labels within the subgraph
stay the same. However, this favorable property does not hold in neural algorithmic reasoning tasks. For
instance, consider the DFS example in Figure 2b. By removing node “2” and restricting the graph to the
rest of the nodes, all the pointers turn into a clockwise order; hence the outputs change when restricting a
graph to a smaller subset of its nodes. In algorithmic reasoning tasks, the relation between ID and OOD
generalization is much more intricate than the above assumptions; the only connecting point between the
target label of each task across different graph sizes is they are generated using the same algorithm. This
makes even formulating the OOD generalization and the desired invariance properties in such tasks nontrivial.
Although some prior works have discovered some desired invariance properties of a model for stronger OOD
generalization of some algorithmic tasks, such as homogeneity of the neural network (Tang et al., 2020),
finding sufficient conditions remains an open question.
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3.2 Distribution Shift in Input Representations

Beyond improving models, finding suitable data representations to facilitate OOD generalization is also
crucial. For instance, all algorithms in the CLRS benchmark receive the node indices as a part of their input.
For several tasks, this node index serves as a unique flag (e.g., Convex Hull, Bridges), for others, the ordering
plays an important role in the algorithm behavior (e.g., DFS algorithm starts with a node with the lowest
index, then, at each step, an unexplored neighbor with the lowest index gets expanded). As a result, the
model must be able to compare node indices to be able to execute the algorithm.

The current node index implemented in the CLRS (Veličković et al., 2021) appends a scalar posvi
= (i − 1)/n

to the feature vector of each node vi with index i, (1 ≤ i ≤ n). This kind of representation makes it harder for
a processor to generalize when such ordering is important in a task. For instance, despite the model being able
to reach perfect ID accuracy to execute DFS on 16-node graphs; it fails to do so when we feed the induced
subgraph of the first quarter nodes of a 64-node graph. This is while the graphs are still in-distribution,
and the only difference is that the indices have shifted from 16 equispaced indices in the range [0, 1] to 16
equispaced indices in the range [0, 0.25]. In Section 4.2 we explore two different possible mitigations to such a
distribution shift for node indices.

3.3 Unrepresentative Dataset Generation

The graphs in the CLRS benchmark are sampled using Erdős–Rényi (ER) model with a fixed probability p
(where p = 0.5 in most cases) and node/edge/graph-level scalar input features are generated uniformly at
random (mostly from [0, 1]). In this strategy, sampling is uniform and all possible graphs (of the same size)
have an equal probability of being present in the dataset. However, it takes many samples for this random
graph model to sample diverse graphs (e.g., node-degree and the number of edges in ERs concentrate around
(n − 1)p and n(n − 1)p/2 respectively). This raises two issues, especially in the low-data regime (i.e., fewer
training data).

First, the training data might not be enough to uniquely identify the underlying algorithm (e.g., BFS and
DFS have the same output pointers on the class of tree graphs – all nodes point to their parents towards the
root) and the OOD generalization should not be expected in this case.

Second, and perhaps more importantly, the test dataset may turn into a poor performance measure as it
is not diverse enough and biased. This bias may allow cheating solutions to gain higher scores, especially
when extrapolating (Angelini & Ricci-Tersenghi, 2022). For instance, two of the most challenging algorithmic
tasks in the CLRS are Articulation Points and Bridges. In these tasks, the goal is to identify the nodes/edges
whose removal increases the number of connected components of the underlying graph. Here, if a graph is
too sparse, trivial bridges/articulation points appear in the graph. On the other hand, a dense graph leads to
no such nodes/edges. In Section 4.4, we report a 98.69% OOD accuracy on the Bridges task using a hybrid
combination of 2WL and MPNN-G processor. At first sight, the Bridges algorithm seems to be completely
solved and the model can reliably find the bridges in a graph. However, the test dataset is not rich enough
for testing the model. The bridges in the dataset are mostly chain subgraphs branching out of a connected
component (see Section 5 for more discussion).

3.4 Model Selection is Hard with Nearly Perfect ID Performances

Generally, model selection in OOD settings is not as straightforward as in the ID setting. This is because
the validation data is not identically distributed as the test data. This problem is accentuated even more
in algorithmic reasoning tasks. When training a model on algorithmic tasks of the CLRS benchmark, it
usually fits the ID validation data almost perfectly in terms of prediction accuracy. This leaves a harder
model selection question than common OOD settings, i.e., “How to pick the best model among all these
perfect models?”. These perfect-ID models behave very differently on OOD data. For example, despite all
the architectures achieving 100% ID accuracy on the Articulation Points task (Table 9 in the Appendix), the
OOD accuracies widely differ across different architectures, ranging from 69% to 88%. This issue exists even
when comparing models from the same architecture but in different optimization steps. For example, for
some tasks, the OOD accuracy keeps improving even after perfectly fitting the ID data. An extreme case can
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Figure 3: Model interpolation on the Matrix Chain Order task. We train three models (named as A, B, C)
and pairwise interpolate their weights to obtain ID and OOD accuracies. Each plot shows the interpolation
of a pair (e.g., when the coefficient is set to 0 and 1 in (a), we use model B and A respectively; when it is in
the middle, we linearly interpolate weights from B and A). While models achieve similar ID accuracy, their
interpolations show very different OOD performances.

be seen in Figure 2a for the Bridges algorithm. Here, the OOD accuracy keeps improving from around 30%
to above 90% after an almost perfect ID performance is achieved.

Furthermore, OOD performances in some algorithms have a high variance across models, and sometimes even
negatively correlate with ID performances. Inspired by recent works on mode-connectivity and model weight
interpolation (Wortsman et al., 2022; Entezari et al., 2022), we interpolate between the weights of models to
better understand the loss landscape of such tasks. We pick the Matrix Chain Order task which shows a high
variance even when the initialization point of the model is fixed. Here, despite all models attaining 99.5% ID
accuracy, some of them have an OOD accuracy of around 60%, and some have an OOD accuracy of around
80%. Figure 3 shows pairwise interpolation of three models trained on this task. According to the figure,
there are barriers when connecting two sets of weights. Quite counter-intuitively, the ID barrier between
two models with a larger OOD gap is the smallest (Figure 3b). Moreover, there are two barriers for the ID
performance, and one barrier for the OOD in Figure 3c. Finally, when interpolating from model C to model
A, the ID and OOD do not show any positive correlation and even negative correlation in the first half of the
plot (3b). These all support the fact that the ID validation performance is not a suitable measure for model
selection, and ID and OOD data clearly have different loss landscapes. See Figure 5 in the Appendix for
additional interpolation plots.

3.5 Disentangling Different OOD Generalization Behaviors

The CLRS benchmark (Veličković et al., 2021) generates the underlying graphs using an Erdős–Rényi model
with a fixed probability p. This means that the node degree distribution increases as the graph size increases.
While prior works have worked on proving OOD generalization guarantees when the local structure of
graphs stays the same (Yehudai et al., 2021), neural algorithmic reasoning is different from standard graph
benchmarks. Here, when the graph size increases, higher-depth reasoning is needed. As a result, a fixed-depth
local structure of the graph is no longer sufficient for a node to decide the label. To disentangle these two
types of generalization, we create three dataset configurations of the CLRS benchmark to better understand
such generalization bottlenecks.

We consider only graph algorithms since it is not possible to control the message-passing locality of sequence/set
algorithms. There are 11 distinct graph algorithms in the benchmark. We remove the Articulation Points
and Bridges algorithms since they require complicated sampling/evaluation strategies for preventing cheating
solutions from succeeding. We create the following datasets:
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Table 2: Test scores of MPNN-G processor on controlled datasets of 9 graph algorithms, i.e., L-CLRS-Len,
L-CLRS-Deg, and L-CLRS-Len-Deg.

Accuracy Metric Node Level Graph Level
Method CLRS-Len-Deg CLRS-Len CLRS-Deg CLRS-Len-Deg CLRS-Len CLRS-Deg
Bellman Ford 99.48± 0.07 99.57± 0.06 99.40± 0.09 84.93± 2.24 87.53± 1.69 82.97± 2.11
Bfs 100.00± 0.00 99.92± 0.04 100.00± 0.00 100.00± 0.00 97.77± 1.23 100.00± 0.00
Dag Shortest Paths 99.84± 0.04 99.94± 0.00 99.81± 0.02 95.10± 1.18 98.17± 0.12 94.37± 0.66
Dfs 74.63± 3.91 81.76± 3.66 98.91± 0.23 0.13± 0.12 3.67± 1.68 81.57± 2.82
Floyd Warshall 63.84± 1.07 64.51± 0.34 51.98± 2.88 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mst Kruskal 49.80± 1.54 61.66± 1.56 51.69± 1.53 0.00± 0.00 0.00± 0.00 0.00± 0.00
Mst Prim 87.02± 0.90 95.33± 0.42 85.72± 1.56 6.67± 1.87 53.20± 3.03 4.47± 2.15
Strongly Connected Components 94.45± 0.39 94.18± 0.04 96.19± 0.09 65.57± 0.75 64.40± 0.96 75.63± 1.76
Topological Sort 94.30± 0.27 93.76± 0.01 98.56± 0.09 54.12± 0.78 52.02± 0.25 80.97± 0.67
Mean 84.82 87.85 86.92 45.17 50.75 57.77

• L-CLRS-Len: We control the degree distribution of nodes between training and testing to be the
same via sampling random K-regular graphs. Only the size (i.e., number of nodes) of testing graphs
is larger than those in training. This is an ideal setting for studying size generalization.

• L-CLRS-Deg: We control the number of nodes between training and testing to be the same. Only
the degree distribution of nodes changes, which is achieved by changing the K value in K-regular
graphs. This is ideal for studying how the degree distribution shift affects the generalization.

• L-CLRS-Len-Deg: We allow both the size and the degree distribution to be changed between training
and testing, which is a setting closest to the original CLRS. It is useful to study both size and degree
generalization. Here, in the test set, we not only increase the number of nodes but also increase the
K value of K-regular graphs.

The details of these datasets are summarized in Table 3. Note that the motivation behind choosing K-regular
graphs is that degree shift can be completely controlled and no shift in the variance of degree. Moreover,
dataset leakage is avoided as we generate more training graphs (i.e., graphs in the test dataset have zero
probability of appearing in the training set). In addition to the CLRS’s own metric (i.e., node-level metrics),
we include a graph-level metric that is stricter than the node-level one. In particular, a graph is considered
as correct if all of its nodes are classified correctly (in contrast to the node-level metric which measures the
accuracy of the node classification). This way, we can better distinguish performances among models.

We observe that while some algorithms struggle more on size generalization (e.g., DFS), others struggle on
degree generalization (e.g., MST algorithms, Floyd Warshall). This suggests that, even if we control all
the distribution shifts caused by size generalization, distribution shift in degree is still challenging for some
algorithms and vice versa. Moreover, the graph-level metric shows very poor performance in some tasks,
despite a high node-level performance (e.g., Floyd Warshall, and MST algorithms). This shows that in tasks
with low graph-level accuracies, all graphs contain challenging parts. Finally, lower graph-level and node-level
accuracies of CLRS-Len-Deg compared to the other two datasets confirms that when two distribution shifts
are combined, the prediction problem becomes more challenging.

4 Improving OOD Generalization of Neural Algorithmic Reasoning

In this section, we introduce our solutions to some of the above challenges that improve the performance of
end-to-end (i.e., without hints) neural algorithmic reasoning. Since hints are disabled in our case, we make
two changes to our model. First, algorithms with the same input/output (e.g., Dijkstra and Bellman-Ford)
only differ in the number of processing steps. Since we discard these intermediate steps, the number of steps
becomes meaningless and we use a number of steps independent of the underlying algorithm. Moreover,
the number of tasks shrinks from 30 to 24 tasks (e.g., Dijkstra and Bellman-Ford become Shortest Path,
Quick/Insertion/Merge/Bubble/Heap Sort become Sort, etc.). In order to facilitate the comparison, we do
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Table 3: Summary of dataset configurations used in this paper.

Dataset Lengths Dataset Size Dataset GenerationTrain/Val Test Train Val/Test
CLRS(Veličković et al., 2021) 16 64 1000 32 Erdős–Rényi graphs with fixed p

L-CLRS 16 64 100 000 32 Erdős–Rényi graphs with fixed p

L-CLRS-Len 16 32 100 000 1000 K-Regular graphs with K = 4
L-CLRS-Deg 32 32 100 000 1000 K-Regular graphs with K = 4 for train/val, and K = 8 for test
L-CLRS-Len-Deg 16 32 100 000 1000 K-Regular graphs with K = 4 for train/val, and K = 8 for test

not change the names of tasks and keep their original names from the CLRS benchmark. Second, we use
MPNN-G as the message-passing processor.

4.1 Increase Dataset Size and Representativeness

First, we propose to increase the dataset size. The purpose of this change is to truly measure the extrapolation
properties of each model and avoid some in-distribution training issues like overfitting. We change the CLRS
dataset configuration and increase the amount of ID training samples from 1000 to 100K (and keep the ID
validation and OOD test sets as they are). This way, it is possible to observe a much more diverse set of ID
graphs. We note this strategy as a remedy to the low-data regime and not a solution. This strategy especially
becomes problematic and even more data-hungry as the size of training graphs grows, and sampling diverse
graphs becomes harder since the graph statistics become even more concentrated (e.g., as the size of the
graph grows, the number of samples to generate a disconnected graph increases). While this strategy is not
a strong solution to OOD generalization, it helps mitigate any side factors contributing to low benchmark
numbers but not directly related to size generalization; hence, providing a better test bed for testing size
generalization. Table 3 summarizes the different datasets we use in this paper and their comparisons.

4.2 Improving Representation Distribution Shift

The position index of each node is a vital part of the inputs, especially since several algorithms depend on
the ordering of such positions. Here, we explore a few possibilities of generalization to larger sizes. A suitable
representation must be naturally extendable to any size of a graph. For instance, a one-hot encoding of
indices is not generalizable as it contains a fixed input length and the input dimension is not fixed across
different sizes.

As baselines, we consider the default index encoding used in the CLRS benchmark (i.e., a scalar feature
for each node i as (i − 1)/n where n is the number of nodes). We also add positional encoding used by
Transformers (Vaswani et al., 2017) as a baseline. We propose the following strategy as a mitigation to the
distribution shift of the scalar index:

Random Scalar Index. Although the Scalar Index representation is naturally extendable to any graph size
and node orderings are preserved, the model might rely on spurious correlations between such numbers (e.g.,
the distribution shift due to moving to larger sizes makes generalization harder). For instance, the model
might rely on the fact that consecutive indices always have a difference of 1/n where n is the training dataset
size, hence struggling to generalize as the size of graph grows and the difference between two consecutive
indices becomes smaller. To mitigate the distribution shift, we propose to randomly sample scalars from
[0, 1] and use its sorted sequence during training, and use the same Scalar Index for validation and testing
as mentioned before. This way, the model observes a variety of position embeddings and learns to better
preserve the ordering of positions. In our experiments, we find that using random scalar makes training
harder (e.g., convergence is slower). As a remedy, we use a mix of both random and deterministic scalar
index in a mini-batch as a training strategy to ease the training and achieve a faster convergence (i.e., in
each mini-batch, with the probability of 0.5 for each graph, we replace the position index of the whole graph
with a random scalar index).
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Table 4: Performance of different positional encoding strategies on positions-order aware algorithms using
MPNN-G processor on L-CLRS dataset.

Method Scalar Random Scalar Position Enc.
Dfs 25.36± 0.17 31.71± 1.13 11.90± 0.89
Find Maximum Subarray Kadane 26.60± 5.95 47.85± 5.32 12.97± 3.96
Dag Shortest Paths 99.82± 0.06 99.79± 0.02 31.45± 2.69
Naive String Matcher 8.24± 2.33 7.67± 3.94 1.32± 0.35
Matrix Chain Order 80.69± 1.33 92.07± 0.11 30.96± 3.16
Topological Sort 82.62± 0.63 84.17± 1.67 33.28± 0.84
Bfs 100.00± 0.00 100.00± 0.00 49.40± 4.83
Mean 60.47 66.18 24.47

In Appendix A.4, we also propose a more invariant (to shift and scale) way of representation, however, due
to the superiority of the Random Scalar Index, we choose Random Scalar for all remaining experiments.

4.3 An Attention-Based Processor Competitive with MPNN-G

Inspired by recent works on higher-order message passing beyond node-level message passing, we explore this
approach as a processor (Bodnar et al., 2021b; Kim et al., 2022; Morris et al., 2019; Morris & Mutzel, 2019).
We treat each edge of the input graph as a node, construct a new graph (i.e., line graph in graph theory) and
run a GNN on top of that. Namely, the set of nodes, edges, and features V ′, E ′, X ′ will be as follows:

V ′ = {v′
i = (vi1 , vi2) : vi1 , vi2 ∈ V, 1 ≤ i ≤ m}

E ′ = {e′
i = (ei1 , ei2) : ei1 , ei2 share a common node , 1 ≤ i ≤ m′}

X ′ = {x′
i = [ x⊺

vi1
, x⊺

vi2
, x⊺

ei
]⊺ : vi1 , vi2 ∈ V, ei ∈ E , 1 ≤ i ≤ m}.

In other words, nodes of the new graph are the edges of the original graph, edges are between every two
original edges that share a node, and node features are concatenations of each endpoint of each edge. We
use a transformer with edge masks of E ′ as the GNN. Such a GNN architecture has a similar computation
mechanism as a 2-Weisfeiler-Lehman (2WL) test, and hence we call this processor “2WL”. We, however,
note that while the processors are limited by the expressivity of K-WL test (Morris & Mutzel, 2019), our
model as a whole does not have such a limitation since in our setting node features are equipped with a
unique identifier (Fereydounian et al., 2022). The result of using this processor is present in Table 5. As the
results suggest, this processor shows competitive results with MPNN-G, and outperforms MPNN-G in some
algorithms, while under-perming MPNN-G in others. For instance, the 2WL processor shows a 20% higher
performance on the String Matching problem, while the MPNN-G shows a 20% higher performance on the
Articulation Points finding algorithm.

4.4 Hybrid Processor

As we saw above, different processors exhibit different generalization behaviors. Here, we show a hybrid
processor brings performance gains over individual ones. To this end, we take MPNN-G and 2WL processors
as they show competitive results, and are quite complementary in nature (e.g., max aggregation vs. attention,
edge-wise message passing vs. node-wise message-passing). We consider the following processor combination
strategies:

• Average: At each individual step of processing, two processors process the hidden representation,
and the representation of each node/edge is computed using an average of two processors. Namely,

h(P)
vi

= h
(P1)
vi + h

(P2)
vi

2 and h(P)
ei

= h
(P1)
ei + h

(P2)
ei

2 ,

where P1, P2, P are two processors and the hybrid hidden representations.
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Table 5: Mean test scores of different processors averaged over all 24 distinct algorithms on the L-CLRS dataset
(performances of individual algorithms are averaged over three random seeds). The two rows correspond to
using the scalar index and the random scalar index for input representation respectively. The hybrid models
are a combination of MPNN-G and 2WL with the same parameter budget as individual processors (Table 13
and 14 contain the complete test scores of individual algorithms).

Method MPNN-G 2WL Hybrid-Average Hybrid-Sigmoid

Scalar Index 69.23 67.96 70.92 71.98
Random Scalar Index 71.11 71.52 74.33 74.31

Table 6: Summary of sequentially applying the improvements proposed in this paper. Test scores are averaged
over all 24 distinct algorithms.

Method Mean Test Score Improvement (%)

Baseline 60.93 -
Increase ID Dataset Size 69.23 8.30
Improve Input Representation Shift 71.11 1.88
Add Hybrid Processor 74.33 3.22

• Sigmoid: Similar to average, but a sigmoid is applied to the previous hidden dimension to assign a
weighted combination of processor hidden representation values. That is,

h(P)
vi

= σ
(

h(P)
vi

W
)

h(P1)
vi

+
(

1 − σ
(

h(En)
vi

W
))

h(P2)
vi

h(P)
ei

= σ
(

h(P)
ei

W
)

h(P1)
ei

+
(

1 − σ
(

h(En)
ei

W
))

h(P2)
ei

,

where W is a d × 1 weight matrix.

This processor is trained from scratch. Table 5 shows the results of experiments with these processors. As
the results suggest, a hybrid processor does bring an average accuracy gain on performance. Furthermore,
to show that the boost in the results indeed originates from the complementariness of processors, we also
report the results of a hybrid model of two processors of the same type (e.g., hybrid of two separate 2WL
processors) in Table 12 in the Appendix. Next, we combine the proposed random scalar index representation
and the 2WL processor in Section 4.3 and report the average score on the OOD testing dataset in the
bottom row of Table 5. The hybrid models already outperform individual processors, and by adding the
proposed input representation change, all processors gain 2% − 3% improvement on the average accuracy.
The hybrid processors achieve an average score of above 74% on the benchmark. A unified summary table of
improvements proposed in our work is shown in Table 6.

5 Discussion on OOD Performances

So far, we have made a series of improvements to the models and training data and improved the OOD
accuracy of several tasks. Indeed, we have even achieved OOD accuracy above 98% on some tasks. Here, we
ask “Is a task solved given our model achieves a high score on the benchmark for that particular task?”. As
discussed in Section 3.3, the test dataset might be biased and all graphs in the test set might have a common
property and the model might take advantage of that property to output solutions. Following this issue, we
pick the Bridges task on which the hybrid of MPNN-G and 2WL achieves a high OOD performance as shown
in Table 14. As we show in Figure 4a, the bridges are all chain subgraphs branching out of a connected
component.
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(a) Erdős–Rényi dataset (b) Two-Community dataset

Figure 4: Illustration of two datasets generated for measuring the performance of a model on Bridges task.
(a) The dataset generated by the CLRS benchmark. (b) We generate a two-community dataset for a stricter
measurement of the Bridges task. The dashed edge is present in one graph and absent in the other graph of
the pair. Red edges show the target bridges. Green ovals show connected components. A model with 98%
OOD F1 score on the dataset (a) fails to detect the bridge between the two communities of the dataset (b).

To better evaluate models in this task, we create pairs of two-community graphs. Each pair of the community
graph has two Erdős–Rényi generated and inter-connected subgraphs. Then, we connect the two communities
using a randomly chosen edge. We also connect the two communities of the second graph in the pair using
another random edge (see Figure 4b). This way, the first edge is a bridge in one graph and not a bridge in
the second graph due to the existence of another edge connecting the communities. Ideally, a model capable
of reasoning on bridges task must be able to identify the existence of the mentioned bridge in one graph, and
the absence of the bridge in the second graph of the pair. Although there might be more bridges among the
pairs of graphs (i.e., inside individual communities), we do not consider them in our metric since most of
them might be trivial. Therefore, a random guess gives 25% accuracy in such an evaluation. We evaluate the
model on 1000 randomly generated pairs of graphs, we find out that in only seven pairs of graphs, the model
detects the existence of the mentioned bridge in both graphs correctly. This 0.70% accuracy is much lower
than the 25% chance accuracy. This suggests that despite the remarkable improvement on the benchmark
(originally from 72% to 98%), there is still a lot of room for improvement, and OOD generalization in the
Bridges task is not even close to being solved. Therefore, as the models get stronger, test datasets must also
be refined to not only better evaluate the reasoning capabilities of a model, but also prevent heuristics from
achieving high scores.

6 Related Works

In addition to the related works discussed in Section 3.1, there are some lines of research close to this area
that we explain below.

Neural Algorithm Execution. A recent line of work has focused on the execution of algorithmic tasks
using neural networks (Del’etang et al., 2022; Joshi et al., 2022; Abbe et al., 2022). Some works consider
NP-Hard problems over graphs and propose problem-specific solutions (Karalias & Loukas, 2020; Bresson &
Laurent, 2021), however, perfect extrapolation is infeasible for such problems (Yehuda et al., 2020). Some
works consider executing algorithmic tasks, however, they are either limited to simple arithmetic tasks (Kaiser
& Sutskever, 2016) or are general purpose but hard-to-train and struggle to even fit in-distribution data for
complex tasks (Graves et al., 2014). Yan et al. (2020) proposed a general neural executor to mimic elementary
subroutines of any algorithm, but requires low-level design and assembly of subroutine engines for each specific
task. More recent works have proposed general-purpose GNN pipelines for executing (graph) algorithms
(Veličković et al., 2020b;a). Several benchmarks have been proposed to measure the reasoning capabilities of
neural networks (Zhang et al., 2022; 2021; Veličković et al., 2021). Perhaps the CLRS benchmark (Veličković
et al., 2021) is the most comprehensive benchmark to date, as it contains 30 highly complex and challenging
algorithmic reasoning tasks. In a concurrent work, Ibarz et al. (2022) proposed a series of improvements for
improving OOD generalization when hints are used.
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Expressivity of GNNs. Previous works have studied the expressiveness of GNNs from a WL-test point of
view (Weisfeiler & Leman, 1968; Xu et al., 2019; Morris et al., 2019; 2021). These works show negative results
by proving message passing GNNs are unable to distinguish two graphs if the WL test fails in distinguishing
them. There exists a considerable body of literature for lifting such a limitation and improving the expressivity
of GNNs by proposing novel architectures and providing analysis (Qian et al., 2022; Bevilacqua et al., 2022;
Bodnar et al., 2021b;a; Maron et al., 2019). Some prior works have also addressed the limitations of GNNs
by investigating their power in solving algorithmic tasks such as substructure counting in graphs (Bouritsas
et al., 2022; Chen et al., 2020). All these limitations on the expressivity of GNNs, however, can be resolved by
augmenting node features (Dasoulas et al., 2020; Fereydounian et al., 2022), at the cost of losing guaranteed
equivariance. Since all tasks in our setting contain unique identifiers, none of the above limitations are
applicable to our setting. This can also be verified by looking at validation scores. Here, the challenge is to
extrapolate to larger graphs, rather than the possibility of learning to solve an in-distribution task.

Reasoning Capabilities of Language Models. With the success of Large Language Models (LLMs) in
natural language understanding tasks, a series of recent studies have focused on extending the reasoning
capability of LLMs even further. The core of these models is a Transformer architecture, which makes such
tasks in nature very close to neural algorithmic reasoning tasks. Recent works improve the performance of
LLMs using fine-tuning, chain-of-thought prompting (Kojima et al., 2022; Wei et al., 2022b; Anil et al., 2022),
sampling multiple solutions (Lewkowycz et al., 2022; Wang et al., 2022), and scaling (Wei et al., 2022a). The
most relevant idea to our setting is chain-of-thought prompting, which forces the model to do multi-step
reasoning and is close in nature to the purpose of hints, but, in contrast to LLMs, hints do not bring any
noticeable accuracy gain in neural algorithmic reasoning. Scaling the models might also be relevant, however,
in our setting, the depth of the transformer must also increase with the size of the diameter of training graphs,
which makes training large models on large graphs highly challenging.

7 Conclusion

In this work, we investigate the OOD generalization of neural algorithmic reasoning tasks from an end-
to-end training perspective. We identify and analyze several challenges of OOD generalization under the
current framework. Then, we propose solutions to some of these challenges by making the dataset larger,
designing fixes to input representation distribution shift, and proposing an attention-based processor. These
improvements, lead to a final 74.33% accuracy averaged over all algorithms. Finally, we shed light on the
limitation of our model in executing one of the benchmark tasks and conclude that despite our model gains
a high OOD test accuracy, there still exists much room for improvement. Our analysis opens up several
interesting directions for future work. Designing better hints with guaranteed invariance properties can
potentially facilitate the step-by-step execution of algorithms and help improve OOD generalization. Sampling
training graphs from a diverse set of distributions could help boost the generalization. Improving the model
selection strategy and finding an alternative to the validation set could help pick the best-performing models.
Finally, it would be interesting to develop a meta-learning framework for inductive learning across graph sizes,
in order for the model to learn the invariance properties of an algorithm across different sizes and generalize
to larger graphs.
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A Appendix

A.1 Experiment Details

For Table 1 we take the (with-hint versions) numbers from Veličković et al. (2021) and run the no-hint version
of the table with the same configuration except for disabling hints.

For the rest of the experiments, we use a batch size of 32 for message-passing processors and 16 for high-order
processors, gradient clipping to a norm 1.0, a learning rate of 0.0001, 20 000 optimization steps, and cosine
annealing scheduler. Moreover, as the number of processing steps is meaningless in the no-hint version, we
set this number to 32 (i.e. 32 recurrent steps of message passing). Unless otherwise specified, experiments are
run using the MPNN-G processor on the L-CLRS dataset. Finally, as the ID accuracy and OOD accuracy
are not highly correlated, we do not do any early-stopping and among the models with the highest validation
accuracy, we keep the last model.

The number of distinct algorithms shrinks from 30 to 24 when doing such changes. In particular, the following
algorithms merge together:

• Sorting: All variants of sorting. That is, Quick sort, Insertion sort, Bubble sort, Heap sort are merged
together. We Keep the “Quick sort” name to represent sorting and refrain from creating new names.

• Single source shortest path: Dijkstra and Bellman-Ford are merged together. We keep the “Bellman
Ford” name to represent the shortest path.

• String Matching: Naive String Matcher and KMP algorithms are merged together as they contain
the same input/output. We keep the “Naive String Matcher” name to represent the string matching
task.

• Convex Hull computation: Jarvis March and Graham Scan are combined and represented as “Graham
Scan”.

Note that some other algorithms might also seem to have the same computation (e.g., MST Prim and MST
Kruskal both compute minimum spanning tree), however, they are implemented differently in the CLRS
benchmark and we keep them different as well.
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A.2 Leveraging Intermediate Steps of Algorithms

The CLRS benchmark contains intermediate steps of algorithms (i.e., hints) as optional supervision in
addition to the supervision of the final output of the algorithm. Namely, for applying an algorithm to a
particular graph, two additional supervision signals are provided: (1) number T representing the number of
recurrent processing steps to perform (i.e., the processor is called T times), (2) depending on the algorithm,
several hints are provided. Each hint is a T -dimensional tensor, representing the intermediate output of an
algorithm for each intermediate step. For instance, for the Dijkstra algorithm, one hint is the computed
distance for each node at each individual step (i.e., Xhint ∈ RT ×n where Xhinttv

represents the distance
of node v to the source node at step t). Hints also follow the encode-process-decode framework and have
separate encoders and decoders (while sharing the same processor with the inputs and outputs). When
leveraging hints, Eq. (1) should be modified to the following formula:

H(t+1) = GNN([ H(t), Zinpv
, Z

(t)
hintv

], A), (2)

where Z
(t)
hintv

is the encoded hints at step t (1 ≤ t ≤ T ). The hints for the successor step are also decoded and
evaluated in the final loss function along with the final output of the algorithm.

Table 8 contains the full OOD test accuracies of the algorithms when using hints and when disabling them.
As shown by the results, enabling hints mostly degrade the final OOD accuracy. While (Veličković et al.,
2021) employed a complex model selection on the validation numbers for the with-hint version of processors,
running a no-hint version of the simplest form of a processor and no hyperparameter tuning yields superior
OOD results.

A.3 Encode-Process-Decode Framework

Here, we explain how three algorithms are put into a simplified encode-process-decode framework.

Sorting. Given a sequence a1, a2, . . . , an of scalars, the task is to find the successor of each element when
the sequence is sorted. So, the input is again a two-dimensional node feature matrix XV ∈ Rn×2 where the
first dimension denotes the index of each element and the second dimension is the value ai of that dimension.
Here, we do not have an underlying graph and one could consider a fully-connected graph where all nodes
are connected to each other. The encoding, processing, and decoding steps are similar to the case of BFS
since the final output is again pointer prediction for each node.

Minimum Spanning Tree (MST) Prim. Given a weighted graph, the goal is to find the minimum
spanning tree of the input graph. A spanning tree is a subset of edges with the lowest sum of weights, which
preserve the connectivity of the graph. The input to this task is a two-dimensional node feature matrix
XV ∈ Rn×2 where the first dimension is the node index, and the second dimension indicated the starting
node of the MST Prim algorithm. Additionally, the input contains an adjacency matrix A ∈ Rn×n and
edges features/weights XE ∈ Rn×n×1. Again, the procedure is similar to that of BFS, but with the following
differences: during the encoding part, we also need an edge encoder (e.g., WE ∈ R1×dh ) to encode edge
features and incorporate them in the processing step. Finally, the decoder needs to predict a binary output
for each edge (i.e., whether the edge is in MST or not). So, for each edge eij with two endpoint nodes i, j,
respectively, we directly apply a sigmoid function to the output of the decoder αij , and compute the binary
cross entropy loss with the ground truth edge label.

A.4 Alternative Representation for Input Index Representation Shift

The advantage of the Random Scalar Index is that it is a simple extension of the position index into node
embeddings. However, it requires a large number of training steps for the neural network to learn the ordering
of numbers in the range [0, 1]. Ideally, a representation method for ordering of nodes must be invariant under
shifting and scaling of the index (i.e., if we shift the index of nodes by some constant factor, the function
must not change).
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Table 7: Performance of different positional encoding strategies on positions-order aware algorithms for
MPNN-FC on L-CLRS dataset.

Method Scalar Random Scalar Edge Pos.
Dfs 15.07± 0.92 25.29± 1.25 28.19± 1.20
Find Maximum Subarray Kadane 23.81± 2.12 48.99± 2.78 46.27± 5.29
Dag Shortest Paths 99.67± 0.12 99.72± 0.06 99.71± 0.04
Naive String Matcher 11.51± 4.26 7.13± 3.35 6.48± 3.43
Matrix Chain Order 65.19± 3.05 91.50± 0.59 80.92± 1.71
Topological Sort 68.77± 2.61 70.06± 0.53 67.25± 0.90
Bfs 99.90± 0.08 100.00± 0.00 99.82± 0.10
Mean 54.85 63.24 61.23

Edge Position. A more natural alternative way of enforcing such an embedding is to encode orderings as
edge features (Li et al., 2020). Namely, we create an edge feature from node vi to node vj as follows:

posvi,vj
= 1 [i < j] , ∀i, j ∈ {1, 2, . . . , n}.

This way, the ordering of nodes can be determined by performing a topological sort using two steps of message
passing on a fully connected graph. The advantage of using such a method is that nodes do not undergo any
distribution shift as the graph grows; hence any subgraph of the larger graph stays in distribution. Moreover,
the method is invariant to any shift or scaling of indices i, j. On the other hand, using this method requires a
processor with global message passing steps and requires an implicit extrapolation of the Topological Sort
itself (which is itself challenging, according to the Topological Sort task in the benchmark).

In order to keep the expressiveness of the models and preserve the uniqueness of positions on each node, we
append a vector of random features to input features of each node for all representation strategies (Kim
et al., 2022). Since this method requires a fully-connected MPNN, we run this method on the MPNN-FC
processor and report the results in Table 7. The results show that this method is indeed superior to Scalar
Index, although it is outperformed by Random Scalar by a narrow margin.

A.5 Additional Approaches that Failed

Furthermore, we also tried the following ideas (mostly on the DFS algorithm, and mostly towards making
hints work better than no-hints), however, they seem to not work:

• Markovian Assumption on hints: One key factor in failure in OOD generalization is a large number
of roll-outs mostly present in sequential algorithms). One scenario where hints might come be useful
is to consider a Markovian assumption on steps of the algorithm, meaning that each step of the
algorithm is independent of previous steps given its previous state. This then allows for step-wise
training and makes training easier and less memory/compute hungry. However, this strategy (on
algorithms that satisfy markovian property) did not bring any performance gain over non-markovian
assumption.

• Choosing a subset of hints: Each algorithm might contain up to 22 different hints with different
types. However, not all of them have a positive effect on a GNN for a better prediction of output
and might distract the GNN more than they can help. We tried using only a subset of such hints to
see if any boost in output happens or not. For the DFS algorithm, we observed that the fewer hints
we use, the higher the accuracy becomes, however, it never surpasses the no-hint version.

• Using hints only as masks: Since an algorithm can contain several hints and not all of them are
useful to the GNN, we hypothesized that perhaps a GNN should have fewer restrictions. We used the
change in hints as a mask to supervise the GNN for a sparser hidden-representation update. However,
again it did not bring any performance gain over the no-hint counterpart and the GNN (on the DFS
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Table 8: Full test results of Table 1.

Method MPNN-FC PGN GAT
Use Hints Yes No Yes No Yes No
Articulation Points 50.91± 2.18 50.36± 3.02 49.53± 2.09 47.85± 2.59 37.76± 1.62 49.24± 1.30
Activity Selector 80.66± 3.16 91.49± 1.29 66.80± 1.62 64.59± 1.26 73.23± 1.37 66.14± 0.63
Bellman Ford 92.01± 0.28 90.14± 1.17 92.99± 0.34 91.59± 1.99 87.91± 1.19 78.12± 0.24
Bfs 99.89± 0.05 99.53± 0.20 99.63± 0.29 99.79± 0.20 99.04± 0.21 99.14± 0.68
Binary Search 36.83± 0.26 7.06± 6.87 76.95± 0.13 29.13± 19.12 23.50± 3.12 3.58± 0.78
Bridges 72.69± 4.78 30.36± 0.73 51.42± 7.82 32.90± 0.99 25.64± 6.60 31.52± 0.49
Bubble Sort 5.27± 0.60 50.13± 3.33 6.01± 1.95 54.56± 4.23 9.91± 1.77 57.28± 1.55
Dag Shortest Paths 96.24± 0.56 97.23± 0.17 96.94± 0.16 97.46± 0.35 81.14± 1.37 80.60± 1.48
Dfs 6.54± 0.51 15.27± 5.29 8.71± 0.24 22.64± 3.12 11.78± 2.04 11.13± 1.31
Dijkstra 91.50± 0.50 93.51± 0.46 83.45± 1.75 93.80± 0.22 58.01± 0.79 83.27± 0.17
Find Maximum Subarray Kadane 20.30± 0.49 21.65± 0.58 65.23± 2.56 15.45± 0.31 24.43± 0.43 14.88± 0.52
Floyd Warshall 26.74± 1.77 39.47± 4.43 28.76± 0.51 35.19± 1.20 16.66± 3.14 14.78± 3.85
Graham Scan 91.04± 0.31 96.27± 0.27 56.87± 1.61 57.05± 0.29 77.89± 2.70 57.62± 0.33
Heapsort 10.94± 0.84 63.72± 6.41 5.27± 0.18 55.18± 2.05 10.35± 1.83 59.55± 1.64
Insertion Sort 19.81± 2.08 38.41± 18.19 44.37± 2.43 68.77± 2.56 29.52± 1.87 40.93± 18.49
Jarvis March 34.86± 12.39 95.46± 1.01 49.19± 1.07 56.64± 0.55 51.51± 10.25 57.63± 0.33
Kmp Matcher 2.49± 0.86 9.08± 2.39 2.00± 0.12 2.18± 0.53 3.03± 0.36 2.28± 0.27
Lcs Length 53.23± 0.36 56.93± 2.87 56.82± 0.21 60.27± 0.35 57.88± 1.02 59.70± 0.68
Matrix Chain Order 79.84± 1.40 78.13± 6.56 83.91± 0.49 82.01± 0.59 78.19± 3.31 75.13± 5.57
Minimum 85.34± 0.88 99.53± 0.06 87.71± 0.52 98.01± 1.13 84.20± 2.95 93.52± 4.88
Mst Kruskal 70.97± 1.50 73.22± 0.39 66.96± 1.36 71.25± 1.48 65.72± 0.99 71.57± 2.81
Mst Prim 69.08± 7.56 74.63± 3.19 63.33± 0.98 73.16± 1.08 38.20± 4.34 45.46± 4.03
Naive String Matcher 3.92± 0.30 4.43± 0.84 2.08± 0.20 1.94± 0.27 3.01± 1.20 1.30± 0.20
Optimal Bst 62.23± 0.44 56.02± 13.13 71.01± 1.82 30.25± 30.03 65.49± 1.75 30.42± 2.85
Quickselect 1.43± 0.69 8.50± 3.29 3.66± 0.42 9.10± 1.07 4.36± 0.95 8.69± 0.99
Quicksort 11.30± 0.10 58.30± 4.20 6.17± 0.15 63.87± 3.06 7.60± 0.98 59.29± 0.92
Segments Intersect 93.44± 0.10 93.94± 0.29 77.51± 0.75 77.67± 0.92 90.41± 0.04 76.16± 0.73
Strongly Connected Components 24.37± 4.88 53.65± 3.52 20.80± 0.64 57.65± 3.95 12.70± 3.12 39.86± 2.19
Task Scheduling 84.11± 0.32 82.86± 0.32 84.89± 0.91 81.88± 0.11 84.69± 2.09 81.93± 0.14
Topological Sort 52.60± 6.24 72.03± 0.74 60.45± 2.69 78.76± 2.69 27.03± 6.92 35.30± 19.58
Mean 51.02±0.60 60.04±0.93 52.31±0.35 57.02±1.23 44.69±0.58 49.53±0.97
Wins 8/30 22/30 10/30 20/30 14/30 16/30
Validation Score Mean 96.63 93.83 89.47 83.79 95.66 78.83

algorithm) violated the mask quite often (in favor of always updating hidden representations). Even
increasing the mask loss to prevent such violations, reduces learning accuracy.

• Discretize/Quantize hidden representations: Due to the long roll-out of many algorithms, small errors
might accumulate throughout the processing steps and lead to wrong outputs. We tried quantization
techniques such as Straight Through (Bengio et al., 2013), Gumbel-Softmax (Jang et al., 2017),
Vector Quantization (van den Oord et al., 2017) on the hidden representation of each processing step.
However, training deep quantized networks in an end-to-end fashion hurts the in-distribution training
accuracy and even in cases where it did not, OOD accuracy was no better than the continuous
counterpart. Even when using hints and trying a Markovian assumption, quantization did not offer
any accuracy gain.
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Table 9: Validation scores of Table 5.

Method MPNN-G 2WL Average Hybrid Sigmoid Hybrid
Articulation Points 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Activity Selector 99.49± 0.18 99.49± 0.48 99.23± 0.31 99.10± 0.18
Bellman Ford 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Bfs 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Binary Search 99.10± 0.08 99.41± 0.11 99.45± 0.15 99.09± 0.22
Bridges 99.08± 0.08 100.00± 0.00 100.00± 0.00 100.00± 0.00
Dag Shortest Paths 100.00± 0.00 99.80± 0.28 100.00± 0.00 100.00± 0.00
Dfs 99.93± 0.09 99.67± 0.18 99.22± 0.55 99.80± 0.16
Find Maximum Subarray Kadane 97.51± 0.21 97.46± 0.67 97.46± 0.18 97.48± 0.05
Floyd Warshall 88.77± 0.90 87.37± 0.59 88.46± 0.63 87.46± 0.42
Graham Scan 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Lcs Length 75.00± 0.35 100.00± 0.00 99.98± 0.02 100.00± 0.00
Matrix Chain Order 99.52± 0.03 99.33± 0.06 99.49± 0.12 99.45± 0.10
Minimum 99.97± 0.02 99.97± 0.05 99.98± 0.02 99.97± 0.05
Mst Kruskal 92.90± 0.08 99.19± 0.33 99.77± 0.17 99.88± 0.17
Mst Prim 99.35± 0.18 99.35± 0.09 99.61± 0.16 98.96± 0.18
Naive String Matcher 80.89± 14.72 78.45± 10.80 83.15± 4.53 92.01± 4.73
Optimal Bst 96.23± 0.13 95.77± 0.17 96.30± 0.08 95.71± 0.51
Quickselect 89.19± 5.67 99.82± 0.02 99.80± 0.07 99.67± 0.13
Quicksort 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Segments Intersect 98.49± 0.10 96.42± 0.53 97.23± 0.47 96.86± 0.67
Strongly Connected Components 100.00± 0.00 99.28± 0.49 100.00± 0.00 100.00± 0.00
Task Scheduling 99.50± 0.07 99.90± 0.14 99.95± 0.07 99.85± 0.12
Topological Sort 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.97± 0.05
Mean 96.46 97.95 98.30 98.55

Table 10: Validation scores of Table 2.

Method CLRS-Len-Deg CLRS-Len CLRS-Deg
Bellman Ford 99.81± 0.02 99.82± 0.02 99.82± 0.02
Bfs 100.00± 0.00 100.00± 0.00 100.00± 0.00
Dag Shortest Paths 99.98± 0.01 99.98± 0.01 99.98± 0.01
Dfs 100.00± 0.00 100.00± 0.00 99.63± 0.06
Floyd Warshall 87.03± 0.52 86.58± 0.40 78.40± 0.98
Mst Kruskal 62.46± 1.09 62.22± 0.92 63.41± 0.87
Mst Prim 98.56± 0.07 98.43± 0.21 97.36± 0.44
Strongly Connected Components 99.86± 0.05 99.83± 0.01 99.66± 0.07
Topological Sort 99.94± 0.03 99.93± 0.03 99.69± 0.06
Mean 94.18 94.09 93.11
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Table 11: Test scores of proposed processors on 12 representative algorithms on (low-data regime) CLRS
dataset. While the 2WL processor shows some level of robustness to the low-data regime, MPNN outperforms
2WL in shortest-path-related tasks since max aggregation inductive bias is baked into the architecture, while
the 2WL architecture requires a higher amount of data to learn such inductive biases. However, the hybrid
processor still generalizes better compared to both processors.

Method MPNN-G 2WL Average Hybrid
Articulation Points 49.78± 0.64 48.66± 6.92 51.74± 3.83
Bellman Ford 96.16± 0.88 92.55± 1.50 91.02± 3.16
Bfs 100.00± 0.00 99.67± 0.17 100.00± 0.00
Dag Shortest Paths 98.45± 0.20 88.64± 4.73 96.22± 1.61
Dfs 26.19± 1.20 25.29± 9.87 27.08± 1.54
Floyd Warshall 25.92± 2.37 21.74± 6.25 28.94± 1.23
Graham Scan 96.81± 0.79 73.80± 3.69 96.88± 0.35
Lcs Length 56.60± 1.71 86.58± 0.43 87.54± 0.39
Matrix Chain Order 94.81± 0.76 83.66± 5.27 95.24± 1.29
Mst Prim 64.34± 6.82 53.47± 0.60 59.70± 2.69
Quicksort 48.73± 8.64 42.77± 15.35 50.99± 28.89
Task Scheduling 83.10± 0.21 82.47± 0.41 83.10± 0.21
Mean 70.07 66.61 72.37

Table 12: Test scores of different hybrid models for combinations of MPNN-G and 2WL on L-CLRS dataset.
A hybrid model of two different processors brings accuracy gain over each individual processor.

Method Average (MP-MP) Avergae (2WL-2WL) Avergae (MP-2WL) Sigmoid (MP-2WL)
Mean 68.77±0.61 69.57±0.64 70.92±0.69 71.98±1.94

22



Published in Transactions on Machine Learning Research (03/2023)

Table 13: Full test scores of Table 5 for Scalar Index.

Method MPNN-G 2WL Average Hybrid Sigmoid Hybrid
Articulation Points 88.92± 3.39 69.59± 5.05 78.58± 1.48 80.70± 2.11
Activity Selector 95.81± 0.67 90.15± 1.03 90.43± 2.65 89.37± 2.31
Bellman Ford 98.83± 0.18 98.54± 0.60 98.19± 0.14 98.03± 0.68
Bfs 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Binary Search 93.20± 2.07 90.30± 1.32 86.17± 11.38 89.70± 2.80
Bridges 89.17± 2.13 85.22± 11.89 98.69± 0.51 82.57± 17.44
Dag Shortest Paths 99.72± 0.06 95.91± 1.54 99.10± 0.14 99.67± 0.06
Dfs 25.03± 1.62 21.11± 4.18 19.04± 1.79 22.56± 1.08
Find Maximum Subarray Kadane 26.48± 1.50 44.03± 0.53 46.01± 2.10 43.68± 4.64
Floyd Warshall 35.39± 2.05 30.75± 0.27 34.38± 0.98 33.59± 1.36
Graham Scan 98.88± 0.25 82.69± 9.57 95.26± 1.30 92.93± 1.87
Lcs Length 58.85± 0.80 87.06± 0.71 86.97± 0.54 88.56± 0.32
Matrix Chain Order 73.65± 9.55 76.29± 3.82 73.47± 5.28 68.70± 3.11
Minimum 99.56± 0.04 99.15± 0.22 99.46± 0.11 99.58± 0.20
Mst Kruskal 72.07± 1.03 84.77± 2.24 90.64± 0.79 88.01± 2.31
Mst Prim 83.84± 1.47 75.05± 2.91 78.37± 1.04 78.03± 2.18
Naive String Matcher 7.36± 1.64 8.48± 1.29 9.54± 2.72 12.83± 1.30
Optimal Bst 61.43± 11.78 75.94± 0.82 74.96± 1.87 76.12± 2.06
Quickselect 3.74± 5.29 0.20± 0.21 0.23± 0.18 29.36± 41.52
Quicksort 10.06± 3.49 17.25± 12.53 10.86± 5.96 14.45± 7.63
Segments Intersect 98.16± 0.20 96.58± 0.64 97.51± 0.45 96.37± 0.49
Strongly Connected Components 75.15± 0.33 55.99± 1.79 72.15± 1.42 73.83± 3.12
Task Scheduling 83.64± 0.14 83.85± 0.55 84.21± 0.72 83.82± 0.24
Topological Sort 82.61± 1.50 62.09± 8.14 77.86± 3.26 85.00± 2.53
Mean 69.23±0.97 67.96±0.64 70.92±0.73 71.98±1.94
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Table 14: Full test scores of Table 5 for Random Scalar Index. The Weighted Mean is average over all 30
algorithms when considering repeated algorithms with higher weight.

Method MPNN-G 2WL Average Hybrid Sigmoid Hybrid
Articulation Points 89.86± 1.79 72.46± 2.51 79.07± 0.88 81.97± 2.99
Activity Selector 94.02± 1.96 89.94± 1.02 92.31± 1.40 91.07± 1.26
Bellman Ford 98.84± 0.25 98.58± 0.38 98.16± 0.15 96.74± 2.57
Bfs 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Binary Search 95.41± 1.35 94.94± 0.96 94.45± 0.90 96.70± 2.15
Bridges 77.95± 8.57 77.96± 9.75 97.05± 2.08 96.43± 0.82
Dag Shortest Paths 99.76± 0.07 96.60± 1.52 99.40± 0.14 99.58± 0.20
Dfs 30.55± 1.85 37.50± 2.25 26.11± 1.71 25.42± 0.78
Find Maximum Subarray Kadane 49.25± 3.93 74.30± 3.57 75.70± 1.99 69.29± 5.46
Floyd Warshall 35.04± 1.26 30.32± 0.42 33.75± 0.90 32.66± 1.80
Graham Scan 98.41± 0.20 92.27± 2.40 95.80± 0.77 93.00± 1.80
Lcs Length 58.96± 0.53 88.40± 1.03 87.53± 0.76 88.99± 0.60
Matrix Chain Order 92.34± 0.53 91.59± 1.08 92.54± 2.17 92.12± 1.05
Minimum 99.59± 0.19 99.43± 0.12 99.46± 0.16 99.50± 0.08
Mst Kruskal 72.78± 0.50 87.56± 2.75 90.42± 1.75 86.69± 2.59
Mst Prim 81.79± 1.24 76.64± 2.94 78.22± 1.97 78.52± 1.50
Naive String Matcher 5.62± 1.71 14.08± 5.14 16.24± 6.82 14.88± 7.65
Optimal Bst 76.96± 1.19 72.49± 2.43 77.68± 1.15 76.82± 2.83
Quickselect 3.34± 4.72 0.15± 0.08 0.63± 0.69 0.05± 0.04
Quicksort 6.41± 1.98 7.41± 1.56 15.33± 8.84 26.24± 19.85
Segments Intersect 97.74± 0.23 96.17± 0.32 97.55± 0.78 97.34± 0.55
Strongly Connected Components 75.21± 1.48 50.65± 1.37 71.47± 1.33 72.14± 2.07
Task Scheduling 84.04± 0.81 83.92± 0.58 84.12± 0.66 83.69± 0.28
Topological Sort 82.80± 0.96 83.18± 1.36 80.84± 1.84 83.65± 1.26
Mean 71.11±0.57 71.52±0.53 74.33±0.49 74.31±0.97
Weighted Mean 64.29 64.79 68.00 68.89
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Figure 5: Model interpolation charts on three additional tasks. For each task, we train three models and
pairwise interpolate their weights and plot ID and OOD accuracies. . Each plot shows the interpolation of
one pair for each task. As suggested by the plots, ID and OOD accuracies have very different landscapes
and ID accuracy is a suboptimal model selector. In (a), the right plot shows the highest OOD accuracy
corresponds with the lowest ID accuracy. In (b), the middle plot achieves its highest OOD accuracy when ID
accuracy is not at its peak. In (c), the right plot shows different rates of change for ID and OOD accuracies,
OOD accuracy is at its peak when ID is not, and for coefficient 0.5, the OOD accuracy is higher than that of
ID.
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