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ABSTRACT

Hierarchical policies enable strong performance in many sequential decision-making
problems, such as those with high-dimensional action spaces, those requiring long-
horizon planning, and settings with sparse rewards. However, learning hierarchical
policies from static offline datasets presents a significant challenge. Crucially, actions
taken by higher-level policies may not be directly observable within hierarchical con-
trollers, and the offline dataset might have been generated using a different policy
structure, hindering the use of standard offline learning algorithms. In this work, we pro-
pose OHIO: a framework for offline reinforcement learning (RL) of hierarchical policies.
Our framework leverages knowledge of the policy structure to solve the inverse problem,
recovering the unobservable high-level actions that likely generated the observed data un-
der our hierarchical policy. This approach constructs a dataset suitable for off-the-shelf
offline training. We demonstrate our framework on robotic and network optimization
problems and show that it substantially outperforms end-to-end RL methods and im-
proves robustness. We investigate a variety of instantiations of our framework, both in
direct deployment of policies trained offline and when online fine-tuning is performed.

1 INTRODUCTION

Deep reinforcement learning (RL) and optimal control (OC) have made significant progress within a broad
range of continuous control tasks, such as locomotion skills (Lillicrap et al., 2015), dexterous manipulation
(Zhu et al., 2019), and robotic navigation (Long et al., 2018). However, most of these tasks are inherently
atomic, as they can be completed by performing basic skills episodically rather than through complex
multi-level reasoning. Hierarchical policy decompositions, in which multiple sub-policies are composed
to perform control at successively higher levels of temporal and representational abstraction, have long
held the promise to help solve such complex tasks (Barto & Mahadevan, 2003; Nachum et al., 2018).
Specifically, by defining a hierarchy of policies where higher levels influence the behavior of the lower
levels, it becomes easier to train high-level policies to plan over longer time scales. Moreover, approaches
for OC often leverage problem-specific structure by constructing hierarchical policies over convenient
state representations, e.g., planning in operational space as opposed to direct joint space control for robot
manipulation (Khatib, 1987; Peters & Schaal, 2008).

Similarly, sequential decision-making systems operating in the real world—such as vehicle routing
and traffic control (Rasheed et al., 2020; Zardini et al., 2022), supply chain management (Rolf et al.,
2023), and power grid optimization (Duan et al., 2019), among many others—have historically benefited
from hierarchical abstractions. Hierarchically structured policies are commonly used to (i) decompose
a large optimization problem into smaller, tractable ones (Fluri et al., 2019), and (ii) combine the
benefits of differently-structured sub-policies, such as integrating learning-based methods with direct
optimization (Delarue et al., 2020; Gammelli et al., 2023).

Nevertheless, there remains a significant gap between the theoretical promise of hierarchically structured
policies and their practical application to complex, real-world decision-making problems: previous work
often relies on costly online data collection, which is impractical for real-world, safety-critical systems. To
address this issue, offline RL has gained attention for its ability to train policies from static offline datasets,
thus avoiding the need for expensive or unsafe online exploration. However, offline policy learning has had
a limited impact within hierarchical formulations due to two fundamental issues. First, unless we assume
that offline data collection is performed using the same hierarchical policy that we intend to learn, actions
across hierarchy levels may not be observable, thus hindering the direct application of standard offline RL
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Figure 1: We propose OHIO, a framework to learn hierarchical behavior policies from offline data. By
exploiting structural knowledge of the low-level policy, we solve an inverse problem (top center) to
transform low-level trajectory data (top left) into a dataset amenable to offline RL (top right), regardless
of the nature of the policy used for data collection. At inference time, the RL-trained policy provides inputs
to the low-level policy (bottom).

algorithms. Second, even if the offline dataset is collected using a hierarchical policy, any modifications
to the hierarchical controller or its components can lead to ill-posed offline RL formulations.

In this work, we propose a framework to learn hierarchical behavior policies from offline data, OHIO:
Offline Hierarchical reinforcement learning via Inverse Optimization. Specifically, we solve the inverse
problem, mapping state transitions (and, optionally, low-level actions) to the high-level actions that likely
generated those transitions. This approach allows us to create a dataset that can be used by standard offline
RL algorithms within any hierarchical policy scheme, regardless of the nature of the policy used for data
collection (Figure 1).

Contributions. Concretely, the contributions of this work are:

• We present a novel framework for hierarchical offline RL that leverages structural knowledge of the
hierarchical policy to construct a dataset amenable to off-the-shelf offline RL algorithms.

• We derive principled inverse optimization objectives to solve the inverse problem both analytically
and numerically, thus making our method amenable to generic policy structures and behavior policies
used for data collection.

• We investigate design decisions and learning strategies within our framework, such as the impact of
model learning, the choice of inverse optimization algorithm, dataset characteristics, and their impact
on system performance and fine-tuning capabilities.

• Through experiments on robotic tasks, supply chain inventory control, and dynamic vehicle routing,
we show how our framework substantially improves the performance of off-the-shelf offline learning
algorithms across a diverse set of embodiments and policy structures, while providing the safety
guarantees needed for safe, real-world deployment.

2 PROBLEM STATEMENT

We consider a discounted infinite horizon Markovian problem setting in which an agent interacts with
a Markov decision processM=(S,A,P,r,γ). We denote the state and action at time t as st, and at, and
S,A are the state and action spaces, respectively. Additionally, P(st+1 |st,at) denotes the (probabilistic)
state transition dynamics, r(st,at) denotes the reward function, and γ is the discount factor. For brevity,
we will also refer to single state transitions using s and s′ for st and st+1, respectively.

We will consider learning a hierarchical policy consisting of two components,

u∼πu(· |s), a∼πl(· |s,u), (1)
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where πu denotes a learned upper policy, and πl denotes a fixed lower-level policy, and u is the output of the
upper policy that is an input to the lower-level policy. Our approach is generally agnostic to the form of the
lower-level policy, although we will identify important example cases in the next section and in the appendix.

We focus on the case where the dataset comprises state-only trajectories, specifically considering
τi=(s0,s1,...,sT ) or τi=(s0,r0,s1,r1,...,sT ). In this context, we assume access to approximate dynamics
P̃ and reward models. These assumptions are reasonable, as our work targets common scenarios where
certain elements of domain knowledge are inherently available. For instance, in robotic manipulation,
having access to a robot arm’s dynamics model is not only standard practice but essential for operating
any low-level controller. Similarly, in network decision systems, real-world algorithms often depend on
deterministic approximations of system dynamics. For example, the analysis of transportation systems
frequently employs simple macroscopic models derived from traffic flow theory.

3 METHODOLOGY

In this section, we provide a comprehensive overview of the OHIO framework. We begin by presenting
each component in a general setting, followed by specific examples of their implementations. The
section begins with a discussion of the lower-level policies used and then moves on to address the inverse
optimization problem and its corresponding solution methods. Lastly, we present the overall framework.

3.1 LOWER-LEVEL POLICIES

We will broadly consider two classes of lower-level policies: explicit and implicit policies. We distinguish
between these two classes of policies, which are necessarily treated differently in policy inversion.

Explicit policies. (Stochastic) explicit policies require only a single function evaluation, or

a=f(s,u,ε), (2)

where ε is a generic random variable (enabling policy stochasticity through reparameterization) and f
is a generic function. This class of policies is broad. It includes policies that range from simple feedback
controllers—such as PID, or linear state-space controllers such as those computed via LQR—to more
complex policies such as those parameterized by neural networks and learned by RL or imitation learning.

Implicit policies. Implicit policies, on the other hand, are defined as

arg min
a∈A

f(s,a,u), (3)

or approximate solutions thereof. Throughout the paper, we will ignore stochasticity in implicit policies for
simplicity. This class includes optimization-based policies such as Model Predictive Control (MPC) (Rawl-
ings & Mayne, 2013), and implicit learning-based policies such as diffusion-based or other implicit methods
(Chi et al., 2023; Florence et al., 2022). We emphasize that some policies may only rely on approximate
solutions to this optimization problem, as is common in, e.g., nonlinear MPC (Allgöwer & Zheng, 2012).
Example 3.1 (Linear-quadratic-Gaussian). Let us consider a quadratic cost (negative reward) function
with linearized Gaussian dynamics, where we assume the output of the upper policy, denoted as πu, is a
goal post-transition state. Specifically, by Taylor-expanding the reward function (yielding terms m and M)
and approximate dynamics around the current state and zero action, the optimization problem becomes:

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥s′−u∥2V

]
s.t. s′∼N (As+Ba+c,Σ),

(4)

where u is the goal state, V is an arbitrary matrix that weighs satisfaction of achieving this goal state versus
satisfying other reward terms1, and A,B,c are the terms resulting from Taylor-expanding the known dynam-
ics. The solution to this problem is computationally tractable. In particular, if the action is unconstrained,
this corresponds to a variant of the linear quadratic regulator (LQR) problem, where the optimal action
is a∗=Ku+k with policy parameters K,k depending on the reward function and dynamics. 2

1As has been noted by Gammelli et al. (2023), this term may be learned alongside the RL policy.
2We include the detailed derivation in Appendix A.3
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3.2 POLICY INVERSION

Our framework aims to map available data to high-level action representations. In particular, we aim to
compute high-level trajectories τ̂i=(s0,u0,r0,...,sT ) given a dataset of lower-level trajectories τi.

Lower-level policy inversion. The core of our approach is to exploit the known optimization structure
of the inner problem to approximately compute the most likely high-level action inducing each state
transition, and use these for offline training. We treat this problem as a probabilistic inference problem
and aim to solve the regularized maximum likelihood estimation problem:

û0:T−1= arg max
u0:T−1

log P̃(s1:T |a0:T−1,s0:T−1)+
∑
t

L(ut)

s.t. at=πl(st,ut) ∀t,
(5)

which is constructed jointly across each trajectory, and where L denotes a regularization term. We require
an approximate dynamics model (which we refer to as P̃ ). In many applications, a simple approximate
dynamics model, which only needs to be reasonably accurate for one timestep, is already known. This
is often the case in robotics, where approximate models of the robot’s dynamics are used for trajectory
planning and motion control. In other scenarios, a dynamics model can be learned from the dataset. The
use of an approximate dynamics model makes OHIO a novel combination of model-based and model-free
RL. It leverages model information locally in time, while long-horizon performance is achieved through
the RL-based component. This ensures the overall framework is not susceptible to compounding errors
from multi-step prediction. When low-level actions are observed, as in the classical offline RL setting,
we can bypass the need for an approximate dynamics model, as discussed in Appendix A.1.

In practice, we will decompose this joint likelihood across time and, assuming that the policy is stochastic,
solve the one-timestep problem:

ût= arg max
ut

log P̃(st+1 |at,st)+L(ut)

s.t. at=πl(st,ut).
(6)

In cases where the policy is deterministic and the likelihood under the policy is not well-defined, a simple
alternative loss function (e.g., MSE loss) is used instead. This decomposition across time is sub-optimal,
and the original joint-across-time problem has strong similarities to classical filtering and smoothing in
partially-observed systems. However, we find that it is effective for our experiments due to the structure
of many decision-making problems, leaving the consideration of the full joint likelihood for future work.

Solving the policy inversion problem analytically. How is this inverse problem solved? We will first
illustrate one possible approach by building on the previous example.
Example 3.2 (Analytical inverse: solving the inverse linear-quadratic problem). Here, we will continue
Example 3.1, and discuss the solution of the inverse problem. Specifically, given the linearized Gaussian
dynamics derived in Example 3.1:

P̃(s′ |s,a∗)=N (As+Ba∗+c,Σ), for a∗=πl(s,u), (7)
whereby a∗=Ku+k. The goal of the inverse problem is to compute the most likely high-level actions
u by solving Problem 6. By substituting a∗ into P̃(s′ |s,a∗), we obtain the following likelihood function
describing the objective function for our inverse problem:

N (As+BKu+Bk+c,Σ). (8)
By expressing the likelihood in log terms and leveraging the fact that the log-likelihood is concave in u,
we can easily derive its maximum value as:

û=(BK)†(s′−(As+c+Bk)), (9)
where (·)† denotes the Moore-Penrose inverse. We can then use û, a∗, and s to compute the reward r̂t.
Ultimately, this leads to an analytical solution to the inverse problem via Equation 9.

This unconstrained linear-quadratic setting is one of the few that can be solved exactly. However, we
emphasize an important distinction with work on differentiable optimization (Agrawal et al., 2019) and
prior work on structured policies (Amos et al., 2018): our RL-based outer policy training does not require
gradient propagation through the optimization problem, and thus any method may be used to solve the
inverse problem. Indeed, because the inverse problem only needs to be solved to construct a dataset for
offline training, comparatively expensive methods can be used.
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Algorithm 1 OHIO: Offline Hierarchical Reinforcement Learning via Inverse Optimization

Require: State transition datasetD; Optionally: approximate dynamics P̃ , reward function r.
D̃←{} ▷ Initialize high-level dataset
for τ∈D do

Compute τ̂ via (6) ▷ Low-level policy inversion
D̃←D̃∪{τ̂} ▷ If reward information is available, include in τ̂ , otherwise compute r̂t=r(st,ât)

end for
Solve offline RL problem using D̃ to yield high-level policy πu

Solving the policy inversion problem numerically. Several methods exist beyond analytical solutions,
and our framework is agnostic to the method used. For discrete high-level actions, the inverse problem can
be solved by exhaustive search over u. Similarly, we can employ sampling techniques for u or zeroth-order
optimization such as CEM (Rubinstein, 1997; De Boer et al., 2005). In certain cases, exact gradients may be
computed through the inner problem, i.e. the lower level is differentiable with respect to u, enabling the use
of gradient-based optimization -such as gradient descent– to solve Problem 6. Thus, the numerical solution
of the inverse problem is a considerably more general approach. More details are provided in Appendix A.4

3.3 FULL METHODOLOGY

Algorithm 1 highlights the relative simplicity of our approach: it focuses on leveraging approximate
knowledge of the system dynamics and reward function to derive likely high-level actions and rewards.
Subsequently, we apply off-the-shelf offline reinforcement learning algorithms—including behavior
cloning as a special case—on this dataset.

4 RELATED WORK

Our work is closely related to previous approaches to learning control within hierarchical policies (Ichter
et al., 2018; Bansal et al., 2020; Xia et al., 2021; Lew et al., 2023) and offline RL within these settings (Le
et al., 2018; Gupta et al., 2019; Zhou et al., 2021; Ajay et al., 2021; Rosete-Beas et al., 2023), providing
a way to train general-purpose hierarchical policies from offline data.

Hierarchical and Bi-Level RL. Hierarchical imitation learning jointly learns high-level policies and
low-level controllers from optimal demonstrations (Le et al., 2018; Gupta et al., 2019). These methods
have two main drawbacks: (i) they typically learn high-level actions in the form of sub-goals, thus, in
the raw observation space, and (ii) they require oracle trajectory data. Our method alleviates both of
these drawbacks by (i) learning high-level policies in an intermediate (potentially lower-dimensional)
representation space, and (ii) leveraging offline RL methods to learn from sub-optimal data. Another class
of methods uses offline RL to train the high-level policy in learned latent spaces (Zhou et al., 2021; Ajay
et al., 2021). However, the policy used to generate the offline datasets may not match the hierarchical
structure that we are interested in learning. Therefore, prior work typically formulates potentially complex,
multi-step training schemes for the individual policy components, e.g., unsupervised trajectory autoencoders
combined with hindsight relabeling to collect a dataset with the inferred high-level latent action and the
respective reward (Rosete-Beas et al., 2023). To address these limitations, in our framework, we leverage
approximate knowledge of the system dynamics and reward function to compute the most likely high-level
action from raw trajectory data, thus avoiding the misalignment caused by intermediate objectives that do
not necessarily correlate with the downstream task (e.g., reconstruction losses within generative models).

In robotics, numerous strategies have been developed for learning control with bi-level formulations
that leverage traditional planning methods as inner components. For instance, prior work focuses on
decomposing the overall policy into a high-level learned policy that generates waypoint-like representations
for a low-level motion planner, e.g., based on sampling-based search (Ichter et al., 2018; Xia et al., 2021),
model-based planning (Bansal et al., 2020), or trajectory optimization (Lew et al., 2023). Within this
context, the high-level policy is typically learned through either imitation of oracle waypoint selection
strategies or online RL. Analogously to previous methods, our approach uses the output of a higher-level,
learned policy in a hierarchical structure. Crucially, however, we focus on solving complex control tasks
from offline data by constructing datasets amenable to off-the-shelf offline RL algorithms.
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Offline RL and Learning from State-Only Demonstrations. Lastly, our work is closely related to
methods for learning from observations (LfO), by introducing a framework for offline RL from (potentially)
state-only demonstrations. Distribution matching methods represent a principled approach to LfO (Boborzi
et al., 2022), (Kim et al., 2022) by interactively estimating and minimizing the discrepancy between two
stationary distributions: one generated by the expert and another by the learning agent. However, traditional
approaches based on distribution matching typically require online interactions with the environment, with
limited applications to tasks where exploration is expensive or unsafe. Moreover, methods that focus on
learning from offline data typically cast LfO as an imitation learning (IL) problem, whereby the goal is
to imitate the behavior of an expert policy and, thus, the overall performance can be limited by the quality
of the data collection policy (Zhu et al., 2020b), (Qin et al., 2023), (Bewley et al., 2001). To address these
limitations, our work introduces a new offline LfO approach to recover optimal policies from (potentially
sub-optimal) state-only demonstrations.

5 EXPERIMENTS

In this section, we demonstrate the performance and broad applicability of our framework, OHIO, on
two robotics scenarios (Section 5.1) and two real-world network optimization problems (Section 5.2).
In particular, in the robotics scenarios, we evaluate a practical application of OHIO, where the high-level
policy is learned through RL, and the low-level policy is an explicit policy, i.e. traditional, non-learned
controller. In the network optimization scenarios, we demonstrate the performance of a particularly relevant
instantiation of our framework, in which the low-level policy is optimization-based.3

The goal of our experiments is to address the following key questions: (1) Can OHIO successfully recover
hierarchical policies from datasets collected by arbitrary (i.e., non-hierarchical) behavior policies? (5.1, 5.2)
(2) How do different inverse methods compare in performance? (5.1.1) (3) Does OHIO enable effective
offline RL even when the dataset is collected with different or unknown low-level configurations? (5.1.2)
(4) How does OHIO compare to traditional hierarchical RL? (5.1.2) (5) Does OHIO improve scalability
and robustness relative to end-to-end approaches? (5.2)

Benchmarking. To isolate the contributions of OHIO, our analyses include the following comparisons:
(i) OHIO with a known low-level policy, (ii) a traditional hierarchical RL approach with a known low-level
policy but without the dataset reconstruction provided by OHIO (i.e., “Observed State” baseline, which
selects the next observed state as the high-level action), (iii) a hierarchical RL formulation (i.e., “HRL”)
in which both high-level and low-level policies are learned, and (iv) “flat” end-to-end approaches (i.e.,

“End-to-End”) with minimal architectural differences in the RL policy.

Experimental design. The learning algorithms used in this section include both off-the-shelf offline
RL approaches (e.g., IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020)) and behavioral cloning
(BC) algorithms. Dataset collection follows standard practices specific to each environment, such
as (pre-trained) RL policies in robotics scenarios and domain-driven optimization or heuristic-based
policies in network optimization. For consistent comparisons across datasets, we normalize scores to a
range of 0 to 100, calculated as normalized score = 100∗ score

online RL performance (robotics) and
normalized score = 100∗ score

oracle performance (network-optimization).

5.1 ROBOTICS

In this section, we focus on two distinct robotics scenarios: the first, traditionally solved using an
end-to-end approach, is detailed in Section 5.1.1; the second scenario is typically addressed with a
hierarchical reinforcement learning framework that includes non-learned lower-level controllers (i.e., RL
policies guiding operational-space controllers for manipulation tasks), as discussed in Section 5.1.2.

5.1.1 GOAL-DIRECTED CONTROL

We evaluate OHIO in a non-linear system using the Reacher task (Tunyasuvunakool et al., 2020), where
the objective is to control a two-jointed robotic arm to move its end-effector to a randomly positioned
target. This task is particularly suitable because it allows us to derive low-level policies with an analytical
solution to the inverse problem, facilitating the comparison of different inverse methods—specifically,

3Code available at https://anonymous.4open.science/r/OHIO12-4681
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Table 1: Normalized score comparing imitation learning performance within End-to-End, ”Observed State”
and OHIO formulations, including the choice of algorithm for the inverse problem, on the reacher task.

OHIO OBSERVED
DATASET NUMERICAL ANALYTICAL REG. ANALYTICAL STATE END-TO-END

HR DATASET 97.1±10.2 98.2± 3.2 97.1±10.2 0.05±0.0 95.4±14.2
E2E DATASET 99.2±15.0 94.8±22.0 95.4±23.4 0.04±0.0 99.3±16.0

E2E-10C DATASET 95.3±24.5 91.8±27.1 94.6±25.3 - -
E2E-10S DATASET 98.4±17.8 93.5±23.5 93.3±26.9 - -

numerical approaches like gradient-based optimization versus analytical methods. Additionally, since
this task is typically solved using end-to-end approaches, it serves as an effective demonstration of OHIO’s
capability to transform a “flat” (non-hierarchical) offline dataset into one suitable for offline hierarchical
reinforcement learning.

Datasets. Our objective is to learn a policy from a dataset of non-hierarchical demonstrations (i.e.
collected by an expert RL policy) using behavioral cloning (BC).

The inverse problem. We formulate the low-level policy as a linear feedback policy, specifically a
finite-horizon LQR, where the high-level action is a goal state (position and velocity of robot joints). The
detailed derivation of the inverse problem is provided in Appendix B.1.1.

Choice of inverse algorithm. We first evaluate OHIO under ideal conditions, on low-level demonstration
data collected within the same hierarchical framework, i.e. a trained higher-level RL policy coupled with
a lower-level LQR controller, and by assuming access to approximate dynamics for the inverse method.
We refer to this case as “HR Dataset”. Results in Table 1 demonstrate that OHIO can learn a policy closely
matching the performance of the dataset. On the other hand, the baseline that selects the observed next
state as the high-level action (i.e., “Observed State”) results in an ineffective policy.

Access to the approximate (linearized) dynamics of the robotic arm is common practice and essential for
operating the lower-level controller. However, we also investigate a more challenging scenario involving
a dataset derived from demonstrations by an end-to-end agent (i.e., “E2E Dataset”). In this setting, we
do not assume access to a dynamics model for policy inversion; instead, we learn an approximate model
directly from the dataset. The results demonstrate that, despite the data being sourced from a different
(i.e. flat) policy structure, OHIO achieves performance comparable to that of the end-to-end policy.

To evaluate OHIO’s robustness to model misspecifications in the lower-level controller, we perturb the
LQR parameters by increasing either the state or control cost by a factor of 10, resulting in datasets
“E2E-10S” and “E2E-10C”, respectively. The results in Table 1 reveal that while the analytical inverse
is fast and exact, it is more susceptible to model misspecifications. Conversely, the numerical inverse
maintains consistent performance across scenarios.

5.1.2 ROBOTIC MANIPULATION

Robotic manipulation tasks often benefit from integrating learning-based and non-learning-based
components, making them an ideal domain for evaluating our proposed method. RoboSuite (Zhu et al.,
2020a) is a widely used robotic manipulation environment that closely aligns with standard practices
in real-world robotic implementations. In this setup, an RL agent interacts with a lower-level controller,
abstracting away the direct control of joint torques.

Datasets. We generate datasets for two tasks within the RoboSuite environment:Block Lifting (i.e.,
“Lift”) and Door Opening (i.e., “Door”). We follow a popular approach for offline RL data collection
and utilize the replay buffers collected during online RL training. The default RoboSuite environment
operates within a hierarchical framework, allowing for the collection of both high-level and low-level
actions. This configuration enables us to evaluate OHIO’s performance in reconstructing high-level actions
in comparison to training on the original actions. Furthermore, we can assess OHIO’s potential to faciliate
effective offline RL under modified controller settings.

The inverse problem. We utilize the operational space controller of RoboSuite as our low-level policy,
which computes the joint torques required to minimize the error between the current and goal pose (both
position and orientation) of the end-effector. In this experiment, we use numerical inversion, showcasing
the broad applicability of OHIO even in the absence of a closed-form solution for policy inversion.
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Table 2: Normalized score comparing offline RL (IQL) to OHIO on robotic manipulation scenarios.

LIFT DOOR
DATASET IQL OHIO IQL OHIO

ORIGINAL CONTROLLER 88.5±20.7 89.6±19.4 91.4±16.8 94.1±14.1
MODIFIED STIFFNESS 86.8±16.4 98.9± 4.4 18.6±14.3 92.7±15.8
MODIFIED DAMPING 24.1±11.1 75.8±30.5 2.9± 2.2 76.7±28.2

Table 3: Normalized score comparing OHIO to offline hierarchical RL (HRL) with high-level goal in either
(i) directly on the joint space, or (ii) same representation used by OHIO on robotic manipulation scenarios.

TASK OHIO OBSERVED STATE HRL - JOINT SPACE HRL - REDUCED GOAL

LIFT 89.6±19.4 0.1±0.0 77.4±25.4 0.02±0.0
DOOR 94.1±14.1 0.4±0.1 84.3±25.8 0.07±0.1

DOOR - RED. DATA 88.2±25.4 - 72.7±34.8 -

Robustness to low-level controller configurations. The results presented in Table 2 highlight a
fundamental advantage of OHIO over standard offline RL implementations (IQL). Traditional offline
RL tends to perform well when paired with the original controller used for data collection; however,
its performance deteriorates significantly when the lower-level controller is configured with different
parameters (for example, IQL performance with modified stiffness and damping). In contrast, OHIO
demonstrates strong performance across a wide range of parameters and tasks. Importantly, these findings
demonstrate OHIO’s potential to facilitate effective offline RL, even when data is collected using varied
or unknown low-level configurations—a challenge that is exceedingly common in practical applications.

Moreover, results in Table 3 indicate that despite utilizing the same subgoal representation and lower-level
policy as OHIO, the “Observed State” baseline struggles to learn the task effectively. This outcome clearly
highlights the importance of the policy inversion method in enhancing performance.

Choice of low-level policy. Additionally, the results in Table 3 indicate that OHIO can improve the
performance over HRL while allowing RL-based policies to be combined with standard low-level
controllers. Decreasing the dataset size (“Door - Red. Data”) reveals another advantage of OHIO: the
performance of low-level action reconstruction is independent of dataset quality and coverage, whereas
HRL shows a clear performance drop when not provided with an extensive dataset.

5.2 NETWORK OPTIMIZATION

In this section, we examine two real-world examples of societally-critical systems: vehicle routing and
supply chain management. These problems represent real-world systems characterized by key features:
(i) high-dimensional action spaces, such as nodes and edges in a large transportation network, (ii)
complex system-level constraints that need to be strictly satisfied at all times (e.g., capacity limitations
in warehouses), and (iii) readily available offline datasets of state transitions from system operators.

Problem settings. Vehicle routing problems are central to a wide range of mobility and logistics
applications. The primary objective is to identify the least-cost routes for a fleet of vehicles, ensuring they
can meet the demands of geographically dispersed customers while minimizing operational costs (e.g., travel
costs, lost customers, etc.). In a similar vein, supply chain inventory management involves the strategic
ordering and distribution of products within a network of interconnected warehouses and stores. The goal
is to satisfy customer demand while concurrently minimizing system costs, which may include storage,
transportation, and out-of-stock penalties, all while adhering to operational constraints like storage capacities.
Comprehensive descriptions of the environments can be found in Appendix B.3 and Appendix B.4.

Datasets. To generate offline datasets, we simulate the operation of mobility-on-demand services and
supply chains using both optimization and heuristic-based policies. In the vehicle routing scenario, we
collect eight datasets across two real-world urban mobility settings—NYC and Shenzhen—utilizing four
different behavior policies: informed rebalancing (“INF”) (Wallar et al., 2018), dynamic trip-vehicle
assignment (DTV) (Alonso-Mora et al., 2017), a demand-proportional heuristic (“PROP”), and a random
dispersion heuristic (“DISP”). For the supply chain scenario, we collect four datasets across two systems:
one warehouse with three stores (“1W3S”) and one warehouse with ten stores (“1W10S”). These datasets
are generated using an optimization-based policy (“MPC”) and a heuristic (“HEU”) policy. In both scenarios,
we record the low-level actions, which represent the flows of vehicles or goods across the network.
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Table 4: Normalized score comparing online (SAC) and offline (BC, IQL, CQL) algorithms within both
End-to-End and OHIO formulations on the dynamic vehicles routing scenario.

END-TO-END OHIO
DATASET BEH. POL. SAC BC IQL CQL SAC BC IQL CQL

NYC-INF 98.5 ±1.7 -35.2 ±8.3 88.7 ±1.5 48.2 ±1.3 48.1 ±1.5 98.0 ±1.9 97.6 ±2.3 98.1 ±2.8 93.0 ±1.7
NYC-DTV 89.4 ±2.1 -35.2 ±8.3 67.0 ±1.6 48.9 ±1.5 69.2 ±2.3 98.0 ±1.9 89.2 ±2.3 91.1 ±2.8 83.5 ±2.3
NYC-PROP 85.7 ±1.5 -35.2 ±8.3 83.1 ±1.7 42.2 ±1.6 68.3 ±1.8 98.0 ±1.9 85.7 ±2.5 85.8 ±2.2 88.0 ±2.4
NYC-DISP 45.8 ±0.7 -35.2 ±8.3 44.1 ±2.7 57.4 ±2.1 32.5 ±2.9 98.0 ±1.9 86.5 ±1.6 82.8 ±2.2 94.1 ±1.7

SHZ-INF 90.9 ±0.7 -7.7 ±3.3 90.1 ±1.5 90.4 ±1.4 42.2 ±1.4 95.5 ±1.0 87.0 ±1.0 90.4 ±1.4 88.8 ±1.6
SHZ-DTV 92.8 ±1.3 -7.7 ±3.3 89.7 ±1.4 84.9 ±1.4 60.5 ±2.0 95.5 ±1.0 92.5 ±1.3 90.7 ±1.7 90.8 ±1.2
SHZ-PROP 84.5 ±1.0 -7.7 ±3.3 85.5 ±1.4 86.5 ±1.2 59.8±1.6 95.5 ±1.0 83.3 ±1.0 83.6 ±1.1 87.4 ±2.3
SHZ-DISP 73.5 ±2.6 -7.7 ±3.3 83.2 ±1.4 92.5 ±1.0 89.3 ±1.9 98.0 ±1.0 89.0 ±1.4 92.5 ±1.2 91.8 ±1.3

Table 5: Normalized score comparing online (SAC) and offline (BC, IQL, CQL) algorithms within E2E
and OHIO formulations on the supply chain management scenario. ↓ refers to transfer performance
between two environments (in this case, policies trained on 1W10S-MPC, tested on 1W10S-MPC-CAP).

END-TO-END OHIO
DATASET BEH. POL. SAC BC IQL CQL SAC BC IQL CQL

1W3S-HEUR 81.7 ± 1.8 95.9 ± 2.4 80.3 ± 1.5 80.8 ± 1.7 -203.6 ± 5.9 96.1 ± 2.0 79.4 ± 1.6 81.5 ± 1.5 79.0 ± 1.9
1W3S-MPC 98.4 ± 1.8 95.9 ± 2.3 97.1 ± 2.4 97.6 ± 1.6 -145.9 ± 2.6 96.1 ± 2.0 95.4 ± 2.0 96.0 ± 1.6 78.2 ± 1.9
1W10S-HEUR 15.3 ± 3.0 87.5 ± 1.7 -199.1 ± 146.7 4.54 ± 4.8 -1220.3 ± 4.8 90.7 ± 1.1 10.9 ± 2.8 11.2 ± 4.1 13.4 ± 2.8
1W10S-MPC 96.1 ± 1.4 87.5 ± 1.7 94.8 ± 1.0 95.1 ± 1.4 -1677.8 ± 257.1 90.7 ± 1.1 91.8 ± 1.7 91.8 ± 1.8 6.0 ± 3.3

↓ ↓ ↓ ↓ ↓ ↓
1W10S-MPC-CAP 95.8 ± 1.3 39.9 ± 33.3 45.8 ± 13.6 -2110 ± 2.5 86.7 ± 0.9 89.9 ± 1.4 32.2 ± 1.8

The inverse problem. We formulate the low-level optimization policies as linear programs, which allows
us to exploit the fact that the inverse optimization problem of a linear program can itself be formulated
as a linear program (Chan C. Y. et al., 2022). In practice, this results in an L1-norm minimization problem,
thus projecting the low-level action onto the space of high-level actions within a feasible set of solutions.
Specifically, the higher-level action commands a goal state that represents a distribution of the commodities
to be controlled (i.e. vehicles or goods). Please refer to Appendix B for a detailed derivation of the inverse.

Scalability and robustness in direct deployment. Results in Table 4 highlight a significant advantage
of OHIO, which consistently outperforms E2E approaches. As observed in previous studies(Fluri et al.,
2019; Gammelli et al., 2021; Skordilis et al., 2022; Singhal et al., 2024) E2E policies struggle with the
high-dimensional action space inherent in large networks. Specifically, real-world transportation networks
exhibit dense graph structures that result in an exponential growth of the (low-level) action spaces—196-
and 289-dimensional for NYC and SHZ. In contrast, OHIO effectively capitalizes on the dimensionality
reduction induced by the hierarchical decomposition, leading to 14- and 17-dimensional high-level action
spaces for NYC and SHZ, respectively. This allows OHIO to leverage direct optimization methods to
derive high-quality low-level actions.

Similarly, Results in Table 5 highlight several important insights. First, OHIO enhances the performance
of offline learning algorithms that require querying the value function on unseen actions during training
(e.g., CQL). As noted in (Kumar et al., 2020), sample-based value estimation in high-dimensional action
spaces poses significant challenges due to high variance and the curse of dimensionality. In this context,
the hierarchical decomposition introduced by OHIO allows for more accurate value function estimation
through dimensionality reduction, resulting in a more stable offline learning process.

Second, at first glance, there may not appear to be a clear advantage of OHIO when employing BC and
IQL in the context of moderately sized graphs. However, the results in Table 5 reveal that E2E policies
are extremely brittle, even when subjected to minimal variations in the scenario. Specifically, we evaluate
both OHIO and E2E policies (trained on 1W10S-MPC data) in a minimally modified version of the same
environment (i.e., 1W10S-MPC-CAP), where all state elements remain unchanged except for a reduction
of storage capacity at store facilities from 15 to 10. Results in Table 5 illustrate the advantages of OHIO,
with E2E policies experiencing a performance drop of at least 50%, whereas OHIO’s performance only
deteriorates by up to 5%.
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(a) (b)

Figure 2: Supply chain fine-tuning performance of OHIO (FT-OHIO) and end-to-end (FT-E2E) policies
pre-trained on (a) sub-optimal (i.e., HEUR) and (b) biased data (i.e., MPC with biased forecast).

Robustness in online fine-tuning. We further examine various scenarios of practical relevance,
including fine-tuning policies that (i) are trained on sub-optimal data (Figure 2a), and (ii) must adapt to
out-of-distribution bias (Figure 2b). Although both policies yield similar results during direct deployment
(in the case of IQL), Figure 2 illustrates that OHIO policies demonstrate significantly greater stability
and robustness during fine-tuning. The OHIO policy consistently improves upon the performance of
the sub-optimal and biased policy it was trained on, whereas the E2E policy rapidly declines to a score
below zero. Crucially, this degradation coincides with the E2E policy violating constraints during online
interaction with the environment. This issue likely arises from two factors: (i) constraint violations are
rarely included in offline datasets, as current operators must adhere to critical constraints during operations,
and (ii) achieving hard guarantees within E2E architectures is challenging. In contrast, the OHIO policy
can effectively encode domain-specific constraints through its low-level optimization-based policy, thereby
avoiding infeasible out-of-distribution states by design.

Alongside the safety guarantees provided, this framework enables current system operators to train policies
using offline data until they achieve a satisfactory level of performance. Subsequently, they can deploy
these policies while safely enhancing performance through online interactions with the system.

6 DISCUSSION AND CONCLUSIONS

Reinforcement learning within large-scale, complex real-world systems has so far been limited by issues
such as lack of robustness, sensitivity to distribution shifts, and expensive training processes. Hierarchical
policy structures and offline RL are both promising strategies to tackle these issues, yet their integration
remains an open challenge. To overcome the difficulties of combining offline RL with hierarchical
policies, we propose an approach that leverages the structure of low-level policies along with approximate
knowledge of the system dynamics and reward function. This approach formulates an inverse problem
that transforms low-level state (and possibly action) information into datasets suitable for standard offline
RL tools. OHIO not only successfully recovers hierarchical policies from datasets generated by arbitrary,
i.e. flat behavior policies, but it also effectively utilizes datasets collected under varying or unknown
low-level controller configurations—a common challenge in practice that often hinders the efficient use
of available data (e.g., data collected across multiple robotic embodiments). Our approach demonstrates
strong performance across all problem settings we evaluate, substantially outperforming end-to-end RL
and other hierarchical approaches in terms of both performance and, crucially, robustness. While standard
offline RL struggles to avoid constraint violations that are not present in the dataset, OHIO addresses
this by directly encoding domain-specific constraints. As a result, OHIO inherently avoids infeasible
out-of-distribution states, facilitating more robust deployment and safer online fine-tuning.

While our approach demonstrates considerable strengths, it also has certain limitations. Since OHIO
integrates elements of both model-based and model-free reinforcement learning, its performance is
sensitive to the accuracy of the dynamics approximation. Although we have not explored the robustness
of our framework against model errors in this study, this represents a highly promising avenue for future
research. Moreover, solving the inverse problem can be computationally intensive, even though this
process is conducted entirely offline. In our current implementation, we simplified action reconstruction
by neglecting temporal information for computational feasibility; however, more sophisticated estimation
methods, such as cross-timestep losses, present a compelling direction for future exploration. More
generally, we believe this research opens several promising directions for the extension of these concepts
to a wider range of large-scale, real-world applications.
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Figure 3: A graphical model for the system evolution, assuming Markovian dynamics and policies.

A ALGORITHMIC DETAILS

In this section, we provide further algorithmic details, and discuss practicalities of the policy inversion
problem.

A.1 POLICY INVERSION IN THE OBSERVED-ACTION CASE

We consider the case in which we assume access to a dataset D = {τi}Ni=1 consisting of trajectories
τi=(s0,a0,r0,s1,...,sT ). This matches the information available in the classical offline RL setting; note
that, critically, we do not assume access to upper-level actions u.

Lower-level policy inversion. Our approach aims to recover the high-level actions that generated the
observed low-level actions. We treat this problem as a probabilistic inference problem, and aim to solve
the (regularized) maximum likelihood estimation problem

û0:T = arg max
u0:T−1

log p(a0:T |u0:T ,s0:T ,r0:T )+
∑
t

L(ut)

s.t. at=πl(st,ut) ∀t,
(10)

which is constructed jointly across each trajectory, and where L denotes a regularization term, e.g., L2

regularization of the high-level actions. In practice, we will decompose this joint likelihood across time
and (assuming that the policy is stochastic) solve the one-timestep problem,

ût= arg max
ut

log πl(at |st,ut)+L(ut). (11)

A.2 POLICY INVERSION PROBLEM STATEMENT

The policy inversion problem is to recover u0:T from available data, provided in τi (corresponding to
episode i), which includes either states, possibly actions, and possibly rewards. We include a graphical
model for the system evolution in Figure 3, in the case where only the high-level actions are unobserved.
In general, we may assume the low-level actions and/or the rewards are also unobserved.

There are numerous inferential procedures for the graphical model specified in Figure 3. In particular,
EM-based methods or variational inference methods are possible to characterize uncertainty, and are
well-established in e.g. hidden Markov models. In our settings, however, the mapping from high-level
action to low-level action is typically underdetermined, and thus the inverse mapping is typically
overdetermined. For example, in network control tasks, the high-level action corresponding to a goal state
may be satisfied by many low-level (edge flow) actions.

Thus, we turn to a regularized maximum likelihood approach,

û0:T = arg max
u0:T

log p(τi |u0:T )+L(u0:T ) (12)

which we decompose across time as previously mentioned, yielding inferential procedures shown in Figure
4.
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Figure 4: A diagram showing our inference procedure. Left: the observed-action case. Right: the case
in which low-level actions are not observed.

In the action-observed case, it is sufficient to directly invert the policy. Typically, this takes the form of
ût= arg max

ut
log p(at |st,ut)+L(ut). (13)

In the case of explicit policies, this corresponds to a standard inverse problem, in which one aims to recover
the input from an output. In some cases this is analytically tractable (as in the LQR example), but more
commonly one must turn to numerical optimization, in which the objective corresponds to minimizing
predictive error.

For implicit policies—especially optimization-based policies—this takes the form of inverse optimization
(Chan C. Y. et al., 2022). Inverse optimization is analytically tractable in limited cases, but more generally
one must turn to numerical methods.

When actions are not observed, the inversion procedure is similar to the action observed case. In contrast
to e.g. EM procedures (which may be a natural inferential scheme to recover a,u jointly) we first compute
a point estimate of a based on state transitions, and in turn use this to compute a point estimate u. While
this may induce error in the inverse problem, we have found this scheme to work effectively in the settings
we consider. Typically, systems dynamics are explicit—as opposed to optimization-based dynamics, which
can occur for example in robotics with contact or multi-agent decision-making (Howell et al., 2022).
Thus, if we define our dynamics as s′=g(s,a), logp(s′ |s,u) is straightforwardly written in terms of a,u,s,
leading to a similar objective to the action-observed case.

A.3 INVERSE PROBLEM: LINEAR-QUADRATIC GAUSSIAN

In this section, we provide the details on the linear-quadratic example from the body of the paper. Recall
that the optimization policy is

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥s′−u∥2V

]
s.t. s′∼N (As+Ba+c,Σ)

(14)

where, by substituting, we have

arg max
a∈A

− 1

2
Es′

[
∥a−m∥2M+∥As+Ba+c+ϵ−u∥2V

]
(15)

for ϵ∼N (0,Σ). For the case whereA=Rdim(A), this problem is concave, and thus for maximizer a∗,

0=E[M(a∗−m)+BTV (As+Ba∗+c+ϵ−u)] (16)

=M(a∗−m)+BTV (As+Ba∗+c−u) (17)
which yields

a∗=(M+BTVB)†[BTV (u−As−c)+Mm] (18)
which corresponds to a∗=Ku+k for

K=(M+BTVB)†BTV (19)

k=(M+BTVB)†(Mm−BTV (As+c)). (20)
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To compute the next state density, we can substitute this action, to yield policy density
s′∼N (As+B(Ku+k)+c,Σ) (21)

which has a concave log-density. Again, the maximizer u∗ is achieved when

0=(BK)⊤Σ−1(s′−As+c+B(Ku+k)) (22)
which is satisfied by

u∗=(BK)†(s′−(As+c+Bk)). (23)

A.4 SOLVING THE INVERSE PROBLEM NUMERICALLY

We have shown that for a particular choice of inner policy and dynamics models, an analytical solution of
the policy inversion problem is possible. While this approach is numerically efficient due to our recursive
sensitivity calculation and our exploitation of problem convexity, we can instead turn to numerical solutions.

First, using automatic differentiation, the sensitivity of the low-level action (or post-transition state) to
u may be automatically computed. This enables a partially structured approach, in which we still exploit
problem convexity, but automate computations that are potentially error-prone.

An alternative approach is simply turning to non-convex optimization methods—such as gradient
descent—to compute an approximate minimizing u. Indeed, the only requirement for gradient descent
is the differentiability of the policy with respect to u, as we have discussed previously. Finally, if the lower
level is not differentiable we can resort to gradient-free methods, e.g. CEM. Thus, the numerical solution
of the inverse problem is a considerably more general approach, and we will typically favor this approach.
Algorithm 2 and Algorithm 3 illustrate the numerical inverse depending on available information in the
dataset. Note, that in Algorithm 2, we could also calculate the loss over each state tuples in the lower-level
(e.g. L(xi,si), instead of only the resulting state.

Algorithm 2 Numerical inverse - state-only trajectories
1: Given approximate dynamics A,B
2: Given s,sT ∈D
3: u←s′

4: for each step do
5: Set x0←s
6: for i=0 to T do
7: Get action â=πl(xi,u)
8: Unroll system dynamics: xi+1←Axi+Bâ
9: end for

10: Compute loss L(xT ,sT )
11: Update u using Ltotal, either using gradient descent or CEM
12: end for

Algorithm 3 Numerical inverse with low-level actions a
1: Given, s1..T ,a1..T
2: u← 0⃗
3: for each step do
4: Initialize cumulative loss Ltotal←0
5: for i=0 to T do
6: Get action âi=πl(si,u)
7: Compute loss Ltotal=+L(âi,ai)
8: end for
9: Update u using Ltotal, either using gradient descent or CEM

10: end for

B EXPERIMENTAL DETAILS

In this section, we provide further detail about experiment details for the goal-directed control
(Appendix B.1) and manipulation experiments (Appendix B.2). Further, we provide details on learning
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components (Appendix B.5) for the network optimization tasks and environment specifics relating to
supply chain control (Appendix B.3) and vehicle routing experiments (Appendix B.4), respectively. The
training of our models was executed on a Tesla V100 16 GB GPU.

B.1 GOAL-DIRECTED CONTROL

For the first robotic experiment, we evaluate OHIO on the Reacher-hard task from the DeepMind Control
Suite (Tunyasuvunakool et al., 2020). The end-to-end policy directly learns the low-level environment
actions, whereas our hierarchical framework learns a desired goal state (position and velocity of robot
joints), which serves as input to a goal-conditioned finite-horizon Linear Quadratic Regulator (LQR) with
a horizon of T=5.

To generate the datasets, we train both an E2E and a hierarchical SAC policy (Haarnoja et al., 2018) online
and use the final checkpoint to collect the demonstration data. All policy and value function networks are
MLPs with two hidden layers, each containing 256 units. Similarly, the learned dynamics model consists
of two MLP layers with 256 units each and two output layers that map to the A and B dynamics matrices.

All datasets used for this experiment consist of 250 episodes of interactions (each consisting of 1000
timesteps). To learn the dynamics model, we use a train/val split of 0.9/0.1.

The SAC and BC algorithms use the following hyperparameters indicated in Table 6.

As lower-level policy we use an LQR policy with

Q=

10.0 0.0 0.0 0.0
0.0 10.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0


and

R=

(
0.1 0.0
0.0 0.1

)
B.1.1 ANALYTICAL INVERSE

Our goal is to compute the inverse analytically for an LQR policy that tracks goal state u with a temporal
abstraction T to the higher-level policy.
First, without temporal abstraction, to compute the next state density, we substitute the action a=K(s−u)
to yield the policy density:

s′∼N (As+B(K(s−u))+c,Σ), (24)

which has a concave log-density. The maximizer u∗ is achieved when

0=(BK)⊤Σ−1(s′−As−B(K(s−u))). (25)

This is satisfied by
u∗=(BK)†((A+BK)s−s′). (26)

We define two recursive terms Φ1 and Φ2 that evolve over time, allowing us to generalize our low-level
policy across a temporal horizon T .

Initialization:
Φ1=B0K0, Φ2=(A0+B0K0)s.

Recursive computation for l=1 to T :

Φ1=(Al+BlKl)Φ1+BlKl,

Φ2=(Al+BlKl)Φ2.

Final Solution for u:
u=−Φ†

1(s
′−Φ2).
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Regularised analytical inverse. We show that using this analytical inverse formulation recovers the high-
level action exactly in a linear state space model in Appendix C.1. However, in the main body, we apply this
method to a more challenging, non-linear system using approximate linearized dynamics. When solving this
inverse problem exactly, we observe large magnitudes in the recovered actions, as the solution attempts to
perfectly fit the data under these approximate dynamics, which reduces generalizability and makes learning
harder. To address this, we employ an implicit regularization technique by using the analytical gradient
in a gradient descent algorithm, iteratively updating the solution with early stopping to prevent overfitting.

B.1.2 NUMERICAL INVERSE

As an alternative to the analytical solution, we can solve the inverse numerically (see Algorithm 2). We
use the Adam optimizer with a learning rate of 0.01 and run 10000 steps per data point with early stopping
if the difference between the previous and current loss is below 1e6. To avoid that solutions from bad
local minima impact learning, we only include transitions with a loss < 0.2 in the dataset. Further, for
all of the datasets we scale the action to be within [−1,1].

Table 6: Hyperparameters of SAC.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 100
Entropy coefficient 0.3
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1

B.2 ROBOTIC MANIPULATION

In Robosuite, we selected two tasks— Door Opening and Lift —that can be solved using online
reinforcement learning to collect datasets, both using standard environment configurations. We use the
recommended lower-level controller, the Operational Space Controller, and set the temporal abstraction
between the high-level RL and low-level controller to T=5.

For data collection, we trained a standard online Soft Actor-Critic (SAC) algorithm for 1,500 episodes
for Door Opening and 2,000 episodes for Lift to convergence. This process yielded datasets containing
750,000 transitions for Door Opening and 1,000,000 transitions for Lift, respectively. Data collection
is done under standard controller settings with original stiffness (kp = [150,150,150,150,150,150])
and damping (kd = [1, 1, 1, 1, 1, 1]). For the modified controller scenarios, we either change to
kp=[150,150,150,50,50,50] or kd=[3,3,3,1,1,1].

For offline training of IQL, we use the parameters indicated in Table 7.

Table 7: Hyperparameters of IQL.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 256
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1
Temperature 3 (Lift), 1 (Door)
Quantile 0.7 (Lift), 0.9 (Door)
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B.2.1 NUMERICAL INVERSE

Since the lower-level controller does not permit analytical inversion, we resort to numerical methods.
Fortunately, it remains differentiable, allowing us to utilize both gradient-based and gradient-free methods,
such as the Cross-Entropy Method (CEM). In general we observe, that gradient-based approaches require
fewer controller runs—thus reducing computational time—to converge to a solution. However, depending
on the initialization of u, the higher exploration of CEM can help to escape local minima and lead to better
results. (see (see Algorithm 3))

Consequently, in scenarios where we aim to restore the high-level action for the given controller, we
initialize u as a zero vector and run gradient descent. For transitions where gradient descent gets stuck
in local minima, indicated by high final loss, we rerun CEM to improve the results.

In cases, where we want to modify controller settings compared to the data collection, we can use the
original high-level action as the initialization. In this case, gradient-based methods tend to perform well
and deliver satisfactory results.

For the gradient descent algorithm, we use the Adam optimizer with a learning rate of 0.01, running for up
to 10,000 steps with early stopping triggered if the loss falls below 1e−5. For the Cross-Entropy Method
(CEM), we generate 50 samples per iteration, retaining the top 20% of them based on performance in
each step. Early stopping is applied if the loss does not improve over the course of 4 consecutive steps.

B.2.2 HIERARCHICAL RL (”HRL”)

For the ”HRL” baseline, where both levels are learned, we evaluate two scenarios: (i) the upper level
predicts the same reduced goal state as in the case of an operation space controller (position and orientation
of end-effectors) (ii) the upper level predicts the goal state directly in the low-level joint space (position
and velocity of the robot joints. The lower-level network then outputs the required torques to reach the
desired goal state. As the network architecture, we employ a recurrent neural network consisting of two
LSTM layers and a fully connected MLP layer, followed by a Tanh activation function. The Tanh output
is scaled to match the feasible range for torque control, ensuring the actions remain within valid limits.
All hidden dimensions are set to 256, we use a train/val split of 09./01. and train for 100 epochs, where
we save the model with the best validation loss.

B.3 SUPPLY CHAIN INVENTORY MANAGEMENT

In what follows, we describe environment specifics, MDP definitions, baseline implementation, and the
low-level, optimization formulation.

B.3.1 ENVIRONMENT DETAILS

In our scenario, we consider a distribution network in a supply chain consisting of interconnected
warehouses and stores aiming to meet customer demand while minimizing storage and transportation
costs. We define the supply chain as a graph G= {V,E}, where V =VS∪VW is the set of warehouse
VW and store VS nodes respectively and E the set of edges connecting warehouses to stores. If a sufficient
inventory is available, demand dti is fulfilled in stores s∈VS and sold at a price p. Unsatisfied orders are
back ordered at a cost. At each time step t, warehouse i orders additional units of inventory wt

i bounded
by production capacity cp and stores available ones bounded by storage capacity ci. Simultaneously,
each store orders additional inventory from the warehouses bounded by storage capacity ci. Ordered
units get delayed by production tP and travel times ti,j respectively. During operations, production
mO, transportation mT , storage mS, and backorder costs mB occur. All stores are assumed to have an
independent demand-generating process. We simulate seasonal demand behavior by representing demand
di∈VS as a co-sinusoidal function with a stochastic component defined as follows:

dit=

⌊
dimax

2

(
1+cos

(
f∗π(2∗r+t)

T

))
+U(0,divar)

⌋
, (27)

where dimax is the maximum demand value, U(0,divar) is a uniformly distributed random variable, T the
episode length, f and r controlling the frequency and shift respectively.

Environment parameters are defined in tables 8 and 9.
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Table 8: Parameters for the 1F10S environment.
Parameter Explanation Value Parameter Explanation Value

dmax Maximum demand [5, 15, 20] mS Storage cost [0.1, 0.5, 0.5, 0.5]
dvar Demand variance [2, 2, 2] mO Production cost 5
f Demand frequency [2, 4, 6] cp Production capacity 25
r Demand shift [1, 3, 6] mT Transportation cost 0.5
tij Travel time [1, 1, 1] p Price 15
tP Production time 1 mB Backorder cost 1.5
c Storage capacity [50, 15, 15, 15] T Episode length 30

Table 9: Parameters for the 1F10S environment.
Param. Explanation Value Param. Explanation Value
dmax Maximum demand [5,5,5,5,10,10,10,18,18,18] mS Storage cost [0.005,2,. . . ,2]
dvar Demand variance [2, 2, 2] mO Production cost 5
f Demand frequency [2, 4, 6, 2, 4, 6, 2, 4, 6, 3] cp Production capacity 60
r Demand shift [1, 1, 1, 3, 3, 3, 6, 6, 6, 2] mT Transportation cost 0.5
tij Travel time [1, 1, 1] p Price 15
tP Production time 1 mB Backorder cost 1.5
c Storage capacity [80,15,15,15,15,15,15,15,15] T Episode length 30

B.3.2 MDP DETAILS

Reward (r(st,at)): we select the reward function in the MDP as the profit of the inventory manager,
computed as the difference between sales revenues and the sum of storage, production, transportation,
penalties for capacity violations, and backorder cost:

r(st,at)=
∑
i∈VW

p·min(dit,q
t
i)−

∑
i∈V

mS
i ·qti+

∑
i∈VW

mO
i ·wt

i+
∑

(i,j)∈E

mT
ij ·ft

ij−
∑
i∈VS

1.5∗p·max(0,qti−ci)


−
∑
i∈VS

mB
i ·max(0,dti−qti), (28)

where qti is the inventory level at node i at time t, wt
i the production order at warehouse i∈VW at time

t and ft
ij the shipment flow from warehouse i∈VS to store j at time t.

State Space (S): the state describes the current state of the supply chain network by defining node and edge
features. Node features contain (i) current and back-ordered demand, (ii) current inventory, (iii) storage
and production cost, sales price, and storage and production capacities, (iv) incoming flow or orders for
the next T timesteps

∑
j∈Vfji:t+1:T or wi:t+1:T . Edge features are represented by the concatenation of

(i) travel time tij and (ii) transportation cost.

Output of the RL policy u: we define u by two elements: (i) a goal production in warehouse nodes
wi,∀i∈Vw and (ii) a goal inventory over nodes q̂ti , ∀i∈{Vw,Vs}.

B.3.3 MODEL IMPLEMENTATION

In what follows, we provide additional details for the implemented dataset collection strategies and baselines.

Domain-driven heuristics:

1. S-type Policy: commonly known as the “order-up-to” policy, operates on the basis of the
order-up-to level for the warehouses and stores. Essentially, at every time step the inventory
manager places orders in an amount that will bring the total inventory on hand and in transit
up to their respective order-up-to levels. In practice, the optimal order-up-to levels for each
environment are determined through an exhaustive grid search.

MPC-based: Within this class of methods, we measure the performance of traditional optimization-based
approaches using an MPC approach.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. MPC-Oracle: this benchmark serves the purpose of quantifying the performance of an “oracle”
controller. We provide this model with perfect foresight information on future demand and
system dynamics. By providing the optimization model with Oracle knowledge of the realization
of stochastic elements, we are able to quantify the optimality gap for the presented methods.

2. MPC: We relax the assumption of perfect foresight information in MPC-Oracle and substitute
it with a noisy and unbiased estimate of demand.

Learning-based:

1. End-to-end RL: this benchmark does not approach the problem via the proposed hierarchical
formulation of OHIO, but rather through more traditional end-to-end (E2E) architectures.
Specifically, the flow action is defined along the edges as opposed to over the nodes. We achieve
this through minimal changes to the architecture by an edge convolution (consisting of 2 linear
layers of 32 hidden units) that outputs α and β parameters of a Beta distribution for each edge
in the graph. We adopt an individual upper bound for each action respective to the storage
capacities/production capacities of the previous stage (Stranieri et al., 2024).

2. OHIO: for all networks, we use two layers of message-passing neural network of 256 hidden
units with a sum aggregation function, followed by a linear layer mapping to the respective
output’s support.

B.3.4 OPTIMIZATION POLICY FORMULATION

Given the output of the high-level RL-based policy defined as (i) the desired production ŵt
i at warehouse

nodes i∈VW and (ii) the desired distribution of available inventory over nodes q̂ti ∀i∈{VW ,VS}, we
define the following optimization-based policy:

min
ft
ij,w

t
i,ϵ

t
w,i,ϵ

t
f,i

∑
i∈VW

|ϵtw,i|+
∑
i∈V
|ϵtf,i| (29a)

s.t.
∑

j∈N−(i)

ft
ji= q̂t+1

i +ϵtf,i, ∀i∈Vd (29b)

∑
j∈N−(i)

ft
ji+qti−dti≤cti, ∀i∈Vd (29c)

∑
j∈N+(i)

ft
ij≤qti, ∀i∈VW (29d)

qti+wt
i−

∑
j∈N+(i)

ft
ij≤cti, ∀i∈VW (29e)

wt
i=ŵt

i+ϵtw,i, ∀i∈VW (29f)

ft
ij≥0, (i,j)∈E (29g)

where wt
i is the realised production node at i∈VW at time t, dti the demand in node i∈V at time t, qti

the available inventory at each node i∈VW , and C the capacity at node i∈V. Constraint 29b ensures that
the total incoming flow in store nodes is as close as possible to the desired inventory, constraint 29c ensures
that the inventory after demand realization, and incoming shipments do not exceed the storage capacity,
constraint 29d guarantees that the combined shipment quantity is upper bounded by the warehouse
inventory. Constraint 29e ensures capacity adherence in the warehouse, and constraint 29f ensures that
orders from manufacturers are close to the desired orders quantity and, lastly, that commodity flows are
defined as non-negative.

B.3.5 ANALYTICAL INVERSE

The flow dynamics in this problem are deterministic, and the cost terms minimize the one-norm of error
terms. These error terms measure disagreement between the realized next state under the system dynamics
and the goal next state. We also note this is the only cost term; moreover, the other constraints correspond to
capacity constraints. In the context of inverse optimization, our goal would be to infer the values of constraint
parameters q̂ti ∀i∈{VW ,VS} (which correspond to high-level action u) that make the observed inventory
flows optimal for the original LP: q̂t+1

i =
∑

j∈N−(i)f
t
ji,∀i∈Vd. Note, that this way we only generate
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feasible high-level actions for the offline dataset. The inclusion of error term ϵtf,i in the inverse formulation
to create non-feasible high-level action as means of exploration for the offline RL agent is left as future work.

B.4 VEHICLE ROUTING

B.4.1 ENVIRONMENT DETAILS

In our experiments, we focus on two case studies generated from trip record data, which we provide with our
codebase, from the cities of New York, USA (NYC Taxi & Limousine Commission, 2013), and Shenzhen,
China (Zhang et al., 2015). We are looking at a taxi-like system serving commute demand in the areas
of Brooklyn and Shenzhen, respectively. In each scenario, the road network is segmented into geographical
areas, representing stations. The trip record data are converted to demand, travel times, and trip prices
between stations. As in (Gammelli et al., 2022), the arrival of passengers is assumed to be a time-dependent
Poisson process, where the Poisson rate is aggregated from the trip record data every 3 minutes.

An on-demand service provider coordinates M single-occupancy autonomous vehicles on a transportation
network represented by a complete graph G = (V,E) where V = {vi}{i=1:Nv} and E = {ej}{j=1:Ne}
represent the set of vertices and edges of G. Specifically, V defines the set of stations (e.g., pick-up or
drop-off locations), and E defines the shortest paths between stations. The time horizon is discretized
into a set of time steps I=1,2,...,T of length T . At any time step t, vehicles are controlled to travel along
the shortest path between station i and j ≠ i∈V with a travel time of τti,j ∈Z+ and travel cost cij, as a
function of travel time. At each time step t, passengers submit trip requests for a desired origin-destination
pair (i,j)∈V×V, which is characterized by demand dti,j and price pti,j. The operator matches passengers
to vehicles, and the vehicles will transport the passengers to their destinations. For idle vehicles that are
not matched with any passengers, the operator controls them to stay at the same station or rebalance
to other stations. We denote ft

ij,P ∈N,ft
ij,P ≤dti,j as the passenger flow, i.e., the number of passengers

traveling from station i to station j at time t and ft
ij,R ∈N as the rebalancing flow, i.e., the number of

vehicles rebalancing from station i to station j at time t.

B.4.2 MDP DETAILS

Reward (r(st,at)): we choose the reward to be the operator’s profit, which we define as the difference
between the revenue from serving passengers and the cost of operations:

r(st,at)=
∑

(i,j)∈E

ft+1
ij,P (p

t+1
ij −c

t+1
ij )−

∑
(i,j)∈E

ft
ij,Rc

t
ij.

State space (S): the state space describes the current status of the transportation network via node features.
Specifically, given a planning horizon K, we consider: (1) the current and projected availability of idle
vehicles in each station mt

i∈ [0,M ],∀i∈V and {mt′

i,j}t′=t,...,t+K
, (2) provider-level information trip price

pti,j and cost cti,j, (3) current dtij and estimated {d̂t′i,j}t′=t,...,t+K
transportation demand between all stations.

Output of the RL policy u: Given the number of idle vehicles and their current spatial distribution, we
consider the problem of determining the desired idle vehicle distribution ˆqt+1

i .

B.4.3 MODEL IMPLEMENTATION

In what follows, we provide details for the implemented data collection methods and models.

Optimization- and heuristic-based approaches:

1. Random Dispersion: at each time step, the desired distribution is sampled from a Dirichlet prior
with a concentration parameter c=[1,1,...,1].

2. Informed rebalancing (INF) (Wallar et al., 2018): This model assigns vehicles to rebalancing
regions that are reachable within a pre-defined time horizon H. By including the forecasted
demand rate in each region λ̃j, it maximizes the expected number of requests each vehicle would
observe in its assigned rebalancing regions. This formulation is known to be extremely sensitive
to the hyperparameters H and ρ. In our experiments, we tune them through exhaustive grid
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search (Table 10, Table 11).

max
∑

(i,j)∈E

fij,R ·λ̃j ·
(
H−τti,j

)
(30a)

s.t.
∑

j∈N(+)

fij,R≤1 ∀i∈V (30b)

xij ·
(
H−τti,j

)
≥0 ∀(i,j)∈E (30c)∑

i∈N(−)

fij,R ·
(
H−τti,j

)
≤λ̃j ·H2·ρ ∀j∈V (30d)

3. Dynamic trip-vehicle assignment (DTV) (Alonso-Mora et al., 2017): This model assigns vehicles
to unassigned requests by minimizing travel time and either assigning all idle vehicles or all
open requests.

min
Y

∑
v∈Vidle

∑
r∈Rko

τv,ryv,r (31a)

s.t.
∑

v∈Vidle

∑
Rko

yv,r=min(|Vidle |,|Rko|) (31b)

0≤yv,r≤1 ∀yv,r∈Y. (31c)

4. Proportional Heuristic (PROP): This heuristic distributes excess vehicles according to the
forecasted demand λi. It rebalances proportional to the averaged forecasted demand over the
next K=6 timesteps in region i q̂i=

λi∑
j∈Vλj

min
fij,R

∑
i̸=j∈V

ctijfij,R (32a)

s.t.
∑
j≠i

(ytji−fij,R)+qi≥ q̂i, i∈V, (32b)

∑
j≠i

fij,R≤qi, i∈V. (32c)

Table 10: Hyperparameter tuning of SHZ-INF.
H ρ 1 2 3 4 5 6

2 60.1 60.2 60.1 60.1 60.1 60.0
3 60.9 59.6 59.6 59.8 60.0 60.1
4 52.97 50.65 51.50 51.79 52.00 60.10
5 50.83 44.62 44.19 44.19 44.19 52.10
6 48.61 43.13 43.44 43.44 43.44 44.19

Table 11: Hyperparameter tuning of NYC-INF.
H ρ 1 2 3 4 5 6 7

2 27.25 27.20 27.18 27.09 26.95 26.89 26.89
3 39.70 38.30 39.17 39.30 29.30 39.30 39.30
4 49.50 50.08 50.54 50.55 50.55 50.55 50.55
5 52.88 54.21 54.23 54.23 54.23 54.23 54.20
6 56.22 57.24 57.25 57.25 57.25 57.25 57.25
7 56.68 56.04 56.04 56.22 56.22 56.22 56.20
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Learning-based approaches:

1. End-to-end RL: as previously discussed, for the end-to-end RL implementation, the flow action
is defined along the edges as opposed to the desired distribution over nodes. We achieve this
through minimal changes with respect to the OHIO network architecture. Specifically, this results
in an edge convolution (consisting of 2 linear layers of 256 units) that outputs the mean and
standard deviation parameters of a Gaussian policy for each edge in the graph.

2. OHIO: for all networks, we use one layer of GCN with 256 hidden units with a sum aggregation
function, followed by 2 linear layers of 256 hidden units and a final layer mapping to the
respective output’s support.

B.4.4 OPTIMIZATION POLICY FORMULATION

Given a desired next state described by the desired number of idle vehicles across stations q̂ti,∀i∈V, we
define the following linear control problem as follows:

min
ft
ij,R

∑
(i,j)∈E

mt
ije

t
ij,R (33a)

s.t.
∑
j≠i

(ft
ji,R−ft

ij,R)+qti≥ q̂ti, i∈V (33b)

∑
j≠i

ft
ij,R≤qti, i∈V (33c)

ft
ij,R≥0, (i,j)∈E (33d)

where the objective function (33a) represents the rebalancing cost, constraint (33b) ensures that the
resulting number of vehicles is close to the desired number of vehicles, and with constraints (33c), (33d)
ensuring that the total rebalancing flow from a region is upper-bounded by the number of idle vehicles
in that region and non-negative.

B.4.5 ANALYTICAL INVERSE

For (33b)-(33d) with the cost term pushing the flow along edges to be minimal cost, we infer the constrain
parameters q̂ti,∀i∈V (which correspond to high-level action u), that make the observed rebalancing flows
optimal for the original LP: q̂ti=qti+

∑
j≠i(f

t
ji,R−ft

ij,R),i∈V

B.5 LEARNING COMPONENTS FOR NETWORK OPTIMIZATION

In this section, we provide details about the learning component in the network optimization experiments.

B.5.1 NETWORK ARCHITECTURES

We parameterize policy, Q- and value function estimators through graph neural network encoders. The
specific network architectures are problem-specific and can be summarized as follows:

1. In Section 5.2: to define a valid vehicle distribution, the output of the policy network is sampled
from a Dirichlet distribution ut∼Dir(ut|c). More precisely, we use a Graph convolutional neural
network (GCN) (Kipf & Welling, 2017) with sum aggregation function, followed by three linear
layers that compute the concentration parameters c∈RNv

+ over Nv regions, where the positivity
of c is ensured by a Softplus nonlinearity. The Q- and value functions have the same backbone
architecture. In the Q-function architecture, the node embeddings are concatenated with the
action before being fed into the linear layers. The value function maps from node embeddings
to the final value estimate through a sum aggregation.

2. In Section 5.2: we use a message-passing neural network (MPNN) (Gilmer et al., 2017) with sum
aggregation. The output of the policy network is defined as (i) concentration parameters c∈RV

+
of a Dirichlet distribution over warehouses and stores for computing the shipment flows, and
(ii) α∈R|VW |

+ and β∈R|VW |
+ of a Beta distribution, where the output is scaled by the production

capacity to define the desired production. As in Section 5.2, the Q- and value functions share
the same encoder architecture. The action is concatenated with the node embeddings before the
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Table 12: Hyperparameters of SAC.
Parameter Value
Optimizer Adam
Learning rate 1∗10−3

Discount (γ) 0.97
Batch size 100
Entropy coefficient 0.3
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient step/env.interaction 1

linear layers to achieve a Q-value estimate, while the node embeddings are aggregated through
summation to compute the value function estimate.

B.5.2 ONLINE FINE-TUNING

In this section, we state the specifics of our online fine-tuning procedure.

With offline RL, we obtain a policy initialization, which is intended for sample-efficient online fine-tuning.
Offline learned policy and value functions via IQL or BC can be fine-tuned directly. However, conservative
methods such as CQL tend to learn smaller Q-values than their true values. Consequently, initial
interactions during online fine-tuning are spent adjusting the Q-function, leading to unintentional unlearning
of the initial policy. To address this, we calibrate the Q-function during offline learning to match the range
of the ground-truth Q-values via Cal-CQL, as proposed in Nakamoto et al. (2023).

Further, to mitigate large gradient updates during initial fine-tuning that potentially lead to unstable policy
behavior, we (i) freeze the weights of the policy network and only train the Q- and/or value function for
the first 200 episodes (ii) we start by sampling 50% of the batch from the offline dataset and gradually
decrease this proportion to 0 over 3000 episodes.

B.5.3 HYPERPARAMETERS

SAC: The hyperparameters used to train our online baseline can be found in Table 12. To improve
learning stability, we implement (i) a double estimator for the Q-function (Hasselt et al., 2010) and (ii)
target Q-networks (Mnih et al., 2015).

CQL: For our offline experiments, we train the CQL(H) version of CQL with trade-off factor
α=1. We use a policy learning rate of 1∗10−4 and a critic learning rate of 3∗10−4. The remaining
hyperparameters are kept identical to the online SAC version in Table 12.

IQL: We use τ =0.9 and β=3 for all implementations and a policy learning rate of 1∗10−4 and a
critic learning rate of 3∗10−4. General hyperparameters are kept the same as in the online SAC version
in Table 12.

C FURTHER EXPERIMENTAL RESULTS

C.1 ANALYTICAL INVERSE ON LINEAR STATE SPACE MODEL

Given a linear state space model with state transition matrix As and control input matrix Bs: ∆t=0.5,

As=

[
1 ∆t
0 1

]
and Bs=

[
∆t2

2
∆t

]
, we recover several high-level actions with Equation (23) for different

LQR parameter settings that exactly lead to the next observed state, which are illustrated in Figure 5.
Specifically, we test R∈{0,0.2}, and Q11∈{3.5,4.0,4.5,5.0,5.5} and Q22=1, Q12=Q21=0.
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Figure 5: Visualistion of high-level actions recovered by the analytical inverse for different LQR parameter
settings

C.2 VISUALIZATION OF POLICIES IN ROBOTIC MANIPULATION

We provide a visualization of the policies obtained by standard offline RL in Figure 6a), which fails
to perform the task of opening the door, and OHIO Figure 6b) performing effective offline RL and
completing the task.

(a) (b)

Figure 6: Door opening task with modified stiffness (a) standard offline RL (No Sucess), (b) OHIO (Succes)

C.3 LEVERAGING DIFFERENT DATA SOURCES FOR ROBOTIC MANIPULATION

We introduce an “Expert Dataset” comprising 250 episodes collected using an expert policy for the Door
Opening task. Using this dataset, we compare: i) Hierarchical imitation learning (HIL). This approach
applies an imitation learning objective to both the high- and low-level policies. The high-level policy
predicts a goal state in the joint space (position and velocity of the robot joints), whereas the low-level
learns the robot torques to reach this goal state. ii) OHIO-based Imitation Learning (“OHIO-IL”). This
method employs an imitation learning objective for the high-level policy, combined with the inverse

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

optimization process derived by an operational space controller for the low-level policy. The high-level
policy predicts a goal state in the operational space (position of the robot end effectors).

As shown in Table 13 (left) learning solely from expert demonstrations proves challenging due to limited
data coverage, which impacts both HIL and OHIO-based methods and prevents them from consistently
solving the task. To address this limitation, we leverage a broader set of demonstrations to enhance
offline learning. Specifically, we construct a “Combined Expert Dataset” by merging demonstrations from
three distinct expert policies, each collected under a different controller setup (200 episodes per policy,
totaling 600 episodes)—a setup commonly encountered in practice. As shown in Table 13 (right), OHIO
demonstrates its effectiveness in integrating diverse data sources, outperforming non-OHIO-based methods.
Furthermore, offline RL objectives enable learning from datasets created by multiple expert policies,
consistently outperforming imitation learning approaches (e.g., HIL vs. HRL and OHIO-IL vs. OHIO-IQL).

Table 13: Normalized scores on the door opening task
Expert Dataset Combined Expert Dataset

HIL OHIO - IL HIL HRL OHIO - IL OHIO - IQL

54.79 32.94 34.13 64.75 88.85 90.45

C.4 COMPARISON OF SAMPLE-EFFICIENCY DURING ONLINE TRAINING

We provide the training curves in Figure 7 to demonstrate the significant improvement in sample-efficiency
and learning stability of hiearchical RL over traditional E2E RL.

Figure 7: Training curve for online hierarchical (Bi-level) RL and E2E RL in the supply chain 1W10S
experiment.

C.5 COMPARISON OF RUNTIME AT INFERENCE

We perform additional analyses on run times for the DVR problem (Table 14). We show how, despite the
substantially increased graph sizes, the computation time of our method remains tractable across different
real-world scale.

Table 14: Runtimes of OHIO at inference on the Dynamic Vehicle Routing environment on different graph
sizes.

No. Edges 16,000 10,000 40,000 90,000
E2E 0.02 s (± 0.04) 0.04 s (± 0.00) 0.16 s (± 0.01) 0.32 s (± 0.01)
OHIO 0.09 s (± 0.01) 0.73 s (± 0.01) 5.61 s (± 0.04) 14.90 s (± 0.25)
MPC-Oracle (T=6) 0.47 s (± 0.02) 3.93 s (± 0.38) 21.97 s (± 2.58) 44.13 s (± 2.76)
MPC-Oracle (T=12) 1.69 s (± 0.28) 45.21 s (± 3.5) 85.23 s (± 7.92) 163.06 s (± 11.29)
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C.6 ONLINE FINE-TUNING OF OHIO POLICY IN NETWORK OPTIMIZATION SCENARIOS

We further evaluate the performance of the policy learned by OHIO during online fine-tuning, both
in-distribution (i.e., within the same city) and in a transfer learning setting (i.e., requiring adaptation to
a different city, with unseen topology, demand patterns, travel times, etc.). Results in Figure 8 show how,
in both cases, OHIO policies are able to reliably improve upon the starting performance learned from
offline data. Crucially, the policy learned by OHIO is consistently above the performance of the behavior
policy during the entire fine-tuning process, thus avoiding prohibitively expensive low-reward interactions
during the initial phases of training and potentially alleviating a critical bottleneck for the deployment
of RL within real-world systems.

(a) (b)

Figure 8: Vehicle routing fine-tuning performance (y-axis) of pre-trained bi-level policies (FT-BL)
compared with training from scratch (Online-BL) as a function of gradient steps deriving from online
interaction (x-axis) with either (a) a same-city scenario (NYC→NYC) or (b) in a transfer learning setting
(NYC→SHZ). “Beh. Pol.” indicates the performance of the behavior policy.

(a) (b)

Figure 9: Supply chain fine-tuning performance (a) and constraint violation (b) of OHIO (FT-OHIO) and
end-to-end (FT-E2E) policies pre-trained on near-optimal data (i.e., MPC).
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