
FarSight: Long-Range Depth Estimation from Outdoor Images

Md. Alimoor Reza1, Philip David2 and Jana Košecka1

Abstract— This paper introduces the problem of long-range
monocular depth estimation for outdoor urban environments.
Range sensors and traditional depth estimation algorithms
(both stereo and single view) predict depth for distances of less
than 100 meters in outdoor settings and 10 meters in indoor
settings. The shortcomings of outdoor single view methods that
use learning approaches are, to some extent, due to the lack
of long-range ground truth training data, which in turn is due
to limitations of range sensors. To circumvent this, we first
propose a novel strategy for generating synthetic long-range
ground truth depth data. We utilize Google Earth images to
reconstruct large-scale 3D models of different cities with proper
scale. The acquired repository of 3D models and associated
RGB views along with their long-range depth renderings are
used as training data for depth prediction. We then train two
deep neural network models for long-range depth estimation:
i) a Convolutional Neural Network (CNN) and ii) a Generative
Adversarial Network (GAN). We found in our experiments that
the GAN model predicts depth more accurately. We plan to
open-source the database and the baseline models for public
use.

I. INTRODUCTION
The ability to detect and classify objects and activities at a

long range of distances will be an important capability when
autonomous vehicles and robotic systems eventually become
operational in outdoor urban environments. For example, the
speed at which autonomous vehicles will be able to operate
will depend, in part, on the size of the surrounding region in
which these systems are able to reliably observe and detect
objects and events. The larger this region, the more time the
autonomous system will have at a given speed to react to
events in its environment. Security operations in large urban
environments will be similarly enhanced by the ability of
autonomous systems to detect and classify objects at greater
distances than is currently possible.

A typical image of an outdoor (urban) environment may
contain objects a meter in front of the observer all the way
out to a kilometer or more. Humans are able to understand
most of what they observe, even for objects that subtend
very small regions in their view. While state of the art
object detection and classification systems work extremely
well when objects occupy a sufficiently large number of
pixels in an image, they often fail when the object size is
reduced at a given resolution; but at this failure point, humans
are usually still able to successfully complete the task. Our
goal is to mimic this capability in autonomous perception
systems. It has been shown [12] that using depth cues with

1Md. Alimoor Reza and Jana Kosecka are with the Department
of Computer Science, George Mason University, Fairfax, VA, USA
{mreza,kosecka}@gmu.edu

2Philip David is with the U.S. Army Research Laboratory, Adelphi, MD,
USA philip.j.david4.civ@mail.mil

(a) Rendered RGB (b) Rendered depth

Fig. 1: Our objective is to estimate depth out to 1000 meters
from a single color image. We first propose a novel pipeline
for generating large collections of image and depth pairs of
various cities in the United States. Then, using this dataset,
we train two deep neural network architectures to estimate
long-range depth.

the object detection pipeline brings significant improvements
to perception systems. Existing monocular depth estimation
algorithms [1][3] provide depth estimates only up to approx-
imately 100 meters in outdoor environments. This limitation
arises primarily from the range limitations of the depth
sensors (LIDAR, laser, or stereo) that are used to generate the
training data [2][23]. The focus of this work is on extending
the reach of single view depth estimation algorithms by order
of magnitude. This in turn requires the acquisition of depth
training data that is an order of magnitude longer in range.

One useful direction for generating long-range depth is
to synthetically create a 3D virtual world and generate depth
renderings of the model from different view points [21], [22].
In this work, instead of using synthetic 3D CG models, we
leverage realistic renderings of real-world environments in
Google Earth1. We used the snapshots of renderings along
with a state of the art Structure from Motion (SfM) algorithm
to create partial 3D models of a number of cities. The
renderings of the 3D world models are utilized to train data-
intensive Deep Neural Network (DNN) models to estimate
depth. The apparent ease at which humans are able to
roughly estimate depth motivates us to extend single-view
depth estimation using this data driven approach: Humans
learn to estimate depth using a variety of monocular depth
cues [11], including perspective, absolute and relative image
size (subtended visual angle) of known objects, occlusion of
more distant objects by closer objects, object surface texture
which changes with depth, haze, and position of objects
relative to the horizon.

We make the following contributions in this paper:
• We extend the outdoor depth estimation problem to

1https://www.google.com/earth/



a range that is an order of magnitude higher than
previously proposed. The maximum range in our dataset
is 1000 meters.

• We propose a novel strategy for generating large col-
lections of 3D reconstructed models of urban environ-
ments. Our models extend existing 3D world reposito-
ries [21], [22].

• We formulate the problem of depth estimation as that
of image-to-image translation [18] using a Generative
Adversarial Network (GAN). The depths are quantized
into a fixed number of bins, and the network is trained
to predict the bin value for each pixel.

The rest of the paper is structured as follows. We first
discuss relevant works for depth estimation and 3D modeling
from synthetic data. Then, we describe our approach to
generating the long-range depth dataset. We next discuss
our experiments with two deep neural network methods for
depth estimation and provide their comparison. And finally,
we review our findings and future directions.

II. RELATED WORK

In the related work, we discuss relevant methods for
monocular depth prediction and synthetic data generation.

Monocular Depth Estimation: Make3D [1][2] intro-
duces depth prediction from a single image in outdoor
settings as a labeling problem in the Markov Random Field
framework. It relies on different handcrafted features for the
model learning process and uses laser range data associated
with views for training and evaluation. Liu et al. [8] follow
the handcrafted features route but use semantic labels in
image as an extra signal to recover the depth. Eigen [3]
revisits the problem of single image depth recovery utilizing
more powerful convolutional neural network features in
both indoor and outdoor settings. It learns one network for
coarse resolution depth prediction and another network for
fine-scale depth estimation. The work of [9] formulates a
joint estimation of depth and semantic segmentation and
outperforms the single depth recovery when carried out
alone. Mousavian et al. [7] also perform joint estimation of
depth and semantic segmentation tasks using a multiscale
convolutional neural network. It learns a shared underlying
feature representation during the joint training of the two
tasks. Other approaches in the domain of joint depth and
semantic segmentation include [10]. Eigen et al. [4] extend
the problem of depth estimation together with two other
tasks: surface normal estimation and semantic segmentation.
The work of Liu et al. [6] revisited the problem by seg-
menting the image into superpixels and predicted the depth
of each superpixel in a continuous Conditional Random
Field framework. The work of Cadena et al. [5] followed a
different route than the more popular CNN architecture and
tackled depth estimation using an Auto-Encoder architecture.
They demonstrated that the Auto-Encoder learns a shared
representation during the joint reconstruction of three dif-
ferent modalities: image, depth, and semantics. In our work,
we follow an alternative architecture and formulate the depth
prediction task as domain translation in the framework of the

conditional Generative Adversarial Network (cGAN). Depth
prediction can be thought of as an image-to-image translation
problem. The work of Isola [18] demonstrates that the cGAN
can be generalized to different translation tasks such as maps
to aerial photos, black and white to color images, or sketch
to photo translation. We demonstrate in this work that the
cGAN can be used to predict depth from single color images.

Synthetic Data: There has been an effort to enhance the
synthetic data generation of urban scenes using 3D virtual
worlds [22][21]. Gaidon et al. [22] generate a 3D virtual
world which is a synthetic clone of the existing videos from
KITTI [23]. The virtual world automatically allows them to
generate pixel-level labeling of objects in the rendering as
well as the depth associated to them. Additionally, they also
automatically generate tight bounding boxes around objects
of interest (e.g., cars). Experimentally, they show that the
performance of deep networks can be improved with a pre-
training step of the model on synthetic data for the task of
multi-object tracking (MOT). SYNTHIA [21] is another vir-
tual world-based synthetic dataset for automatic generation
of large number of pixel-level labels in urban scenes for
the task of semantic segmentation. The work of Richter et
al. [24] proposed a method for automatic generation of pixel-
level labels from commercial computer games. In indoor
settings, SceneNet [25] provides a framework for generating
annotated 3D indoor scenes. Our work is closely related to
the work of [25] in the way we obtain our rendered images
from the 3D models.

III. APPROACH

A large collection of color images of cities across the
United States can be extracted using Google Earth. As the
corresponding depth images are not available from Google
Earth, a key component in the generation of RGB and
depth pairs is the ability to reconstruct 3D models of city
scenes. Our approach starts with the accumulation of color
images of city scenes from various viewpoints followed by
3D reconstruction from these multiple views. From the 3D
model of a city, we render the RGB and depth image pairs
from the viewpoint of a moving observer in a predefined
trajectory on the ground plane of the 3D model. Any number
of trajectories can be defined through a 3D model thereby
allowing us to render a huge collection of RGB and depth
pairs. The subcomponents of the Data Generation method
are discussed in detail in the following sections.

A. Scene Image Generation

For our task of depth estimation in urban environments,
we are primarily interested in street scenes. To this end,
we leverage the large scale model repositories of cities
in different geolocations in the United States provided by
the publicly available Google Earth. Unfortunately, directly
exporting 3D models from Google Earth has been disabled.
We circumvent this issue by reconstructing large portions of
a city in 3D from images acquired from multiple viewpoints.
To create a 3D reconstruction of a scene, we start by
recording a video clip of the desired scene using Google



Fig. 2: Collection of a video clip from Google Earth Pro
in New York City. The Movie Maker feature enables this
option. Images are exported from the recorded video clip at
30 fps.

Earth Pro. The duration of the video clips ranges from 2 to
15 minutes. Once the clip has been recorded, images from
the entire clip are extracted at a rate of 30 frames per second.
Figure 2 shows an example of the image collection process.
Notice that these images are more realistic than synthetic
images generated from any traditional game engine [21], [22]
since Google Earth’s model is generated from real images of
the scene.

B. 3D Reconstruction

We 3D reconstruct the city model from the extracted
images of a scene. There are several available reconstruction
pipelines such as VisualSfM [14], COLMAP [16]. Most of
these SfM-based pipelines produce sparse 3D point-cloud
reconstructions of the scene [15]. The resulting sparse point
cloud can be augmented with denser 3D points via a multi-
view stereo (MVS) step [17]. We follow a similar 3D re-
construction pipeline using Autodesk Remake2 and generate
the 3D reconstructed model using a subset of the images
extracted from Google Earth. The reconstructed models are
exported to 3D model files (in the .obj format) for our
rendering pipeline to generate unlimited numbers of rendered
color and depth images. For each 3D reconstruction, we
manually select a few viewpoints from which to generate
the color/depth pairs.

C. Rendering pipeline

Structure from motion, even with a calibrated camera,
is able to recover 3D geometry only up to an unknown
scale. One advantage of generating 3D models from Google
Earth imagery is that we can solve for the scale ambiguity
by measuring the actual geographical distance (in meters)
between two locations3 and then use it to constrain the

2The functionality of Autodesk Remake has been moved into Autodesk
ReCap Pro, https://www.autodesk.com/products/recap/overview.

3We measure the distance using http://maps.google.com

Fig. 3: Two snap-shots of the rendering process in two
different virtual camera trajectory locations inside the Salt
Lake City reconstructed 3D model.

distance between the corresponding locations in the 3D
reconstructed model. Figure 4 demonstrates the distance as-
sociation between two locations in a 3D reconstructed model
of Chicago. Figure 4a depicts the geographical distance
(in meters) between two such locations. These locations
correspond to Point 2 and Point 3 in the reconstructed
model in Figure 5. Figure 4b shows the corresponding
distance in the 3D reconstructed model (in millimeters).
Notice that Figure 4b is just the textured map view of the
model in Figure 5. The ratio between the two distances
allows us to scale the depth values during the rendering
process correctly. Let’s define the ratio between these two
distances to be the scale factor scale. We manually assign
these location associations in the 3D reconstructed model
and their corresponding locations from Google Maps. The
street intersections are selected as seed-locations for data-
association. Figure 5 shows the reconstructed 3D model from
Chicago and 3D points that are selected as the seeds for the
scale alignment of the physical world to the model data.

Between two seed locations A and B in the 3D model,
we can generate a trajectory of a moving virtual camera. The
3D world coordinates of the seed locations are denoted by
XA and XB , respectively. We can move the position of the
virtual camera by a fixed number of steps from XA towards
XB . In each virtual camera position, we render the 3D scene
using the OpenGL engine. The units of the rendered vertices
are converted into meters by multiplying them by the scale
factor defined earlier. The near and far planes of the frustum
are set to the values 0.1 and 1000 meters respectively to allow
the renderer to generate depth values within a maximum
range of 1000 meters for any given virtual camera position.
Figure 3 shows two snapshots taken during the rendering
process of a 3D model from our repository. The images are
rendered at a resolution of 640 × 480 pixels. The intrinsic
parameters of the camera are set to fx = 420, fy = 420,
cx = 320 and cy = 240.

IV. EXPERIMENTS

We have generated a large collection of rendered RGB
and depth image pairs from four scenes in four cities (New
York City, Salt Lake City, Houston, and Miami) in the United
States.4 To validate our long-range depth estimation problem,

4An additional 10 city scenes, which have already been collected, will
augment the current dataset prior to its public release.



(a) The geographical distance (144.45 meters) between
locations Point 2 and Point 3.

(b) The model distance (3.47 millimeters) between
locations Point 2 and Point 3.

Fig. 4: This figure demonstrates the distance association between two geographical locations in the 3D reconstructed model
shown in Figure 5. The distance ratio is used to scale depth values in our rendering pipeline (best viewed in color).

Fig. 5: An example 3D reconstructed model from our dataset (best viewed in color). The keypoints (Point 1, Point 2, Point
3, etc.) are manually selected in the 3D model. The real-world locations of these points are determined using Google Maps,
and these locations are used to compute the scale factor between units in the 3D model and the real-world values. Note that
the texture map has been turned off.

we picked two different Deep Neural Network (DNN) archi-
tectures to train on this dataset. For our experimental setup,
we used subsets of the rendered RGB and depth images to
train and test our DNNs on. Table I lists the number of
images from each city model used in our experiments. The
depth values are quantized into a fixed number of bins. The
quantization factor used in our experiments is 4: depth values
from 0 to 4 meters are put into bin number 1; depth values
from 5 to 8 meters are put into bin number 2; and so on. The
predicted value is multiplied by the same factor 4 to obtain
the depths in meters. The evaluation is performed in units of
meters for all experiments.

Convolutional Neural Network (CNN): We picked a
variation of the multi-scale CNN architecture proposed in the
work of [7]. This method jointly trains a CNN architecture

Scene # Frames
New York City 300

Miami 250
Houston 250

Salt Lake City 100
Total 900

TABLE I: Number of selected frames for long-range depth
prediction

for the combined task of semantic segmentation and depth
estimation. The architecture learns a shared underlying fea-
ture representation during the joint training of the two tasks.
We discard the semantic module from the architecture and
directly train the network for depth estimation. We divide



Fig. 6: Qualitative results for the depth prediction on the random-split experiment as reported in Table II. From left to right
we show the input RGB image, the prediction from GAN model, prediction from CNN model, and the ground truth depth
(best viewed in color).



the range of possible depth values into 250 bins. In pixel
location i for each bin j, the network predicts the depth bin
probability p(j|xi) as follows:

p(j|xi) =
eri,j∑255
k=1 e

ri,k
(1)

xi is the feature vector at pixel location i and ri,j is network’s
response at pixel location i and at bin location j .The depth
value is d(x∗i ) is computed as the weighted sum over all the
bins where depth bin probabilities are used as weights as
follows:

d(x∗i ) =

255∑
j=1

j × p(j|xi) (2)

Similar to the method of [7], we compute the scale
invariant depth loss to encourage the network to predict the
correct relative depth rather than absolute depth. The scale
invariant depth loss is estimated as follows:

L =
1

n2

∑
i,k

((log d(xi)−log d(xk))−(log d(x∗i )−log d(x∗k)))2

(3)
where d(x∗i ) is the predicted depth and d(xi) is the ground
truth depth at pixel location i. The architecture is fine-
tuned using the pre-trained models from DeepLab [20]. The
models are trained for 20000 iterations with a batch size of
1 and base learning rate of 10−4 in each experiment. The
momentum parameter is set to 0.99.

Generative Adversarial Network (GAN): We formu-
late the depth prediction task as a domain translation in
the framework of Generative Adversarial Networks (GAN).
Depth prediction can be thought of as an image-to-image
translation problem, where the goal is to translate an RGB
image (source domain) to a depth image (target domain). A
standard GAN has two components: a generator G and a dis-
criminator D. The combined network is adversarially trained
where the goal of the generator G is to produce images
that fool the discriminator D into identifying ‘fake’ images
as ‘real’ ones. The D is trained as well to discriminate
‘fake’ images from the ‘real’ ones. We use the conditional-
GAN architecture from the work of Isola et al. [18]. In this
variation of GAN, in addition to fooling the D network, G
is asked to generate the ‘fake’ image that is as close to a
given input in an L1-loss sense. We used the U-Net [19]
architecture for the G network. The models are trained for
200 epochs with a batch size of 1 for each experiment. The
weight of the L1-loss is set to 100.

A. Depth Evaluation Metrics

We evaluated our DNN architectures using three different
metrics. Consider di and d∗i as ground truth depth and
predicted depth, respectively, at pixel location i in an image,
and assume that there are N pixels in the image. We compute
the following three metrics to measure the performance.

a) Absolute Relative Error: Ma = 1
N

∑N
i=1

|di−d∗
i |

di

b) Linear RMSE: Mb =
√

1
N

∑N
i=1(di − d∗i )2

Fig. 7: Visualization of the linear RMSE as a function of
depth (meters) for the experiment in Table II

Metric CNN GAN Liu et al.[6]
Absolute Relative Error 2.39 0.23 0.67

Linear RMSE 126.42 21.74 92.72
Scale Invariant MSE 0.07 0.09 0.46

TABLE II: Depth prediction accuracy comparison for the
random split experiment in Section IV-B using three different
metrics: Absolute Relative Error, Linear RMSE, and Scale
Invariant MSE. Lower error is better for all three metrics.

c) Scale Invariant MSE: Mc = 1
N

∑N
i=1(log(d

∗
i ) −

log(di)+α(d
∗, d))2. whereas α(d∗, d) = 1

N

∑N
i=1(di− d∗i ).

B. Depth Estimation Results on Random Split

In this experiment, we followed a similar setup as was
done in the work of Saxena et al. [1]. We combined all
of the 900 rendered images from all the cities and made a
random split of 540 training images and 360 test images. We
trained both DNN networks using the quantized depth values
as ground truths. The predicted depth is multiplied by the
quantization factor 4 to convert the bin into meters. Figure 6
shows qualitative comparisons between the two methods on
different city images. The evaluation is done on the non-
zero ground truth regions The sky region in most rendered
images contain depth values of zero. A visible portion of sky
appears in our 3D reconstructed models only in the city of
Houston. The mean values across all 360 images are reported
in Table II. GAN baseline performed better than the CNN
baseline on the first two metrics, and comparable in the third-
scale invariant MSE metric. We also evaluated the 360 test
images on the method of Liu et al. [6] using their publicly
available code and model trained on Make3D [2] dataset.
The results are reported in the third column of Table II. The
maximum range of this training data is 81 meters [2]; hence,
the model fails to accurately predict more distant depths.
Figure 7 shows the linear RMSE error as a function of the
true depth. This linear RMSE metric reports the error in
meters. The error of the GAN model is much lower than
that of the CNN model at all depths, and also levels off
much quicker.

C. Depth Estimation Results on an Unseen City

We conducted two other experiments where we train our
two networks with all images from three different cities and



Metric CNN GAN
Absolute Relative Error 3.23 0.63

Linear RMSE 176.28 30.46
Scale Invariant MSE 0.07 0.24

TABLE III: Depth prediction comparison for three different
error metrics. The unseen city images were picked from New
York City. Lower error is better.

Metric CNN GAN
Absolute Relative Error 6.30 1.53

Linear RMSE 272.75 57.17
Scale Invariant MSE 0.19 0.27

TABLE IV: Depth prediction accuracies comparison for three
different metrics. The models were trained using images
from Miami, New York City, and Houston. The models were
evaluated on images from Salt Lake City. Lower error is
better.

then evaluation is done on all images from the remaining city.
In the first of these tests, the networks are trained using 600
images in total from Miami, Houston, and Salt Lake City.
The trained models are evaluated on the 300 images from
New York City. Table III shows the performance comparison
between the two methods. In comparison to our previous
experiment, the performance deteriorates since the evaluation
city typically has significant differences in appearance and
structure. In the next experiment, we trained the models using
800 images from Miami, New York City, and Houston in total.
In Table IV we report the performance comparison where the
models are evaluated on the 100 images from Salt Lake City.
We observe a similar trend as in Table III.

V. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this work extends the outdoor depth esti-
mation problem to a range that is an order of magnitude
greater than previously proposed. In order to train and
evaluate potential solutions, we proposed a novel strategy for
generating large collections of RGB and their corresponding
ground-truth depth images for ranges up to 1000m using 3D
reconstructed models in urban environments. We formulate
the problem of depth estimation as that of image-to-image
translation [18] using a GAN method and found in our exper-
iments that the GAN performed better than a CNN baseline
in Absolute Relative Error and Linear RMSE metrics. In the
future, we would like to extend our repository of 3D models
and generate more renderings from them. We would also like
to address some artifacts in the 3D reconstructed models such
as the inconsistent appearance of sky regions from the 3D
reconstruction. Another future direction would be exploring
whether the rendered images can be effectively utilized to
pre-train a deep neural network to improve depth prediction
performance in real images.

REFERENCES

[1] A. Saxena, S. Chung, and A. Ng, Learning Depth from a Single
Monocular Image, In Advances in Neural Information and Processing
System (NIPS), 2005.

[2] A. Saxena, M. Sun, and A. Ng, Make3D: Learning 3D Scene Structure
from a Single Still Image, In IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 2009.

[3] D. Eigen, C. Puhrsch, and R. Fergus, Depth Map Prediction from
a Single Image using a Multi-Scale Deep Network, In Advances in
Neural Information and Processing System (NIPS), 2014.

[4] D. Eigen, and R. Fergus, Predicting Depth, Surface Normals and
Semantic Labels with a Common Multi-Scale Convolutional Architec-
ture, In International Conference on Computer Vision (ICCV), 2015.

[5] C. Cadena, A. Dick, and I. Reid, Multi-modal Auto-Encoders as Joint
Estimators for Robotics Scene Understanding, Robotics: Science and
Systems (RSS), 2016.

[6] F. Liu, C. Shen, and G. Lin, Deep Convolutional Neural Fields
for Depth Estimation from a Single Image, In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[7] A. Mousavian, H. Pirsiavash, and J. Kosecka, Joint Semantic Seg-
mentation and Depth Estimation with Deep Convolutional Networks,
In International Conference on 3D Vision (3DV), 2016.

[8] B. Liu, S. Gould, and D. Koller, Single Image Depth Estimation from
Predicted Semantic Labels, In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

[9] L. Ladicky, J. Shi,and M. Pollefeys, Pulling Things Out of Perspec-
tive, In IEEE Conference on Computer Vision and Pattern Recogni-
tion(CVPR), 2014.

[10] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille, Towards
Unified Depth and Semantic Prediction from a Single Image, In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[11] A. Torralba and A. Oliva, Depth Estimation from Image Structure, In
IEEE Transactions on Pattern Analysis& Machine Intelligence, 2002.

[12] D. Hoiem, A. Efros, and M. Hebert, Closing the Loop in Scene
Interpretation, In IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

[13] D. Scharstein and R. Szeliski, A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms, In International Jour-
nal of Computer Vision (IJCV), 2002.

[14] C. Wu, VisualSFM : A Visual Structure from Motion System.
[15] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. Berg, A

Dataset for Developing and Benchmarking Active Vision, In IEEE
International Conference on Robotics and Automation (ICRA)”, 2017.

[16] J. Schonberger, and J.M. Frahm, Structure-from-Motion Revisited,
In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[17] J. Schonberger, E. Zheng, M. Pollefeys, and and J.M. Frahm, Pixelwise
View Selection for Unstructured Multi-View Stereo, In European
Conference on Computer Vision (ECCV), 2016.

[18] P. Isola, J. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with
Conditional Adversarial Networks, In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[19] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional Net-
works for Biomedical Image Segmentation. In MICCAI, 2015.

[20] L. Chen, G. Papandreou, I. Kokkinos K. Murphy and A. Yuille,
Semantic Image Segmentation with Deep Convolutional Nets and
Fully Connected CRFs, In International Conference on Learning
Representation (ICLR), 2015.

[21] G. Ross, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez,
The SYNTHIA Dataset: A Large Collection of Synthetic Images for
Semantic Segmentation of Urban Scenes, In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[22] A. Gaidon, Q. Wang, Y. Cabon, and Elenora Vig, Virtual Worlds as
Proxy for Multi-Object Tracking Analysis, In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[23] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous
driving? The KITTI vision benchmark suite. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[24] S. Richter, V. Vineet, S. Roth, and V. Koltun, Playing for Data: Ground
Truth from Computer Games, European Conference on Computer
Vision (ECCV),2016.

[25] A. Handa, V. Patraucean, S. Stent, R. Cipolla, SceneNet: an Annotated
Model Generator for Indoor Scene Understanding, In International
Conference on Robotics and Automation (ICRA), 2016.


