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ABSTRACT

Recent efforts to learn reward functions from human feedback have tended to use
deep neural networks, whose lack of transparency hampers our ability to explain
agent behaviour or verify alignment. We explore the merits of learning intrinsi-
cally interpretable tree models instead. We develop a recently proposed method
for learning reward trees from preference labels, and show it to be broadly com-
petitive with neural networks on challenging high-dimensional tasks, with good
robustness to limited or corrupted data. Having found that reward tree learning
can be done effectively in complex settings, we then consider why it should be
used, demonstrating that the interpretable reward structure gives significant scope
for traceability, verification and explanation.

1 INTRODUCTION

For a reinforcement learning (RL) agent to reliably achieve a goal or desired behaviour, this objective
must be encoded as a reward function. However, manual reward design is widely understood to be
challenging, with risks of under-, over-, and mis-specification leading to undesirable, unsafe and
variable outcomes (Pan et al., 2022). For this reason, there has been growing interest in enabling RL
agents to learn reward functions from normative feedback provided by humans (Leike et al., 2018).
These efforts have proven successful from a technical perspective, but an oft-unquestioned aspect of
the approach creates a roadblock to practical applications: reward learning typically uses black-box
neural networks (NNs), which resist human scrutiny and interpretation.
For advocates of explainable AI (XAI), this is a problematic state of affairs. The XAI community is
vocal about the safety and accountability risks of opaque learning algorithms (Rudin, 2019), but an
inability to interpret even the objective that an agent is optimising places us in yet murkier epistemic
territory, in which an understanding of the causal origins of learnt behaviour, and their alignment
with human preferences, becomes virtually unattainable. Black-box reward learning could also be
seen as a missed scientific opportunity. A learnt reward function is a tantalising object of study
from an XAI perspective, due to its triple status as (1) an explanatory model of revealed human
preferences, (2) a normative model of agent behaviour, and (3) a causal link between the two.
The approach proposed by Bewley & Lecue (2022) provides a promising way forward. Here, human
preference labels over pairs of agent behaviours are used to learn tree-structured reward functions
(reward trees), which are hierarchies of local rules that admit visual and textual representation and
can be leveraged to monitor and debug agent learning. In this paper, we adapt and extend the
method (including by integrating it with model-based RL agents), and compare it to NN-based re-
ward learning in a challenging aircraft handling domain. We find it to be broadly competitive on both
quantitative metrics and qualitative assessments, with our new modification to tree growth yielding
significant improvements. The resultant trees are small enough to be globally interpretable (≈ 20
leaves), and we demonstrate how they can be analysed, verified, and used to generate explanations.
The primary contribution of this paper is positive empirical evidence that reward learning can
be done effectively using interpretable models such as trees, even in complex, high-dimensional
continuous environments. We also make secondary methodological contributions: improvements
to the originally-proposed learning algorithm, as well as metrics and methods for reward evaluation
and interpretability that may be useful to others working in what remains a somewhat preparadig-
matic field. After reviewing the necessary background and related work in Sections 2 and 3, we
present our refinement of reward tree learning in Section 4, and describe how we deploy it online
with a model-based agent in Section 5. Section 6 contains our experiments and results, which con-
sider both quantitative and qualitative aspects of learning performance, and an illustrative analysis
of learnt tree structures. Finally, Section 7 concludes and discusses avenues for future work.
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2 BACKGROUND AND RELATED WORK

Markov Decision Processes (MDPs) In this formulation of sequential decision making, the state
of a system at time t, st ∈ S, and the action of an agent, at ∈ A, condition the successor state st+1

according to dynamics D : S×A → ∆(S) (∆(·) denotes the set of all probability distributions over
a set). A reward function R : S×A×S → R then outputs a scalar reward rt+1 given st, at and st+1.
RL uses exploratory data collection to learn action-selection policies π : S → ∆(A), with the goal
of maximising the expected discounted sum of future reward, ED,π

∑∞
h=0 γ

hrt+h+1, γ ∈ [0, 1].
Reward Learning In the usual MDP framing, R is an immutable property of the environment,
which belies the practical fact that AI objectives originate in the uncertain goals and preferences of
fallible humans (Russell, 2019). Reward learning (or modelling) (Leike et al., 2018) replaces hand-
specified reward functions with models learnt from humans via revealed preference cues such as
demonstrations (Ng et al., 2000), scalar evaluations (Knox & Stone, 2008), approval labels (Griffith
et al., 2013), corrections (Bajcsy et al., 2017), and rankings (Christiano et al., 2017). The default use
of NNs for reward learning severely limits interpretability; reward trees provide a possible solution.
XAI for RL (XRL) Surveys of XAI for RL (Puiutta & Veith, 2020; Heuillet et al., 2021) divide
between intrinsic approaches, which imbue agents with structure such as object-oriented representa-
tions (Zhu et al., 2018) or symbolic policy primitives (Verma et al., 2018), and post hoc analyses of
learnt representations (Zahavy et al., 2016), including computing feature importance/saliency (Hu-
ber et al., 2019). Spatiotemporal scope varies from the local explanation of single actions (van der
Waa et al., 2018) to the summary of entire policies via representative trajectories (Amir & Amir,
2018) or critical states (Huang et al., 2018). While most post hoc methods focus on fixed policies,
some provide insight into the dynamics of agent learning (Dao et al., 2018; Bewley et al., 2022).
Explainable Reward Functions At the intersection of reward learning and XRL lie efforts to im-
prove human understanding of reward functions and their effects on action selection. While this
area is “less developed” than other XRL sub-fields (Glanois et al., 2021), a distinction has again
emerged between intrinsic approaches which create rewards that decompose into semantic com-
ponents (Juozapaitis et al., 2019) or optimise for sparsity (Devidze et al., 2021), and post hoc ap-
proaches which apply feature importance analysis (Russell & Santos, 2019), counterfactual probing
(Michaud et al., 2020), or simplifying transformations (Jenner & Gleave, 2022). Sanneman & Shah
(2022) use human-oriented metrics to compare the efficacy of reward explanation techniques. In this
taxonomy, reward tree learning is an intrinsic approach, as the rule structure is inherently readable.
Trees in RL Tree models have a long history in RL (Chapman & Kaelbling, 1991; Džeroski et al.,
1998; Pyeatt, 2003). Their use is increasingly given an XRL motivation. Applications again divide
into intrinsic methods, where an agent’s policy (Silva et al., 2020), value function (Liu et al., 2018;
Roth et al., 2019) or dynamics model (Jiang et al., 2019) is a tree, and post hoc tree approximations of
an existing agent’s policy (Bastani et al., 2018; Coppens et al., 2019) or transition statistics (Bewley
et al., 2022). Related to our focus on human-centric learning, Cobo et al. (2012) learn tree-structured
MDP abstractions from demonstrations and Tambwekar et al. (2021) distill a differentiable tree
policy from natural language. While Sheikh et al. (2022) use tree evolution to learn dense intrinsic
rewards from sparse environment ones, Bewley & Lecue (2022) are the first to learn and use reward
trees in the absence of any ground-truth reward signal, and the first to do so from human feedback.

3 PREFERENCE-BASED REWARD LEARNING

We adopt the preference-based approach to reward learning, in which a human is presented with
pairs of agent trajectories (sequences of state, action, next state transitions) and expresses which of
each pair they prefer as a solution to a given task of interest. A reward function is then learnt to
explain the pattern of preferences. This approach is popular in the existing literature (Wirth et al.,
2016; Christiano et al., 2017; Lee et al., 2021b) and has a firm psychological basis. Experimental
results indicate that humans find it cognitively easier to make relative (vs. absolute) quality judge-
ments (Kendall, 1975; Wilde et al., 2020) and exhibit lower variance when doing so (Guo et al.,
2018). This is due in part to the lack of requirement for an absolute scale to be maintained in
working memory, which is liable to induce bias as it shifts over time (Eric et al., 2007).
We formalise a trajectory ξi as a sequence (xi

1,..., xiT i), where xi
t = ϕ(sit−1, a

i
t−1, s

i
t) ∈ RF repre-

sents a single transition as an F -dimensional feature vector. Given N trajectories, Ξ = {ξi}Ni=1,
the human provides K ≤ N(N − 1)/2 pairwise preference labels, L = {(i, j)}Kk=1, each of which
indicates that the jth trajectory is preferred to the ith (denoted by ξj ≻ ξi). Figure 1 (left) shows
how a preference dataset D = (Ξ,L) can be viewed as a directed graph.
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4.1 4.2 4.3 4.4

Figure 1: Left: The input to preference-based reward learning is a directed graph over a trajectory
set Ξ = {ξi}Ni=1, where each edge (i, j) represents a preference ξj ≻ ξi. Each member of Ξ is a
sequence of points in RF (blue connectors show mapping). Right: Application of the four model
induction stages from Sections 4.1-4.4 to this example. See Appendix A.3 for an annotated version.

To learn a reward function from D, we must assume a generative model for the preference labels.
Typically, it is assumed that the human produces labels in Boltzmann-rational accordance with the
sum of rewards (or return) output by a latent reward function over the feature space, R : RF → R.
This is formalised by adapting the classic preference model of Bradley & Terry (1952):

P (ξj ≻ ξi|R) =
1

1 + exp( 1β (G(ξi|R)−G(ξj |R)))
, where G(ξi|R) =

∑T i

t=1
R(xi

t), (1)

and β > 0 is a temperature coefficient. The objective of reward learning is to approximate R within
some learnable function classR. This is often formalised as minimising the negative log-likelihood
(NLL) loss over L. Wirth et al. (2016) also use the discrete 0-1 loss, which considers only the
directions of predicted preferences rather than their strengths. These two losses are defined as:

ℓNLL(D, R) =
∑

(i,j)∈L

− logP (ξj ≻ ξi|R); ℓ0-1(D, R) =
∑

(i,j)∈L

I[P (ξj ≻ ξi|R) ≤ 0.5]. (2)

4 REWARD TREE INDUCTION

In prior work, R is the class of linear models R(x) = w⊤x (Sadigh et al., 2017), which have
limited expressivity, or deep NNs (Christiano et al., 2017), which resist human interpretation. As
an intermediate option, Bewley & Lecue (2022) (BL) propose the reward tree model. Here, the
parameter space consists of node-level splitting rules and reward predictions for an axis-aligned
decision tree, whose leaves induce a hyperrectangular partition of RF . While differentiable trees
exist (Suárez & Lutsko, 1999), these are of the oblique (c.f. axis-aligned) kind, whose multi-feature
rules are far harder to interpret in high dimensions. Therefore, instead of optimising the losses in
Equation 2 end-to-end, we use a multi-stage induction method with a proxy objective at each stage.
The four stages outlined below, and depicted in Figure 1 (right), depart from BL’s original method
in several respects. A list of changes, and their performance implications, is given in Appendix A.1.

4.1 TRAJECTORY-LEVEL RETURN ESTIMATION

This stage considers the N trajectories as atomic units, and uses the preference graph to construct a
vector of return estimates g ∈ RN , which should be higher for more preferred trajectories (blue in
Figure 1 (4.1), c.f. red). This is a vanilla preference-based ranking problem, and admits a standard
solution. BL use a least squares matrix method to solve for g under Thurstone’s Case V preference
model (Gulliksen, 1956). For consistency with prior work, and to avoid an awkward clipping step
which biases preference probabilities to enable matrix inversion, we instead use a gradient method
to minimise the NLL loss under the Bradley-Terry model. Concretely, the objective for this stage is

argmin
g∈RN

[ ∑
(i,j)∈L

− log
1

1 + exp(gi − gj)

]
, subject to

{
min(g) = 0

or max(g) = 0
and std(g) = β, (3)

where β is the mean trajectory length in Ξ,
∑N

i=1 T
i/N . The min-or-max constraint ensures that

all return estimates have the same sign (positive or negative), which aids both policy learning and
interpretability (see Appendix A.2). We first optimise the NLL loss by gradient descent with the
Adam optimiser (Kingma & Ba, 2014), then apply shift and scale factors to meet the two constraints.

4.2 LEAF-LEVEL REWARD PREDICTION

The vector g estimates trajectory-level returns, but the aim of reward learning is to decompose these
into sums of rewards for the constituent transitions, then generalise this to make reward predictions
for unseen data (e.g. novel trajectories executed by a learning agent). BL’s contribution is to do
this using a tree model T , consisting of a hierarchy of rules that partition the transition-level feature
space RF into LT hyperrectangular subsets called leaves. Each leaf l ∈ {1..LT } is associated with
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a reward prediction rl as follows. Let the function leafT : RF → {1..LT } map a feature vector
x ∈ RF to the leaf in which it resides by propagating it through the rule hierarchy. rl is defined as
an average over g, weighted by the proportion of timesteps that each trajectory in Ξ spends in l:

rl =
N∑
i=1

gi

T i

∑T i

t=1 I[leafT (xi
t) = l]∑N

j=1

∑T j

t=1 I[leafT (xj
t ) = l]

. (4)

The effect of Equation 4 is to assign higher reward to leaves that contain more timesteps from
trajectories with high g values. Predicting the reward for an arbitrary unseen feature vector x ∈ RF

then involves simply looking up the reward of the leaf in which it resides: RT (x) = rleafT (x).
While ostensibly naı̈ve, BL find that this time-weighted credit assignment is more robust than several
more sophisticated alternatives. It reduces the number of free parameters in subsequent induction
stages, permits fast implementation, and provides an intuitive interpretation of predicted reward that
is traceable back to a g value and timestep count for each ξi ∈ Ξ. Figure 1 (4.2) shows how 4, 2 and 3
timesteps from ξ1, ξ3 and ξ4 are averaged over to yield the reward prediction for one leaf (indicated
by the orange shading). For more intuition on this stage, see the annotated figure in Appendix A.3.

4.3 TREE GROWTH

Recall that the objective of preference-based reward learning is to find a reward model that optimises
a measure of fidelity toD, such as the losses in Equation 2. When the model is a tree, this is achieved
by the discrete operations of growth (adding partitioning rules) and pruning (removing rules). Given
a tree T , a new rule has the effect of splitting the lth leaf with a hyperplane at a location c ∈ Cf along
the f th feature dimension (where Cf ⊂ R is a set of candidate split thresholds, e.g. all midpoints
between unique values in Ξ). Let T + [lfc] denote the newly-enlarged tree. Splitting recursively
creates an increasingly fine partition of RF . Figure 1 (4.3) shows an example with 23 leaves.
A central issue is the criterion for selecting the next rule to add. BL use the proxy objective of
minimising the local variance of reward predictions, which is exactly the CART algorithm (Breiman
et al., 2017). While very fast, this criterion is only loosely aligned with fidelity to the preferences in
D. We propose the more direct criterion of greedily maximising the immediate reduction in ℓ0-1:

argmax1≤l≤LT , 1≤f≤F, c∈Cf

[
ℓ0-1(D, RT )− ℓ0-1(D, RT +[lfc])

]
. (5)

In Section 6, we show that switching to this bespoke criterion consistently improves performance. Its
implementation involves a major reformulation of the tree growth algorithm; we provide vectorised,
just-in-time compiled code for this in the Supplementary Material. Recursive splitting stops when
no reduction in ℓ0-1 can be achieved by any single split, or a tree size limit LT = Lmax is reached.

4.4 TREE PRUNING

Growth is followed by a pruning sweep which reduces the size of the tree by rule removal. Such
reduction is beneficial for both performance (Tien et al. (2022) find that limiting model capacity
lowers the risk of causal confusion in preference-based reward learning) and human comprehension
(in the language of Jenner & Gleave (2022), it is a form of “processing for interpretability”). Given
a tree T , one pruning operation has the effect of merging two leaves into one by removing the rule at
the common parent node. Let T denote the sequence of nested subtrees induced by pruning the tree
recursively back to its root, at each step removing the rule that minimises the next subtree’s ℓ0-1. We
select the T ∈ T that minimises ℓ0-1, additionally regularised by a term that encourages small trees:
argminT ∈T[ℓ0-1(D, RT ) + αLT ], where α ≥ 0. Note that even with α = 0 pruning may still yield
a reduced tree, as unlike in traditional decision tree induction, the effect of individual rules on ℓ0-1
depends on the order in which they are added or removed. In the example in Figure 1 (4.4), pruning
yields a final tree with 3 leaves, for which illustrative leaf-level reward predictions are shown.

5 ONLINE LEARNING SETUP

5.1 ITERATED POLICY AND REWARD LEARNING

Sections 3 and 4 do not discuss the origins of the trajectories Ξ, or how reward learning relates to
the downstream objective of learning a policy for the underlying task. Following most recent work
since Christiano et al. (2017), we resolve both questions with an online bootstrapped approach.
Assuming an episodic MDP, the ith episode of policy learning produces a new trajectory ξi to add to
Ξ. We immediately connect ξi to the preference graph by asking the human to compare it to Kbatch
random trajectories from the existing set (while Sadigh et al. (2017) and others have proposed active
querying schemes, that is not our focus here, and this simple strategy performs satisfactorily). We
then update the reward tree on the full preference graph via the four stages given in Section 4. We
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find that BL’s original method of starting growth from the current state of the tree causes lock-in to
poor initial solutions, so instead re-grow from scratch on each update. The rule structure nonetheless
tends to stabilise, as the enlarging preference graph becomes increasingly similar for later updates.
For the (i+ 1)th episode, the policy learning agent then attempts to optimise for the newly-updated
reward. By iterating this process up to a total preference budget Kmax and/or episode budget Nmax,
we hope to converge to both a reward tree that reflects the human’s preferences, and an agent policy
that satisfies those preferences. Appendix A.4 contains pseudocode for the online algorithm.

5.2 INTEGRATION WITH MODEL-BASED RL
Reward learning methods are generally agnostic to the structure of the policy learning agent; this
modularity is hailed as an advantage over other human-agent teaching paradigms (Leike et al., 2018).
In line with most recent works, BL use a model-free RL agent, specifically soft actor-critic (SAC)
(Haarnoja et al., 2018). However, other works (Reddy et al., 2020; Rahtz et al., 2022) use model-
based RL (MBRL) agents that leverage learnt dynamics models and planning. MBRL is attractive in
the reward learning context because it disentangles the predictive and normative aspects of decision-
making. Since (assuming no changes to the environment) dynamics remain stationary during online
reward learning, the amount of re-learning required is reduced and along with it, the risk of pitfalls
such as manipulation (Armstrong et al., 2020) and premature convergence. Additionally, MBRL can
be very data-efficient; we find that switching from SAC to a model-based algorithm called PETS
(Chua et al., 2018) reduces environment interaction during reward learning by orders of magnitude,
and cuts wall-clock runtime (see Appendix B). PETS selects actions by decision-time planning
through a learnt dynamics model D′ : S × A → ∆(S) up to a horizon H . In state s, planning
searches for a sequence of H future actions that maximise return under the current reward model:

argmax
(a0,...,aH−1)∈AH

ED′

[∑H−1

h=0
γhRT (ϕ(sh, ah, sh+1))

]
, where s0 = s, sh+1 ∼ D′(sh, ah). (6)

The first action a = a0 is executed, and then the agent re-plans on the next timestep. In practice, D′

is an ensemble of probabilistic NNs, the expectation over D′ is replaced by a Monte Carlo estimate,
and the optimisation is approximated by the iterative cross-entropy method.

6 EXPERIMENTS AND RESULTS

In this section, we combine quantitative and qualitative evaluations to assess the performance of
reward tree learning, specifically in comparison to the standard approach of using NNs. We also
illustrate how the intrinsic interpretability of reward trees allows us to analyse what they have learnt.
Our experiments focus on an aircraft handling domain (Figure 2), in which an agent must manoeuvre
an aircraft (the ego jet, EJ) in a desired manner relative to a second reference jet (RJ) whose motion,
if any, is part of the environment dynamics. We consider three tasks: Follow (turn to fly in formation
with RJ on a linear path); Chase (maintain distance/line of sight to RJ as it turns randomly); and
Land (approach a runway using RJ as a reference). These tasks are useful test cases for reward
learning, as each has a large space of plausible reward functions, which may reflect the divergent
priorities and stylistic preferences of aeronautical experts. Such expert knowledge is often tacit and
difficult to codify (Sternberg & Horvath, 1999), motivating a learning-based approach. Appendix C
contains a broader justification of this experimental domain alongside implementation details.

Ego Jet Action: pitch,
roll, yaw, thrust
demands for EJ

RJ

EJ

Follow

RJ

EJ

Chase RJ

EJ

Land

Reference Jet

State: pose
information
for both
EJ and RJ

Proceeds
along linear
flight path

Task: turn
onto same
flight path
and match

speed

Represents
a target
touchdown
pose Task: execute a

stable approach
path, ending at

 target pose

Flies
subject to
random
control
input

Task: stay
close to RJ

with line
of sight;

keep safe
altitude

Figure 2: State-action space of aircraft handling domain, and diagrams of Follow/Chase/Land tasks.

In place of costly human-in-the-loop evaluation, our experiments use synthetic oracle preferences
with respect to nominal reward functions of varying complexity, which are given in Appendix C.3.
This approach is popular (Griffith et al., 2013; Christiano et al., 2017; Reddy et al., 2020; Lindner
et al., 2021) as it enables scalable systematic comparison, with the ability to quantify performance
(and in our case, appraise learnt trees) in terms of reconstruction of a known ground truth. However,
emulating a human with an oracle that responds with perfect rationality is unrealistic (Lee et al.,
2021a). For this reason, Section 6.3 examines the performance impacts of noisy and myopic oracles,
and a restricted data budget. Experimental details and hyperparameters are given in Appendix D.

5



Under review as a conference paper at ICLR 2023

6.1 QUANTITATIVE PERFORMANCE

We evaluate online reward learning with PETS using trees with the ℓ0-1 split criterion, baselined
against BL’s original variance criterion, as well as the de facto standard of NN reward learning (see
Appendix D.4 for details). We use Kmax = 1000 preferences over Nmax = 200 online trajectories,
and run 10 repeats. As a headline statistic, we report the oracle regret ratio (ORR): the median drop
in oracle return of PETS agents deployed using each trained reward model compared with directly
using the oracle reward, as a fraction of the drop to a random policy (lower is better). Below are the
median (top) and minimum (bottom) ORR values across the 10 repeats for each task-model pairing:

Follow Chase Land
NN Tree(0-1) Tree (var) NN Tree (0-1) Tree (var) NN Tree (0-1) Tree (var)
.000 .120 .284 −.030 .040 .126 .014 .050 .062
−.010 .057 .158 −.051 −.011 .065 −.030 .011 .010

We observe that: 1) NN reward learning is strong on all tasks; 2) switching to a reward tree induces
a small but variable performance hit; 3) ℓ0-1 splitting outperforms the variance-based method; and
4) both NN and tree models sometimes exceed the direct use of the oracle (negative ORR). This has
been observed before (Cao et al., 2021) and may be due to improved shaping in the learnt reward.
Figure 3 expands these results with more metrics, revealing subtler trends not captured by headline
ORR values. Metrics are plotted as time series over the 200 learning episodes (sliding-window me-
dians and interquartile ranges across repeats). In the left column (a), the ORR of online trajectories
shows how agent performance converges. For Follow, there is a gap between the models, with
ℓ0-1 splitting clearly aiding performance but still lagging behind the NNs. The learning curves for
Chase and Land are more homogeneous, and the NNs reach only slightly lower asymptotes. For
the reward tree models, (b) shows how the number of leaves changes over time. The variance-based
trees tend to grow rapidly initially before stabilising or shrinking, while the ℓ0-1 trees enlarge more
conservatively, suggesting this method is less liable to overfit to small preference graphs. Trees of
a readily-interpretable size (≈ 20 leaves) are produced for all tasks; it is possible that performance
could be improved by independently tuning the size regulariser α per task. (c) shows ℓ0-1 over time,
which tends to increase as the growing preference graph presents a harder reconstruction problem,
though the shape of all curves suggests convergence (note that random prediction gives ℓ0-1 = 0.5).
For Follow and Land, the trees that directly split on ℓ0-1 actually perform better than the NNs;
they more accurately predict the direction of preferences in the graph. The fact that this does
not translate into lower ORR indicates that the problems of learning a good policy and replicating the
preference dataset are not identical, a point made by Lindner et al. (2021). In the final two columns,
we follow Gleave et al. (2021) in performing an unbiased, policy-invariant comparison of the mod-
els by correlating their outputs with the oracle reward functions on common evaluation datasets (see
Appendix D.5 for dataset creation). We compute online correlations with the oracles in terms of
both transition-level rewards (d) and the ordinal ranking of trajectories by return (e), the latter via
the Kendall (1938) τ coefficient. The curves subtly differ, indicating that it is possible to reconstruct
trajectory rankings (and by extension, any pairwise preferences) to a given accuracy with varying
fidelity at the individual reward level. However, the common overall trend is that ℓ0-1-based trees
outperform variance-based ones, with NNs sometimes improving again by a smaller margin,
and sometimes bringing no added benefit. Moving top-to-bottom down the tasks, the gap between
models reduces from both sides; NN performance worsens while variance-based trees improve.

0
0.

5
1

Fo
llo

w
La

nd
C

ha
se

Online ORRa Rank correlatione
NN

Tree (0-1)
Tree (var)

0
0.

5
1

0
0.

2
0.

4

0-1 lossc

0
0.

05
0.

1
0.

15
0

0.
05

0.
1

0.
15

0
0.

05
0.

1
0.

15

0.
25

0.
5

0.
75

1

0
0.

25
0.

5
0.

75
1

Tree sizeb

10
20

10
20

10
20

0
0.

5
1

0
0.

5
1

0.
2

0.
6

1

0
0.

5
1

Reward correlationd

Figure 3: Time series of metrics for online NN- and tree-based reward learning on all three tasks.
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A potentially important factor in these experiments is that the oracle reward for Follow is a simple
linear function, while the other two contain progressively more terms and discontinuities (see Ap-
pendix C.3). A trend suggested by these results is thus that the performance gap between NNs and
reward trees (on both ORR and correlation metrics) reduces as the ground truth reward becomes
more complex and nonlinear. Further experiments would be needed to test this hypothesis.

6.2 VISUAL TRAJECTORY INSPECTION

While useful for benchmarking, quantitative metrics provide little insight into the structure of the
learnt solutions. They would also mostly be undefined when learning from humans since the ground
truth reward is unknown. We therefore complement them with a visual analysis of induced agent
behaviour. Figure 4 plots 500 trajectories of PETS agents using the best repeat by ORR for each
task-model combination, across a range of features as well as time (see Appendix C.2 for feature
definitions). Dashed curves show the trajectory with the highest predicted return according to each
model. We also show trajectories for PETS agents with direct oracle access, and for random policies.
The high-level trend is that all models are far closer to the oracle than random, with few examples of
obviously incorrect behaviour (highlighted in red, due to colouring by ORR). While the NNs induce
trajectories that are almost indistinguishable from the oracle, the ℓ0-1-based reward trees lag
not far behind. The variance-based trees produce more anomalies. Successes of the ℓ0-1 trees
include the execution of Follow with a single banked turn before straightening up, as shown by the
up error time series (a). Indeed, the trajectories for this model are almost imperceptibly different
from those of the NN, a result which is belied by the mediocre ORR of 0.158. This underlines the
importance of joint quantitative-qualitative evaluation. For Chase (b), the ℓ0-1 tree has learnt to keep
the agent narrowly above the altitude threshold alt < 50, below which the oracle reward is strongly
negative (see Appendix C.3). The threshold is violated in only eight of 500 trajectories (1.6%). For
Land, the ℓ0-1 tree replicates the oracle in producing a gradual reduction in alt (c) while usually
keeping pitch close to 0 (d), although the distribution of roll values is less narrow.
In contrast, the agent using the variance-based tree for Follow sometimes fails to reach the target
position (e; red trajectories), and also does not reliably straighten up to reduce up error (f).
For Chase, the altitude threshold does not appear to have been learnt precisely, and lower-altitude
trajectories often fail to close the distance to RJ (g and h; red trajectories). For Land, the variance-
based tree gives a later and less smooth descent (i), and less consistent pitch control (j), than the NN
or ℓ0-1-based tree, although all models produce a somewhat higher altitude profile than the oracle.
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Figure 4: Agent trajectories using the best models by ORR, with oracle and random for comparison.

6.3 SENSITIVITY ANALYSIS

It is important to consider how learning performance degrades with reduced or corrupted data. In
Figure 5, we evaluate the effect of varying the number of preferences Kmax (with fixed Nmax = 200)
and trajectories Nmax (with fixed Kmax = 1000) on reward learning with NNs and ℓ0-1-splitting
trees. Following Lee et al. (2021a), we also create more human-like preference data via two modes
of oracle irrationality: preference noise (by using a nonzero Boltzmann temperature β to give a
desired error rate on the coverage datasets) and a myopic recency bias (by exponentially discounting
earlier timesteps when evaluating trajectory returns). We run five repeats for all cases, and report the
medians and interquartile ranges of ORR (lower is better) and rank correlation (higher is better).
Both NN and tree models exhibit good robustness with respect to all four parameters. Although
NNs remain superior in most cases, the gap varies, and is often reduced compared to the base
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Figure 5: Comparative sensitivity analysis of reward learning with NNs and trees.

cases (bold labels). The budget sensitivity is low, with little improvement for Kmax > 1000 and
Nmax > 200, and no major drop even with 25% of the data as the base case. For all tasks, the oracle
error probability can increase to around 20% before significant drops in performance are observed.
This is a promising indicator of the transferability of reward tree learning to imperfect human data.
Another general observation is that the trends for trees are somewhat smoother than for NNs, with
fewer sharp jumps and fewer instances of very high spread across the five repeats.
In the right column (a), we summarise these results by taking the difference between the NN and tree
metrics, and averaging across the three tasks. In all cases aside from rank correlation with β > 0, the
NN-tree gap tends to become more favourable to the tree models as the varied parameter becomes
more challenging (top-to-bottom). This sensitivity analysis thus indicates that reward trees are at
least as robust to difficult learning scenarios as NNs, and may even be slightly more so.

6.4 TREE STRUCTURE ANALYSIS

Thus far we have shown that reward learning with ℓ0-1-based trees can be competitive with NNs,
but not quite as performant overall. We now turn to a concrete advantage which may tip practical
tradeoffs in its favour: the ability to interpret the learnt model, and analyse how its structure arises
from the underlying preference graph. In this section we favour depth over breadth, so focus on the
single best tree by ORR on the Chase task. The analysis in Figure 6 is divided into sections (a – d):
(a) This reward tree has 17 leaves. The oracle reward, printed below, uses four features, all of
which are used in the tree in ways that are broadly aligned (e.g. lower los error leads to leaves
with higher reward). The model has learnt the crucial threshold alt < 50, correctly assigning low
reward when it is crossed. This explains why we observe rare violations of the altitude threshold
in Figure 4. However, it has not learnt the ideal distance to RJ, dist = 20, with 43.3 being the
lowest value used in a rule. This could be because the underlying preference graph lacks sufficient
preferences to make this distinction; adopting an active querying scheme may help to discover such
subtleties efficiently. Other features besides those used by the oracle are present in the tree, indicat-
ing some causal confusion (Tien et al., 2022). This may not necessarily harm agent performance, as
it could provide beneficial shaping (e.g. penalising positive closing speed, which indicates in-
creasing distance to RJ). That may indeed be the case for this model since ORR is actually negative.
(b) We plot the tree’s predicted reward against the oracle reward for all timesteps in the online
trajectories (correlation = 0.903). The predictions for each leaf lie along a horizontal line. Most
leaves, including 1 and 2, are well-aligned on this data because their oracle reward distributions are
tightly concentrated around low/high averages respectively (note that the absolute scale is irrelevant
here). Leaf 16 has a wider oracle reward distribution, with several negative outliers. An optimal tree
would likely split this leaf further, perhaps using the alt < 50 threshold. The one anomaly is leaf
13, which contains just a single timestep from ξ77. This trajectory is the eighth best in the dataset
by oracle return, but this leaf assigns that credit to a state that seemingly does not merit it, as the
distance to RJ is so high (dist > 73). This may be an example of suboptimal reward learning, but
the fact that its origin can be pinpointed precisely is a testament to the value of interpretability.
(c) We leverage the tree structure to produce a human-readable explanation of reward predictions
for a single trajectory, which may be of value to an end user (e.g. a pilot). We consider ξ191, a rare
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Figure 6: Analysis of a reward tree learnt for the Chase task.

case that violates the altitude threshold. The time series of reward shows that the 20 timesteps are
spent in leaves 16, 15, 11 and 7. Rescaled oracle rewards are overlaid in teal, and show that the
model’s predictions are well-aligned. To the right, we translate this visualisation into a textual form,
similar to a nested program. Read top-to-bottom, the text indicates which rules of the tree are active
at each timestep, and the effect this has on predicted reward. This trajectory starts fairly positively,
with reward gradually increasing over the first 16 timesteps as dist is reduced to between 43.3 and
73, but then falls dramatically when the alt < 50 threshold is crossed. We are unaware of any
method that could extract such a compact explanation of sequential predictions from an NN.
(d) We isolate a subtree, starting at the root node, that splits only on dist and alt. We give a
spatial representation of the subtree, and how it is populated by the 200 online trajectories, using a
2D partition plot analogous to those in Figure 1. Zooming into leaf 1, which covers cases where the
altitude threshold is violated, we see that it contains a total of 30 timesteps across four trajectories.
By Equation 4, the low reward for this leaf results from a weighted average of the return estimates
for these four trajectories, which in turn (by Equation 3) are derived from the preference graph. We
can use this inverse reasoning to ask why this leaf has much lower reward than its sibling (leaf 2 of
the subtree). A proximal explanation comes by filtering the graph for preferences that specifically
compare trajectories that visit those two leaves. 49 such preferences exist, and in all cases, the oracle
prefers the trajectory that does not visit leaf 1. Some of these preferences may be more practically
salient than others. For example, we might highlight trajectories that feature more than once (e.g.
ξ28 is preferred to both ξ18 and ξ48), or cases where trajectories with low overall return estimates
are nonetheless preferred to those in leaf 1 (e.g. ξ43 ≻ ξ21 and ξ56 ≻ ξ47). We believe that much
more could be done to extend this framework for traceable explanation of preference-based reward.

7 CONCLUSION AND FUTURE WORK

Reward learning with trees provides a promising alternative to black-box NNs, and could enable
more trustworthy and verifiable agent alignment. Through oracle experiments on high-dimensional
tasks, we show that reward trees with around 20 leaves can achieve quantitative and qualitative per-
formance close to that of NNs, with a more direct split criterion bringing consistent improvements.
We find evidence that the NN-tree gap reduces as the ground truth reward becomes more nonlinear,
and remains stable or reduces further in the presence of limited or corrupted data. While practical
applications may accept some loss in performance for a gain in interpretability, further algorithmic
improvements should be sought, including to move beyond locally-greedy split criteria. However,
our immediate aim is to develop an end-to-end framework for explainable model-based agents with
preference-based reward trees (roughly: planning can be reframed as comparing alternative paths
through the discrete leaves of the tree). Having established this framework, we then intend to evalu-
ate reward learning and explanation with real human preferences in the aircraft handling domain.
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ETHICS STATEMENT

Reward learning from feedback is a technique for improving the alignment of learning agents with
human preferences, by replacing the rigidity of explicit reward design with a dynamic interaction
with a human-in-the-loop. As such, its successful use can benefit the performance, reliability and
safety of these learning systems, which has the potential to deliver immensely positive ethical
value. The contribution of reward trees is to render the process of reward learning more human-
interpretable, and thus easier to explain, debug and verify. We believe this can deliver a further
reduction in ethical risk through the identification and mitigation of unforeseen consequences.

Preference-based reward tree learning has many diverse applications. The aircraft handling domain
used in our evaluation was selected to provide a good balance of technical complexity, task diversity,
industrial relevance, intuitiveness for our intended readership, and transferability to other domains
such as land and sea transportation. In addition to this wide range of related use cases, as well
as civilian uses of aviation itself (e.g. aerobatics), we acknowledge that the ability to interactively
learn aircraft control policies may have applications in the defence sector. The three concrete tasks
of Follow, Chase and Land are largely application-neutral, with no implication of harm, and are
concerned solely with the safe and human-like control of aircraft in environments with other aircraft.
Any general learning technique such as ours is, however, fundamentally dual-use, and transparency
about this fact seems to us the best mitigation of the ethical risk. It is vital that anyone intending to
use or develop our method continues to do so in an ethically responsible manner.
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A METHODOLOGICAL DETAILS

A.1 LIST OF CHANGES TO BEWLEY & LECUE’S ORIGINAL METHOD

• Change from Thurstone to Bradley-Terry preference model and least squares matrix
method to gradient descent on ℓNLL;

– Motivation: Consistency with prior work.
– Performance implications: Thurstone→ Bradley-Terry minimally affects results. Ma-

trix method→ gradient descent eliminates a bias caused by preference clipping.
– Computational implications: Thurstone→ Bradley-Terry improves computational ef-

ficiency (bypasses inverse normal CDF computation). Matrix method → gradient
descent tends to slightly increase runtime, but this depends on preference dataset size.

• Add scale and sign constraints to return estimates;
– Motivation / implications: Scaling results in leaf-level reward predictions having a

consistent scale with a standard deviation close to 1. This is intended to aid human
readability but has no effect on performance. For sign constraints, see Appendix A.2.

• Change from variance-based to ℓ0-1-based split criterion during tree growth;
– Motivation: Hypothesised performance gain; new split criterion is more directly

aligned with the objective of preference reconstruction.
– Performance implications: Significantly improves preference construction and quan-

titative/qualitative agent performance on evaluation tasks; see Section 6.
– Computational implications: More costly as variance computation has an extremely

efficient iterative implementation. However, we have developed optimised code for
the new splitting method using just-in-time compilation; see Supplementary Material.

• Deploy online with a model-based (PETS) RL agent instead of model-free (SAC);
– Motivation / implications: See Section 5.2 and Appendix B.

• Always use latest online trajectory in all pairs during each preference batch;
– Motivation: Acts as a simple form of active sampling to correct reward overestimation;

model-based planning is liable to exploit any behaviours with inappropriately high
current reward, which can then be immediately corrected by a negative preference.

– Performance implications: Performs similarly to BL’s active sampling method, which
up-weights trajectories in Ξ with high predicted return.

– Computational implications: Less expensive than BL’s method; no need to recompute
return predictions for all trajectories in Ξ on each batch.

* Note: New method would be less effective with a model-free agent where policy
updates are gradual; can rely less on agent immediately exploiting current reward.

• Regrow tree from scratch on each update.
– Motivation: Prevents rule structure from prematurely converging to local minima.
– Performance implications: Early experiments indicated that premature convergence

problem is mitigated by this change, resulting in more sustained improvements in
reward fidelity and agent performance.

– Computational implications: Since splits are evaluated and made per update step,
computation time is increased. However, when typical post-pruning tree size LT
(≈ 20 in our experiments) is small compared with Lmax (= 100), this increase is
fractional, and contributes only a few percentage points to overall runtime.
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A.2 SIGN CONSTRAINT FOR RETURN ESTIMATES

Applying a sign constraint to the trajectory-level return estimates means that rewards output by
a reward tree (via Equation 4) are also all either positive or negative. This has no effect on any
measure of preference reconstruction since preferences are invariant to affine transformations of an
underlying utility function. However, we find it brings two distinct benefits:

• Enabling the prevention of perverse incentives for agents to terminate or elongate episodes
in tasks with termination conditions (negative rewards on non-terminal transitions incen-
tivise termination, while positive rewards incentivise elongation).

• Simplifying the manual interpretation of tradeoffs between rewards from different leaves
of a tree (understanding the relative impacts of “more of a negative reward” and “less of a
positive reward” requires the awkward mental juggling of negatives).

For the task with a termination condition in this paper (Land), we use negative rewards (max =
0 constraint) to disincentivise episode elongation, because termination is generally indicative of
success. For the two fixed-length tasks (Follow and Chase) we default to using positive rewards
(min = 0 constraint). Although this is arbitrary, our own experience is that positive rewards make
for somewhat more intuitive interpretation of the tree structure, and its effect on agent actions.
We stress that this is purely anecdotal; the relative human interpretability of positive, negative and
mixed-sign rewards would be a worthy subject for deeper empirical investigation.

A.3 ANNOTATED VERSION OF FIGURE 1

A dataset of pairwise preferences over 
trajectories can be visualised as a 
directed graph, where nodes are 
trajectories and edges are preferences. 

Each trajectory is a sequence of 
vectors in feature space. In turn, each 
vector represents the (state, action, 
next state) transition that occurs at a 
particular timestep t.

Feature vector for timestep t:

mapping

Given an existing tree 
structure and trajectories 
with estimated returns, we 
define the reward for each 
leaf as a timestep-weighted 
average over the trajectories 
that visit that leaf.

4.2

Naive assumption: all timesteps in trajectory
contribute equally to return (i.e. uniform colour)

Reward calculation for highlighted leaf:

Growing a tree by adding 
rules recursively splits the 
feature space into an 
increasing number of leaves. 
In our improved growth 
method, we use the 0-1 loss 
as the criterion for selecting 
rules to add.  

4.3

Growth tends to separate high- and low-return trajectories into different leaves

"Pure" leaf
containing a

single
trajectory

After growing to a maximum 
size, a final pruning stage 
recursively removes rules to 
minimise the 0-1 loss, with 
an additional regularisation 
term to penalise large trees. 
This yields a reduced tree for 
use as a reward function.

4.4

Pruning merges leaves back together, while retaining
the most important splits for preference prediction

Reward values shown are illustrative

4.1
Before doing anything in the 
feature space, we first use 
the standard Bradley-Terry 
preference model to estimate 
an overall return value for 
each trajectory in the dataset 
based on its preferences.

Two favourable preferences;
highest estimated return

Three unfavourable
preferences; lowest
estimated return

Preferred to      but not to      ; intermediate estimated return

Each edge points to
preferred trajectory

Figure A1: Annotated version of Figure 1.
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A.4 PSEUDOCODE FOR ONLINE ALGORITHM

Algorithm 1 Online preference-based reward tree learning
Inputs: Possibly pre-trained dynamics model D′, feature function ϕ, trajectory budget Nmax,
preference budget Kmax, tree size limit Lmax, tree size regularisation α

1: Initialise empty preference graph Ξ← ∅, L ← ∅
2: Initialise one-leaf tree T with r← [0]
3: for i ∈ {1, ..., Nmax} do
4: Initialise time t← 0 and environment state si0
5: while episode not yet terminated do ▷ Model-based trajectory generation (Sec.5.2)
6: Compute action ait using PETS algorithm

with D′ and rewards via Equation 4
7: Send ait to environment and get next state sit+1
8: Update D′ on recent transitions ▷ May not be required; see Appendix D.3
9: xi

t+1 ← ϕ(sit, a
i
t, s

i
t+1)

10: t← t+ 1
11: end while
12: ξi ← (xi1, ..., xi

T i)
13: Kbatch ← min((Kmax − |L|)/(Nmax + 1− i), |Ξ|)
14: for k ∈ {1, ...,Kbatch} do ▷ Preference batch collection (Sec 3)
15: Sample ξj from Ξ uniformly without replacement
16: Query human for preference ξi ≻ ξj or ξj ≻ ξi

17: L ← L ∪
{
{(i, j)} if ξj ≻ ξi

{(j, i)} otherwise
18: end for
19: Ξ← Ξ ∪ {ξi}
20: if |L| > 0 then
21: Compute g via Equation 3 ▷ Trajectory-level return estimation (Sec 4.1)
22: Initialise one-leaf tree T
23: C ← midpoints between per-feature unique values in Ξ
24: while LT < Lmax do ▷ Tree growth (Section 4.3)
25: for l ∈ {1, ..., LT } do
26: for f ∈ {1, ..., F} do
27: for c ∈ Cf do
28: Compute ℓ0-1 reduction for T + [lfc] via Equation 5
29: end for
30: end for
31: end for
32: if max(ℓ0-1 reduction) ≤ 0 then
33: break ▷ Stop tree growth early
34: end if
35: l, f, c← argmax(ℓ0-1 reduction)
36: T ← T + [lfc]
37: end while
38: T = ()
39: while LT > 1 do ▷ Tree pruning (Section 4.4)
40: for l ∈ {1, ..., LT } do
41: Compute ℓ0-1 reduction for T − [l] ▷ T − [l] denotes pruning lth leaf
42: end for
43: l← argmax(ℓ0-1 reduction)
44: T ← T − [l]
45: Append T to T
46: end while
47: T ← argminT ∈T(ℓ0-1 plus α-scaled tree size)
48: end if
49: end for
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B COMPARISON TO MODEL-FREE REINFORCEMENT LEARNING

One of the most consistently observed benefits of model-based RL is its sample efficiency, and this
trend holds in our context. Running Algorithm 1 unchanged except for the use of a soft actor-critic
(SAC) agent for policy learning, we find that approximately two orders of magnitude more environ-
ment interaction is required to achieve equivalent performance in terms of regret at convergence. In
turn, this increases wall-clock runtime by 10-20 times, thereby outweighing the higher per-timestep
computational cost of PETS over SAC. The caption of Figure A2 gives further details.
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Figure A2: Comparing the use of PETS (model-based) and SAC (model-free) agents on the Follow
task (see Appendix C.3 for task details). The PETS results are taken directly from Figure 3.
For SAC we retain the total preference budget of Kmax = 1000, but for longer runs add episode
trajectories to Ξ and L at a reduced frequency so that Nmax = 200 (e.g. for 50000 episodes, only 1
in 250 episodes are added to the graph; the rest are skipped). All SAC agents use policy and value
networks with two 256-unit hidden layers each, learning rates of 1e−4 and 1e−3 for the policy and
value updates with the Adam optimiser, a discount factor of γ = 0.99, and an interpolation factor
of 0.99 for Polyak averaging of the target networks. Updates use mini-batches of 32 transitions
sampled uniformly from a rolling replay buffer of capacity 5e4.
We find that initially running SAC for a total of 200 episodes, matching our PETS experiments,
gives the model-free learning algorithm insufficient time to achieve good performance in terms of
regret on the oracle reward function (a higher learning rate leads SAC to become unstable). We then
progressively increase the length of SAC runs until regret performance matches the use of PETS,
and find that this requires around 50000 episodes, an increase of 250 times. It is noteworthy that
the variance-based tree model seems to perform best in the short-runtime regime, but worst in the
long-runtime regime. Time constraints prevented us from investigating whether this holds in other
tasks, but such an investigation would be worthwhile.
In terms of wall-clock time (on a single NVIDIA Tesla P100 GPU), running reward learning
with SAC for 1000 episodes is roughly equivalent to 200 episodes using PETS (25-60 minutes,
depending on the reward model architecture). For 50000 episodes, this time increases to 9 hours.
This brings a very practical disadvantage: if reward learning were done using human preferences
instead of an oracle, that person would have to dedicate more than a full working day to the exercise,
most of which would be spent waiting for several minutes between each successive preference batch.

Note: The PETS wall-clock times quoted here exclude the time to pre-train the dynamics
models. Although this is not how MBRL sample complexity is typically measured, we argue that it
is appropriate for the reward learning context, where the key factor is the period for which a human
would be required to be in-the-loop. Regardless, pre-training in the aircraft handling domain takes
around 30 minutes, which remains low compared with the 9 hours for high-performing SAC agents.
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C AIRCRAFT HANDLING ENVIRONMENT

C.1 MOTIVATION

Pilots of fast jet aircraft require exceptional handling abilities, acquired over years of advanced train-
ing. There would be immense practical value in developing a method for distilling the knowledge
and preferences of pilots and other domain experts into a software model that captures realistic
handling behaviour. The scalability of such a model would make it useful for strategic planning
exercises, training of a range of operational roles, and development and testing of other software
systems. However, as in many contexts where intuitive decision-making and rapid motor control
are paramount, the preferences of experts (over the space of fast jet handling trajectories) are in
large part tacit, and thus defy direct scrutiny or verbal description. Put simply: experts know good
handling when they see it, but cannot directly express why.1 This makes it practically challenging
to accurately elicit this knowledge for codification into an automated system.

The methods presented in this paper form the basis of a possible solution to this dilemma. Given
a dataset of trajectories executed by an artificial learning agent and labelled with pairwise expert
preferences (which require only tacit knowledge to produce), we use statistical learning algorithms
to construct an interpretable explanatory model of those preferences. The result is two distinct
outputs that could form valuable components of future planning, training and development software:

1. A tree-structured reward function, which may be used for automated scoring of flight tra-
jectories executed by human or artificial pilots. We aim for this to produce an evaluation
that is consistent, unbiased and aligned with the judgement that the original expert would
have made, alongside an explanatory rationale that can be leveraged to justify, verify and
improve handling behaviour.

2. A model-based RL agent capable of executing high-quality handling behaviour with respect
to the reward function, for use in simulation.

It should be noted that any realistic handling scenario would involve multiple experts somewhat-
differing knowledge and expertise. A natural extension of our approach, which we see as valuable
future work, is to learn individual reward functions for each expert, then leverage the intrinsic in-
terpretability to identify biases, inconsistencies and tradeoffs. This suggests a third application of
reward tree learning: providing a basis for evaluating and training the experts themselves.

C.2 IMPLEMENTATION

We consider a simple set-piece formulation of the aircraft handling problem, in which the piloting
agent is given a short time window to manoeuvre their aircraft (the ego jet, EJ) in a particular manner
relative to a second reference jet (RJ). Special cases of this formulation create a wide variety of tasks
for the pilot to solve. Options include:

• RJ is a friendly aircraft which EJ should accompany in formation flight.
• RJ is adversarial and EJ must outmanoeuvre it to gain a tactical advantage.
• Rather than being a distinct physical entity, RJ defines a goal pose (position and attitude)

for EJ to reach. The goal pose may be fixed or moving over time.

We developed this formulation to strike a balance between simplicity and generality; many realistic
scenarios faced by a fast jet pilot involve interaction with a single other airborne entity. On a practical
level, it provides scope for the definition of many alternative tasks given the same state and action
spaces, and largely unchanged dynamics.

The state space contains the positions, attitudes, velocities and accelerations of both EJ and RJ
(state dimensionality = 37) and the action space consists of pitch, roll, yaw and thrust demands for

1This statement certainly underestimates the rich complexity of human expertise; in reality, an expert’s
mental model is likely to be partly tacit and partly explicit. The general strategy of preference-based reward
learning is to operate as if the mental model were 100% tacit, and explore what can be achieved under such
a strong restriction. Real-world applications would likely benefit from combining this approach with some
amount of hand-coded expert knowledge.
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EJ only (action dimensionality = 4). The EJ dynamics function integrates these demands with a
simplified physics engine, including gravity and air resistance (we make no claim of realism here;
the simulator is merely a proof of concept). A new action is accepted every 25 steps of the physics
engine, reducing an agent’s decision frequency to approximately 1Hz. RJ dynamics, as well as the
conditions of state initialisation and termination, vary between tasks (see Appendix C.3).

The final generic aspect of the implementation is the feature function ϕ, which maps the transition
space S × A × S (total dimensionality = 37 + 4 + 37 = 78) into an F -dimensional space of task-
relevant features. In consultation with engineers with experience of aerospace simulation and control
algorithms, we devised the following set of F = 30 features that is sufficiently expressive to capture
the important information for all three of our target tasks, without being overly specialised to one or
providing too much explicit guidance to the reward learning process. Apart from those containing
“delta” or “rate”, all features are computed over the successor state for each transition, st+1.

dist Euclidean distance between EJ and RJ
closing speed Closing speed between EJ and RJ (negative = moving closer)

alt Altitude of EJ
alt error Difference in altitude between EJ and RJ (negative = EJ is lower)

delta alt error Change in alt error between st and st+1

dist hor Euclidean distance between EJ and RJ in horizontal plane
delta dist hor Change in dist hor between st and st+1 (negative = moving closer)
pitch error Absolute difference in pitch angle between EJ and RJ

delta pitch error Change in pitch error between st and st+1

abs roll Absolute roll angle of EJ
roll error Absolute difference in roll angle between EJ and RJ

delta roll error Change in roll error between st and st+1

hdg error Absolute difference in heading angle between EJ and RJ
delta hdg error Change in hdg error between st and st+1

fwd error Angle between 3D vectors indicating forward axes of EJ and RJ
delta fwd error Change in fwd error between st and st+1

up error Angle between 3D vectors indicating upward axes of EJ and RJ
delta up error Change in up error between st and st+1

right error Angle between 3D vectors indicating rightward axes of EJ and RJ
delta right error Change in right error between st and st+1

los error Angle between forward axis of EJ and vector from EJ to RJ
(measures whether RJ is in EJ’s line of sight)

delta los error Change in los error between st and st+1

abs lr offset Magnitude of projection of vector from EJ to RJ onto RJ’s rightward axis
(measures left-right offset between the two aircraft in RJ’s reference frame)

speed Airspeed of EJ
g force Instantaneous g-force experienced by EJ

pitch rate Absolute change of EJ pitch between st and st+1

roll rate Absolute change of EJ roll between st and st+1

yaw rate Absolute change of EJ yaw between st and st+1

thrust Instantaneous thrust output by EJ engines
delta thrust Absolute change in thrust between st and st+1

C.3 TASKS AND ORACLES

In this paper, we consider three concrete tasks that instantiate the general EJ-RJ framework. For
each, we construct a plausible oracle reward function from a subset of the 30 features, meaning
that reward learning is in part a feature selection problem (tree models perform feature selection
explicitly whenever they add a new splitting rule). Although the precise nature of the oracle reward
functions is secondary, and those given below are among many equally reasonable alternatives,
we dedicated several hours of development time to ensuring they yield reasonable behaviour upon
visual inspection. The difficulty and seeming arbitrariness of this manual reward design process is
precisely why reward learning (ultimately from real human preferences) is an enticing proposition.
Descriptions of the three tasks, along with their respective oracles, are given below:

• Follow: Here RJ follows a linear horizontal flight path at a constant velocity, which is
oriented opposite to the initial velocity of EJ. The goal is to turn onto and then maintain the
path up to the episode time limit of 20 timesteps. This constitutes a very simple form of
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formation flight. The oracle reward function incentivises closing the distance to the moving
target, and matching the upward axes of EJ and RJ:

r = −(dist+ 0.05× closing speed+ 10× up error).

• Chase: Here RJ follows an erratic trajectory generated by random control inputs, and the
goal is to chase it without taking EJ below a safe altitude of 50. Episodes terminate after
20 timesteps. The oracle reward function incentivises keeping RJ at a distance of 20 and
within EJ’s line of sight, while keeping EJ oriented upright. It also has a large penalty for
dropping below the safe altitude:

r = −(abs(dist− 20)+10×los error+5×abs roll+
{

100 if alt < 50
0 otherwise ).

• Land: Here the goal is to execute a safe approach towards landing on a runway, where
RJ represents the ideal landing position (central, zero altitude, slight upward pitch). EJ is
initialised at a random altitude, pitch, roll and offset, such that landing may be challenging
but always physically possible. An episode terminates if EJ passes RJ along the axis of
the runway, or after 25 timesteps otherwise. The oracle reward function for this task is
by far the most complex of the three, including terms that incentivise continual descent,
penalise g-force and engine thrust, and punish the agent for making contact with the ground
(alt < 0.6) before the start of the runway:

r = −(0.05× abs lr offset+ 0.05× alt+ hdg error+ abs roll

+0.5× pitch error+ 0.25× (yaw rate+ roll rate+ pitch rate)

+0.1× g force+ 0.025× thrust+ 0.05× delta thrust

+

{
1 if delta dist hor > 0
0 otherwise +

{
2 if delta alt > 0
0 otherwise

+

{
1 if abs lr offset > 10
0 otherwise +

{
10 if alt < 0.6
0 otherwise ).
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D IMPLEMENTATION AND EXPERIMENT DETAILS

D.1 ORACLE PREFERENCES

Oracle preferences are generated in accordance with the Bradley-Terry model given in Equation 1,
i.e. by computing the returns for the two trajectories ξi and ξj , and sampling from a Boltzmann
distribution parameterised by those returns. In our main experiments, we set the temperature coeffi-
cient β = 0, which results in the oracle deterministically selecting the trajectory with higher return
(ties broken uniform-randomly). In Section 6.3 we study cases with β > 0, which provide a more
realistic emulation of real human preference data.

D.2 HYPERPARAMETERS FOR TREE INDUCTION

In all experiments, we use the following hyperparameters during tree induction. These were iden-
tified through informal search, and we make no claim of optimality, but they do lead to reasonable
performance on the three tasks of varying complexity. This indicates a general insensitivity of the
method to precise hyperparameter values, which is often practically advantageous.

• Trajectory return estimation using the Adam optimiser with a learning rate of 0.1. Optimi-
sation stops when the mean ℓNLL changes by < 1e−5 between successive gradient steps.

• Per-feature candidate split thresholds C defined as all midpoints between adjacent unique
values in the trajectory set Ξ. These are recomputed on each update.

• Tree size limit Lmax = 100.

• Tree size regularisation coefficient α = 5e−3.

As mentioned in Appendix A.2, we enforce negative rewards (max = 0 constraint) for the Land
task, and positive rewards (min = 0 constraint) for Follow and Chase.

D.3 MODEL-BASED RL IMPLEMENTATION

For conceptual details on the PETS algorithm, we refer readers to the original paper by Chua et al.
(2018). In our implementation, the dynamics model is an ensemble of five NNs, each with four hid-
den layers of 200 hidden units and ReLU activations. State vectors are pre-normalised by applying a
hand-specifed scale factor to each dimension. Decision-time planning operates over a time horizon
of H = 10 and consists of 10 iterations of the cross-entropy method. Each iteration samples 20
candidate action sequences from an independent Gaussian, of which the top 5 in terms of return are
identified as elites, then updates the sampling Gaussian towards the elites with a learning rate of 0.5.
In all experiments we use γ = 1, meaning no temporal discounting is applied during planning.

In our experiments, we find that the particular dynamics of the aircraft handling environment permit
us to pre-train D′ on random offline data, and accurately generalise to states encountered during on-
line reward learning. This means we perform no further updates to the model while reward learning
is ongoing. As well as improving wall-clock speed, this avoids complexity and convergence issues
arising from having two interacting learning processes (note that simultaneous learning is completely
unavoidable with model-free RL). To pre-train, we collect 1e5 transitions by rolling out a uniform
random policy, then update each of the five networks on 1e5 independently sampled mini-batches of
256 transitions, using the mean squared error loss over normalised next-state predictions.

D.4 NEURAL NETWORK REWARD LEARNING BASELINE

We baseline our reward tree models against the de facto standard approach of reward learning using
a NN. In constructing this baseline, we aimed to retain as much of Algorithm 1 as possible, so that
only the model architecture varies. The result is that we replace lines 21-47 with the following:
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21: for m ∈ {1, ...,M} do
22: Lmini-batch ← a mini-batch of B preference labels sampled from L
23: Compute ℓNLL over Lmini-batch via Equations 1 and 2
24: Backpropagate loss and update network parameters
25: end for
26: rall ← reward predictions for all feature vectors in Ξ
27: Scale network outputs by 1/std(rall)
28: Shift network outputs by −min(rall) or −max(rall), depending on desired reward sign

The new lines 26-28 replicate the two constraints applied in Equation 3.

In all experiments, we follow Lee et al. (2021b) in implementing the reward model as a three-layer
network with 256 hidden units each and leaky ReLU activations, and performing the update on line
24 using the Adam optimiser (Kingma & Ba, 2014) with a learning rate of 3e−4. On each update,
we sample M = 100 mini-batches of size B = 32 and take one gradient step per mini-batch.

D.5 COVERAGE DATASETS FOR POLICY-INVARIANT EVALUATION

Gleave et al. (2021) recently highlighted the importance of comparing and evaluating learnt reward
functions in a policy-invariant manner, by using a common evaluation distribution rather than on-
policy data generated by agents optimising for each reward. Ideally, the offline evaluation data
should have high coverage (i.e. high-entropy state distribution, both high- and low-quality trajecto-
ries), in order to characterise the reward functions’ outputs across a spectrum of plausible policies.

In our context, we can generate data that satisfies these requirements by leveraging the known oracle
reward functions and the PETS algorithm. We deploy PETS using the oracle reward, but randomise
the planning parameters (number of planning iterations ∈ {1, ..., 50}, number of action sequence
samples ∈ {4, ..., 50}) on every episode. In all cases, we take the top 25% of action sequences as
elites. This randomisation results in trajectories that are sometimes near-optimal with respect to the
oracle, sometimes moderate in quality, and sometimes barely better than random. For all three tasks,
we generate a dataset of 200 evaluation trajectories in this manner.
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E VISUALING REWARD FUNCTIONS WITH SIMILARITY EMBEDDINGS

Here we briefly discuss a novel form of reward visualisation which we developed and found valu-
able during our own analysis. Given some measure of similarity between reward functions, such as
the EPIC metric proposed by Gleave et al. (2021), we can compute a matrix of pairwise similarities
between any number of such functions (computational cost permitting). We can then produce a 2D
embedding of the functions by applying multidimensional scaling (MDS). Visualising this embed-
ding as a scatter plot enables the discovery of salient patterns and trends in the set of functions.

In Figure A3, we use the metric of rank correlation on the coverage datasets, and the SMACOF MDS
algorithm (De Leeuw & Mair, 2009), to embed all 30 model repeats and the oracle for each task.
This gives an impression of the models’ similarity not just to the oracle, but to each other. Aside
from the Follow NNs, which form a tight cluster near the oracle, the distribution for each model
indicates roughly equal consistency between repeats. The overlap of convex hulls suggests that the
rankings produced by all models are broadly similar for Land, but more distinct for Chase. Shading
points by ORR reveals that while models further from the oracle tend to induce worse-performing
policies, the trend is not monotonic. This reinforces the point made elsewhere that the problems of
learning a good policy and exactly replicating the ground truth reward are not identical.

Oracle

ORR
10

Follow Chase LandNN
Tree (0-1)
Tree (var)

Figure A3: Rank correlation embeddings for all model repeats from the main experiments, with the
scatter point for each repeat shaded by ORR.

Populating such embedding plots more densely, perhaps by varying model hyperparameters, could
provide a means of mapping the space of learnable reward functions and its relationship to policy
performance. It would also be straightforward to compute similarity values for the same model
repeat at multiple checkpoints during learning. This would yield a trajectory in the rank embedding
space, which could aid the assessment of the stability and convergence properties of online learning
with different models and hyperparameter values.
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